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Given the ever present threat of vehicular accident occurrence endangering the lives of most people, preventative
measures need to be taken to combat vehicle accident occurrence. From dangerous weather to hazardous
roadway conditions, there are a high number of factors to consider when studying accident occurrence. To
combat this issue, we propose a method using a multilayer perceptron model to predict where accident hotspots

are for any given day in the city of Chattanooga, TN. This model analyzes accidents and their associated weather
and roadway geometrics to understand the causes of accident occurrence. The model is offered as a live service to
local law enforcement and emergency response services to better allocate resources and reduce response times
for accident occurrence. Multiple models were made, each having different variables present, and each yielding

varying results.

1. Introduction

One of the most dangerous activities that people face each day is
vehicle accident occurrence. There are three main target audiences
subject to vehicle accidents: drivers, pedestrians, and local governments.
Drivers face countless hazards on the roadway, from weather related
hazards to unstable or dangerous roadway conditions, and even other
drivers facing those same weather and roadway conditions. For pedes-
trians, they face the more physical consequences of vehicle accidents,
such as being injured or killed through being hit by a vehicle. Local
governments face a more economic based consequence of vehicle acci-
dents, such as in 2018 when the total economic cost of accidents within
the United States exceeded $12.5 million (CostGuide, 2018; Hamil-
tonCountyCensus, 2018). These economic damages range from property
damage to human costs. Estimations from the US Department of
Transportation have the number of injuries resulting from vehicular
accident at 1.6 million in 2018, with 4.1 million accidents resulting in
property damage (USDOTNHTSA, 2018). In Tennessee alone, there were
208,605 accidents reported in 2018 that caused over $400 in damages
within its counties (TITAN, 2018).

Accident occurrence throughout the United States, and Tennessee
alone, has been rapidly escalating throughout recent years as shown in
Fig. 1. According to the Center for Disease Control and the National
Center for Health Statistics, vehicular accidents are one of the two
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highest fatality risks across all age groups between 1999 and 2012 (CDC,
2014; Olaisen et al., 2019).

Keeping in mind the previously mentioned statistics, vehicular ac-
cidents are clearly one of the greatest threats facing the average citizen
in a day to day setting. As these accidents continue to increase in fre-
quency, the need to reduce the impact of accidents or even outright
prevention of accidents, increases as well. Beyond the obvious danger to
the safety of pedestrians and drivers, there exists the issues of how to
counteract vehicle accident occurrence. Given the expansive amount of
features surrounding traffic accidents (weather, roadway geometrics,
human error, etc.), it can be difficult determining the root causes of an
accident. In addition, knowing what actions to take to mitigate accident
occurrence is something law enforcement and emergency services have
been struggling with for decades. By analyzing spatial and temporal data
surrounding accident occurrence, we set out to provide the Chattanooga
Police Department with a predictive model to determine where in
Chattanooga accidents are more likely to happen on a given day within a
certain time frame.

1.1. Contribution

This work addresses mitigation of accident occurrence through
analysis, prediction, and prevention of vehicular accidents within
Chattanooga, Tennessee. Presented here is a Multilayer Perceptron
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(MLP) neural network model created to predict where and when acci-
dents will occur on a provided day and time within the area of study. The
model utilizes historical vehicular accident records, weather conditions,
roadway geometrics, and other aggregated variables in the creation of
predictions for future accident occurrence. This model provides benefits
for two groups, police officers/emergency responders, and local gov-
ernment officials. For emergency responders, the model will be provided
as a live service application to display the most dangerous areas in
Chattanooga for better resource allocation, whether that may be patrol
route alterations or police car placement. For local government officials,
our project can provide prescriptive analysis on dangerous areas and
bring to light certain features of these areas that lead to higher accident
counts. This allows local governments to make alterations to these lo-
cations, such as adding in yield signs, speed bumps, traffic lights, etc.
Chattanooga itself acts as a perfect test bed for accident research, as the
area has a wide range of weather conditions over a comparably small
area. This allows a tighter focus of study over the area without needing
to traverse over an extensive amount of data that would be required for
projects that cover a wider area.

2. Related works

A case study was conducted concerning the prediction of traffic ac-
cidents through utilization and comparison of results between four
different classification models (Yuan et al., 2017). These methods
included: linear Support Vector Machine (SVM) (Suthaharan, 2016),
Decision Tree (DT) (Kotsiantis, 2013), Random Forest (RF) (Liaw and
Wiener, 2002), and Deep Neural Networks (DNN) (Sze et al., 2017).
Within this study a method of generating non-accident data was per-
formed and called negative sampling. For each positive example (acci-
dent), the value of only one feature was changed among hour, day, and
the unique road identification. Afterwards, the resulting samples were
checked for positive (match found) or negative (no match found) results
amongst the existing dataset. In the end, results dictated that the optimal
model was DNN for the application in discussion.

Convolutional Long-Short Term Memory (ConvLSTM) (Sainath et al.,
2015) is a subsidiary of Long Short Term Memory (Cheng et al., 2016)
involving the use of convolutional operations inside of the LSTM cell.
The convolutional operations allow for multi-dimensional data such as
radar or satellite imagery. This ConvLSTM setup was applied to a study
concerning vehicular accidents in Iowa, between 2006 and 2013. Data
included crash reports from Iowa DOT, rainfall data, Roadway Weather
Information System (RWIS) reports, and further data provided by Iowa
DOT such as speed limits, AADT, and traffic camera counts (Yuan et al.,
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2018). This study mentions that no other previous work had fused such
large heterogeneous datasets together before, nor had any included
spatial structures of the roadway network. As such, a five kilometer
square per block grid layout was constructed to cover the state for
prediction forecasting. Training data included 2006 to 2012 reports,
with 2013 being reserved for testing. Tests involved predicting locations
for the next seven days based on data provided by the previous seven
days. ConvLSTM results out performed all baselines in prediction ac-
curacy. As well, the system correctly predicted accidents resulting from
the case study of December eighth in 2013, where a significant snow-
storm caused numerous accidents.

Accidents within the city of Montreal were studied using three open
datasets and the Balanced Random Forest algorithm (Hebert et al.,
2019). Accident data was retrieved from Montreal Vehicle Collisions,
weather information was provided by the Historical Climate Dataset,
and roadway segment information was retrieved from the National Road
Network database, provided by the Canadian government. Four
different models were tested, including BRF (Balanced Random Forest),
RF (Random Forest), XGB (XG Boost), and a baseline model. Negative
samples (that is, examples of non-accident occurrence) were created as
well. A total of two billion negative samples were possible, with the team
electing to only utilize 0.1% of such. Predictions were for roadway
segments by hour, considered a highly specific definition. All together,
the systems were able to predict 85% of Montreal accidents, with a False
Positive Rate (FPR) of only 13%. It is notable that the datasets in use
were open source, implying that the study could easily be shifted to
another locale relatively easily, since no data restrictions were in place.

An initiative led by the United States Department of Transportation
(USDOT) means to partner crowd-sourced data provided by Waze and
safety policy decisions to help predict vehicular accidents (Dan et al.,
2018). Prediction is completed through the use of Classification and
Regression Trees (CART) and Random Forest models. The pilot for the
study included six months of accident data from Maryland, paired with
the corresponding (if any) Waze alerts. Specific temporal and spatial
event patterns created by the pilot model are quite similar to the actual
accident records, albeit not identical. Additionally, the model tends to
under predict accidents in early morning hours, while over predicting
accidents for high-commute periods. This is attributed to the historical
spread of accidents. Of particular note is the model’s ability to predict
Waze alerts for minor accidents, that is, those not serious enough to
report to law enforcement but significant enough to inhibit standard
traffic flow. The study continues with the partnership of state and local
partners for implementation of multiple case studies of the Waze crash
estimation model.
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2.1. Existing work comparisons

There are a wide variety of different attempts at accident prediction,
with many of them having different methodologies. The closest related
work in terms of both execution and results to our own project would be
(Hébert et al., 2019), where accidents within the city of Montreal were
studied by a team from Concordia University via the use of a Balanced
Random Forest algorithm. Both this study and our own focus upon a
singular city, utilizing roadway geometrics and weather conditions in
addition to the temporal and spatial specifics of accidents. However, the
team of Montreal elected to test using a roughly 94% division of negative
samples, in comparison to our three splits of data. This study aggregated
accident occurrence by roadway intersections, not by a grid layout. This
allowed for a more finely tuned variable list of roadway geometrics.
Additionally, predictions were assessed on an hourly unit, not by
particular times of day. The study of Montreal concluded with an 85%
Recall score, with 13% FPR. The reason for this team’s increased per-
formance is due to two outlying differentiating factors between their
project and our own.

The strongest differentiating factors of Hebert et al. (2019) are the
amount of data used and the specificity of the data itself. From their
study, four years-worth of data was utilized for training, testing was
performed on the remaining two years of data. Our own project only had
access to 3 years of data all together. Furthermore, the work utilized
more detailed information, such as specific roadway segments and
hours, as opposed to aggregated spatial and temporal breakdowns.
Previously, attempts were made for the study present within this work
using similarly high detail information for accident analysis, that being
specific roadway segments and hour values for accidents. However,
results were negligible at best. We believe this is due to lower count of
accidents to analyze, and that employing highly specific data requires a
larger pool of data to learn from. Due to our lower count of accidents, it
was necessary to approach the situation with a more generalized view-
point, thus necessitating the aggregation of spatial and temporal
variables.

The study completed by Yuan et al. (2017) is the origin of our own
study’s negative sampling technique. This study also utilized 75%
negative samples within their data, informing our usage of the division.
However, we expanded upon this idea in the testing of an even rarer split
(90/10) as well as testing predictions on an even split of data. The
highest Recall within the four different classification techniques from
Yuan et al. (2017). was listed as 86.89%, quite a bit higher than our own.
Precision on the study also outperformed our own, with a very low FPR
score. Accuracy in total for this study completed at 95.11%. However,
like the work completed in Montreal, this study had the advantage of
working on a finer roadway level of precision. This study also had the
ability of integrating human factors into their models, something of
which we currently do not have the ability to do. Perhaps the addition of
said demographics could assist in boosting performance of our own
models.

The study from Yuan et al. (2018) utilized Cross Entropy, Mean
Squared Error and Root Mean Squared Error as its measure of perfor-
mance. As such, this study and the one presented within this work
cannot be directly compared, but can still be discussed together. Both
studies did employ neural networks in their research, and did aggregate
the locations of accidents. However, this study did not group accidents
by a grid system, but by locational proximity. Study was also divided
between rural and urban areas, which may provide interesting further
research for our own work. Additionally, this study provides visual
comparison results of their predictions, without providing any numeri-
cal accompaniment.

Similar to the study presented within this work, Dan et al. (2018)
aggregated their spatial location into a set of grid blocks, including 0.5,
1, and 4 square mile grid blocks. Due to the study analyzing the acci-
dents across all of Maryland, the increased spatial aggregation areas are
to be expected. However, this team had a higher degree of detail for
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roadway related information, including Annual Average Daily Traffic.
Human based data was also utilized, such as job class, sex, and other
economic data. Substantially more data was available to study, nearly 2
million accident entries. This overwhelmingly higher amount of data to
learn from, alongside the human economic data and higher detailed
roadway data, are likely the contributing factors to the presented in-
crease in model performance and results in contrary to the work pre-
sented here.

3. Our project and data
3.1. Project synopsis

The goal of the project presented herein is the creation of a live
service application for the use of local law enforcement, tasked with
displaying the likelihood of accident “hotspots” throughout the city of
Chattanooga for a given day and time of day. Through the use of this
app, local law enforcement can more efficiently allocate resources
throughout the city to deter accident occurrence. This allocation can be
in the form of altering where police station themselves for paperwork
completion, altering patrol routes, or placement of temporary speed
deterrents. This type of allocation allows officers to perform the simplest
form of accident prevention, simply being present in high risk areas.
Many drivers will slow down and drive more appropriate whenever a
police car monitoring the roadway for hazardous drivers is present.

An additional application of this project is prescriptive analysis,
where the local government officials would be informed of dangerous
parts of the city and given analytical data displaying what makes a
certain area of the city an accident hotspot. Through this, the city can
take preventative measures to increase roadway safety, such as adding
in speed bumps, yield signs, or even altering the structure of the road (e.
g., add in or take out a lane of traffic).

3.2. The data

Data utilized consists of all reported accidents in Chattanooga, pro-
vided by the Hamilton County Emergency Services District. The data
covers all reported accidents from late 2016 up to the present day, where
daily records are received, ready for appending to the main dataset.
These records included the time of the call, the time of response, the
date, the GPS location, and injury level (no injury, injury, entrapment,
mass casualty). In this study, records are included based upon accident
reports from 2017, 2018, and 2019. Any duplicate calls in the dataset,
where a single vehicle accident is called in by multiple people, were
dropped.

Additional spatial and temporal information was added to the acci-
dents, including weather and roadway geometrics. Weather information
was provided by a Python API library called DarkSky, which compiles
weather from multiple different weather stations and provides the best
suited weather report for the given time and location information.
Roadway geometric information was provided through a combination of
ETRIMS and ArcGIS. ETRIMS is database of Tennessee roadway infor-
mation and ArcGIS is a mapping program used for manipulating spatial
information into desired formats.

Through DarkSky, weather variables were added to accident records
based upon the temporal and spatial details of the occurrence. Through
ETRIMS, spatial variables were added including road count, land use,
pavement type, and other roadway specific information. Lastly through
ArcGIS, the testing area was divided into a ‘fishnet’ made of 694 hexa-
gons, each covering a 0.2 square mile area. This aggregation was done to
lower the specificity required by the model, as previous attempts of
model creation with highly detailed roadway data yielded poor results.
Due to this aggregation process, specific roadway information was
required to also be aggregated based on the fishnet, simplifying the
prediction process by reducing the number of areas to predict for.
Table 1 summarizes the variables used in testing. Fig. 2 presents a visual
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Table 1
Variables Used in Study

Explanation

911 variables

Accident No accident (0) or accident (1)

Hour The hour of the day accident occurred

WeekDay If accident was on weekend or weekday (binary)
DayOfWeek Day of the week (0-6, Monday-Sunday)

Unix Timestamp of the accident in seconds

DayFrame Aggregated hour times of the day (see Table 2)

Weather variables

Rain/cloudy/foggy/snow/clear Precipitation conditions (binary)

Rain before Rain in previous hour (binary)

Temperature Temperature at time of record

Dewpoint Air temp required for water vapor saturation
Humidity Amount of water vapor in the air (0 to 1)

Cloud Coverage
Precipitation intensity
Wind speed

Road Variables

Grid number

Type of terrain
Number of lanes
Function class

Join count

Percentage of the sky covered by clouds (0 to 1)
Intensity of precipitation at time of record
Speed of the Wind (mph)

Position in aggregated spatial hex layout

The type of land terrain (rolling, flat, etc.)
Number of lanes

Function Class (municipal highway agency, etc.)
Accident count for that grid number

Note: All variables (excluding join count) listed under road variables are average
values based on Grid Num.

representation of the fishnet layout across the study area.

3.3. Negative sampling

Once the appropriate spatial and temporal information was appen-
ded to accident data, negative samples were generated to allow a more
thorough understanding behind accident occurrence. While there exists
a generous amount of accident data within the dataset, it proved difficult
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to extract meaningful results and predictions from solely using acci-
dents. For a model to accurately predict an accident versus a non-
accident, it must learn non-accidents, which led to the use of negative
sampling. Tests performed by Yuan et al. (2017) introduced the concept
of negative example creation from positive records, or, creating
non-accidents from accidents. Their process involved shifting the value
of a singular variable within an accident record from the available op-
tions of hour, date, or location. After the change, the newly altered re-
cord is compared to the dataset for a matching accident event. If no
match exists, it is considered a non-accident. For hour changes, a new
hour is chosen between 0 and 23, excluding the hour of the current
accident record. For Date, a new date is chosen for the same year as the
accident record. For location, a new roadway segment was chosen for
the accident record. This process resulted in roughly three times as many
negatives than positives in the dataset.

This process of negative data generation informed the usage of
negative sampling employed here. A more “random” method of negative
data generation was considered, where the date, hour, and grid number
of the accident record were changed simultaneously. This process was
repeated 9 times per accident record in the database, resulting in
roughly a 90%/10% split of data. When conducting model runs,
different versions of the model were created with differing negative/
positive data ratios to examine how data should be split between posi-
tive and negative samples. This examination of data splitting originated

Table 2
DayFrame breakdown.

DayFrame Hours covered

DayFrame 1 0-4 and 19-23 (overnight)
DayFrame 2 5-9 (morning rush)
DayFrame 3 10-13 (lunch hours)
DayFrame 4 14-18 (evening rush)
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Fig. 2. Hex layout view of Chattanooga, TN.
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within an article by Ranjan (2019), which covered the importance of
having a higher amount of negative samples for an event class when the
positive samples of that event are naturally rare. Given the inherently
rare nature of accident occurrence, it was decided to follow this meth-
odology to ensure accidents maintained their rare status.

4. Geo-spatial model design

Visually presenting historical accident data related to time presented
some challenges. The Geographical Information System (GIS) has many
solutions for time enabled data. One solution was the creation of a 3D
time enabled Geo-spatial Model. This model essentially is an aggrega-
tion of accidents counts extruded into 3D, within predefined hexagon
grids based on a 24-h period, animated by frame by frame in Fig. 3. To
create this Geo-spatial model the data was categorized based on hour of
the day from a value ranging from O - 23. In order to get a count of
accidents a frequency count of how many times the Hour field and Grid
ID field in a grid must be assessed. To normalize the data the count of
accidents in our grids is divided by the amount of years that have passed
since the day of the first recorded accident in the dataset to the most
recent accident. This presents a reference of what grids have hotspot
spikes depending on what time of day (Table 3).

5. Methods and analysis
5.1. Multilayer perceptron review

A multilayer perceptron (MLP) is a type of artificial neural network
that is composed of one or more input layers, one output layer, and a
number of hidden layers in between the input and output. Neural net-
works themselves are modelled after the human brain in an attempt to
mimic the natural learning process. They are constructed of individual
nodes which are then clustered into groups called layers. The hidden
layers (layers between input and output) are where all computations
happen, and can span as long as the designer decides. What separates an
MLP network from other artificial neural networks is its multiple layers
of hidden nodes. Multilayer perceptron networks are useful for
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Table 3
Variables used in geo-spatial model.
Geo-spatial model variables Explanation
Hour The hour of the day

Grid ID
Accidents per Year

Position in aggregated spatial hex layout
Calculated ratio of accidents per time

predicting both continuous and classification problems, however they
are more often used for the latter. Fig. 4 shows the basic layout of a
multilayered neural network with one hidden layer, where:

. al@ is the ith node in layer h

(h
oW
e g is the activation function at each layer
o b" is the bias for layer h

e y is the output of the prediction

) represents the weight of node i going into node j in layer h

The mathematical representation of Fig. 4, when h = 1, is shown in
Eq. (1):

52 = 606+ el + Tl i) (1)
J i

Multilayer perceptron networks are applied for supervised learning
problems and operate using the back-propagation algorithm. This al-
gorithm has two steps — the feed forward pass and the backward pass.
The forward pass moves from the input through the hidden layers into
the output, and the prediction is measured. The backward pass uses
partial derivatives of the error function and back-propagates them
through the network. This gives a gradient of error that can be adjusted
in order to find the minimum error rate. The back-propagation algo-
rithm continues trying to optimize the error rate of the predictions, until
it can no longer be optimized. This is known as convergence, where the
network can no longer improve in its current configuration. The training
of multilayer perceptron networks involves using a set of input and
output pairs and learning to model the correlation between them. This

Accidents Per Year

O <15 O <4 O <8 Dsu . <18 .525 .535 . <492

Fig. 3. Geo-spatial model of Chattanooga, TN for all accidents between 2017 and 2019. Displays 6 frames of the 24 h period. (a) 4 am. (b) 8 am. (c) 12 pm. (d) 5 pm.
(e) 8 pm. (f) 12 am. The color and height of the pillars in the images reflect the number of accidents present at the grid coordinate, where the darker the color and
higher the tower, the higher number of accidents. For the proper interactive model, visit this link: https://connorfirat.github.io/Hexagon_24hr Grids/index.html.
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3" |ayer
(output layer out)

Fig. 4. A basic multilayer perceptron network with one hidden layer.

involves adjusting weights and biases of the model in order to minimize
error. To illustrate the process, it is beneficial to think of an MLP
network like a game of tennis. There is a constant back and forth with
the network working in both ways, estimating prediction calculations
and then receiving feedback.

5.2. Model selection and architecture

Several different types of testing were conducted to find the model
that would best fit the data and project. These tests consisted of con-
ventional regression and machine learning methods. Their results were
overall lackluster. Before the implementation of an MLP network, select
K Best testing (Bisong, 2019) was applied for possible dimension
reduction. When compared to the standard results of the MLP, the results
of the various Select K Best tests under performed in both accuracy and
area under the curve, with K ranging from 5 to 25. Additional tests
consisted of Naive Bayes and a standard accuracy score test provided by
Sklearn, both of which provided worse performance scores than a
standard MLP model. Due to the lackluster testing results mentioned
above, a standard MLP model (Ramchoun et al., 2016) was chosen for
our study’s machine learning technique. Labelled inputs are used for
classification prediction, which MLPs are suitable for. Additionally,
MLPs are flexible with the use of data, which is beneficial to our study as
our dataset is very complex and intricate. MLP networks consist of one
input layer, one output layer, and one or more layers between the two.
The details of the architecture used in this project are displayed in
Table 4.

Our project’s model is a standard Keras Sequential MLP offered
through a Python module through Pycharm. Several different versions of
the MLP model were tested using our dataset, with a variety of different
parameter combinations. Initially, compilation was provided by binary
cross-entropy, which is particularly useful for binary results and classi-
fication. However, mean squared error was chosen to provide compi-
lation as it provided a significantly lower loss score with only a 2% cost
in accuracy. Tested activation functions identity, tanh, and relu all under

Table 4
MLP neural network architecture.
Layer Location Type Node Activation
1 Input Dense X Sigmoid
2 Hidden Dense X-5 Sigmoid
3 Hidden Dropout - -
4 Hidden Dense X-10 Sigmoid
5 Output Dense 1 -

Note: X in the Node column refers to the number of variables in the data used to
create the model.

performed when compared to sigmoid, due to it being particularly useful
for probability predictions due to it limiting a prediction model’s output
to a range of 0-1. Additionally, Nadam (2015) provided superior per-
formance when compared to alternative optimizers, such as sgd and
adam. Furthermore, a combination of a different number of hidden
layers and dropout layers of varying sizes were tested, with our current
layout yielding the best performance. The best results were achieved by
using one dropout layer set to 0.1 and 2 dense hidden layers whose node
counts were X-5 and X-10, with X being the number of variables used by
the data. A summarization of the model’s layout and parameters can be
seen in Table 4.

In the Node column, a formula is used to determine the number of
nodes used per layer. A simple subtraction equation was put in place to
set the number of nodes per layer based on the number of variables
supplied to the model. Note that this method requires there to be no less
than 10 variables present for the model’s uses. This was implemented
due to the Test Types described in Section 5.4, as each test has a different
number of variables used.

There have been several attempts to use machine learning models to
predict accidents, each having different setups and, consequently,
varying results (Theofilatos and Yannis, 2014). Poisson distribution was
also utilized in accident prediction by Abdel-Aty and Radwan (2000),
showing better performance over traditional linear regression based
models in terms of modelling vehicle accident frequency. Additionally,
Khattak et al. (2017) used Negative Binomial models and ordered logi-
t/probit models to explore crash severity. There have also been studies
conducted to apply binary logistic modeling for studying injury severity
(Weng and Meng, 2011; See, 2008; Li and Bai, 2008).

5.3. Feature selection

For the purposes of creating a simpler and more comprehensive
model, Feature Selection using an ExtraTreesClassifier algorithm was
employed to reduce the input dimensions down to the top 15 most
important variables, presented in Table 6. ExtraTreesClassifier (Pedre-
gosa et al., 2011) is a decision tree based ensemble method that ran-
domizes decisions and data subsets to minimize over-fitting and
over-learning. Of the top fifteen variables, three are considered as
temporal variables (Hour, DayFrame, and Unix), four are spatial vari-
ables (Join_Count, Latitude, Longitude, and Grid_Num), and the
remainder of the variables are weather related.

5.4. Variable combination tests

To gain a better understanding of individual variable importance, as
well as variable category importance (traffic variables, weather
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variables, roadway variables, etc.), different combinations of variables
were used during model creation. These variable combinations include:

e Test A (TA): all available variables are used

e Test B (TB): all redundant variables are removed

e Test C (TC): dropped all weather variables

e Test D (TD): dropped most location variables (kept Grid_Num)

Regarding Test B, the types of variables dropped were any variables
covered by an alternate aggregated version. For example, DayFrame acts
as an aggregated Hour so the hour variable was not used in model
creation.

6. Results

As a preface to this section, in Egs. (2)—(4), TP is True Positive, FN is
False Negative, FP is False Positive, and TN is True Negative. When
considering the results of a rare event predictor, rating performance
solely upon the Accuracy metric is not a suitable manner to evaluate
performance. Accuracy considers both the number of correct negative
and correct positive events predicted. This skews the actual performance
rating of the predictor where positive events are uncommon since
negative predictions should vastly outweigh positive predictions. More
fitting performance metrics for rare event predictors are the Recall,
Precision, and F1 Score values. Recall, shown in Eq. (2) (Shung, 2018),
refers to the percentage of correctly predicted accidents amongst all
actual accidents. Precision, shown in Eq. (3) (Shung, 2018), is the ratio
of correctly predicted accidents to all of the predicted accidents. F1
score, shown in Equation (4) (Shung, 2018) is the weighted average of
recall and precision, and the higher the value the better.

TP
Recall = m 2)
.. TP
Precision = m 3

(Recall * Precision)

F1S =2% — =
core * (Recall + Precision)

4

6.1. Model prediction results

Contradictory to a previous statement from Ranjan (2019) discussing
the importance of class balance, the overall best performing model split
was the even 50-50 split. The other model splits of 90-10 and 75-25
both had inferior performance when compared to the 50-50 models.
Furthermore, it was found that models with a 90-10 split were more
likely to have a higher prediction count for non-accidents and a lower
prediction count for accidents. Table 5 shows the model’s predictions,

Table 5
Model training and testing results.

Negative sample Train Test AUC Recall  Precision F1

type Acc Acc Score

Total Shift 50-50  81.58 81.91 81.88 83.16 81.75 82.45
TA

Total Shift 50-50  80.54 80.78 80.76  81.95 80.61 81.28
FS TA

Spatial Shift 80.16 79.64 79.54  82.82 78.77 80.74
50-50 TA

Spatial Shift 78.92 79.10 78.98  83.59 77.46 80.41
50-50 FS TA

Total Shift 50-50  79.78 79.64 79.62  80.42 79.78 80.10
TB

Note: FS refers to the implementation of Feature Selection, and 50-50 means the
data consisted of roughly a 50-50 split between positive and negative data
samples.
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otherwise known as the testing accuracy. Note that 50-50 refers to the
ratio of negative to positive data for the model, and FS refers to the
implementation of Feature Selection in model creation.

For a more concrete understanding of how a model is performing, the
recall, precision, and F1 score values are used to evaluate a model’s
performance. However, the results in Table 5 are not indicative of how a
model would perform in the real world when attempting to predict ac-
cidents. Therefore, the next section will review the results of how these
best performing models were able to perform when creating actual
predictions.

6.2. Prediction implementation results

Extensive prediction testing was performed for the entire month of
January 2020 using the years of 2017-2019 as training data. Contrary to
initial impressions, the best performing model from Table 5 did not have
the best predictive capability. Indeed, the best performing model for real
world predictions is the Total Shift 50-50 FS TA, which is the same
model as the best performing model from Table 5 but with feature se-
lection applied. An extended prediction period covering the remainder
of January 2020 can be seen in Fig. 6, where the TS 5050 FS TA model
remains the best performing model.

7. Discussion
7.1. Interpreting results

Feature importance analysis was performed before model creation to
restrict the dimensions of the data to the top 15 most important vari-
ables. Table 6 shows the variables ranked as most important for the
model Total Shift 50-50 TA, which in turn act as the input variables for
the model Total Shift 50-50 FS TA. Of interest is the somewhat repetitive
nature of highly ranking variables. Hour ranks higher than DayFrame
while at the same time representing a finer time division, yet both are
present in the top five variables. Latitude and Longitude are both present
as well, despite relative location being represented by Grid Num.
Finally, the inclusion of Join_Count at the top of the variable list presents
the importance of previously occurring accidents when considering
future accidents. For the real world prediction results shown in Figs. 5
and 6, it is seen that by implementing feature selection, the F1 Score
consistently sees improvements across the prediction time frame. PCA
testing was also performed on the variables used for TS 50-50 TA, which
showed that the more significant variables used in the model were
variables pertaining to location and time, similar to the ExtraTree-
sClassifier results.

Regarding Test A yielding the most viable results, the inclusion of
potentially redundant variables (e.g., Lat/Long and Grid_Num or Hour
and DayFrame) is not detrimental to the model’s usability, as those

Table 6

Variable importance testing results.
Rank TS 50-50 FS Score
1 Join_Count 0.2258
2 Hour 0.0800
3 DayFrame 0.0732
4 Latitude 0.0632
5 Longitude 0.0590
6 Grid_Num 0.0480
7 Unix 0.0447
8 humidity 0.0392
9 windSpeed 0.0375
10 uvindex 0.0371
11 temperature 0.0364
12 dewPoint 0.0358
13 pressure 0.0347
14 visibility 0.0324
15 cloudCover 0.0300
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Fig. 5. Performance of model prediction for the first week in January 2020 using models from Table 5.

20

NG

F1 Score

Model

TS 5050 FS TA
—— TS 5050 FSTB
— TS 5050 TA
—— TS 5050 TB
SS 5050 TA

/

L, Tng, Ty Yo, g Ly gl Las g Ly Yo Mg Moy Mo, Y Mg T Mg Tos T Mg Tig 1,
(7) 7, 3 S 6 2 & 9 Q, 7, 3 S 6, 2, 8 ) 0, 7,
02, 203,%0, 220 2. e;@geo/eoeg/eoeafeg 220 203 2035 203,203, 203, %, e;/e%/eg 35/9030/9030/3030/9030/3090/20 120 202, %02,

Date

Fig. 6. Performance of model prediction across January 2020 using TS 5050 FS TA model. Best presented in color. FS is Feature Selection, where the colors reflect if

feature selection was applied.

potentially redundant variables use different scales. For example, lati-
tude and longitude use the standard GPS coordinate scale, while
Grid_Num is an integer from 1 to 694. In other words, while some of the
variables may reflect similar information, they are presented in inher-
ently different ways.

7.2. Variable type significance testing

Regarding the implementation of ExtraTreesClassifier as a variable
significance identification tool, as mentioned in Section 5.3, the most
important variables returned for the Test A model were mostly location
and time based. To investigate this, additional tests were performed
using only the top 7 most significant variables from Table 6, from here
referred to as Weather-Exclusion. Overall, the results for the Weather-
Exclusion model were worse than the original model using Test A, as
shown in Table 7.

While the TP and FN values for the Weather-Exclusion model are
more preferable, these differences are statistically outweighed by the
larger differences in TN and FP between the two models. With the TS
50-50 FS TA model having 240 more True Negatives and 241 fewer
False Positives, at the cost of 9 fewer True Positives and 10 more False
Negatives, the overall performance of the TS 50-50 FS TA model is
preferable to the Weather-Exclusion model. The key take away from this

Table 7
Model prediction averages for January 1 to January 7, 2020.
Model name TP FN TN FP Recall  Precision  F1 Score
TS 50-50 FS TA 49 35 3753 668  60.18 7.04 12.33
Weather- 58 25 3513 909  70.92 6.03 10.99
Exclusion

is that by including weather information, the model is less inclined to
have a higher prediction count for accidents, leading to a more balanced
model in terms of prediction accuracy.

7.3. Significance testing

As a final insight into the performance of the different models, t-tests
(Kim, 2015) were performed on the prediction outputs for each model.
In this experiment, the hypotheses deal with the similarity of the two
models’ performance, with the null hypothesis stating that the two
models being compared are similar, while the alternative hypothesis
stating that the performances of the two models being compared are
significantly different. Each model was directly tested against its
reduced version; as Weather-Exclusion is to TS 5050 FS TA, TS 5050 TC
is to TS 5050 TA, where the former is a version of the latter without
weather. As seen in Table 8, the results for each prediction day are
different on the whole, with the majority of the p-values being less than
0.05. From the result, we can conclude that the performances of the two
compared models are significantly different.

8. Conclusion

Vehicular accidents are a common threat for most civilians. With
ever present hazards increasing the likelihood of an accident happening,
accident mitigation must attempt to prevent these hazards. Our contri-
bution is the creation of a predictive Multilayer Perceptron Model to
inform local law enforcement officers of high likelihood accident hot-
spots for any given day. This issue was approached by analyzing
different spatial attributes, such as roadway aggregation and historical
accident counts, and temporal attributes, such as weather, associated
with accident occurrence. This leads to several different predictive
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Table 8

t-Test results for model prediction outputs.
TS 5050 TA and TS 5050 TC T Stat DoF Crit Val P val
1-1-2020 1.30 7666 1.65 0.19
1-2-2020 4.23 8944 1.65 0.00
1-3-2020 3.79 8944 1.65 0.00
1-4-2020 14.93 8944 1.65 0.00
1-5-2020 —4.91 8944 1.65 0.00
1-6-2020 -1.59 8944 1.65 0.11
1-7-2020 2.71 8944 1.65 0.01
TS 5050 FS TA and Weather-Exclusion T Stat DoF Crit Val P Val
1-1-2020 —5.12 7882 1.65 0.00
1-2-2020 —13.53 9196 1.65 0.00
1-3-2020 -8.79 9196 1.65 0.00
1-4-2020 —1.68 9196 1.65 0.09
1-5-2020 —8.88 9196 1.65 0.00
1-6-2020 —-7.12 9196 1.65 0.00
1-7-2020 -3.30 9196 1.65 0.00

models being created, each yielding varying results. However, the
application of feature selection allowed for a marked increase of Recall,
Precision, and F1 Score values. The best performing accident prediction
model resulted from changing the hour, date, and location values of an
accident entry when creating negative samples, having an even split of
negative to positive data, providing all available variables for analysis,
and applying feature selection, referred to as Total Shift 50-50 FS TA.
The variety of results presented across the dates of study we believe stem
from the inherent chaotically random nature of accident occurrence. In
addition to the prediction capabilities, our project can provide local
government officials prescriptive analysis on dangerous areas and bring
to light certain features of these areas that lead to higher accident
counts. With this information, local governments can take the necessary
measures to reduce the hazardous nature of these locations, such as
adding in yield signs, speed bumps, traffic lights, etc.

The greatest limitation of this project is the lack of available data.
Specifically, the manner in which accidents are reported for our area of
study provides no driver specific information or vehicle specific infor-
mation. Additionally, traffic volume and velocity data are not viable
data to be gathered from ETRIMS. While the data does exist in the
ETRIMS database, it is very sparse and inconsistent for the majority of
the roadways in Chattanooga, leading to most of the roadway entries in
the database containing missing volume and velocity data. However,
this severe limitation provides our project with a unique feature. The
creation of a model that uses widely and easily available data increases
the use case potential of the project to different counties and cities which
may not have highly specific roadway or driver specific data. With the
creation of a reliable traffic accident prediction model that uses easily
obtainable data, a wider group of individuals can benefit from its
implementation.

As the project proceeds, adjustments to the model and its input
features will continue to provide the optimal output. One such future
branch of this study includes further investigation into the creation of a
singular adverse weather variable, as presented by Hébert et al. (2019).
The current individual weather binaries presented within this study
could be complicating the models unnecessarily, although this is subject
to be determined by further testing. Additionally, demographic data as
presented in Dan et al. (2018), Yuan et al. (2017) could be accessed from
Geographical Information System (GIS) and incorporated into future
modelling, providing some of the missing human factors sought by this
team. Lastly, regarding the limitation of a lack of data, any future
implementations of this project in different cities/counties could
potentially benefit from additional roadway or driver specific data
should that city/county have access to said data.
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