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Abstract

In the author’s previous joint work with Hein (Commun Math Phys 347:183-221, 2016), a
mass formula for asymptotically locally Euclidean Kihler manifolds was proved, assuming
only relatively weak fall-off conditions on the metric. However, the case of real dimen-
sion 4 presented technical difficulties that led us to require fall-off conditions in this special
dimension that are stronger than the Chrusciel fall-off conditions that sufficed in higher dimen-
sions. Nevertheless, the present article shows that techniques of four-dimensional symplectic
geometry can be used to obtain all the major results of Hein-LeBrun (2016), assuming only
Chrusciel-type fall-off. In particular, the present article presents a new proof of our Penrose-
type inequality for the mass of an asymptotically Euclidean Kiahler manifold that only requires
this very weak metric fall-off.

Keywords Mass - Asymptotically locally Euclidean - Kihler - Scalar curvature -
Symplectic - Pseudo-holomorphic curve - Penrose inequality

A complete connected non-compact Riemannian manifold (M, g) of real dimension n = 3
is said to be asymptotically Euclidean (or AE) if there is a compact subset K C M such
that M — K consists of finitely many components, each of which is diffeomorphic to the
complement of aclosed ball " C " in such a manner that g becomes the standard Euclidean
metric plus terms that fall off sufficiently rapidly at infinity. More generally, a Riemannian
n-manifold (M, g) is said to be asymptotically locally Euclidean (or ALE) if the complement
of a compact set K consists of finitely many components, each of which is diffeomorphic to
a quotient (B" — D) /I, where I'7 € O(n) is a finite subgroup that acts freely on the unit
sphere, in such a way that g again becomes the Euclidean metric plus error terms that fall
off sufficiently rapidly at infinity. The components of M — K are called the ends of M; their
fundamental groups are the aforementioned groups I, and might in principle be different
for different ends of the manifold.

There is no clear consensus regarding the exact fall-off conditions that should be imposed
on the metric g, as various authors have in practice tweaked the definition to dovetail with the
technical requirements demanded by their favorite techniques. However, the weakest standard
hypotheses that seem to lead to compelling results are the ones introduced by Chrusciel [5]:
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(i) The metric g is of class CE, with scalar curvature 5 in LI; and
(ii) in some asymptotic chart at each end of M", and for some £ = 0, the components of the
metric satisfy

git =8k +O(x|'"T7),  gjre=O(x|"17).
With these very weak hypotheses, Chrusciel’s argument shows that the mass

. ') ¢
m(M, g) := éﬂgﬂm ];qm [geek — gie]n*dag

of an ALE manifold (M, g) at any given end is both well defined and invariant under a large
class of changes in asymptotic coordinate system. Here, commas indicate partial derivatives
in the given asymptotic coordinates, summation over repeated indices is understood, 5 is the
Euclidean coordinate sphere of radius g, I is the fundamental group of the relevant end, T is
the Euler Gamma function, da g is the (n—1)-dimensional volume form induced on this sphere
by the Euclidean metric, and @i is the outward-pointing Euclidean unit normal vector. While
Chrusciel’s paper actually only discusses the AE case, his argument immediately extends to
the more general ALE setting under discussion here. The fact that fall-off conditions on the
metric are by no means a matter of widespread consensus is nicely illustrated by Bartnik's
powerful and better-known theorem [2] on the coordinate-invariance of the mass, which was
proved around the same time as Chrusciel’s work; while Bartnik’s conclusion regarding the
coordinate-invariance of the mass is markedly stronger than Chrusciel’s, it is obtained at the
price of replacing hypothesis (ii) above with the stronger assumption that the g j; — 4 j; belong
to a weighted Sobolev space Wif forsome g = nand some T > (n—2)/2. Bartnik's paperis
also notable for showing, by counter-example, that any significant weakening of Chrusciel’s
conditions (1) and (ii) would result in the mass being ill-defined and/or coordinate dependent.

In joint work with Hein [7], the present author has elsewhere shown that if (M, g, J) is
an ALE Kéhler manifold of complex dimension m, then M has only one end, and that the
mass at this unique end is given by

m(M. §) = b ((—c1), [w]™ 1) + 3{:—:};’;.];53%

where 5, and du; are, respectively, the scalar curvature and volume form of g, ¢ =
(M, J) € H*(M) is the first Chemn class of the complex structure, [w] € H*(M) is
the Kihler class of g, & : H>(M) — HZ2(M) is the inverse of the natural morphism from
compactly supported to ordinary de Rham cohomology, and {, ) is the duality pairing between
H2(M) and H™~2(M). If one accepts it as given that M has only one end, our proof [7,
Sect. 3] of the above mass formula only requires the Chrusciel fall-off hypotheses (i) and (ii),
and provides an entirely self-contained proof of the coordinate-invariance of the mass in the
Kihler case. However, our proof that M can only have one end, merely assuming the metric
fall-off condition (ii), works well only when m = 3; when m = 2, our proof only managed to
obtain the same conclusion from Chrusciel’s fall-off hypothesis if £ = 1/2. This and related
phenomena led us, in [7], to instead insist on Barmik-type metric fall-off in the special case
of real dimension 4.

This note will provide a remedy for this state of affairs. Many of the analytic subtleties
encountered in the four-dimensional case are subtly intertwined with the fact that the complex
structure of an ALE Kihler surface need not be standard at infinity. By contrast, we will show
here that the symplectic structure at infinity of such a manifold is always standard, even with
extremely weak fall-off assumptions on the metric. By developing symplectic versions of
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some of the previous proofs, we will thus be able to show that, even when m = 2, all the
main results of [7] continue to hold even when the metric simply satisfies Chrusciel’s weak
fall-off hypotheses (1) and (ii). In particular, we will see that our Penrose-type inequality [7,
Theorem E] for the mass of an AE Kiihler manifold remains valid even in real dimension 4,
assuming only the mildest reasonable fall-off assumptions on the metric.

1 The asymptotic symplectic structure

For clarity and concreteness, we will restrict the following discussion to real dimension 4.
However, most of what follows does work, mutatis mutandis, in higher dimensions, and
indeed is actually far less delicate in that setting.

Let (M*, g, J) be an ALE Kihler surface, which we hypothetically allow to perhaps
have several ends. Throughout, we will simply assume that g satisfies the Chrusciel fall-
off hypothesis, and in this section we will actually only make use of hypothesis (ii) with
n = 4. Thus, on any given end My j of M, we assume that there are asymptotic coordinates
ix!, ..., x%) on the universal cover ﬁm; of My ; in which the components of the metric
satisfy

gik =8+ 0(x|7'),  gike=0(xI27%)

for some £ = (), and such that the fundamental group [ of the end acts by rotations of the
coordinates (x!, ..., x%) in a manner that preserves both the background-model Euclidean
metric & and the given Kihler metric g.

Because g is Kihler by assumption, the associated complex structure J satisfies VJ =0,
where V is the Levi-Civita connection of g. However, since our fall-off hypothesis implies
that V.= v + G{|x|_1_£}1 where ¥ is the flat Levi—Civita connection of 4, the elementary
argument presented in [7, Sect. 2] shows there is a d-compatible constant-coefficient almost-
complex structure Jy on B* such that

J=Jy+ 0(x7"%), v = 0(x|77).

After rotating our coordinates I{x1 e x‘t] if necessary, we may moreover arrange for Jp to
become the standard complex structure
a a d
i'e —-—di'® —+d° @ — —dx* @ —
® dx? ® ax! + ® axd ® ax?

on C2. Since the action of the fundamental group I} preserves both J and &, it now follows
that I < U{2). More importantly, we therefore automatically obtain fall-off conditions

w=wp+ O(x|717%),  Vw= 0(x|77), (L.1)

for the Kihler form w = g(J-,-) of g, where axy = dx' A dx? + dx® A dx? is the standard
symplectic form on B* = C2.

I'-j_rnpnsltion1.1 Let {M‘i, g, 1) be an ALE Kihler surface, let My ; be an end of M, let
Moo i be the universal cover of My ;, and let

I{x],...,x‘t]:ﬂ?m.,-—rﬂ‘i—ﬂ

be a diffeomorphism, where B C B is a standard closed ball of some large radius centered
at the origin. Suppose, moreover, that these asymptotic coordinates have been chosen in
accordance with the above discussion, so that the Kihler form w of (M, g, 1) is C? and
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mi‘iﬁe&' the fall-off conditions (1.1) in this coordinate system, while the action of m (Mo ;)
on Mag i by deck transformations is represented in these coordinates by the action of a finite
group I'; C U(2) of unitary transformations, acting on B* = C? in the usual way. Then, there
is Ii-equivariant C2-diffeomorphism & : B* — C — B4 — D, where C < B* is a standard
closed ball centered at the origin, where D  B* is a smooth 4-ball whose boundary 3D is
a I -invariant differentiable 53 and where B — C N D, such that

@*w = wy,
with |®(x) — x| = O(|x|™*) and |®, — I| = (|x|~'~).
Proof The following proof is largely a quantitative refinement of Moser's stability argument
[17].
Let a denote the radius of the given closed ball B C R*, and notice that we can identify
BY — B with 5% x (a, 00) by means of the smooth diffeomorphism x — (x/|x|, |x|). Letting
g = |x| € (a, o0) denote the radial coordinate, and letting n = 3% denote the unit radial

vector field in B4, we now define an r-dependent 1-form @, on 5% by restricting the 1-form
1o (& — ), which in any case has vanishing radial component, to 5 x {r} C 53 x (a, 0O):

@y 1= o (w — an) L_ , T € (a, o).

Because our fall-off conditions guarantee that ¢, = O(r~*) as a 1-form on SJ', it follows
that, for any choice of g € (a, 00),
[
v=[ par

o0

is a well-defined p-dependent 1-form on 57 of growth O (p'—*), with first partial derivatives
on §° of similar growth. Viewing ¥ as a 1-form on 5° x (a, 00) with vanishing component
in the g-direction, our assumptions thus not only guarantee it is is a 1-form of class C7, but
also that its components in R* satisfy the fall-off conditions

Ve =0(x[™), e = 0(x7'7).
However, Cartan’s magic formula for the Lie derivative tells us that

_—g% (w —wp) = nad (@ — ag) + d [ga(w — wg)] = d 52 (@ — wg)]

because w and ey are both closed; and since the Lie derivative commutes with d on C2 forms,
we also have

Lpdy = d[£3 ¢]=dg =d [12 (@~ an)l,
too. It follows that & := (@ — wp) — dy is a closed, p-independent 2-form on 5° x (a, 00).
Moreover, since
e =0 lw—ap) —dfl =9 —FHv =¢ —¢ =0,

it follows that o is actually the pull-back of a closed 2-form on §°. But since H2(5%) = 0,
we therefore have @ = df for some p-independent 1-form £ on §°. Moreover, since w and
ey are both I -invariant, it follows that ¢, v, and o are all [}-invariant, too; by averaging, we
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can therefore arrange for 8 to also be I -invariant, while still satisfying the equation o = df.
Setting & := v + f, we then have

o — oy = df
for a I}-invariant 1-form @ of class €7 on R* — B with fall-off
8=0(x|"), v8=0(x|""").
Let us next consider the family of convex combinations
wr = (1 — g + te = wo + § (@ — ao), t = [0, 1], (1.2}

of the given symplectic forms @ and wp. Because (@ — wp) = O(jx]~'—*) as a 2-form on
RA—B,Hlereissnmf.h = a such that |& —wg| < Ifﬁfm’allg = b, where the norm of a
2-form here is calculated with respect to the Euclidean metric 4. This then implies that, for
any vector v € T;B* = R*, one has

|
lvaay| = E|u| ¥t e [0, 1]

whenever g = |x| = b; here the vector norm is again measured with respect to the Euclidean
metric 4. Thus, when g = b and t £ [0, 1], the maps B4 — T;IE?“ defined by the
contractions v — vy are not only invertible, but have inverses of operator norm < 2 with
respect to §. Defining a t-dependent €2 vector field X; on the exterior region g = b by

Xiqay =—0, te[0,1], (1.3)

our fall-off conditions therefore tell us that |X;|; = O(g™) and |VX;|z = O~ ). In
particular, it follows that there is some ¢ = b 4+ 1 such that |X;|z < 1 on the entire region
g = ¢ — 1, forevery t € [0, 1]. Also notice that we automatically have

Xl = —an( Xy, X)) =0, (1.4)
and that X; is [G-invariant, for every f £ [0, 1].
Fixing coordinates (x!, ..., x*, 1) on B° = B* x R, we now consider the closed 2-form
2 = oy +d(t8)

on an open neighborhood of the region |x| = ¢ — 1, 0 =t = 1, where the {-independent
forms eg and 8 are understood to denote the pull-backs of the corresponding forms on B2,
Since df = @ — ay, we may rewrite this as

2 =y +dr A8, (1.5)

so that restriction of £2 to the various ¢ = constant slices simply yields the 2-forms ey of
(1.2). The C* vector field

d
b= T X

on our region of B therefore satisfies

a
54ﬂ=[5+x,} [y +dt Anf]=8—8=0

by dint of {1.3)}—(1.5). Thus, Cartan’s magic formula now yields
R =F.dR2 +d[E.R2] =0
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The flow of £, which simply acts on t by “time translation,” therefore locally moves the
2-form @y on any given time slice to the corresponding 2-form at a later time. However,
because the vector field X; always has Euclidean length |X;| < 1 in the regiong = ¢ — 1,
the flow-line of £ starting at any (x,0) with |x| = ¢ is well defined for all ¢+ < [0, 1], and
remains within By(x) = [0, 1]. Thus, letting C denote the Euclidean ball g < ¢, there is a
family

& B - R, relo1],

of C2 maps given by following the flow of & from (B* — ) x {0} to B* x {t}. These maps are
C? diffeomorphisms between R* — C and their images, and satisfy & *a; = wy. In particular,
& = & provides a symplectomorphism between ([R4 —C, wq) and (24, w), for some open set
1 c B*. But since a time-reversed version of our argument shows that backward trajectories
of the flow from g = ¢ + 1 are also defined and remain in the region g = ¢ for t € [0, 1],
every point in the region ¢ = ¢ + | must belong to the image I{ of . Moreover, we can
now extend & as a [-equivariant C2 diffeomorphism B* — R* by extending the vector
fields X; to B* while keeping | X;| < 1 by multiplying the fields defined by (1.4) by a cutoff
function ¢ (p) whichis=1forp > ¢ — land = 0 for g < ¢ — 1 — . In particular, the
closed set D = R* — U4 is actually diffeomorphic to a standard 4-ball, and its boundary is
a I}-invariant differentiable §°. Finally, because | X;| = O(g™*) and |VX;|; = O(g~'~*).
we have |®(x) — x| = O(|x| ™) and |®, — I| = (Jx|~'~*). u]

2 Some useful symplectic orbifolds

If I" C U(2) is a finite subgroup, the standard action of I" on C? extends to CP2 = C2uCP
in an obvious way—namely, by letting a 2 x 2 complex matrix 4 acton O* = C2 @ C
by A @ 1, and then remembering that CP; = (C? — 0)/C*. Since this construction gives
us an inclusion U{2) — PSU(3), the induced action of I" on CP; preserves the standard
Fubini—Study metric; and since the action also preserves the complex structure of TP, it also
preserves the Fubini—Study Kahler form @, which we will choose to regard as a symplectic
form on CP;. We may therefore choose to view the quotient (CF, w)/ T as a symplectic
orbifold.

We will henceforth confine our discussion to those I” that act frecly on the unit sphere
5% ¢ C%. Our goal here will then be to construct preferred partial desingularizations of every
symplectic orbifold (TP, w)/ I that arises in this way. Of course, if I' = {1}, then CP5/I"
is smooth, so there is nothing to do in this regard. We may therefore assume from now on that
I" # {1}. With this assumption, the origin in C? ¢ CP; automatically projects to a singular
point p € CP5/I"; and since we have assumed that I” acts freely on the unit sphere 53, and
hence on all of C% — [0}, the singular point p is automatically isolated. More specifically,
every other singular point arises from some element of the *line at infinity” CIP; c CPs.
Our objective in this section will be to symplectically modify (CIP;, w)/I™ in a manner that
leaves the singularity at p unaltered, but eliminates all the other singularities.

In preparation for this, let us first notice that the center Z = U(1) of U(2) consists of
scalar multiples of the diagonal matrix, and acts trivially on the CPy at infinity. Moreover,
since Z = U(1) = R/Z, the finite group Z M " must be cyclic, and thus isomorphic to
&y for some positive integer £. Our first step is therefore to consider the quotient CF; /&y,
Away from the base-point p arising from [0 : 0 : 1] € CPa, this space is topologically non-
singular, and can be given a smooth structure such that & descends to it as a symplectic form.
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This is perhaps most easily seen via Lerman’s theory of symplectic cuts [12]; namely, the
Fubini-Study symplectic form on CP; is obtained by taking the symplectic cut at # < 1/2
of (C?, wy) for the Hamiltonian % = (|z1> 4 |z2/%)/2, which generates a free periodic
action of period 2 at and near the boundary. It follows that CP; /& is simply obtained from
C2/T; by taking the symplectic cut at # < £/2 for the Hamiltonian # = £/, which again
generates a free periodic action of period 2 at and near the boundary.! If £ = 1, the global
quotient (CP;, w) /Z; can thus be viewed as a symplectic orbifold (X, @) with exactly one
single singular point j, corresponding to the origin in C7. The symplectic cut construction
gives us a symplectic 2-sphere X < Xy of self-intersection 4+ that corresponds to the line
at infinity CPFy < CP;, and we note in passing that Xy — {p} is actually diffeomorphic to
the () line bundle over CP). Since the symplectic condition on a submanifold is open,
we can also obviously perturb this (4£)-sphere “at infinity™ so as to produce an embedded
2-sphere X' that meets X in only one point, at which X and X' are tangent to order £ — 1.
Moreover, one can do this in such a manner that ¥ N X' is any chosen point of X, and so
that ' avoids any given small neighborhood of the singular base-point p. Indeed, one can
even do this explicitly in the present context, by just taking E' to be the image in CP; /& of
a generic complex line in CP5. Of course, almost everything said here is also trivially true in
the case of £ = 1; the only thing that is substantially different about the case of X} = CI’;
is that p is a non-singular point when £ = 1. Whatever the value of £, we also automatically
have

(C1(Xe), [EN) = {er(Xe), [E) = () + Z-E=2+E=3 (2.1)

as an immediate consequence of the adjunction formula.

We now wish to treat the general I” C U(2) that acts freely on 5 We do so by first
noticing that TP /M = X /", where " := I'/{ZNT) = I'jZg. Of course, if I" = {1}, we
are already done. Otherwise, notice that since I” acts freely on 5°, and hence on C7 — {0},
the fact that Zy C I is central implies that I” also acts freely on (C2 — [0})/Z;, and hence
on Xy — (X u {p]). The singular points of (X; — {p})/I" therefore all arise from points
of ¥ == 52 that are fixed by some non-trivial subgroup of I*. However, since U(2)/Z =
PSU(2) = SO(3), our group I* can be Th:rug]lt of as a finite subgroup of SO(3), in a way that
simultaneously realizes the given action of I” on X as the tautological action of I' C SO(3)on
5% = S0(3)/S0O(2). But since the isotropy group C S0(3) of any point in 5 is isomorphic
to SO(2) = R/Z, the stabilizer C I” of any point of X is necessarily cyclic—and of course
is actually trivial for all but a finite number of points!

While the above arguments in principle provide all the information we will need to prove
the main result in this section, it is still worth mentioning the classical fact that the only
possible finite groups I" € SO(3) are the oriented isometry groups of a polygon or regular
polyhedron in B2 or B2, and that this implies that the quotient X /I is always a topological
2-sphere with exactly two or three singular points [24, Chapter 13], which actually arise from
the orbits of the vertices, edge-centers, and/or face-centers of the corresponding geometric
figure. The non-trivial possibilities are tabulated below. In particular, the orbifold X/ I* will
actually have exactly 0, 2, or 3 singularities other than the singular base-point p that is the
image of p € X;.

! More generally, symplectic orbifold singulanities of codimension 2 are always symplectically invisible. The
essential points are that the fixed-point set is antomatically a symplectic submanifold, and that the area form
on T/ Zy induced by the standard area form on C becomes a constant times the standard area form on C if one
declares that the complex variable £ = z¥/]z|*~! provides an admissible chart on the quotient.
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Group Figure Singularities
Cyclic " Zn. Tn
Dihederal =% T3, %2, Tn

Tetrahedral ' 73,83, %3
Octahedral . F72,83, 1y
Icosahedral . 73,85, 25

While this classification does tell us the possible orders of the cyclic groups associated with
each singularity, it does not actually completely describe the local action of these stabilizers
&y < I' on Xy, since the action of £; on ¥ does not determine its action on the normal
bundle of . However, we do know that these stabilizer groups have only isolated fixed
points, since I° acts freely on X; — (X u {p}). Thus, if &; C I” is the stabilizer of some
fixed point, its action is locally modeled on the action of Z; on C? generated by

(z1,72) = (797, ™iP/9 ) (2.2)

for a unigue integer p with 0 < p < g and ged(p, g) = 1. In complex geometry, there is a
standard minimal resolution of any such singularity, obtained by replacing the singular point
with a Hirzebruch—Jung string [1,8], meaning a finite string

of copies of CPy whose self-intersection numbers —e; are the negatives of the integers e; = 2
determined inductively by the algorithm

N = %1 e =[], 2ju1=(e;-9;)7",
where the process terminates at the first j for which 0; is an integer.

While it should be feasible to carry out a symplectic version of Hirzebruch’s construction
via a sequence of symplectic cuts, we will instead remove these cyclic singularities by exploit-
ing Sect. 1. Indeed, for each action (2.2), Calderbank and Singer [4] have constructed a family
of ALE scalar-flat Kahler surfaces whose single end is diffeomorphic to L(g, p) < BY, where
Lig, p) = ngEq is the lens space associated with the given action (2.2). The Calderbank—
Singer manifolds are, by construction, diffeomorphic to Hirzebruch's minimal resolutions of
Cl,-"Eq, and satisfy Chrusciel’s fall-off hypotheses with £ = 1. For any chosen metric in the
family, Proposition 1.1 thus tells us that the Calderbank—Singer manifold contains a compact
set whose complement is symplectomorphic to (C? — 3y, wy) /Ly, for the specified action
(2.2) on C%, where #a, C C? is the standard closed ball of some radius 1 > 0 centered at
the origin. By multiplying the Calderbank—Singer metric (and therefore its Kahler form) by
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a sufficiently small positive constant, we may then arrange for this statement to actually hold
with s replaced by any small radius r = 0 we like. However, each orbifold singularity v we
wish to eliminate has a neighborhood modeled on (#5, am]qu for some radius § = 0, and
for some &y action of type (2.2). Choosing our rescaling of the Calderbank—Singer manifold
so that r < %_then allows us to delete a closed neighborhood (&, mg},-"Eq of the singular
point ¥, remove the end (C? — @5, wy) /Zy from the Calderbank—Singer manifold, and then
glue the two resulting open manifolds together by identifying the two constructed copies of
the annulus quotient (#g — @, wy )/ &y via the tautological symplectomorphism between
them. Since we only need to eliminate a finite number of singular points this way, we may
also take the radius & of these surgery regions to all be small enough so that these surgeries
take place in disjoint regions, and so do not interfere with each other. Similarly, after choos-
ing some non-singular reference point z € E,n’f' C Xgl.n’f', we also require that the surgery
radius & be small enough that neither z nor the singular base-point p = [] belongs to the
closure of these surgery regions.
We will now verify that this construction proves the following result:

Proposition 2.1 Let I' < UN2) be a finite subgroup #£ 1} that acts freely on the unit sphere
5% C C2. Then, there is afour-dimensional compact connected symplectic orbifold (X, wr)
such that

(D) (X, wr) contains exactly one singular point p;

(I} p has a neighborhood symplectomorphic to (8, eq)/I” for some standard open ball
@B C T2 centered at the arigin, where I" acts on {CE, ayy) in the tautological manner,
as a subgroup af U(2); and

(I} there is a symplectic immersion j : 8% % X — {p}, with at worst transverse positively
ariented double points, such that

fs,z_i"*[flfxr —{pl. NI=3
for some, and hence any, w-compatible almost-complex structure J.

Proof We need only check the last condition, since the first two are obviously satisfied as
long as the surgery radius %_is small. To produce the immersed sphere promised by condition
(III), recall that we can construct an embedded sphere &' C Xy — p of self-intersection £
that only touches X at a chosen point of the latter 2-sphere. Let us now take the point £ 1 E'
to be one whose stabilizer under the action of I” is trivial, so that it projects to a non-singular
point z £ EJ.I'J!' C ngf‘. By shrinking the surgery radius %, we can then guarantee that
7 lies outside the closure of the surgery regions. Also recall that one can take X' to be the
image in Xy = CP; /&y of a projective line CIP; < CP; that avoids the origin [0:0:1], is not
the line at infinity, and passes through the point of CP; that maps to z. This construction in
particular guarantees that £ — {z} is a holomorphic curve with respect to a complex structure
on Xy — (X U {p)) that is invariant under the action on I" C U{2). Projecting I’ to Xz/I°
therefore gives us an immersed symplectic 2-sphere whose self-intersections all belong to the
open set V := [Xy; — (X 1 {p}]/I". It follows that these self-intersections are all transverse
and positive, because in this region our sphere is a totally geodesic holomorphic curve with
respect to the mefric and w-compatible complex structure induced of V' by the Fubini—Study
metric and complex structure on CF;. If necessary, we can then smoothly perturb this immerse
2-sphere near any triple points in order to produce a symplectic immersion j : §7 %+ X —{p}
that has at worst transverse, positively oriented double points. Since the image of j is closed
and avoids all the singular points of X;/I°, we can also arrange that is disjoint from the
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surgery regions by shrinking the surgery radius %_ if necessary. Finally, since j*c| coincides
with the restriction of £y (X¢) to X', it follows that [ j*c; = 2+ £ = 3 by (2.1). u]

Since the orbifolds we have just constructed will play an essential role in the next section,
it now seems appropriate to give them a name:

Definition 2.2 Let I < U{2) be any finite subgroup that acts freely on the unit sphere
5% ¢ C2. Then,

e If I" £ {1}, a I -capsule will mean one of the standard symplectic orbifolds (X, o)
satisfying conditions (T)}~{IIT) that we have constructed in this section. The unique singular
point p € X will then be called the base-point of the I'-capsule.

s When I' = {1}, we instead define the associated M-capsule (X, wr) to be CPs,
equipped with its standard Fubini-Study symplectic structure. In this case, the base-
point p of X will simply mean [0:0:1] € CP5.

Thus, Proposition 2.1 can be restated as saying that, whenever I < U(2) is a finite
subgroup that acts freely on 5°, there always exists a I'-capsule.

3 Capping off the ends

Now, suppose that (M4, g. J)isan ALE Kihler manifold of complex dimension 2, where the
metric is merely assumed to satisfy the Chrusciel fall-off conditions (i)(ii) for some & = 0,
in some real coordinate system at each end. This definition does not obviously exclude the
possibility that M might actually have several ends. However, our first main result is that
such a scenario is actually impossible:

Theorem 3.1 Let (M"‘t, g. J) be an ALE Kiihler surface, where the metric is merely assumed
to satisfy the fall-off hypotheses (i){ii) for some & = 0. Then, M has exactly one end.

Proof For each end My ; = (5°/1}) x Rt of M, we may first choose some Ij-capsule
(X, wr;), the existence of which is guaranteed by Proposition 2.1. By Proposition 1.1, each
end M ; contains an asymptotic region symplectomorphic to (T — 3, wy)/ T} for some
sufficiently large common radius 8. On the other hand, the base-point of each [j-capsule
has a neighborhood symplectomorphic to (9, wg) /I for some small common radius T,
and by shrinking this radius if necessary we can guarantee that this ball quotient in each [7-
capsule does not meet some chosen symplectically immersed 2-sphere satisfying (I11). We
now inflate the I}-capsules by replacing their symplectic forms wr; by t2wr; for some large
t = 0. Inthe inflated I';-capsules, the base-point now has a neighborhood symplectomorphic
to (#g, wn)/ 7, where B = tr. Thus, by taking ¢ to be sufficiently large, we may arrange
that & = "R. By now removing E}'f} = p from each [} -capsule and (CE —.*ETR]J.I'J",- from
each Mq ;, we are then left with pieces that may be glued together symplectically along
copies of (#p — E}fﬂg to produce a compact symplectic 4-manifold (N, @).

Now, (N, @) has been constructed so that it contains a symplectically immersed 2-sphere
i = 8% 9+ N in each capped-off end. Moreover, this 2-sphere has at worst positive transverse
double points, and satisfies fsz_,f*q = 3. If the sphere has any double points at all, a result
of McDuff [15, Theorem 1.4] then tells us that N symplectomorphic to a rational complex
surface, and so orientedly diffeomorphic to either 57 x 57 or CP2#kCP; for some k = 0. On
the other hand, if the sphere has no double points, it is then an embedded symplectic 2-sphere
of self-intersection = 3 —2 = 1 = 0, so an earlier result of McDuff [14, Corollary 1.6] once
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again tells us that N is orientedly diffeomorphic to a rational complex surface. In particular,
it follows that b, (M) = 1, meaning that the intersection form H2(M, B) x H* (M. R) = R
isof type (+—---—).

Now, each of the immersed spheres j (52) we have constructed can be modified to yield
a connected embedded symplectic surface .#; by replacing a small neighborhood of each
double point with a cylinder §' % (—e, €). This process increases the genus but does not
change the homology class; moreover, it can be carried out while remaining completely
inside the truncated I';-capsule containing j;(57). We therefore have

{1 (N). [=3]) =f Fea=3,
5

and, since .#} is symplectic and embedded, the adjunction formula allows us to rewrite this
as

x () + 1251 - [#4] = 3.
But since .75 certainly has Euler characteristic x (.#7) < 2, it therefore follows that
[#]-[#]=z3—x(F)=3-2=1,

so each of these surfaces has positive homological self-intersection. However, notice that
FiN#; = @ wheni # j,since the truncated I"-capsules where they live are, by construction,
disjoint. This has the homological consequence that

[#]-[#51=0 ¥i#j.

It follows that b4 () is at least as large as the number of ends of M. But since we have also
just seen that b, (N') = 1, this means that there can be at most one end. As our definition of
an ALE manifold moreover requires M to be non-compact, it therefore follows that M has
exactly one end. O

Remark The regularity of the gluing maps used in the above construction depends, via Propo-
sition 1.1, on the regularity of the given metric g. Thus, if g is merely C7, our symplectic
manifold (N, @) is ostensibly merely a symplectic manifold with C? coordinate transforma-
tions between Darboux coordinate charts. This might lead one to worry, because many of
the cited papers in symplectic topology implicitly assume that all objects under discussion
are of class C™. Fortunately, such fears are misplaced, for general reasons we will now
explain. Indeed, by a celebrated result of Whitney [25], there exists a smooth structure on
N which is compatible with the given € structure, and the C™ 2-forms, defined relative to
this chosen smooth structure, will then be dense among C! closed forms in the cohomology
class [&]. However, if the smooth form @ € [@] is sufficiently close to @ in the C! topology,
all the convex combinations (1 — t)é + ti € [w], t € [0, 1], will be symplectic forms, and
Moser’s stability argument [17] will then produce a C' symplectomorphism between the €
symplectic manifold (N, &) and the smooth symplectic manifold (N, @). Thus, our use of
classification results for smooth symplectic manifolds is entirely justified.

Corollary 3.2 The mass formula of [ 7] holds in all complex dimensions > 2, merely assuming

Chrusciel fall-off conditions on the metric. In particular, if (M*, g, 7} is an ALE Kihler
surface that merely satisfies (i){ii) for some & = 0, then its mass is given by

1 1
m(M, g) = —= (#(e1), [0]) + 5= L sedits a1
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where 5p and dg are the scalar curvature and metric volume form, c| is the first Chern class
af (M, 1), & is the inverse of the natural homomorphism HEZI{M} — HZI{M}, and {, ) is
the natural duality pairing between H>(M) and H(M).

Proof The case of complex dimension > 3 was already proved in [7]. In the case of complex
dimension 2, the proof of [7, Theorem 5.1] now proves the claim as long as one replaces the
citation of [7, Proposition 4.2] with a reference to the above Theorem 3.1. ]

Because there are other plausible methods available for proving Theorem 3.1, some might
wonder if all our work in Sect. 2 was worth the effort. Fortunately, the ideas we have described
here have other consequences which provide further justification for the current project:

Proposition 3.3 If (M*, g, J) is any ALE Kihler surface with Chrusciel metric fall-off, then
M is diffeomorphic to the complement of a tree of symplectically embedded 2-spheres in a
rational complex surface.

Proof By atree of embedded 2-spheres, we mean a union of transversely intersecting embed-
ded symplectic 2-spheres such that the dual graph representing their intersection patten is
connected and contains no loops. The tree we have in mind here is determined by I', and is
specifically the subset of a I"-capsule gotten by attaching the appropriate Hirzebruch—Jung
string to each orbifold point of E,-"f' = §7. Since the proof of Theorem 3.1 shows that M
can be diffeomorphically compactified into a rational symplectic manifold N by attaching a
truncated I"-capsule ¥ = X — 3/ I", the result follows from the fact that the complement
of the obvious tree in ¥ is diffeomorphic to {S3ﬂ"] = (0, 1. ]

Here is another immediate consequence of the same ideas:

Proposition 3.4 For any ALE Kiihler surface (M*, g, J) with Chrusciel metric fall-off, the
fundamental group of M is finite.

Proof Once again, the proof of Theorem 3.1 shows that compactifying M by adding a trun-
cated I"-capsule ¥ results in a symplectic 4-manifold N that is diffeomorphic to a rational
complex surface. In particular, this assertion means that N is simply connected. However,
we also have

N=MUY, MNY 2 (83) % (0,1) = My,

where ¥ is obtained from a I'-capsule X by removing a closed neighborhood 3, /I of
the base-point p. However, since ¥ deform retracts to the tree of 2-spheres obtained by
attaching a Hirzebruch—Jung string to each orbifold singularity of EJ.I'J‘!' == 57, it follows that
Y is simply connected. The Seifert-van Kampen theorem therefore tells us that (N} is the
quotient of ) (M) by the image of (M NY) = I". But since 71({N) = {1}, this means that
I — m (M) is surjective. In particular, (M) is necessarily finite. ]

It is worth emphasizing that, despite persistent rumors to the contrary, M really might not
be simply connected, even in the Ricci-flat case. For pertinent examples and classification
results, see [21,27].

Of course, the simplest case of the present story is when the manifold in question is
asymptotically Euclidean (AE); these are the special ALE manifolds for which I” = {1}.
It is only in this setting that one can hope to prove a positive mass theorem [11,19,20,26],
asserting that nonnegative scalar curvature necessarily implies nonnegative mass; in the more
general ALE setting, such statements are typically false [10]. But in the AE setting, one can
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even sometimes prove Penrose-type inequalities [3,9,18], which offer lower bound for the
mass in terms of the areas of suitable minimal submanifolds of the space in guestion. In the
Kihler context, a sharp lower bound of this type was given by [7, Theorem E]. However,
while our proof of this result only required Chrusciel fall-off in complex dimensions = 3,
we needed to assume stronger fall-off in hypotheses complex dimension 2.

Fortunately, the ideas developed here provide a way around this difficulty.

Theorem 3.5 (Penrose inequality for Kihler manifolds) Let {MZ'“, g, J) be an AE Kihler
manifold, where the metric merely satisfies the Chrusciel fall-off hypotheses (i){ii) for some
£ = 0 in some real asymptotic coordinate system. If the scalar curvature s of g is everywhere
nonnegative, then (M, 1) carries a numerically canonical divisor [) that is expressed as a
sum ¥ njD; of compact complex hypersurfaces with positive integer coefficients, with the
property that Uj D # & whenever (M, I) is not diffeomorphic to R™._ In terms of this
divisor, the mass of the manifold then satisfies

— 1
m(M, g) = h 3 n;Vol (D))
j

and equality holds if and only if (M, g, J) is scalar-flat Kéihler:

Proof Since this was already proved in [7] in complex dimension > 3, we may henceforth
restrict ourselves to the case where (M3, J)isa complex surface. In this case, the proof of
Theorem 3.1 shows that we can produce a compact symplectic manifold (N, @) by removing
a standard symplectic end (R* — %, wp) and replacing it CP; minus a ball, equipped
with some multiple of the Fubini-Study symplectic form. In this setting, a projective line in
CIP; gives us a symplectic 2-sphere of self-intersection +1 in (N, @). A result of McDuff
[14, Corollary 1.5] then tells us that (N, @) is symplectomorphic to a blow-up of CPs,
equipped with some Kihler form, in a way that sends the given 2-sphere to a projective
line CP| that avoids all the blown-up points. Removing this “line at infinity,” we thus see
that M must be diffeomorphic to R*#kCP,, where k = by(M), and Hy(M, Z) is moreover
generated by the homology classes of k disjoint symplectic 2-spheres Ey, ..., E2 € M of
self-intersection —1. But then, under the natural identification HE(M} = Ha(M, ) arising
from Poincaré-Lefschetz duality, we then have &(—c) = ZL] [E;]. as may be checked by
integrating/intersecting both sides against each of the homology generators [E ;). Thus, the
mass formula (3.1) tells us in the AE case that

k
1 1
M, g)= — w0+ — | sedpg.
m(M. g) 3n§_[5j 12;:2_’;,*”3

We now show that each of the homology classes E; can actually be represented by a finite
sum of holomorphic curves D in (M, J) with positive integer coefficients. We do this by
first carrying out our construction of the compact symplectic manifold (N, @) rather more
carefully. First, notice that our metric fall-off condition (ii) guarantees that the vector field
n := (gVp)/|Ve|* defined in terms of the Euclidean radius p and the metric g, satisfies
Lpg =28 + G{g_l_el; moreover, the generalized Euler vector field 5 is normal to the
spheres o = constant, and its flow just rescales the radial function g by positive constants. Fore
sufficiently large, we may therefore define a distance-non-increasing piecewise differentiable
map ¥ : M — M that sends the inner region g < ¢ to itself by the identity, and that sends
the outer region ¢ = ¢ to the boundary sphere ¢ = ¢ by the backward flow of 5. By choosing
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¢ to be sufficiently large, we can also arrange that the restriction of ¥ to the region g = 3¢
actually contracts distances by a factor of at least 2.

We next apply the coordinate transformation & given by Proposition 1.1 in order to identify
the Kihler form « on the asymptotic region of (M, g, J) with the standard symplectic form
wy on C2, Because the derivative of & satisfies @, = I + O(|x]~!1—#), the image @,Jy
is uniformly as close as we like to Jp in the image of the region p = e, provided we
again take ¢ to IZF sufficiently large. Our fall-off condition J = Jp + O{|x I_]_E] now also
guarantees that J = ¢, J is similarly uniformly close to Jp. In particular, we may arrange that
TN Ty = 0, which then allows us to represent T by a tensor field ¢ € A, ® 75",

and the fact that J and Jj are both wy compatible is then encoded by the statement that
Poawy £ Ag‘nl @ ﬁﬁa] is symmetric. Since the latter condition is linear in ¢, the almost-
complex structure J corresponding to f¢, will also be ey compatible, where we now take
f = flg) tobe asmooth, non-increasing cutoff function whichis= 1 forg = 4c and = 0 for
@ = 5¢c. Because this almost-complex structure is still uniformly close to T, the corresponding
Riemannian metric § = axyi-, J-) is uniformly close to g in the exterior region, and we can
therefore arrange that #*g = g/2 in the region g > 3¢, while nonetheless keeping &*g = g
in the region g = 3c. Thus, the constructed map ¥ : M — M is distance non-increasing
with respect to § as well as with respect to g; and it is moreover strictly distance decreasing
outside of the region where ¢ < ¢ in our original coordinates.

To cap off the end, we next choose a Kihler metric i on CP; that is identically Euclidean
on the unit ball in C* ¢ CP,. By multiplying h by a large positive constant A > 25¢%, we
then obtain a Kihler metric Ak on CIP; which contains an isometric copy of a Euclidean ball
of radius > 5c. We then cut a Euclidean ball B of radius 5¢ out of this larger ball, and glue
in the region I{ C M that is given by ¢ =< 53¢ in our symplectic coordinates. The resulting
symplectic 4-manifold (N, &) thus comes equipped with an almost-Kihler metric § which
is given by Ak on CP; — B, by g on the region ¥V C I{ corresponding p = ¢ in our initial
coordinates, and by the constructed interpolation g on the transition annulus I{ — V.

However, because (N, @) is a symplectic manifold with by = 1, a result of Taubes [22]
therefore tells us that the perturbed Seiberg—Witten invariant of N is nonzero for the the spin®
structure ¢ determined by J and the chamber containing large multiples of —[&]. However,
because N also admits self-diffeomorphisms which act on HE{N} by [E;] = —[E;] and
by the identity on [E;]*, the analogous perturbed Seiberg—Witten invariant is also nonzero
for the images of ¢ under all these reflections. It therefore follows [13,23] that each of the
classes [ E;] is represented by a (possibly singular) j—hnlnmnrph.ic curve &;. Moreover, &; is
the zero locus of a section & of a line bundle % — M with Chem class ) (.#}) = [ E;] with
the property that u is approximately holomorphic near &.

Now, the truncated capsule region CP; — B of N is a union of projective lines, and these,
by construction, are all J-holomorphic curves. Since u is approximately holomorphic near
&, the number of zeroes of the restriction of & to any such projective line P, counted with the
obvious nonnegative multiplicities, is exactly JrF c1(%7). However, f_p c1 (%) is also exactly
the intersection pairing of [E;] and [F], which we have known from the outset to be zero.
It follows that & is everywhere nonzero on every such projective line P, so that we always
have £ M P = @. But since CIP; — B is a union of such projective lines P, this implies that
& CcN-—(CP - B)=U4 i B

This means that & is a pseudo-holomorphic curve in (14, J), and thus in (M, J), after we
recall that our interpolated almost-complex structure J was initially defined in symplectic
coordinates on the entire end M. Here, it is worth pointing out that, while & may very
well be singular, the comresponding pseudo-holomorphic curves for generic perturbations
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J' of J are embedded 2-spheres, because [Ei* = —1and ¢ - [Ei] = +1; by Gromov
compactness [6, 16], £; can therefore be, at worst, a finite tree of branched minimal 2-spheres.
We now recall that, since these 2-spheres are all calibrated submanifolds of the almost-Kihler
manifold (M, g, @), each one has least area among surfaces in its homology class. But we
have carefully arranged for the piecewise smooth map ¥ : M — M to be distance non-
increasing with respect to g, and to even be strictly distance decreasing on M — V; moreover,
¥ M — M was also constructed as a deformation retraction of M to V. It therefore follows
that none of the 2-spheres that make vp & can meet M — V, because applying % : M — M
to such a 2-sphere would otherwise produce a homotopic 2-sphere of strictly smaller area. It
therefore follows that each spherical piece of &, and hence the entire pseudo-holomorphic
curve £} itself, must be contained in V, where J coincides with the original integrable complex
structure J of (M, J). In other words, each &; is actually a holomorphic curve in our original
Kihler manifold (M, g, J). This means that JI.E.' @ is in fact exactly the area of £, counted
with multiplicities, and our mass formula can therefore be rewritten as

1
m(M, g) = Evolw,u |zxﬂf sgditg.

If the I); are the various spherical components of the various &, and if n; is the multplicity
with which a given I); occurs in this way, we can then rewrite this as

1 1
m{M,g}:EZn;\blﬁﬂj}+ 12;71[ spdptg.
1

If 5 = (0, this then gives us the Penrose-type inequality

1
m(M., g) = — ;n; Vol(D ),

where equality iff g is scalar-flat Kahler. O

There is one respect in which this result remains noticeably weaker than [7, Theorem E].
Indeed, the earlier argument shows that, assuming stronger fall-off conditions, the underlying
complex surface of an AE (M, g, J) must be an iterated blow-up of 2. When combined
with [6, Theorem 0.3C], our present result instead shows that the weaker fall-off conditions
(i)—(ii) imply that (M*, w) is an iterated symplectic blow-up of (B4, wy). Nonetheless, this
is guite good enough for applications like the following:

Corollary 3.6 (Positive mass theorem for Kihler manifolds) Let (M>™, g, J) be an AE Kiihler
manifold,, where the metric merely satisfies the Chrusciel fall-off hvpotheses (i)—ii) for some
£ = (insome real asymptotic coordinate system. If g has scalar curvature s, = O everywhere,
then m(M, g) = 0, with equality iff (M, g) is Euclidean space.

Proof By Theorem 3.5, we merely need to consider the case when M is diffeomorphic to
B> and the metric g is scalar-flat Kihler. However, this implies that the Ricci-form p of g
15 harmonic, and 15 an L2 harmonic form. Since de Rham classes on an ALE manifold have
unique L? harmonic representatives, this means that g must be Ricci-flat, because we have
assumed that M is contractible. But since the asymptotic volume growth of an AE metric is
exactly Euclidean, the Bishop—Gromov equality therefore implies that the exponential map
gives an isometry between any tangent space and (M, g). O
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