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Abstract If M is the underlying smooth oriented four-manifold of a Del Pezzo surface, we
consider the set of Riemannian metrics h on M such that W +(ω, ω) > 0, where W + is the
self-dual Weyl curvature of h, and ω is a non-trivial self-dual harmonic two-form on (M, h).
While this open region in the space of Riemannian metrics contains all the known Einstein
metrics on M , we show that it contains no others. Consequently, it contributes exactly one
connected component to the moduli space of Einstein metrics on M .
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1 Introduction

Given a smooth compact four-manifold M , one would like to completely understand the
moduli space E (M) of the Einstein metrics it carries. Recall that an Einstein metric [4]
means a Riemannian metric h which has constant Ricci curvature, in the sense that it solves
the Einstein equation

r = λh

where r is the Ricci tensor of h and λ is a real number, called the Einstein constant of h.
The moduli space E (M) of Einstein metrics on M is by definition the quotient of the set
of Einstein metrics by the action of the group Diff(M) × R

× of self-diffeomorphisms and
constant rescalings. For simplicity, we may give E (M) the quotient topology induced by the
C∞-topology on the space of smooth metric tensors; however, it is worth noting that, for
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reasons of elliptic regularity [13], this coincides [1] with the metric topology induced by the
Gromov–Hausdorff distance between unit-volume Einstein metrics.

While our understanding of this problem is rather limited for general four-manifolds, there
are specific cases where our knowledge is quite complete. In particular, if M is the four-torus,
or K3, or a compact real or complex-hyperbolic four-manifold, the Einstein moduli space
E (M) is known to be connected [4,5,20]. This should be contrasted with the pattern that
predominates in higher dimensions, where Einsteinmoduli spaces are typically disconnected,
and indeed often have infinitely many connected components [7,8,34].

This article will explore related uniqueness questions for Einstein metrics on the small but
important class of smooth compact four-manifolds that arise as Del Pezzo surfaces. These
four-manifolds are characterized [10] by two properties: they admit Einstein metrics with
λ > 0, and they also admit symplectic structures. Up to diffeomorphism, there are exactly ten
such manifolds, namely S2 × S2 and the nine connected sums CP2#mCP2, m = 0, 1, . . . , 8.
The known Einstein metrics on these spaces all have λ > 0, and our objective here is to
completely characterize these known Einstein metrics by a curvature condition. To this end,
notice that, with their standard orientations, each of these four-manifolds M has b+(M) = 1.
This is equivalent to saying that, for any Riemann metric h on any of these compact oriented
four-manifolds, there is, up to an overall multiplicative constant, a unique non-trivial self-
dual harmonic two-form ω. We can therefore consider those Riemannian metrics h on M
which satisfy the curvature inequality

W +(ω, ω) > 0 (1)

at every point of M , where W + is the self-dual Weyl tensor of h. Note that, whenever
b+(M) = 1, this condition only depends on the metric h, since the harmonic form ω is then
uniquely determined up to a non-zero multiplicative constant. Our first main result is the
following:

Theorem A Let (M, h) be a compact oriented Einstein four-manifold with b+ = 1, and
suppose that condition (1) holds at every point of M. Then M is diffeomorphic to a Del Pezzo
surface, in such a way that h becomes

• a Kähler–Einstein metric with λ > 0; or
• a constant multiple of the Page metric on CP2#CP2; or
• a constant multiple of the Chen–LeBrun–Weber metric on CP2#2CP2.

Conversely, every metric on this list satisfies (1) at every point.

The proof of this result is given in Sect. 2 below, and proceeds by proving that the given
Einstein metric must be conformally Kähler. Our method makes strong use of the fact that
the second Bianchi identity implies that the self-dual Weyl curvature W + of an oriented
four-dimensional Einstein manifold is harmonic as a bundle-valued two-form. In fact, the
proof does not really require the assumption that b+(M) = 1; it suffices to assume that there
is a harmonic self-dual two-form ω on (M, h) such that (1) holds at every point.

While the inequality (1) may have a somewhat unfamiliar flavor, it is interestingly related
to the positivity of scalar curvature. Indeed, any harmonic self-dual two-form ω satisfies the
Weitzenböck formula

1

2
�|ω|2 + |∇ω|2 + s

3
|ω|2 = 2W +(ω, ω),

and it therefore follows that any metric of scalar curvature s > 0 must at least satisfy (1)
at some points of M . Thus, while Theorem A does not provide a complete classification of
λ > 0 Einstein metrics on Del Pezzo surfaces, it does represent a step in that direction.
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However, ourmethod requires (1) to hold everywhere, rather than just at certain points. This
is a strong condition, because it guarantees that the closed self-dual two-form ω is nowhere
zero, and therefore implies that (M, ω) is a symplectic manifold. If h is a Riemannian metric
on a smooth compact oriented four-manifold M with b+(M) �= 0, we will thus say that h
is of symplectic type if there is a self-dual harmonic two-form on (M, h) such that ω �= 0
at every point of M . This is actually a conformally invariant condition; if h is of symplectic
type, and if u is a smooth positive function, then uh is also of symplectic type. For this reason,
it is also natural to say that the conformal class [h] is of symplectic type if there is a self-dual
harmonic two-form on (M, [h]) which is everywhere non-zero. This is an open condition on
[h], in the sense that the set of conformal classes of symplectic type is automatically open
[22] in the C2 topology.

Condition (1) is also conformally invariant. Namely, if we replace h with uh for some
positive function u, then W +(ω, ω) is replaced with u−3W +(ω, ω), thereby leaving the sign
of W +(ω, ω) unaltered at any given point.Wewill henceforth say that the conformal class [h]
is of positive symplectic type if, for some choice of h-compatible self-dual harmonic two-form
ω, condition (1) holds everywhere on M . This obviously implies that ω �= 0 everywhere, so
positive symplectic type implies symplectic type. The condition of positive symplectic type
is once again open in the C2 topology.

With these concepts in place, we are now ready to formulate our other main result, which
is a direct consequence of Theorem A:

Theorem B Let M be the underlying smooth compact four-manifold of a Del Pezzo surface.
LetE (M) denote the moduli space of Einstein metrics h on M, and letE +

ω (M) ⊂ E (M) be the
open subset arising from Einstein metrics h for which the corresponding conformal classes
[h] are of positive symplectic type. Then E+

ω (M) is connected. Moreover, if b2(M) ≤ 5, then
E+

ω (M) exactly consists of a single point.

Proof A Del Pezzo surface is by definition a compact complex surface (M4, J ) whose first
Chern class is a Kähler class. As complex manifolds, the Del Pezzo surfaces are exactly
CP1 × CP1 and the blow-ups of CP2 at m distinct points, 0 ≤ m ≤ 8, such that no three
points are on a line, no six are on a conic, and no eight are on a nodal cubic with one of the
given points at the node [11,24]. When b2 ≤ 5, there is consequently, up to biholomorphism,
only one Del Pezzo complex structure for each diffeotype, since we can simultaneously
move up to four generically located points in the projective plane to standard positions via
a suitable projective linear transformation. For larger values of b2, the choice of complex
structure instead essentially depends on 2b2 − 10 complex parameters; however, the various
possibilities still form a single connected family, since the set of prohibited configurations
of m = b2 − 1 points in CP2 is a finite union of complex hypersurfaces, and so has real
codimension 2.

Given a Del Pezzo surface (M, J ) with fixed complex structure, there is always a λ > 0
Einstein metric h which can be written as h = s−2g for a J -compatible extremal Kähler
metric g with scalar curvature s > 0. In most cases, one can simply take h = g, so that
h is a Kähler–Einstein metric. By a result of Tian [26,32], a Del Pezzo surface (M, J )

admits a J -compatible Kähler–Einstein metric iff it has reductive automorphism group. This
excludes only two Del Pezzo surfaces, namely the ones diffeomorphic to CP2#CP2 and
CP2#2CP2; these two do not admit Kähler–Einstein metrics, but they nonetheless admit
conformally Kähler, λ > 0 Einstein metrics, known as the Page and Chen–LeBrun–Weber
metrics [10,12,27], respectively. In [23], it was then shown that any conformally Kähler,
Einstein metric on a compact complex surface is either Kähler–Einstein, or else is isometric
to a constant multiple of one of these two special metrics. In particular, up to complex
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automorphisms and constant rescalings, there is exactly one conformally Kähler, Einstein
metric for each Del Pezzo complex structure. Theorem A therefore tells us that the moduli
space E+

ω (M) can be identified with the moduli space of Del Pezzo complex structures. Since
we have seen that the latter is always pathwise connected, and moreover consists of a single
point when b2(M) ≤ 5, the claim follows. ��

We now conclude this introduction with a consequence of Theorem B:

Corollary 1 For any Del Pezzo surface M, E+
ω (M) is exactly a connected component of

E (M).

Indeed, it suffices to prove that the path-connected space E+
ω (M) is both open and closed

in E (M). Since E (M) has the quotient topology, the fact that it is open follows from the fact
that the set of metrics with positive symplectic conformal class is open and invariant under
the action of Diff(M) × R

×. On the other hand, it is also closed, because, except in cases
where E+

ω (M) is now known to be a single point, the Einstein metrics in question are all
Kähler, and requiring that a Riemannian metric carry a parallel almost-complex structure is
a closed condition.

2 Harmonic self-dual Weyl curvature

Recall that we say that a conformal class [h] on an a compact oriented four-manifold M is
of symplectic type if there is a harmonic self-dual two-form ω on (M, h) such that ω �= 0
everywhere on M . This is indeed a conformally invariant condition, because the Hodge star
operator is conformally invariant; moreover, it is an open condition [22] with respect to the
C2 topology. Since any self-dual two-form ω satisfies

ω ∧ ω = ω ∧ �ω = |ω|2h dμh,

it follows that an appropriate ω is actually a symplectic form on M if [h] is of symplectic
type. Assuming this, the conformally related metric g ∈ [h] given by g = 2−1/2|ω|hh is
then an almost-Kähler metric, in the sense that g is related to the symplectic form ω via
g = ω(·, J ·) for a unique almost-complex structure J on M . For our purposes, the important
point is that, in dimension 4, the almost-Kähler condition is equivalent to saying that ω is
harmonic and self-dual with respect to g, and that |ω|2g ≡ 2.

While our primary aim here is to learn something about Einstein metrics, we will more
generally focus on oriented Riemannian four-manifolds (M, h)with harmonic self-dual Weyl
curvature, in the sense that δW + := −∇ · W + = 0. When h is Einstein, this property holds,
as a consequence of the second Bianchi identity. However, we will see in due course that
δW + = 0 is in general much weaker than the Einstein condition.

When [h] is of symplectic type, it will prove profitable to study this equation from the point
of view of the conformally related almost-Kähler metric g. This is quite tractable, because
the divergence-free condition on a section of�2

0�
+ is conformally invariant, albeit [28] with

an unexpected conformal weight. In practice, this means that if h = f 2g has the property
that δW + = 0, then g will instead have the property that δ( f W +) = 0. For us, the important
point is that this then implies a Weitzenböck formula

0 = ∇∗∇( f W +) + s

2
f W + − 6 f W + ◦ W + + 2 f |W +|2 I (2)

for f W +, considered as a section of End(�+); cf. [12,15,28].
To exploit this effectively, we will need the following identity:
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Lemma 1 Any four-dimensional almost-Kähler manifold satisfies

〈W +,∇∗∇(ω ⊗ ω)〉 = [W +(ω, ω)]2 + 4|W +(ω)|2 − sW +(ω, ω)

at every point.

Proof First notice that the oriented Riemannian four-manifold (M, g) satisfies

�+ ⊗ C = Cω ⊕ K ⊕ K ,

where K = �
2,0
J is the canonical line bundle of the almost-complexmanifold (M, J ). Locally

choosing a unit section ϕ of K , we thus have

∇ω = α ⊗ ϕ + ᾱ ⊗ ϕ̄

for a unique 1-form α ∈ �
1,0
J , since ∇[aωbc] = 0 and ωbc∇aωbc = 0. If

� : �+ × �+ → �2
0�

+

denotes the symmetric trace-free product, we therefore have

(∇eω) � (∇eω) = 2|α|2ϕ � ϕ̄ = −1

4
|∇ω|2ω � ω

and we thus deduce that

〈W +,∇∗∇(ω ⊗ ω)〉 = 2W +(ω,∇∗∇ω) − 2W +(∇eω,∇eω)

= 2W +(ω,∇∗∇ω) + 1

2
|∇ω|2W +(ω, ω)

= 2W +(ω, 2W +(ω) − s

3
ω) +

[
W +(ω, ω) − s

3

]
W +(ω, ω)

= −2

3
sW +(ω, ω) + 4|W +(ω)|2 +

[
W +(ω, ω) − s

3

]
W +(ω, ω)

= [W +(ω, ω)]2 + 4|W +(ω)|2 − sW +(ω, ω)

where we have used the Weitzenböck formula

0 = ∇∗∇ω − 2W +(ω) + s

3
ω

for the harmonic self-dual two-form ω, as well as the associated key identity

1

2
|∇ω|2 = W +(ω, ω) − s

3

resulting from the fact that |ω|2 ≡ 2. ��
Plugging this into our Weitzenböck formula (2) and integrating by parts, we thus see that

whenever a compact almost-Kähler four-manifold (M, g, ω) satisfies δ( f W +) = 0, we then
automatically have

0 =
∫

M

〈(
∇∗∇ f W + + s

2
f W + − 6 f W + ◦ W + + 2 f |W +|2 I

)
, ω ⊗ ω

〉
dμ

=
∫

M

[
〈W +,∇∗∇(ω ⊗ ω)〉 + s

2
W +(ω, ω) − 6|W +(ω)|2 + 2|W +|2|ω|2

]
f dμ

=
∫

M

[(
[W +(ω, ω)]2 + 4|W +(ω)|2 − sW +(ω, ω)

)
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+ s

2
W +(ω, ω) − 6|W +(ω)|2 + 4|W +|2

]
f dμ

=
∫

M

[
[W +(ω, ω)]2 − s

2
W +(ω, ω) − 2|W +(ω)|2 + 4|W +|2

]
f dμ.

In other words, letting W +(ω)⊥ denote the component of W +(ω) perpendicular to ω, any
compact almost-Kähler manifold (M, g, ω) with δ( f W +) = 0 satisfies the identity

∫

M
sW +(ω, ω) f dμ = 8

∫

M

(
|W +|2 − 1

2
|W +(ω)⊥|2

)
f dμ. (3)

To proceed further, we will now need another algebraic observation:

Lemma 2 Any four-dimensional almost-Kähler manifold satisfies

|W +|2 − 1

2
|W +(ω)⊥|2 ≥ 3

8

[
W +(ω, ω)

]2

at every point, and equality can only hold at points where W +(ω)⊥ = 0.

Proof If A = [A jk] is any symmetric trace-free 3×3matrix, the fact that A33 = −(A11+A22)

implies that

∑
jk

A2
jk ≥ 2A2

21 + A2
11 + A2

22 + A2
33 = 2A2

21 + 3

2
A2
11 + 2(

A11

2
+ A22)

2

and we therefore conclude that

|A|2 ≥ 2A2
21 + 3

2
A2
11.

If we now let A represent W + : �+ → �+ with respect to an orthogonal basis ε1, ε2, ε3
for �+ such that ω = √

2ε1 and W +(ω)⊥ ∝ ε2, this inequality becomes

|W +|2 ≥ |W +(ω)⊥|2 + 3

8

[
W +(ω, ω)

]2

which not only proves the desired inequality, but shows that it is actually strict whenever ω

is not an eigenvector of W +. ��
Combining (3) with Lemma 2 now yields the global inequality

∫

M
sW +(ω, ω) f dμ ≥ 3

∫

M

[
W +(ω, ω)

]2
f dμ, (4)

with equality only if W +(ω)⊥ ≡ 0. It thus follows that

0 ≥
∫

M
W +(ω, ω)

(
W +(ω, ω) − s

3

)
f dμ.

However, since 1
2 |∇ω|2 = W +(ω, ω) − s

3 for any almost-Kähler four-manifold, this proves
the following:

Proposition 1 Let (M4, g, ω) be a compact almost-Kähler manifold, and suppose that, for
some positive function f , the conformally related metric h = f 2g has harmonic self-dual
Weyl curvature. Then (M, g, ω) satisfies the inequality

0 ≥
∫

M
W +(ω, ω)|∇ω|2 f dμ. (5)
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This has an interesting immediate consequence:

Proposition 2 Let (M4, g, ω) be a compact connected almost-Kähler manifold with
W +(ω, ω) ≥ 0, and suppose that the conformally related metric h = f 2g satisfies δW + = 0.
Then either g is a Kähler metric with scalar curvature s = c/ f for some constant c > 0, or
else g satisfies W + ≡ 0, and so is an anti-self-dual metric.

Proof Recall that f > 0 by convention, and that W +(ω, ω) ≥ 0 by assumption. Thus (5)
implies that

∫

M
W +(ω, ω)|∇ω|2 f dμ = 0,

so that∇ω = 0whereverW +(ω, ω) �= 0. IfU ⊂ M is the open subsetwhereW +(ω, ω) �= 0,
the restriction of g to U is therefore Kähler. On the other hand, by hypothesis, g satisfies
δ( f W +) = 0. However, for any Kähler manifold of real dimension 4, W + is the trace-free
part of (s/4)ω ⊗ ω, where the scalar curvature s satisfies s = 3W +(ω, ω). It follows that
d[ f W +(ω, ω)] = 0 on U . By continuity, we therefore have d[ f W +(ω, ω)] = 0 on the
closure U of U , too. On the other hand, f W +(ω, ω) ≡ 0 on M − U , so we also have
d[ f W +(ω, ω)] = 0 on the open set M − U . Hence d[ f W +(ω, ω)] = 0 on all of M . Since
M is connected, it follows that f W +(ω, ω) = c/3 for some non-negative constant c ≥ 0.
If c > 0, M = U , and (M, g) is a Kähler manifold, with s = 3W +(ω, ω) = c/ f . On the
other hand, if c = 0, we have W +(ω, ω) ≡ 0, and therefore have equality in (4). However,
this implies that W +(ω)⊥ ≡ 0, and (3) therefore implies that W + ≡ 0, as claimed. ��

As a special case, we therefore obtain the following key result:

Theorem 1 Let (M, h) be a compact oriented Riemannian four-manifold with δW + = 0.
If the conformal class [h] is of positive symplectic type, then h = s−2g for a unique Kähler
metric g of scalar curvature s > 0. Conversely, if g is any Kähler metric of positive scalar
curvature, the conformally related metric h = s−2g satisfies δW + = 0.

Proof To say that [h] is of positive symplectic type means that there is a self-dual harmonic
two-form ω on (M, h) such that W +(ω, ω) > 0 at every point of M . Rescaling h to make
ω have constant norm

√
2 results in an almost-Kähler metric ĝ such that h = f̂ 2 ĝ for

some positive function f̂ . If h satisfies δW + = 0, the almost-Kähler metric ĝ then satisfies
W +(ω, ω) > 0 and δ( f̂ W +) = 0, so Proposition 2 then tells us that ĝ is actually Kähler,
with scalar curvature ŝ = c/ f̂ for some positive constant c. In particular, M admits a Kähler
metric with positive scalar curvature, and Yau’s vanishing theorem [35] for the geometric
genus therefore implies that b+(M) = 1. Thus the choice of ω is in fact unique up to an
overall multiplicative constant, and the choice of ĝ is therefore determined up to constant
rescalings. But if, for a positive constant a, we replace ĝ with g = a2 ĝ, we must also replace
f̂ with f = a−1 f̂ ; and note that the scalar curvature of g is then s = a−2ŝ. Since f̂ = cŝ−1,
we then have h = f̂ 2 ĝ = c2ŝ−2 ĝ = c2(a2s)−2(a−2g) = (ca−3)2s−2g. This shows that
setting a = 3

√
c results in a Kähler metric g such that h = s−2g, and moreover shows that

this choice yields the only Kähler metric with this property.
Conversely [12], if g is aKählermetricwith s > 0, s−1W + is parallel, so that, in particular,

we have δ(s−1W +) = 0. Thus h = s−2g satisfies δW + = 0, as promised. ��
Theorem A is now a straightforward consequence. Indeed, since the second Bianchi iden-

tity implies that any Einstein metric on an oriented four-manifold satisfies δW + = 0, Theo-
rem 2 tells us that every Einstein metric h of positive symplectic type must be conformally
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Kähler. Moreover, since the conformal class [h] contains a representative g with s > 0,
the constant scalar curvature 4λ of h must [33] be positive, too. Theorem A therefore fol-
lows from the known classification [23] of conformally Kähler, Einstein metrics on compact
four-manifolds.

3 Almost-Kähler manifolds revisited

As an added bonus, the results of Sect. 2 also have interesting consequences in the narrower
context of almost-Kähler geometry; for related work, see [6]. Our main such application is
the following:

Theorem 2 Let (M, g, ω) be a compact almost-Kähler four-manifold with non-negative
scalar curvature and harmonic self-dual Weyl tensor:

s ≥ 0, δW + = 0.

Then (M, g, ω) is a constant-scalar-curvature Kähler manifold.

Proof For any almost-Kähler manifold,

W +(ω, ω) = s

3
+ 1

2
|∇ω|2

so that the hypothesis s ≥ 0 implies W +(ω, ω) ≥ 0. Proposition 2, with f = 1, therefore
tells us that (M, g) is Kähler, with scalar curvature s = c/ f = c for some positive constant c,
or else that W + ≡ 0. In the latter case, we then have 0 = 3W +(ω, ω) ≥ s ≥ 0, so s ≡ 0, and
hence |∇ω|2 = 2W +(ω, ω) − 2s/3 = 0. Thus (M, g) is constant-scalar-curvature Kähler,
even in the exceptional case. ��

Conversely, any constant-scalar-curvature Kähler manifold of real dimension 4 satisfies
δW + = 0, independent of the sign of s. While the study of “cscK” (constant-scalar-curvature
Kähler) metrics on compact complex surfaces is an active area of ongoing research, many
existence results are already available [3,14,17,19,29,31]. However, we should emphasize
that the non-negativity of the scalar curvature plays a crucial role in Theorem 2. For example,
there exist many compact almost-Kähler manifolds with W + ≡ 0 which are not Kähler.
Indeed, such examples can be obtained [16] by deforming scalar-flat Kähler metrics through
anti-self-dual conformal classes, and then conformally rescaling to make |ω| ≡ √

2. Exam-
ples of this type automatically have s ≤ 0, with s < 0 on an open dense subset.

Since any Einstein four-manifold satisfies δW + = 0, Theorem 2 provides a new proof of
Sekigawa’s breakthrough result [30] on the Goldberg conjecture:

Corollary 2 (Sekigawa) Every compact almost-Kähler Einstein four-manifold with non-
negative Einstein constant is Kähler–Einstein.

This fact provided a useful guidepost en route to the present results.
The proof of Theorem 2 in fact still works if we merely impose the ostensibly weaker

hypothesis that s + tW +(ω, ω) ≥ 0 for some constant t ≥ 0, since any such hypothesis will
imply that W +(ω, ω) ≥ 0, with s = 0 if equality holds. In particular, one reaches exactly
the same conclusion if we merely assume that the so-called star-scalar curvature

s∗ = s + |∇ω|2 = s

3
+ 2W +(ω, ω)

is non-negative:
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Proposition 3 Let (M, g, ω) be a compact almost-Kähler four-manifold with non-negative
star-scalar curvature and harmonic self-dual Weyl tensor:

s∗ ≥ 0, δW + = 0.

Then (M, g, ω) is a constant-scalar-curvature Kähler manifold.

Kirchberg [18] has elsewhere investigated almost-Kähler four-manifolds with harmonic
Weyl tensor and positive star-scalar curvature. Since the hypothesis δW = 0 is equivalent to
δW + = δW − = 0, and is therefore stronger than the hypothesis δW + = 0 of Proposition 3,
we can recover many of Kirchberg’s results from our own. For example, we can deduce the
following clarification of [18, Corollary 3.13]:

Corollary 3 Let (M, g, ω) be a compact almost-Kähler four-manifold with non-negative
scalar curvature and harmonic Weyl tensor:

s ≥ 0, δW + = δW − = 0.

Then (M4, g, J ) is either a Kähler–Einstein manifold with λ ≥ 0, or else is locally symmetric,
with universal cover (M̃, g̃) isometric to the Riemannian product of two constant-curvature
surfaces, where one factor is a 2-sphere.

Proof Theorem 2 tells us that (M, g, J ) is Kähler and has constant scalar curvature. But
since the entire Weyl tensor is actually assumed to be harmonic, the second Bianchi identity
also tells us that

∇[crd]b = ∇a W a
bcd + 1

6
gb[c∇d]s = 0,

so that the covariant derivative∇r of theRicci tensormust therefore be completely symmetric.
Decomposing ⊗3�1

C
into ⊗3(�1,0 ⊕ �0,1), we thus have

∇κrμν̄ = ∇ν̄rμκ = 0 and ∇κ̄rμν̄ = ∇μrκ̄ ν̄ = 0.

The Ricci tensor of our Kähler manifold is therefore parallel, and the primitive part ρ̊ ∈ �−
of its Ricci form must therefore be parallel, too. If ρ̊ = 0, (M, g, J ) is Kähler–Einstein.
Otherwise, the holonomy of (M, g) fixes both ω and ρ̊, and so must be contained in U (1) ×
U (1) ⊂ U (2) ⊂ SO(4). In the latter case, the de Rham splitting theorem [4] then implies
that the universal cover (M̃, g̃) of (M, g) is a Riemannian product (M1, g1) × (M2, g2) of
two complete, constant-curvature Riemann surfaces; and if g is not Einstein, and therefore
not flat, the assumption that s ≥ 0 then forces at least one factor (M j , g j ) to have positive
Gauss curvature. ��

The Narasimhan–Seshadri theorem [25] provides a complete existence theory for the non-
Einstein metrics of Corollary 3. Indeed, a compact complex manifold (M4, J ) admits such
a locally-product Kähler metric iff it is a geometrically ruled complex surfaces that arises
as the projectivization of a polystable rank-2 holomorphic vector bundles over a compact
complex curve. For related results, see [2,9,21].
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