NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning

Ameer Haj-Ali" Nesreen K. Ahmed Yakun Sophia Shao

ameerh@berkeley.edu Ted Willke Krste Asanovic
University of California, Berkeley nesreen.k.ahmed@intel.com Ton Stoica

USA ted.willke@intel.com ysshao@berkeley.edu
Intel Labs krste@berkeley.edu

USA istoica@berkeley.edu

University of California, Berkeley
USA
Abstract dynamically determines the vectorization factors for all the

One of the key challenges arising when compilers vectorize
loops for today’s SIMD-compatible architectures is to decide
if vectorization or interleaving is beneficial. Then, the com-
piler has to determine the number of instructions to pack
together and the interleaving level (stride). Compilers are
designed today to use fixed-cost models that are based on
heuristics to make vectorization decisions on loops. How-
ever, these models are unable to capture the data dependency,
the computation graph, or the organization of instructions.
Alternatively, software engineers often hand-write the vec-
torization factors of every loop. This, however, places a huge
burden on them, since it requires prior experience and sig-
nificantly increases the development time.

In this work, we explore a novel approach for handling
loop vectorization and propose an end-to-end solution using
deep reinforcement learning (RL). We conjecture that deep
RL can capture different instructions, dependencies, and data
structures to enable learning a sophisticated model that can
better predict the actual performance cost and determine
the optimal vectorization factors. We develop an end-to-end
framework, from code to vectorization, that integrates deep
RL in the LLVM compiler. Our proposed framework takes
benchmark codes as input and extracts the loop codes. These
loop codes are then fed to a loop embedding generator that
learns an embedding for these loops. Finally, the learned
embeddings are used as input to a Deep RL agent, which

*Part of this work was done while Ameer Haj-Ali was in a summer internship
at Intel Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CGO 20, February 22-26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7047-9/20/02.
https://doi.org/10.1145/3368826.3377928

242

loops. We further extend our framework to support ran-
dom search, decision trees, supervised neural networks, and
nearest-neighbor search. We evaluate our approaches against
the currently used LLVM vectorizer and loop polyhedral op-
timization techniques. Our experiments show 1.29 x —4.73X
performance speedup compared to baseline and only 3%
worse than the brute-force search on a wide range of bench-
marks.

CCS Concepts -+ Software and its engineering — Com-
pilers.

Keywords Deep Reinforcement Learning, Code Optimiza-
tion, LLVM, Automatic Vectorization.

ACM Reference Format:

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao,
Krste Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-End
Vectorization with Deep Reinforcement Learning. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization (CGO 20), February 22-26, 2020, San Diego, CA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3368826.3377928

1 Introduction

Modern computers typically have vector instructions that
perform multiple basic operations simultaneously, such as
Intel Advanced Vector Extensions (AVX) [20]. Converting
a computer program from a scalar implementation, which
processes a single pair of operands at a time to a vector
implementation, which performs a single operation on mul-
tiple data (SIMD) items at once is called vectorization, and is
critical to enhancing the performance of compute-intensive
programs for modern computers.

Loops are among the most commonly vectorized parts
of code. Loop vectorization is done by defining the vector-
ization factor (VF) and the interleaving factor (IF) [25]. VF
determines how many instructions to pack together from
different iterations of the loop. IF determines the stride of
the memory accesses of the packed instructions. IF allows

CGO 20, February 22-26, 2020, San Diego, CA, USA

vectorization to be performed on non-consecutive addresses,
which are generally referred to as non-unit stride accesses.

In most C and C++ compilers it is possible to use intrin-
sic pragmas or compiler passes to manually vectorize loops
by setting the VF and IF. However, manual vectorization is
labor-intensive, error-prone, and results in code that is dif-
ficult to maintain and port. Alternatively, several solutions
for automatic vectorization and loop optimization have been
proposed. The current vectorizer used in LLVM and proposed
improvements [37, 38], rely on linear and constant-cost mod-
els to predict the vectorization factors. Unfortunately, these
cost models do not consider the computation graph and
focus on estimating the cost of different instructions with
predefined heuristics. Another commonly used approach is
Polly [8]. Polly uses loop polyhedral analysis, which relies on
an abstract mathematical representation, namely equations
and matrices, to represent loops as polytopes. The polytope
representation simplifies the implementation of loop opti-
mizations, though to date the main optimizations in Polly
are tiling and loop fusion to improve data locality.

Machine learning is yet another recent approach that has
been proposed for automatic vectorization [35]. While this
approach improves the cost models implemented by existing
compilers, they use hand-engineered heuristics to extract
features from the assembly code, such as arithmetic inten-
sity. Unfortunately, these features are typically not sufficient
to fully capture the code functionality. To overcome this
challenge, [4] proposed an end-to-end solution that relies
on deep supervised learning. However, supervised learning
methods require labels to train. These labels are not always
available and it can be time-consuming to find them. Further-
more, optimizing for multiple objectives with large search
spaces can be challenging for supervised learning methods.

A human vectorization expert can determine the optimal
vectorization factors, i.e., VF and IF for a specific hardware
architecture by examining the computation graph, function-
ality, operations, and loop bodies in the text code. Similarly,
in this paper, we use a code embedding generator that reads
the text similar to a human expert, "understands” it and then
generates an embedding that represents it. We use the gen-
erated embedding as an input to another neural network
that can learn a mapping from this embedding to optimal
vectorization factors similar to those learned by a human
expert. This approach efficiently addresses the vectorization
challenge end-to-end: from code to optimal factors, enabling
the co-optimization of multiple objectives while preserving
code correctness.

This paper makes the following contributions:

e A comprehensive data set of more than 10,000 syn-
thetic loop examples.

e An end-to-end deep reinforcement learning (RL) [36]
based auto-vectorization method.

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

o Anextensible, open-source' framework that integrates
learning code embedding with multiple machine learn-
ing methods to make vectorization predictions on loops.
We explore using random search, supervised learning
methods, i.e, nearest-neighbor search (NNS) [32], deci-
sion trees [31], and supervised fully connected neural
network (FCNNs), and contextual bandits based on
deep RL.

Rigorous evaluations across different learning hyper-
parameters and benchmark suites to show the effec-
tiveness of our approaches versus the currently used
cost model, as well as Polly. Our results show 1.29 x
—4.73% average performance speedup and only 3%
worse than the brute-force solution.

The rest of the paper is organized as follows. In Section 2
motivation and background for using deep RL to automati-
cally vectorize loops is given. The framework for automatic
vectorization with deep RL is proposed in Section 3 and eval-
uated on a wide range of benchmarks in Section 4. Future
directions and related work are given in Sections 5 and 6,
respectively. The paper is concluded in Section 7.

2 Motivation and Background
2.1 Vectorization Characterization

The vectorization is critical to enhancing the performance
of compute-intensive workloads in modern computers. All
the dedicated vector machines and modern CPUs that sup-
port vector instructions rely on vectorization to enhance the
performance of such workloads.

Loops are among the most commonly vectorized parts of
codes. Loop vectorization is done by setting the VF and the
IF, which respectively determine the number of instructions
to pack together and the stride. Appropriately setting the
values of VF and IF for loops is cumbersome as it depends
on many parameters, such as the instructions in the loop
body, the stride, the underlying hardware architecture, the
computations graph, and the functionality.

To understand this challenge and motivate this work we
take a simple vector dot product kernel function:

int vec[512] __attribute__((aligned(16)));
__attribute__((noinline))
int dot_product () {
int sum = 0;
for(int i = 0; i<512; i++){
sum += vec[i]*vec[i];
}

return sum;
3
To eliminate noise and variance in results we run this kernel
one million times and average the execution time. We run
the kernel on 16 GB 2133 MHz LPDDR3 memory and 2.7 GHz
(up to 4.5 GHz) Intel 4-Core i7-8559U [14], which supports
AVX. Figure 1 shows the performance of this kernel after a

!https://github.com/intel neuro-vectorizer.

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

CGO "20, February 22-26, 2020, San Diego, CA, USA

Normalized Performance
© 0000 ==
ON MO OO N

baseline

(VF.IF)

Figure 1. Performance of the dot product kernel for different VFs and IFs, normalized to the baseline cost model implemented
in LLVM. The best VF and IF corresponding to the baseline cost model are (VF = 4, IF = 2).

Normalized Performance

(=)
x
]

Figure 2. Performance of brute-force search of LLVM’s vec-
torizer test suite, normalized to the baseline cost model im-
plemented in LLVM.

brute-force search for different VFs and IFs normalized to the
baseline cost model implemented in LLVM. The best VF and
IF corresponding to the baseline cost model are (VF = 4,IF =
2). While the baseline improved the performance by 2.6x
when compared to the unvectorized code (VF = 1,IF = 1),
we can still see that 26 out of 35 possible factors improve
over the baseline. This improvement is maximized by (VF =
64,1F = 8) which achieves up to 20% better performance
than the baseline.

To further motivate this work, we evaluate the vector-
ization test suite used in the LLVM base code?, which tests
the cost model of the baseline vectorizer in LLVM. We run
a brute-force search on all the possible VFs and IFs. The
performance of the optimal vectorization normalized to the
baseline is illustrated in Figure 2. In all the tests, the optimal

2The test suite is available on: https:/github.com/llvm/llvm-test-
suite/tree/master;SingleSource/UnitTests/Vectorizer.

244

vectorization performed better than the baseline. This perfor-
mance gap increases with more complicated tests reaching
up to 1.5X. These abstract results on simple tests show that
there is room for improvement for the current baseline cost
model.

2.2 State-of-the-Art Auto-Vectorzation

Most C and C++ compilers allow the users to manually de-
termine the VF and the IF in their code. This, however, is
error-prone, time-consuming and often not optimal. Thus,
many works have been proposed in the past to address the
automatic vectorization challenge. For example, Polly [8]
uses an abstract mathematical representation based on inte-
ger polyhedra to analyze and optimize the memory access
pattern of a program. Polly performs classical loop transfor-
mations, especially tiling and loop fusion to improve data-
locality. These transformations also simplify vectorization
decisions for the compiler. Accordingly, to date, the main
optimizations in Polly are tiling and loop fusion to improve
data locality.

Prior work [35] represented the code characteristics, by us-
ing hand-engineered heuristics extracted from the assembly
code, such as arithmetic intensity and used it in conjunction
with supervised learning to predict the vectorization factors.
Unfortunately, these features are typically not sufficient to
fully capture the code functionality [5]. To overcome this
challenge, [4] proposed an end-to-end solution that relies
on deep supervised learning. However, supervised learning
methods require labels to train and finding these labels can
be time-consuming. Furthermore, optimizing for multiple
objectives with large search spaces can be challenging for
supervised learning methods.

To appropriately set the VF and IF for the loops, it is nec-
essary to fully learn the characteristics of the code and then
use these characteristics to predict the optimal VF and IF.
In other words, it is necessary to extract the loops from the

CGO 20, February 22-26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

Code
Embedding

Embedding

Learning
Agent

Runtime
(Reward)

New Vectorization Factors

Figure 3. The proposed framework for automatic vectorization with deep RL. The programs are read to extract the loops. The
loop texts are fed to the code embedding generator to generate an embedding. The embedding is fed to the RL agent. The RL
agent learns a policy that maps this embedding to optimal vectorization factors by injecting compiler pragmas and compiling
the programs with Clang/LLVM to gather the rewards: the execution time improvements.

int vec[512] __attribute_ ((aligned(16))); int vec[512] __attribute_ ((aligned(16)));
__attribute__ ((noinline)) __attribute__ ((noinline))
int examplel () { int examplel () {

int sum = 0;
for(int i = 0; i<512; i++){
sum += vec[i]xvec[i];

int sum = 0;
: ma clang loop vectorize width (64)\\
i rleave_count (8)
for(int i 0; 1<512; i++){
sum += vec[i]lxvec[i];

}
return sum;)
}

return sum;

Figure 4. An example of the automatically injected VF and IF pragmas by the RL agent.

code, characterize them, and use this characterization to pre- success in robotics, Atari gameplay, and superhuman capa-
dict the optimal factors. Therefore, we propose and develop bilities [6, 12, 16, 22, 26]. Deep RL was the key technique
a framework that accomplishes this goal by extracting the behind defeating the human European champion in the game
loops from the code, learning an embedding for these loops of Go, which has long been viewed as the most challenging
and learning a mapping from this embedding to the optimal of classic games for artificial intelligence [34].

VF and IF in an end-to-end fashion with RL. Unlike super- In RL, the agent observes the state of the environment, and
vised learning methods, deep RL can be tuned to co-optimize based on this state/observation takes an action. The ultimate
multiple objectives and does not require a brute-force search goal is to compute a policy (7*)-a mapping between the
and thus it can be more sample efficient. environment states and actions-that maximizes expected

reward:
-
2.3 Deep Reinforcement Learning for = arg/rzn axErn(o 7] @

Auto-Vectorization where 7 is a sequence of states and actions that define a

One of the promising machine learning approaches is RL, single episode.

in which an agent learns by continually interacting with an If the number of steps the RL agent has to take before
environment [15]. Using a neural network in conjunction the environment terminates is one, the problem is called
with RL is called deep RL. Deep models allow RL algorithms Contextual Bandits. In Contextual Bandits the learner tries
to solve complex problems in an end-to-end fashion, han- to find a single best action in the current state. It involves
dle unstructured environments, learn complex functions, or learning to search for best actions and trial-and-error.
predict actions in states that have not been visited in the One of the promising deep RL methods to derive a good,
past. Deep RL is gaining wide interest recently due to its stable, and easy to use policy is proximal policy optimization

245

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

(PPO) [33]. PPO computes a gradient update at each step that
minimizes the cost function while ensuring the deviation
from the previous policy is relatively small.

There are multiple ways to predict the VF and IF from the
code embedding. It is possible to use supervised learning
methods for example. This, however, would require know-
ing the labels, i.e., optimal VF and IF for every input loop
embedding. To find these labels, it is necessary to run a brute-
force search on all the possible VFs and IFs. This might work
but can be impractical for a large number of samples. To
overcome this challenge we use RL. What distinguishes RL
from other machine learning approaches is the presence of
self-exploration and exploitation, and the tradeoff between
them [36]. In our case, RL can learn with fewer samples than
that required in the supervised learning methods and can
co-optimize for multiple objectives such as compilation time,
code size, and execution time.

3 The Proposed Framework for Automatic
Vectorization

The proposed framework for automatic vectorization with
deep RL and its components are illustrated in Figure 3. The
directory of code files is fed to the framework as text code.
This code is fed to an automatic loop extractor. The extrac-
tor finds and outputs all the loops and their contexts in all
the source codes. These outputs are fed to a code embed-
ding generator to learn and generate an embedding. The
latter is fed to the deep RL agent to predict the vectoriza-
tion factors. The agent automatically injects vectorization
pragmas as shown in Figure 4. The agent then compiles the
program with clang/LLVM to gather the execution time im-
provements, which are used as rewards to the RL agent. Once
the model is trained it can be plugged in as-is for inference
without further retraining’. Note that our framework cannot
introduce new errors in the compiled code. Our framework
injects pragmas only. These pragmas are used as hints to
make vectorization decisions on the loops. However, some-
times the compiler can decide not to consider these pragmas
if it is not feasible. For example, predicates and memory de-
pendency can hinder reaching high VF and IF. In that case,
if the agent accidentally injected bad pragmas, the compiler
will ignore it.

It is also possible to vectorize from the command line by
giving the passes -force-vector-width=VF and -force-vector-
interleave=IF. However, we do not use this option as it re-
stricts us to use a single VF and IF pair for the entire code,
which is far from being optimal. Furthermore, the pragma is
injected for the most inner loop in the case of nested loops.
Next, we discuss the details of each component in the pro-
posed framework.

31t can still be beneficial to keep online training activated so that when
completely new loops are observed, the agent can learn how to optimize
them too.

246

CGO "20, February 22-26, 2020, San Diego, CA, USA

3.1 Code Embedding

The ultimate goal of the code embedding generator is to
learn a function that maps the input loop codes to a point in
a latent multidimensional space where similar loop codes are
mapped to points close to each other in the latent multidi-
mensional space. This can allow the RL agent to make similar
vectorization decisions on similar codes using the learned
embedding. There are multiple ways to generate/learn an
embedding for the input code. One example is to use Polly’s
mathematical representation of loops as an embedding. We
see this as a potential future direction for this work. Another
example is to use a neural network model pretrained with
labels that describe the functionality, e.g., matrix multiplica-
tions, dot product, convolution, etc.

In this work we use code2vec [1]. Code2vec is a neural
network model that relies on natural language processing [3]
and attention [40] for representing snippets of code as con-
tinuously distributed vectors. Code2vec represents a code
snippet as a single fixed-length code vector, which can be
used to predict the semantic properties of the snippet. This
vector is composed of 340 features that embed the program
code based on the mapping the code2vec neural network
learned. This vector captures many characteristics of the
code, such as semantic similarities, combinations, and analo-
gies. The code is first decomposed to a collection of paths in
its abstract syntax tree. Then, the network simultaneously
learns the atomic representation of each path while learning
how to aggregate a set of them.

3.2 The RL Environment Definition

To learn a good policy, it is necessary to appropriately define
actions, rewards, and states. We define the agent’s reward
as follows:

2

where tpaseline is the execution time when compiled with
the currently implemented baseline cost model in LLVM and
tgy, is the execution time when compiled with the injected
pragmas by the RL agent. We normalize the execution time by
tpaseline SO that our reward metric is robust to the variations
in the programs’ execution times. We also use tjgserine as
a bias in our reward so that a positive reward means the
current configuration improves over the baseline. This also
reduces the variance in the learned policy.

An action picks the VF and the IF, respectively, from the
following values:

reward = (tpasetine = tRL)/tbaselines

VF e [2°,21,2%,..., MAX_VF],

3
IF e [2°,2', 2%, ..., MAX_IF], @

where MAX_VF and MAX _IF are respectively the maximum
VF and IF supported by the underlying architecture. Note
that the actions for VF and IF can be defined to have val-
ues that are not powers of two. Here they were defined as

CGO 20, February 22-26, 2020, San Diego, CA, USA

powers of two only because this is what LLVM currently
supports. Initially, we trained two agents, one that predicts
VF and the other predicts IF independently. However, from
our experiment combining these two agents into one agent
with a single neural network that predicts the VF and IF
simultaneously performed better. This also aligns with the
fact that IF and VF are directly correlated, and in the LLVM
compiler code they are defined as a function of each other.

The states of the RL agent were defined as the vector out-
put embedding from the code embedding generator. For the
inputs of the code embedding generator, we experimented
with different snippets of the loop bodies and observed that
for nested loops, feeding the loop body of the outermost loop,
which also includes the bodies of the inner loops, performed
better than feeding the body of the most inner loop only.
This is mainly because the entire loop nest better captures
the functionally of the code, and reveals the access patterns
and strides.

3.3 Dataset Description

Neural networks require many samples for training. We first
tried to train our model with long-running benchmarks that
include code that is not restricted to loops only. It took a long
time to train since for every pragma injected for a loop the
whole program has to be recompiled and executed. Even if
we could overcome the challenge of long execution time with
enough resources, the number of open-source benchmarks
available for training is very small [5].

To speed up the training, and make it more efficient, we
built a dataset that includes loops only. We built genera-
tors that generate more than 10,000 synthetic loop examples
automatically from the LLVM vectorization test-suite. For
example, some new tests are made by changing the names of
the parameters, which was crucial for reducing noise in the
code embedding generator as often the names of the param-
eters might bias the embedding. Other examples included
the stride, the number of iterations, the functionality, the in-
structions, and the number of nested loops. Below are some
of the loop examples in the dataset and the (commented)
pragma line that the RL agent will inject:

/* Example #1 %/
//#pragma clang loop vectorize_width(VF) interleave_count(IF)
for (i =0; i < N-1; i+=2) {

assign1[i] = (int) short_a[il;

assigni1[i+1] = (int) short_a[i+1];

assign2[i] = (int) short_b[il;

assign2[i+1] = (int) short_b[i+1];

assign3[i] = (int) short_c[il;

assign3[it1] = (int) short_c[i+1];
3* Example #2 */
for (i=0; i<M; i++) {
//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (3=0; J<N; j++) {
GLil[3] = x;
3

247

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

2

>

~10 S

0 .

E .

© 8 . .

= .

g

& 6 .

Y . o ™ .

° 4 .

(]

(o)} 2 .

g 2| . .-

c .

S

- 0 PN N AN AN N N AN N N N N N S N N N~

2 e e s e s s S L b b L L L
A A A NNNNS 00000000
vvvvvvvvvvvvvvvv — =

Figure 5. The distribution of optimal VF and IF with brute-
force search for different programs in the dataset.

}
/* Example #3 x/
//#pragma clang loop vectorize_width(VF) interleave_count(IF)
for (i=0; i<N#2; i++){
int j = alil;
b[il = (3 > MAX ? MAX : 0);
3}
/% Example #4 x/
for (1 = 0; i <M; i+1){
for (3 =0; j <L; 3+5{
float sum = 0;
//#pragma clang loop vectorize_width(VF) interleave_count(IF)
for (k = 0; k < N; k++) {
sum += alpha*A[i][k] * B[kI[jJ1;

3
CLil[j] = sum;
3
3
/* Example #5 x/
//#pragma clang loop vectorize_width(VF) interleave_count(IF)
for (i = 0; i < N/2-1; i++){
alil = b[2*i+1] % c[2%i+1] - b[2*i] * c[2%i];
d[i] = b[2#i] * c[2*i+1] + b[2xi+1] * c[2%i];

>

Figure 5 shows the distribution of optimal vectorization fac-
tors when running a brute-force search with MAX_VF = 16
and MAX_IF = 8 on the dataset. While these loops do not
represent all the existing loops, the results show that differ-
ent loops have different optimal VF and IF and to guarantee
optimal performance, all combinations of VF and IF should
be considered. Interestingly, the factors with the highest
percentage of programs are (VF = 4,IF = 2). From our ex-
periments, these factors were the default values the baseline
cost model also outputted.

3.4 Handling Long Compilation Time

During training, some of the programs took a long time to
compile, mainly when the agent was trying to vectorize more
than plausible. Long compilation time with limited resources

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

can slow down the training. To overcome this, we limited
the compilation time to ten times the time it takes to compile
a program with the baseline cost model. If the program took
longer than that to compile, we gave a penalty reward of —9
(equivalent to assuming it takes ten times the execution time
of the baseline) so that the agent will learn not to overesti-
mate the vectorization and avoid it. From our experiments
on the programs that took a relatively long time to compile,
eventually after waiting the necessary time for them to com-
pile, the achieved performance was not better than that of
all the other possible vectorization configurations. In some
contexts, users might care about compile-time when evaluat-
ing the performance of programs. Our reward definition can
incorporate that too so that the agent can simultaneously
optimize for more than one objective. For example, one can
allow a long compilation time but penalize for it. The reward
can also be defined as a combination of the compilation time,
execution time, generated assembly code size, etc.

4 Evaluation

The proposed framework is evaluated following the method-
ology mentioned in Section 2. For code2vec we use the open-
source code and modify it to work with our RL agent imple-
mentation. To run our RL algorithms we use RLIib [18] and
Tune [19], open-source libraries for RL that offer, high scala-
bility, hyper-parameter tuning and a unified API for a variety
of applications. RLIib and Tune are built on top of Ray [23],
a high-performance distributed execution framework tar-
geted at large-scale machine learning and RL applications.
We first train the framework with the RL agent and code2vec
until convergence. Then we also run a brute-force search
on the dataset to find the best vectorization factors and use
them as labels for NNS, the decision tree and the supervised
FCNN. Since the brute-force search requires a long time to
run, we limit our training set to 5,000 samples and use this
set for the rest of our evaluation. To report performance we
take twelve completely different benchmarks from the test
set. These benchmarks combine completely different bench-
marks from the LLVM test-suite. These benchmarks include
loops with different functionality and access patterns. For
example, predicates, memory accesses with different strides,
bitwise operations, unknown loop bounds, if statements, un-
known misalignment, multidimensional arrays, summation
reduction, type conversions, different data types, etc. We
compare the performance of our framework versus Polly
and the baseline cost model.

We start with a 64 x 64 FCNN, with training batch size of
4,000, a learning rate of 5e-5 - a hyperparameter which deter-
mines to what extent newly acquired information overrides
old information - and discrete actions. We then experiment
with changing one parameter at a time. For discrete actions,
the neural network picks two integer numbers that index
into the arrays of possible VFs and IFs. We experiment with

248

CGO "20, February 22-26, 2020, San Diego, CA, USA

different hyperparameters. Figure 6 shows a hyperparameter
sweep over different hyperparameters as function of number
of training steps, i.e., compilations. We train up to 500,000
steps to see whether more training can get to better rewards,
but it is clear the policy converges with much fewer steps.

These results show that the current framework is robust
to noise and different parameters. When the learning rate
was set to 5e-5 the reward mean reached the maximum the
fastest. For learning rate 5e-3 the reward mean never reached
a higher maximum than that of the smaller learning rates
and the training loss was the highest. Minor differences were
observed for the different FCNN architectures. We also tried
single hidden layer networks and deeper networks and the
results were similar so they were not included in the figures
for clarity. The policy converged with fewer samples as the
batch size was decreased. We also experimented with smaller
batch sizes and they resulted in unstable policies that did
not outperform the performance when the batch size was
set to 500.

The results also show that the policy converged and ar-
rived at a highly rewarding (higher than 0 means better
than the baseline on average based on the reward definition
described in Section 3.2) state with 5,000 samples (for the
lowest batch size); 35X less than that required for a brute-
force search or a supervised learning method. It is important
to point out that this training is performed once and later the
framework can be used for inference, which requires a single
step only, similar to the baseline cost model. By contrast, a
brute-force search would require searching again.

Figure 7 shows the reward mean and total training loss
as function of number of training steps for different action
space definitions. We experimented with three actions space
definitions: (D discrete action space where the agent picks
two integer numbers that correspond to indices in the arrays
of VFs and IFs. (2) Continuous action space where the agent
picks one continuous number that encodes both the VF and
IF. @ Continuous action space where the agent picks two
continuous numbers that encode both the VF and IF. The
numbers in the continuous action spaces are rounded to the
closest integers. The results show that the discrete action
space performs the best.

The performance on different benchmarks for the baseline,
random search, Polly, decision tree, NNS, supervised FCNN,
and RL and brute-force search are shown in Figure 8. RL out-
performed the baseline by 2.67x on average and achieved per-
formance only 3% worse than that of the brute-force search.
The performance differed between the different benchmarks
based on how much vectorization the program can absorb.
NNS and decision trees also performed well, achieving re-
spectively 2.65x and 2.47X better than the baseline. This
shows that the embedding learned by the code embedding
generator during the end-to-end training is good so that
other learning methods that cannot be trained end-to-end
can use this embedding and perform well.

CGO 20, February 22-26, 2020, San Diego, CA, USA Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

Reward Mean for Different Learning Rates

0.3
[—
©
(7
302
2
©
0.1
o

0
0 100k 200k 300k 400k 500k
Number of Training Steps
Reward Mean for Different FCNN Architectures

0.3 . e o w'e
[=4
©
[
S92 — 32X32
° e 6464
g -128x128
Qo4

*T

0 100k 200k 300k 400k 500k
Number of Training Steps

Reward Mean for Different Batch Sizes

0.4
c 0.2
b = 500
> = 1000
z 0 =——2000
g = 4000
&-02

-0.4

0 100k 200k 300k 400k 500k
Number of Training Steps

Training Loss
o
o
[}

Training Loss
o
N

Training Loss

Training Loss for Different Learning Rates

o
w
o

o
)
&2

0.05
-0.05 |
0 100k 200k 300k 400k 500k
Number of Training Steps
Training Loss for Different FCNN Architectures
0.4 —32x32
— 64x64
- 128x128

o
w

o
-

0
0 100k 200k 300k 400k 500k
Number of Training Steps
Training Loss for Different Batch Sizes
1
=500
= 1000
0.6 w2000
e 4000
0.2
-0.2

0 100k 200k 300k 400k 500k
Number of Training Steps

Figure 6. Reward mean and training loss for different learning rates, FCNN architectures, and batch sizes.

Random search performed much worse than the baseline.

This shows that the framework learned a structure in the
observations that manifested in the vectorization decisions it
made. Polly outperformed the baseline by 17% but performed
56% worse than the proposed RL solution. For benchmark

249

#10, Polly interestingly outperforms the brute-force search.
This is because Polly performs loop transformations that
optimize beyond vectorization. This shows the potential for
achieving better performance improvement when combining
Polly and deep RL. We plan to explore this in future work.

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

Reward Mean for Different Action Space Definitions

CGO "20, February 22-26, 2020, San Diego, CA, USA

Training Loss for Different Action Space Definitions

03+
I Lk ~—— discrete

g 01 a2 = continuous_1
2 o == continuous_2
2 .01 = discrete 008 =
'g = continuous_1 £
2 03 = continuous_2 £
& =04

-0.5

0.7 0

0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k
Number of Training Steps Number of Training Steps
Figure 7. Reward mean and training loss for different action space definitions.
3555 gEEEE §§33 algorithm
3 == random
= polly
e

K =
g supervised FCNN
g w= brute-force
g 3
o]
a
el
N2
©
E
S
z

1

0

Benchmark

Figure 8. The performance of the proposed vectorizer that can be configured to use NNS, random search, decision trees, and
RL compared to brute-force search, Polly and the baseline cost model. The performance is normalized to the baseline.

While NNs and decision trees cannot be trained end-to-
end and require special handling, the supervised FCNN can
be trained end-to-end and achieves comparable performance
to deep RL. However, RL does not require labels and thus
can be trained without a brute-force search. To demonstrate
the advantage of deep RL, Figure 9 shows the normalized
average (geomean) performance of deep RL compared to su-
pervised FCNN as a function of the number of compilations
required (samples). Deep RL with as low as 5,000 compila-
tions already achieves high performance (only 5% worse than
the peak) and 1.26x better than the supervised FCNN. Su-
pervised FCNN achieved this only after 70,000 compilations

250

making it 14x less sample efficient than deep RL. Further-
more, in the long run we believe deep RL can better handle
large search spaces with multiple objectives to co-optimize.

4.1 Transfer Learning

The goal of this subsection is to see how well the framework
generalizes to a completely new code. To that end we eval-
uate the trained model on two benchmarks: MiBench [10]
where the loops constitute a minor portion of the code and
PolyBench [30] where the loops constitute a major portion
of the code. MiBench is a set of free and commercially rep-
resentative embedded benchmarks such as telecommunica-
tion, networking, security, office, and automation. Note that
vectorization for some of the MiBench benchmarks is not

CGO "20, February 22-26, 2020, San Diego, CA, USA

N
o

N
>

N
N

N
=)

—— supervised FCNN
— RL

Normalized Average Performance

-
®

10000 20000 30000 40000 50000 60000 70000 80000
Number of Compilations (Samples)

Figure 9. Normalized average performance of supervised
FCNN and deep RL as a function of the number of compila-
tions used (samples) for training.

algorithm
== baseline

~

S}

0
L4
<

Normalized Performance
N w S

=)

gemm gemver cholesky Geom
Benchmark

bicg

ajax

Figure 10. The performance of the proposed vectorizer on
Polybench compared to Polly and the baseline cost model.
The performance is normalized to the baseline.

possible. For example, due to memory dependencies, control-
flow or lack of loops, it was not possible to vectorize adpem,
dijkstra, basicmath, blowfish, etc. PolyBench includes bench-
marks that perform matrix operations, decomposition, and
linear algebra for which Polly is optimized to run on.
Figure 10 shows the performance of deep RL, Polly and the
baseline on PolyBench. Deep RL achieves on average 3.42x*
better performance than the baseline and 1.33x better than
Polly. Polly was optimized to run on PolyBench, yet deep
RL outperformed Polly on three out of the six benchmarks.
The ability to perform loop transformations that optimize
beyond vectorization, the lack of enough benchmarks in the
dataset, and the high penalty we give to long compilation

“Note that we take the average performance improvement over multiple in-
ferences. If instead we take the best performance, the deep RL improvement
reaches 4.77x on average: 3.71X, 6.74X, 6.92X, 5.21X, 1.61X, and 8.16X
for 2mm, bicg, ajax, gemm, gemver, and cholesky, respectively.

251

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

1.8 .
algorithm

16
Qo

§14
§ 1.2
% 1.0
o

§0.8
5 0.6
Eo4
o

Z02

oo ipeg

fft Geom

stringsearch lame
Benchmark

gsm

Figure 11. The performance of the proposed vectorizer on
Mibench compared to Polly and the baseline cost model. The
performance is normalized to the baseline.

times allowed Polly to perform better on some benchmarks.
When the deep RL agent tried to give high VF and IF, the
reward sometimes decreased due to the high penalty we give
to long compilation times. In such cases, the agent learns
to avoid being over-optimistic about increasing the VF and
IF. With more training data the agent can generalize better
to larger loop bounds on new examples. When combining
Polly and deep RL the average performance improvement
that can be achieved (potentially) is 4.35X.

Figure 11 shows the performance of deep RL, Polly and the
baseline on MiBench. Deep RL outperforms both Polly and
the baseline in all the benchmarks. The average performance
improvement was 1.1x over the baseline. While this might
not seem considerable, we believe that it can be sufficient
since the benchmarks did not rely heavily on loops, and the
measured execution time was for all the code not restricted
to loops.

4.2 Discussion: Deployability

In general, vendors and commercial companies are reluctant
to adopt machine learning and deep learning methods in
compiler optimization. The main reason behind this is the
need for methods that are deterministic, simple, easy to ex-
plain, and performant on a large scale of applications. This
also explains why most of the optimizations and implemen-
tation in compilers are based on manual engineering and
heuristics. With that being said, we believe that the grow-
ing complexity in systems and workloads, and availability
of data demands learning-based approaches. Deep RL and
other deep learning methods present a unique opportunity to
address these compiler challenges end-to-end and improve
upon manual engineering. In our evaluation, we showed that
deep RL can generalize to new benchmarks. With enough
training data, deep RL can be deterministic and performant
on a large scale of applications. Since the use of deep RL will
mainly be for inference it will also be simple to use and de-
ploy. The main challenge will remain in interpretability. This

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

challenge is not only a limitation of deep RL in vectorization,
it is also a limitation of neural networks in general. Many
recent works are being conducted on explaining neural net-
work decisions [9] and their application in code optimization
will also benefit from that. Besides, neural networks have
been adopted to solve many advanced real-world challenges
regardless of the interpretability limitation. We believe that
compilers and code optimization should also follow.

5 Future Directions

We see multiple future directions for this work. It is possible
to use loop polyhedral analysis, which is dedicated to the
loop snippets of codes for the code embedding. This will also
be less expensive in terms of computations. Combining deep
RL and Polly can further boost the performance and the RL
agent can also be trained to predict whether to use Polly or
not. The deep RL vectorizer can also be employed at the in-
termediate representation level, which can better reflect the
effects of the vectorization on the code and thus could enable
learning better predictions. For different target architectures,
it is necessary to add features that represent the underlying
architecture or to train separate models that are fitted to
the used architecture as different architectures behave differ-
ently and have different VF and IF action spaces. In this work,
we showed the potential of the deep RL vectorizer as the
first step toward end-to-end code optimization with machine
learning and deep RL. It is, however, necessary to train on a
wide range of applications, and target architectures for the
deep RL vectorizer to be a standardized optimization stage
in the LLVM compilation stack.

In our approach, we assumed the agent makes a single
decision per loop nest (i.e., episode). However, with new
compiler features such as the support of vectorization at dif-
ferent levels of a nested loop, deep RL will be more attractive.
This is mainly because the deep RL agent is not restricted to
make a single decision per loop nest. Instead, it can perform
multiple sequential decisions that collectively form a single
episode of multiple actions and states.

Pragmas such as loop unrolling, distribution, and vector
predication can also be tuned in a similar manner. The user
only needs to define an appropriate action space and a re-
ward function that depends on the desired objective. Many
of the optimizations done today in the compiler are global
rather than local. For example, the phase ordering of com-
piler passes is applied drastically to all the functions in the
code. It can be possible to automatically determine different
phase orderings and optimizations to different sections of
the code.

Our framework can also support vanilla deep neural net-
works methods instead of deep RL. One direction we are
exploring is to use a neural network that learns a ranking
scheme on the VF and IF. For example, it can learn that given
an embedding, and pragmas, what will the execution time

252

CGO "20, February 22-26, 2020, San Diego, CA, USA

normalized to the non-vectorized code be. This is equivalent
to learning a new cost model for the different VFs and IFs,
which could potentially replace the baseline cost model used
today. This method - unlike NNs and decision trees - can be
trained end-to-end.

6 Related Work

Previous work has utilized machine learning in compiler opti-
mization [2, 39]. For example, the work in [7, 11, 13] proposed
deep supervised and RL methods to overcome the phase or-
dering challenge. In [35], multiple machine learning methods
for automatic vectorization have been proposed. Our work
is different from these prior works in that it is the first to
propose a solution based on deep RL to explore the vectoriza-
tion space and compiler optimization in general. Second, all
these works primarily rely on extracted/engineered (hand-
crafted) features from the program, e.g., arithmetic intensity,
memory operations, number of different instruction, dis-
tance between producer and consumer, etc. These features
however do not fully represent the original code. By contrast,
our work addresses the automatic vectorization by learning
useful features in an end-to-end fashion, from the text code
itself to the optimal factors without any loss of information.
In [4] end-to-end supervised deep learning is used to learn
compiler heuristics. While such approach can achieve com-
parable performance, finding the labels for training can be
time consuming, and optimizing for multiple objectives with
large search spaces can be challenging.

Automatic vectorization with other methods was also pro-
posed. For example, the currently implemented cost model
in LLVM and recently proposed cost models in [24, 37, 38]
rely on predefined cost functions that calculate the expected
execution time of a vectorized loop based on a linear formula
from the instruction distribution. [28] improves super-word
level parallelism (SLP) [17] to limit the automatic vectoriza-
tion. This work does not address loop vectorization and relies
on the baseline cost model to predict when some portions of
code are better off not vectorized. Also, [21] relies on heuris-
tics to automatically vectorize. Finally, [27, 29] improve SLP
and rely on fixed cost models such as weighted instruction
count or the current LLVM cost models.

7 Conclusion

In this work, we proposed and developed an end-to-end vec-
torization framework that automatically detects loops, learns
their structures and applies deep RL to inject vectorization
pragmas to the compiler. Our results demonstrated an aver-
age performance improvement 1.29 X —4.73X compared to
the baseline cost model implemented in LLVM and on av-
erage only 3% worse than the brute-force solution. Looking
forward, we foresee a potential opportunity for automatic
end-to-end code tuning and optimization with machine learn-
ing techniques, such as deep RL.

CGO 20, February 22-26, 2020, San Diego, CA, USA

A Artifact Description

Our artifact provides C and Python codes for all our evalu-
ated benchmarks, along with scripts to reproduce the results
and experiments automatically. For best results it is best
to evaluate on Mac OS and use 16 GB 2133 MHz LPDDR3
memory and Intel 4-Core i7-8559U (for the Intel AVX2). The
results will be different if you run it on another machine
because it uses the vectorization capability of the machine.
Since the artifact runs in a virtual machine and requires deep
RL training the results might also vary due to virtualization
and stochastic nature of training. You might get slightly bet-
ter results or worse. Our results average out multiple runs.
We included all the dependencies, i.e., ray[rllib], Tensorflow
1, TensorFlow 2, code2vec, Clang and LLVM.

A.1 Artifact Check-List (Meta-Information)

Algorithm: Deep RL framework for auto-vectorization.
Program: Programs from the dataset (based on llvm test
suite, Mibench and Pollybench).

Compilation: Available in the virtual machine.
Transformations: Deep RL agent injects vectorization prag-
mas to the code.

Binary: The original code is included.

Dataset: Synthetic dataset.

Hardware: Mac OS, 16 GB 2133 MHz LPDDR3 memory and
Intel 4-Core i7-8559U.

Metrics: Average performance improvement.

Output: Performance numbers.

Experiments: Training RL model using end-to-end training
or precollected data. Running inference on benchmarks.
How much time is needed to prepare workflow (ap-
proximately)?: The workflow is implemented for the user.
How much time is needed to complete experiments
(approximately)?: Hours to weeks.

Publicly available?: Yes, code and data. See:
https://github.com/intel/neuro-vectorizer.

Workflow framework used?: Python scripts.

o o

o o

A.2 Description
A.2.1 How Delivered

The source code is delivered as a virtual machine with all
scripts and dependencies.

A.2.2 Hardware Dependencies

For best results it is best to evaluate on Mac OS and use 16
GB 2133 MHz LPDDR3 memory and Intel 4-Core i7-8559U
(mainly for the Intel AVX2).

A.2.3 Software Dependencies

We included all the dependencies, i.e., ray([rllib], Tensorflow
1, TensorFlow 2, code2vec, Clang and LLVM.

A.2.4 Datasets

Provided in the code under training_data.

253

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

A.3 Installation
The installation scripts are provided in the virtual machine.

A.4 Experiment Workflow
The password for the VM is cg02020.
Once the virtual machine is loaded open a terminal and

run cd ~/Desktop/rlvectorizer/llvm-project/

build/NeuroVectorizer
Run source ./preprocess/configure.sh
conda deactivate

cd cgo_results

Run
Run

Run python distribution.py //Figure 5

Two options are available for running the framework:
(1) train code2vec and the RL end-to-end or (2) using a
pretrained code2vec model and training the RL model
separately. The first option gives the best results but
takes weeks to finish and the virtual machine might
run out of memory. You can experiment with this op-
tion as follows:

— Run cd preprocess

— Run source ./configure.sh

- Run source ./preprocess.sh // this will gener-
ate the bag of words of the training set for code2vec
- Run python autovec.py // this will run training
for one configuration (hyperparameters) specified
in autovec.py. First it will run all the programs with
-03 to get the baseline runtimes.
The second option gives slightly worse results but
requires roughly a day. To further reduce the training
time for the second option we prepared data files that
include the execution times and embeddings of the
different samples in the dataset. Since it will roughly
take a day to run all the experiments, we made shorter
versions that you can run instead and the trend will
be the same. If you decide to run the shorter versions
then run Ir_short.py, arc_short.py, batch_short.py, and
action_short.py. The shorter versions will finish in
about 5 hours. The reward means are shown in page 1
of the tensorboard page and the total loss is in page 3.
The variance is also shown as a shadow in the plots.
Run python 1r.py

— Run tensorboard --logdir ~/ray_results/lr
- Click on the link tensorboard outputs //figure 6
Run python arc.py

— Run tensorboard --logdir ~/ray_results/
arc

- Click on the link tensorboard outputs //figure 6

Run python batch.py

— Run tensorboard --logdir ~/ray_results/
batch

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

- Click on the link tensorboard outputs //figure 6
e Run python action.py

— Run tensorboard --logdir ~/ray_results/

action
- Click on the link tensorboard outputs //figure 7
e Run python fig9.py

e Run python rollout.py ~/ray_results/fig9/
PPO_x/checkpoint_(number)/checkpoint-

(number) //figures 8 and 9
— Every checkpoint corresponds to 500 samples. So
checkpoint_10 is after 5K samples, etc. After running
rollout.py for different checkpoints we stop after the
performance starts to degrade (due to over fitting).
e Run conda activate
e Run python transfer_polly.py ~/ray_results
/f1g9/PPO_x/checkpoint_(number)/checkpoint-

(number)

— Experiment with the different checkpoints. At about
checkpoint 100 you should start to see good average
performance.

- You can go to vectorized_pollybench directory to
see the code with the injected pragmas.

e Run python transfer_mibench.py ~/ray_results

/fig9/PP0O/checkpoint_number/checkpoint-
(number) --benchmark mibench/(name of

benchmark)

- Note that this will not compile the programs as they
have a make file, you need to follow the instructions
of each benchmark to compile. In most cases, you
just have to open the file, run make and then "time
.J/runeme_x". You can also open the C files to see the
injected pragmas.

A.5 Evaluation and Expected Result

The scripts will output the execution time improvement
over the baseline, which is used in the plots. Many factors
can affect the performance. First, it can be hard to run full
end to end training which delivers the best performance
but requires weeks to train on the virtual machine. Second,
expect some variance in the results; RL is stochastic and
we use a sampler that samples from the distribution of the
output probabilities and therefore the variance is almost
guaranteed. We could set the random seed but it is unfair. It
is thus best to average the results. It is also best to run on the
hardware we defined without other applications running in
the background or virtualization. Note that since the virtual
machine runs compilation in parallel with training/inference
the execution times can increase. All the steps provided were
tested on the real and virtual machine with 100% success
rate. If one of the steps fails in the virtual machine it is due to

254

CGO "20, February 22-26, 2020, San Diego, CA, USA

running out of memory or exhausting the machine. Killing
the background jobs and rerunning it can solve the problem.
If that does not work then add more memory and cores in
the VirtualBox.

Acknowledgments

The authors would like to thank Ronny Ronen, Ayal Zaks,
Gadi Haber, Hideki Saito, Pankaj Chawla, Andrew Kaylor
and anonymous reviewers for their insightful feedback and
suggestions.

References

[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.
code2vec: Learning distributed representations of code. Proceedings of
the ACM on Programming Languages 3, POPL (2019), 40.

Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo,
and Cristina Silvano. 2018. A survey on compiler autotuning using
machine learning. ACM Computing Surveys (CSUR) 51, 5 (2018), 96.
Ronan Collobert and Jason Weston. 2008. A unified architecture for
natural language processing: Deep neural networks with multitask
learning. In Proceedings of the 25th international conference on Machine
learning. ACM, 160-167.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. End-to-end deep learning of optimization heuristics. In 2017
26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 219-232.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. Synthesizing benchmarks for predictive modeling. In 2017
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE, 86-99.

Kenji Doya. 2000. Reinforcement learning in continuous time and
space. Neural computation 12, 1 (2000), 219-245.

Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew
Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha
Mendelson, Ayal Zaks, Eric Courtois, et al. 2011. Milepost gcc: Ma-
chine learning enabled self-tuning compiler. International journal of
parallel programming 39, 3 (2011), 296-327.

Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.
Polly: performing polyhedral optimizations on a low-level intermedi-
ate representation. Parallel Processing Letters 22, 04 (2012), 1250010.
David Gunning. 2017. Explainable artificial intelligence (xai). Defense
Advanced Research Projects Agency (DARPA) (2017).

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In Proceedings of the
Fourth Annual IEEE International Workshop on Workload Characteriza-
tion. WWC-4 (Cat. No. 01EX538). IEEE, 3-14.

Ameer Haj-Ali, Qijing Huang, William Moses, John Xiang, John
Wawrzynek, Krste Asanovic, and Ton Stoica. 2020. AutoPhase: Juggling
HLS Phase Orderings in Random Forests with Deep Reinforcement
Learning. In Third Conference on Machine Learning and Systems (ML-
Sys).

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Joseph Gonzalez, Krste
Asanovic, and Ion Stoica. 2019. A View on Deep Reinforcement Learn-
ing in System Optimization. arXiv preprint arXiv:1908.01275 (2019).
Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica,
Krste Asanovic, and John Wawrzynek. 2019. AutoPhase: Compiler
Phase-Ordering for HLS with Deep Reinforcement Learning. In 2019
IEEE 27th Annual International Sy on Field-Progr abl
Custom Computing Machines (FCCM). IEEE, 308-308.

Intel Inc. 2018. Intel Core i7-8559U Processor Specifica-
tion. https://ark.intel.com/content/www/us/en/ark/products/137979/

[2]

(8]

(91

[10]

(1]

[12]

[13]

[14]

CGO "20, February 22-26, 2020, San Diego, CA, USA

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

s}
&L

[24]

[25]

[26]

intel-core-i7-8559u-processor-8m-\cache-up-to-4-50-ghz.html
Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996.

[27]

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and lon Stoica

Vasileios Porpodas. 2017. SuperGraph-SLP Auto-Vectorization. In 2017
26th International Conference on Parallel Architectures and Compilation

Reinforcement learning: A survey. Journal of artificial intelli
research 4, 237-285.

Jens Kober,] Andrew Bagnell, and Jan Peters. 2013. Reinforcement
learning in robotics: A survey. The International Journal of Robotics
Research 32, 11 (2013), 1238-1274.

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword
level parallelism with multimedia instruction sets. Vol. 35. ACM.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Joseph Gonzalez, Ken Goldberg, and Ion Stoica. 2017. Ray rllib: A
composable and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381 (2017).

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E
Gonzalez, and Ton Stoica. 2018. Tune: A Research Platform for Dis-
tributed Model Selection and Training. arXiv preprint arXiv:1807.05118
(2018).

Chris Lomont. 2011. Introduction to intel advanced vector extensions.
Intel White Paper (2011), 1-21.

Daniel S McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus
Piischel. 2011. Automatic SIMD vectorization of fast fourier trans-
forms for the larrabee and AVX instruction sets. In Proceedings of the
international conference on Supercomputing. ACM, 265-274.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A Distributed Framework for Emerg-
ing Al Applications. In 13th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 18). 561-577.

Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin Williams,
David Yuste, Albert Cohen, and Ayal Zaks. 2011. Vapor SIMD: Auto-
vectorize once, run everywhere. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 151-160.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization
of interleaved data for SIMD. ACM SIGPLAN Notices 41, 6 (2006),
132-143.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. 2003. Reinforcement
learning for I id robotics. In Pr dings of the third IEEE-RAS
international conference on humanoid robots. 1-20.

255

[28]

[29]

[30]

[31]

[32]

(331

[34]

[35]

[36]

[371

[38]

[39]

[40]

Tech (PACT). IEEE, 330-342.

Vasileios Porpodas and Timothy M Jones. 2015. Throttling automatic
vectorization: When less is more. In 2015 International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 432-444.
Vasileios Porpodas, Alberto Magni, and Timothy M Jones. 2015. PSLP:
Padded SLP automatic vectorization. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 190-201.

Louis-Noel Pouchet. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench (2012).

J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1,
1(1986), 81-106.

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Near-
est neighbor queries. In ACM sigmod record, Vol. 24. ACM, 71-79.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game
of Go with deep neural networks and tree search. nature 529, 7587
(2016), 484.

Kevin Stock, Louis-Noél Pouchet, and P Sadayappan. 2012. Using ma-
chine learning to improve automatic vectorization. ACM Transactions
on Architecture and Code Optimization (TACO) 8, 4 (2012), 50.
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

Xinmin Tian, Hideki Saito, Ernesto Su, Abhinav Gaba, Matt Masten,
Eric Garcia, and Ayal Zaks. 2016. LLVM framework and IR extensions
for parallelization, SIMD vectorization and offloading. In 2016 Third
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC).
IEEE, 21-31.

Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira
Rosen. 2009. Polyhedral-model guided loop-nest auto-vectorization.
In 2009 18th International Conference on Parallel Architectures and
Compilation Techniques. IEEE, 327-337.

Zheng Wang and Michael O’Boyle. 2018. Machine learning in compiler
optimization. Proc. IEEE 106, 11 (2018), 1879-1901.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation with visual attention.
In International conference on machine learning. 2048-2057.

