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A B S T R A C T   

Given the ever present threat of vehicular accident occurrence endangering the lives of most people, preventative 
measures need to be taken to combat vehicle accident occurrence. From dangerous weather to hazardous 
roadway conditions, there are a high number of factors to consider when studying accident occurrence. To 
combat this issue, we propose a method using a multilayer perceptron model to predict where accident hotspots 
are for any given day in the city of Chattanooga, TN. This model analyzes accidents and their associated weather 
and roadway geometrics to understand the causes of accident occurrence. The model is offered as a live service to 
local law enforcement and emergency response services to better allocate resources and reduce response times 
for accident occurrence. Multiple models were made, each having different variables present, and each yielding 
varying results.   

1. Introduction 

One of the most dangerous activities that people face each day is 
vehicle accident occurrence. There are three main target audiences 
subject to vehicle accidents: drivers, pedestrians, and local governments. 
Drivers face countless hazards on the roadway, from weather related 
hazards to unstable or dangerous roadway conditions, and even other 
drivers facing those same weather and roadway conditions. For pedes
trians, they face the more physical consequences of vehicle accidents, 
such as being injured or killed through being hit by a vehicle. Local 
governments face a more economic based consequence of vehicle acci
dents, such as in 2018 when the total economic cost of accidents within 
the United States exceeded $12.5 million (CostGuide, 2018; Hamil
tonCountyCensus, 2018). These economic damages range from property 
damage to human costs. Estimations from the US Department of 
Transportation have the number of injuries resulting from vehicular 
accident at 1.6 million in 2018, with 4.1 million accidents resulting in 
property damage (USDOTNHTSA, 2018). In Tennessee alone, there were 
208,605 accidents reported in 2018 that caused over $400 in damages 
within its counties (TITAN, 2018). 

Accident occurrence throughout the United States, and Tennessee 
alone, has been rapidly escalating throughout recent years as shown in 
Fig. 1. According to the Center for Disease Control and the National 
Center for Health Statistics, vehicular accidents are one of the two 

highest fatality risks across all age groups between 1999 and 2012 (CDC, 
2014; Olaisen et al., 2019). 

Keeping in mind the previously mentioned statistics, vehicular ac
cidents are clearly one of the greatest threats facing the average citizen 
in a day to day setting. As these accidents continue to increase in fre
quency, the need to reduce the impact of accidents or even outright 
prevention of accidents, increases as well. Beyond the obvious danger to 
the safety of pedestrians and drivers, there exists the issues of how to 
counteract vehicle accident occurrence. Given the expansive amount of 
features surrounding traffic accidents (weather, roadway geometrics, 
human error, etc.), it can be difficult determining the root causes of an 
accident. In addition, knowing what actions to take to mitigate accident 
occurrence is something law enforcement and emergency services have 
been struggling with for decades. By analyzing spatial and temporal data 
surrounding accident occurrence, we set out to provide the Chattanooga 
Police Department with a predictive model to determine where in 
Chattanooga accidents are more likely to happen on a given day within a 
certain time frame. 

1.1. Contribution 

This work addresses mitigation of accident occurrence through 
analysis, prediction, and prevention of vehicular accidents within 
Chattanooga, Tennessee. Presented here is a Multilayer Perceptron 
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(MLP) neural network model created to predict where and when acci
dents will occur on a provided day and time within the area of study. The 
model utilizes historical vehicular accident records, weather conditions, 
roadway geometrics, and other aggregated variables in the creation of 
predictions for future accident occurrence. This model provides benefits 
for two groups, police officers/emergency responders, and local gov
ernment officials. For emergency responders, the model will be provided 
as a live service application to display the most dangerous areas in 
Chattanooga for better resource allocation, whether that may be patrol 
route alterations or police car placement. For local government officials, 
our project can provide prescriptive analysis on dangerous areas and 
bring to light certain features of these areas that lead to higher accident 
counts. This allows local governments to make alterations to these lo
cations, such as adding in yield signs, speed bumps, traffic lights, etc. 
Chattanooga itself acts as a perfect test bed for accident research, as the 
area has a wide range of weather conditions over a comparably small 
area. This allows a tighter focus of study over the area without needing 
to traverse over an extensive amount of data that would be required for 
projects that cover a wider area. 

2. Related works 

A case study was conducted concerning the prediction of traffic ac
cidents through utilization and comparison of results between four 
different classification models (Yuan et al., 2017). These methods 
included: linear Support Vector Machine (SVM) (Suthaharan, 2016), 
Decision Tree (DT) (Kotsiantis, 2013), Random Forest (RF) (Liaw and 
Wiener, 2002), and Deep Neural Networks (DNN) (Sze et al., 2017). 
Within this study a method of generating non-accident data was per
formed and called negative sampling. For each positive example (acci
dent), the value of only one feature was changed among hour, day, and 
the unique road identification. Afterwards, the resulting samples were 
checked for positive (match found) or negative (no match found) results 
amongst the existing dataset. In the end, results dictated that the optimal 
model was DNN for the application in discussion. 

Convolutional Long-Short Term Memory (ConvLSTM) (Sainath et al., 
2015) is a subsidiary of Long Short Term Memory (Cheng et al., 2016) 
involving the use of convolutional operations inside of the LSTM cell. 
The convolutional operations allow for multi-dimensional data such as 
radar or satellite imagery. This ConvLSTM setup was applied to a study 
concerning vehicular accidents in Iowa, between 2006 and 2013. Data 
included crash reports from Iowa DOT, rainfall data, Roadway Weather 
Information System (RWIS) reports, and further data provided by Iowa 
DOT such as speed limits, AADT, and traffic camera counts (Yuan et al., 

2018). This study mentions that no other previous work had fused such 
large heterogeneous datasets together before, nor had any included 
spatial structures of the roadway network. As such, a five kilometer 
square per block grid layout was constructed to cover the state for 
prediction forecasting. Training data included 2006 to 2012 reports, 
with 2013 being reserved for testing. Tests involved predicting locations 
for the next seven days based on data provided by the previous seven 
days. ConvLSTM results out performed all baselines in prediction ac
curacy. As well, the system correctly predicted accidents resulting from 
the case study of December eighth in 2013, where a significant snow
storm caused numerous accidents. 

Accidents within the city of Montreal were studied using three open 
datasets and the Balanced Random Forest algorithm (Hébert et al., 
2019). Accident data was retrieved from Montreal Vehicle Collisions, 
weather information was provided by the Historical Climate Dataset, 
and roadway segment information was retrieved from the National Road 
Network database, provided by the Canadian government. Four 
different models were tested, including BRF (Balanced Random Forest), 
RF (Random Forest), XGB (XG Boost), and a baseline model. Negative 
samples (that is, examples of non-accident occurrence) were created as 
well. A total of two billion negative samples were possible, with the team 
electing to only utilize 0.1% of such. Predictions were for roadway 
segments by hour, considered a highly specific definition. All together, 
the systems were able to predict 85% of Montreal accidents, with a False 
Positive Rate (FPR) of only 13%. It is notable that the datasets in use 
were open source, implying that the study could easily be shifted to 
another locale relatively easily, since no data restrictions were in place. 

An initiative led by the United States Department of Transportation 
(USDOT) means to partner crowd-sourced data provided by Waze and 
safety policy decisions to help predict vehicular accidents (Dan et al., 
2018). Prediction is completed through the use of Classification and 
Regression Trees (CART) and Random Forest models. The pilot for the 
study included six months of accident data from Maryland, paired with 
the corresponding (if any) Waze alerts. Specific temporal and spatial 
event patterns created by the pilot model are quite similar to the actual 
accident records, albeit not identical. Additionally, the model tends to 
under predict accidents in early morning hours, while over predicting 
accidents for high-commute periods. This is attributed to the historical 
spread of accidents. Of particular note is the model’s ability to predict 
Waze alerts for minor accidents, that is, those not serious enough to 
report to law enforcement but significant enough to inhibit standard 
traffic flow. The study continues with the partnership of state and local 
partners for implementation of multiple case studies of the Waze crash 
estimation model. 

Fig. 1. Total vehicular accident counts for United States and Tennessee from 2007 to 2018 (TITAN, 2018; USDOTNHTSA, 2018). Note the different Y-axis values 
per data. 
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2.1. Existing work comparisons 

There are a wide variety of different attempts at accident prediction, 
with many of them having different methodologies. The closest related 
work in terms of both execution and results to our own project would be 
(Hébert et al., 2019), where accidents within the city of Montreal were 
studied by a team from Concordia University via the use of a Balanced 
Random Forest algorithm. Both this study and our own focus upon a 
singular city, utilizing roadway geometrics and weather conditions in 
addition to the temporal and spatial specifics of accidents. However, the 
team of Montreal elected to test using a roughly 94% division of negative 
samples, in comparison to our three splits of data. This study aggregated 
accident occurrence by roadway intersections, not by a grid layout. This 
allowed for a more finely tuned variable list of roadway geometrics. 
Additionally, predictions were assessed on an hourly unit, not by 
particular times of day. The study of Montreal concluded with an 85% 
Recall score, with 13% FPR. The reason for this team’s increased per
formance is due to two outlying differentiating factors between their 
project and our own. 

The strongest differentiating factors of Hébert et al. (2019) are the 
amount of data used and the specificity of the data itself. From their 
study, four years-worth of data was utilized for training, testing was 
performed on the remaining two years of data. Our own project only had 
access to 3 years of data all together. Furthermore, the work utilized 
more detailed information, such as specific roadway segments and 
hours, as opposed to aggregated spatial and temporal breakdowns. 
Previously, attempts were made for the study present within this work 
using similarly high detail information for accident analysis, that being 
specific roadway segments and hour values for accidents. However, 
results were negligible at best. We believe this is due to lower count of 
accidents to analyze, and that employing highly specific data requires a 
larger pool of data to learn from. Due to our lower count of accidents, it 
was necessary to approach the situation with a more generalized view
point, thus necessitating the aggregation of spatial and temporal 
variables. 

The study completed by Yuan et al. (2017) is the origin of our own 
study’s negative sampling technique. This study also utilized 75% 
negative samples within their data, informing our usage of the division. 
However, we expanded upon this idea in the testing of an even rarer split 
(90/10) as well as testing predictions on an even split of data. The 
highest Recall within the four different classification techniques from 
Yuan et al. (2017). was listed as 86.89%, quite a bit higher than our own. 
Precision on the study also outperformed our own, with a very low FPR 
score. Accuracy in total for this study completed at 95.11%. However, 
like the work completed in Montreal, this study had the advantage of 
working on a finer roadway level of precision. This study also had the 
ability of integrating human factors into their models, something of 
which we currently do not have the ability to do. Perhaps the addition of 
said demographics could assist in boosting performance of our own 
models. 

The study from Yuan et al. (2018) utilized Cross Entropy, Mean 
Squared Error and Root Mean Squared Error as its measure of perfor
mance. As such, this study and the one presented within this work 
cannot be directly compared, but can still be discussed together. Both 
studies did employ neural networks in their research, and did aggregate 
the locations of accidents. However, this study did not group accidents 
by a grid system, but by locational proximity. Study was also divided 
between rural and urban areas, which may provide interesting further 
research for our own work. Additionally, this study provides visual 
comparison results of their predictions, without providing any numeri
cal accompaniment. 

Similar to the study presented within this work, Dan et al. (2018) 
aggregated their spatial location into a set of grid blocks, including 0.5, 
1, and 4 square mile grid blocks. Due to the study analyzing the acci
dents across all of Maryland, the increased spatial aggregation areas are 
to be expected. However, this team had a higher degree of detail for 

roadway related information, including Annual Average Daily Traffic. 
Human based data was also utilized, such as job class, sex, and other 
economic data. Substantially more data was available to study, nearly 2 
million accident entries. This overwhelmingly higher amount of data to 
learn from, alongside the human economic data and higher detailed 
roadway data, are likely the contributing factors to the presented in
crease in model performance and results in contrary to the work pre
sented here. 

3. Our project and data 

3.1. Project synopsis 

The goal of the project presented herein is the creation of a live 
service application for the use of local law enforcement, tasked with 
displaying the likelihood of accident “hotspots” throughout the city of 
Chattanooga for a given day and time of day. Through the use of this 
app, local law enforcement can more efficiently allocate resources 
throughout the city to deter accident occurrence. This allocation can be 
in the form of altering where police station themselves for paperwork 
completion, altering patrol routes, or placement of temporary speed 
deterrents. This type of allocation allows officers to perform the simplest 
form of accident prevention, simply being present in high risk areas. 
Many drivers will slow down and drive more appropriate whenever a 
police car monitoring the roadway for hazardous drivers is present. 

An additional application of this project is prescriptive analysis, 
where the local government officials would be informed of dangerous 
parts of the city and given analytical data displaying what makes a 
certain area of the city an accident hotspot. Through this, the city can 
take preventative measures to increase roadway safety, such as adding 
in speed bumps, yield signs, or even altering the structure of the road (e. 
g., add in or take out a lane of traffic). 

3.2. The data 

Data utilized consists of all reported accidents in Chattanooga, pro
vided by the Hamilton County Emergency Services District. The data 
covers all reported accidents from late 2016 up to the present day, where 
daily records are received, ready for appending to the main dataset. 
These records included the time of the call, the time of response, the 
date, the GPS location, and injury level (no injury, injury, entrapment, 
mass casualty). In this study, records are included based upon accident 
reports from 2017, 2018, and 2019. Any duplicate calls in the dataset, 
where a single vehicle accident is called in by multiple people, were 
dropped. 

Additional spatial and temporal information was added to the acci
dents, including weather and roadway geometrics. Weather information 
was provided by a Python API library called DarkSky, which compiles 
weather from multiple different weather stations and provides the best 
suited weather report for the given time and location information. 
Roadway geometric information was provided through a combination of 
ETRIMS and ArcGIS. ETRIMS is database of Tennessee roadway infor
mation and ArcGIS is a mapping program used for manipulating spatial 
information into desired formats. 

Through DarkSky, weather variables were added to accident records 
based upon the temporal and spatial details of the occurrence. Through 
ETRIMS, spatial variables were added including road count, land use, 
pavement type, and other roadway specific information. Lastly through 
ArcGIS, the testing area was divided into a ‘fishnet’ made of 694 hexa
gons, each covering a 0.2 square mile area. This aggregation was done to 
lower the specificity required by the model, as previous attempts of 
model creation with highly detailed roadway data yielded poor results. 
Due to this aggregation process, specific roadway information was 
required to also be aggregated based on the fishnet, simplifying the 
prediction process by reducing the number of areas to predict for. 
Table 1 summarizes the variables used in testing. Fig. 2 presents a visual 
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representation of the fishnet layout across the study area. 

3.3. Negative sampling 

Once the appropriate spatial and temporal information was appen
ded to accident data, negative samples were generated to allow a more 
thorough understanding behind accident occurrence. While there exists 
a generous amount of accident data within the dataset, it proved difficult 

to extract meaningful results and predictions from solely using acci
dents. For a model to accurately predict an accident versus a non- 
accident, it must learn non-accidents, which led to the use of negative 
sampling. Tests performed by Yuan et al. (2017) introduced the concept 
of negative example creation from positive records, or, creating 
non-accidents from accidents. Their process involved shifting the value 
of a singular variable within an accident record from the available op
tions of hour, date, or location. After the change, the newly altered re
cord is compared to the dataset for a matching accident event. If no 
match exists, it is considered a non-accident. For hour changes, a new 
hour is chosen between 0 and 23, excluding the hour of the current 
accident record. For Date, a new date is chosen for the same year as the 
accident record. For location, a new roadway segment was chosen for 
the accident record. This process resulted in roughly three times as many 
negatives than positives in the dataset. 

This process of negative data generation informed the usage of 
negative sampling employed here. A more “random” method of negative 
data generation was considered, where the date, hour, and grid number 
of the accident record were changed simultaneously. This process was 
repeated 9 times per accident record in the database, resulting in 
roughly a 90%/10% split of data. When conducting model runs, 
different versions of the model were created with differing negative/ 
positive data ratios to examine how data should be split between posi
tive and negative samples. This examination of data splitting originated 

Table 1 
Variables Used in Study   

Explanation 

911 variables 
Accident No accident (0) or accident (1) 
Hour The hour of the day accident occurred 
WeekDay If accident was on weekend or weekday (binary) 
DayOfWeek Day of the week (0–6, Monday–Sunday) 
Unix Timestamp of the accident in seconds 
DayFrame Aggregated hour times of the day (see Table 2) 
Weather variables 
Rain/cloudy/foggy/snow/clear Precipitation conditions (binary) 
Rain before Rain in previous hour (binary) 
Temperature Temperature at time of record 
Dewpoint Air temp required for water vapor saturation 
Humidity Amount of water vapor in the air (0 to 1) 
Cloud Coverage Percentage of the sky covered by clouds (0 to 1) 
Precipitation intensity Intensity of precipitation at time of record 
Wind speed Speed of the Wind (mph) 
Road Variables 
Grid number Position in aggregated spatial hex layout 
Type of terrain The type of land terrain (rolling, flat, etc.) 
Number of lanes Number of lanes 
Function class Function Class (municipal highway agency, etc.) 
Join count Accident count for that grid number 

Note: All variables (excluding join count) listed under road variables are average 
values based on Grid Num. 

Fig. 2. Hex layout view of Chattanooga, TN.  

Table 2 
DayFrame breakdown.  

DayFrame Hours covered 

DayFrame 1 0–4 and 19–23 (overnight) 
DayFrame 2 5–9 (morning rush) 
DayFrame 3 10–13 (lunch hours) 
DayFrame 4 14–18 (evening rush)  
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within an article by Ranjan (2019), which covered the importance of 
having a higher amount of negative samples for an event class when the 
positive samples of that event are naturally rare. Given the inherently 
rare nature of accident occurrence, it was decided to follow this meth
odology to ensure accidents maintained their rare status. 

4. Geo-spatial model design 

Visually presenting historical accident data related to time presented 
some challenges. The Geographical Information System (GIS) has many 
solutions for time enabled data. One solution was the creation of a 3D 
time enabled Geo-spatial Model. This model essentially is an aggrega
tion of accidents counts extruded into 3D, within predefined hexagon 
grids based on a 24-h period, animated by frame by frame in Fig. 3. To 
create this Geo-spatial model the data was categorized based on hour of 
the day from a value ranging from 0 - 23. In order to get a count of 
accidents a frequency count of how many times the Hour field and Grid 
ID field in a grid must be assessed. To normalize the data the count of 
accidents in our grids is divided by the amount of years that have passed 
since the day of the first recorded accident in the dataset to the most 
recent accident. This presents a reference of what grids have hotspot 
spikes depending on what time of day (Table 3). 

5. Methods and analysis 

5.1. Multilayer perceptron review 

A multilayer perceptron (MLP) is a type of artificial neural network 
that is composed of one or more input layers, one output layer, and a 
number of hidden layers in between the input and output. Neural net
works themselves are modelled after the human brain in an attempt to 
mimic the natural learning process. They are constructed of individual 
nodes which are then clustered into groups called layers. The hidden 
layers (layers between input and output) are where all computations 
happen, and can span as long as the designer decides. What separates an 
MLP network from other artificial neural networks is its multiple layers 
of hidden nodes. Multilayer perceptron networks are useful for 

predicting both continuous and classification problems, however they 
are more often used for the latter. Fig. 4 shows the basic layout of a 
multilayered neural network with one hidden layer, where:  

• a(h)

i is the ith node in layer h  
• w(h)

i,j represents the weight of node i going into node j in layer h  
• g is the activation function at each layer  
• bh is the bias for layer h  
• ŷ is the output of the prediction 

The mathematical representation of Fig. 4, when h = 1, is shown in 
Eq. (1): 

ŷk = g(b(h) +
∑

j
g(b(in) +

∑

i
a(in)

i w(h)

ij )w(out)
jk ) (1) 

Multilayer perceptron networks are applied for supervised learning 
problems and operate using the back-propagation algorithm. This al
gorithm has two steps – the feed forward pass and the backward pass. 
The forward pass moves from the input through the hidden layers into 
the output, and the prediction is measured. The backward pass uses 
partial derivatives of the error function and back-propagates them 
through the network. This gives a gradient of error that can be adjusted 
in order to find the minimum error rate. The back-propagation algo
rithm continues trying to optimize the error rate of the predictions, until 
it can no longer be optimized. This is known as convergence, where the 
network can no longer improve in its current configuration. The training 
of multilayer perceptron networks involves using a set of input and 
output pairs and learning to model the correlation between them. This 

Fig. 3. Geo-spatial model of Chattanooga, TN for all accidents between 2017 and 2019. Displays 6 frames of the 24 h period. (a) 4 am. (b) 8 am. (c) 12 pm. (d) 5 pm. 
(e) 8 pm. (f) 12 am. The color and height of the pillars in the images reflect the number of accidents present at the grid coordinate, where the darker the color and 
higher the tower, the higher number of accidents. For the proper interactive model, visit this link: https://connorfirat.github.io/Hexagon_24hr_Grids/index.html. 

Table 3 
Variables used in geo-spatial model.  

Geo-spatial model variables Explanation 

Hour The hour of the day 
Grid ID Position in aggregated spatial hex layout 
Accidents per Year Calculated ratio of accidents per time  
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involves adjusting weights and biases of the model in order to minimize 
error. To illustrate the process, it is beneficial to think of an MLP 
network like a game of tennis. There is a constant back and forth with 
the network working in both ways, estimating prediction calculations 
and then receiving feedback. 

5.2. Model selection and architecture 

Several different types of testing were conducted to find the model 
that would best fit the data and project. These tests consisted of con
ventional regression and machine learning methods. Their results were 
overall lackluster. Before the implementation of an MLP network, select 
K Best testing (Bisong, 2019) was applied for possible dimension 
reduction. When compared to the standard results of the MLP, the results 
of the various Select K Best tests under performed in both accuracy and 
area under the curve, with K ranging from 5 to 25. Additional tests 
consisted of Naive Bayes and a standard accuracy score test provided by 
Sklearn, both of which provided worse performance scores than a 
standard MLP model. Due to the lackluster testing results mentioned 
above, a standard MLP model (Ramchoun et al., 2016) was chosen for 
our study’s machine learning technique. Labelled inputs are used for 
classification prediction, which MLPs are suitable for. Additionally, 
MLPs are flexible with the use of data, which is beneficial to our study as 
our dataset is very complex and intricate. MLP networks consist of one 
input layer, one output layer, and one or more layers between the two. 
The details of the architecture used in this project are displayed in 
Table 4. 

Our project’s model is a standard Keras Sequential MLP offered 
through a Python module through Pycharm. Several different versions of 
the MLP model were tested using our dataset, with a variety of different 
parameter combinations. Initially, compilation was provided by binary 
cross-entropy, which is particularly useful for binary results and classi
fication. However, mean squared error was chosen to provide compi
lation as it provided a significantly lower loss score with only a 2% cost 
in accuracy. Tested activation functions identity, tanh, and relu all under 

performed when compared to sigmoid, due to it being particularly useful 
for probability predictions due to it limiting a prediction model’s output 
to a range of 0–1. Additionally, Nadam (2015) provided superior per
formance when compared to alternative optimizers, such as sgd and 
adam. Furthermore, a combination of a different number of hidden 
layers and dropout layers of varying sizes were tested, with our current 
layout yielding the best performance. The best results were achieved by 
using one dropout layer set to 0.1 and 2 dense hidden layers whose node 
counts were X-5 and X-10, with X being the number of variables used by 
the data. A summarization of the model’s layout and parameters can be 
seen in Table 4. 

In the Node column, a formula is used to determine the number of 
nodes used per layer. A simple subtraction equation was put in place to 
set the number of nodes per layer based on the number of variables 
supplied to the model. Note that this method requires there to be no less 
than 10 variables present for the model’s uses. This was implemented 
due to the Test Types described in Section 5.4, as each test has a different 
number of variables used. 

There have been several attempts to use machine learning models to 
predict accidents, each having different setups and, consequently, 
varying results (Theofilatos and Yannis, 2014). Poisson distribution was 
also utilized in accident prediction by Abdel-Aty and Radwan (2000), 
showing better performance over traditional linear regression based 
models in terms of modelling vehicle accident frequency. Additionally, 
Khattak et al. (2017) used Negative Binomial models and ordered logi
t/probit models to explore crash severity. There have also been studies 
conducted to apply binary logistic modeling for studying injury severity 
(Weng and Meng, 2011; See, 2008; Li and Bai, 2008). 

5.3. Feature selection 

For the purposes of creating a simpler and more comprehensive 
model, Feature Selection using an ExtraTreesClassifier algorithm was 
employed to reduce the input dimensions down to the top 15 most 
important variables, presented in Table 6. ExtraTreesClassifier (Pedre
gosa et al., 2011) is a decision tree based ensemble method that ran
domizes decisions and data subsets to minimize over-fitting and 
over-learning. Of the top fifteen variables, three are considered as 
temporal variables (Hour, DayFrame, and Unix), four are spatial vari
ables (Join_Count, Latitude, Longitude, and Grid_Num), and the 
remainder of the variables are weather related. 

5.4. Variable combination tests 

To gain a better understanding of individual variable importance, as 
well as variable category importance (traffic variables, weather 

Fig. 4. A basic multilayer perceptron network with one hidden layer.  

Table 4 
MLP neural network architecture.  

Layer Location Type Node Activation 

1 Input Dense X Sigmoid 
2 Hidden Dense X-5 Sigmoid 
3 Hidden Dropout – – 
4 Hidden Dense X-10 Sigmoid 
5 Output Dense 1 – 

Note: X in the Node column refers to the number of variables in the data used to 
create the model. 
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variables, roadway variables, etc.), different combinations of variables 
were used during model creation. These variable combinations include:  

• Test A (TA): all available variables are used  
• Test B (TB): all redundant variables are removed  
• Test C (TC): dropped all weather variables  
• Test D (TD): dropped most location variables (kept Grid_Num) 

Regarding Test B, the types of variables dropped were any variables 
covered by an alternate aggregated version. For example, DayFrame acts 
as an aggregated Hour so the hour variable was not used in model 
creation. 

6. Results 

As a preface to this section, in Eqs. (2)–(4), TP is True Positive, FN is 
False Negative, FP is False Positive, and TN is True Negative. When 
considering the results of a rare event predictor, rating performance 
solely upon the Accuracy metric is not a suitable manner to evaluate 
performance. Accuracy considers both the number of correct negative 
and correct positive events predicted. This skews the actual performance 
rating of the predictor where positive events are uncommon since 
negative predictions should vastly outweigh positive predictions. More 
fitting performance metrics for rare event predictors are the Recall, 
Precision, and F1 Score values. Recall, shown in Eq. (2) (Shung, 2018), 
refers to the percentage of correctly predicted accidents amongst all 
actual accidents. Precision, shown in Eq. (3) (Shung, 2018), is the ratio 
of correctly predicted accidents to all of the predicted accidents. F1 
score, shown in Equation (4) (Shung, 2018) is the weighted average of 
recall and precision, and the higher the value the better. 

Recall =
TP

(TP + FN)
(2)  

Precision =
TP

(TP + FP)
(3)  

F1Score = 2 ∗
(Recall ∗ Precision)

(Recall + Precision)
(4)  

6.1. Model prediction results 

Contradictory to a previous statement from Ranjan (2019) discussing 
the importance of class balance, the overall best performing model split 
was the even 50–50 split. The other model splits of 90–10 and 75–25 
both had inferior performance when compared to the 50–50 models. 
Furthermore, it was found that models with a 90–10 split were more 
likely to have a higher prediction count for non-accidents and a lower 
prediction count for accidents. Table 5 shows the model’s predictions, 

otherwise known as the testing accuracy. Note that 50–50 refers to the 
ratio of negative to positive data for the model, and FS refers to the 
implementation of Feature Selection in model creation. 

For a more concrete understanding of how a model is performing, the 
recall, precision, and F1 score values are used to evaluate a model’s 
performance. However, the results in Table 5 are not indicative of how a 
model would perform in the real world when attempting to predict ac
cidents. Therefore, the next section will review the results of how these 
best performing models were able to perform when creating actual 
predictions. 

6.2. Prediction implementation results 

Extensive prediction testing was performed for the entire month of 
January 2020 using the years of 2017–2019 as training data. Contrary to 
initial impressions, the best performing model from Table 5 did not have 
the best predictive capability. Indeed, the best performing model for real 
world predictions is the Total Shift 50–50 FS TA, which is the same 
model as the best performing model from Table 5 but with feature se
lection applied. An extended prediction period covering the remainder 
of January 2020 can be seen in Fig. 6, where the TS 5050 FS TA model 
remains the best performing model. 

7. Discussion 

7.1. Interpreting results 

Feature importance analysis was performed before model creation to 
restrict the dimensions of the data to the top 15 most important vari
ables. Table 6 shows the variables ranked as most important for the 
model Total Shift 50-50 TA, which in turn act as the input variables for 
the model Total Shift 50–50 FS TA. Of interest is the somewhat repetitive 
nature of highly ranking variables. Hour ranks higher than DayFrame 
while at the same time representing a finer time division, yet both are 
present in the top five variables. Latitude and Longitude are both present 
as well, despite relative location being represented by Grid_Num. 
Finally, the inclusion of Join_Count at the top of the variable list presents 
the importance of previously occurring accidents when considering 
future accidents. For the real world prediction results shown in Figs. 5 
and 6, it is seen that by implementing feature selection, the F1 Score 
consistently sees improvements across the prediction time frame. PCA 
testing was also performed on the variables used for TS 50–50 TA, which 
showed that the more significant variables used in the model were 
variables pertaining to location and time, similar to the ExtraTree
sClassifier results. 

Regarding Test A yielding the most viable results, the inclusion of 
potentially redundant variables (e.g., Lat/Long and Grid_Num or Hour 
and DayFrame) is not detrimental to the model’s usability, as those 

Table 5 
Model training and testing results.  

Negative sample 
type 

Train 
Acc 

Test 
Acc 

AUC Recall Precision F1 
Score 

Total Shift 50–50 
TA 

81.58 81.91 81.88 83.16 81.75 82.45 

Total Shift 50–50 
FS TA 

80.54 80.78 80.76 81.95 80.61 81.28 

Spatial Shift 
50–50 TA 

80.16 79.64 79.54 82.82 78.77 80.74 

Spatial Shift 
50–50 FS TA 

78.92 79.10 78.98 83.59 77.46 80.41 

Total Shift 50–50 
TB 

79.78 79.64 79.62 80.42 79.78 80.10 

Note: FS refers to the implementation of Feature Selection, and 50–50 means the 
data consisted of roughly a 50–50 split between positive and negative data 
samples. 

Table 6 
Variable importance testing results.  

Rank TS 50–50 FS Score 

1 Join_Count 0.2258 
2 Hour 0.0800 
3 DayFrame 0.0732 
4 Latitude 0.0632 
5 Longitude 0.0590 
6 Grid_Num 0.0480 
7 Unix 0.0447 
8 humidity 0.0392 
9 windSpeed 0.0375 
10 uvIndex 0.0371 
11 temperature 0.0364 
12 dewPoint 0.0358 
13 pressure 0.0347 
14 visibility 0.0324 
15 cloudCover 0.0300  
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potentially redundant variables use different scales. For example, lati
tude and longitude use the standard GPS coordinate scale, while 
Grid_Num is an integer from 1 to 694. In other words, while some of the 
variables may reflect similar information, they are presented in inher
ently different ways. 

7.2. Variable type significance testing 

Regarding the implementation of ExtraTreesClassifier as a variable 
significance identification tool, as mentioned in Section 5.3, the most 
important variables returned for the Test A model were mostly location 
and time based. To investigate this, additional tests were performed 
using only the top 7 most significant variables from Table 6, from here 
referred to as Weather-Exclusion. Overall, the results for the Weather- 
Exclusion model were worse than the original model using Test A, as 
shown in Table 7. 

While the TP and FN values for the Weather-Exclusion model are 
more preferable, these differences are statistically outweighed by the 
larger differences in TN and FP between the two models. With the TS 
50–50 FS TA model having 240 more True Negatives and 241 fewer 
False Positives, at the cost of 9 fewer True Positives and 10 more False 
Negatives, the overall performance of the TS 50–50 FS TA model is 
preferable to the Weather-Exclusion model. The key take away from this 

is that by including weather information, the model is less inclined to 
have a higher prediction count for accidents, leading to a more balanced 
model in terms of prediction accuracy. 

7.3. Significance testing 

As a final insight into the performance of the different models, t-tests 
(Kim, 2015) were performed on the prediction outputs for each model. 
In this experiment, the hypotheses deal with the similarity of the two 
models’ performance, with the null hypothesis stating that the two 
models being compared are similar, while the alternative hypothesis 
stating that the performances of the two models being compared are 
significantly different. Each model was directly tested against its 
reduced version; as Weather-Exclusion is to TS 5050 FS TA, TS 5050 TC 
is to TS 5050 TA, where the former is a version of the latter without 
weather. As seen in Table 8, the results for each prediction day are 
different on the whole, with the majority of the p-values being less than 
0.05. From the result, we can conclude that the performances of the two 
compared models are significantly different. 

8. Conclusion 

Vehicular accidents are a common threat for most civilians. With 
ever present hazards increasing the likelihood of an accident happening, 
accident mitigation must attempt to prevent these hazards. Our contri
bution is the creation of a predictive Multilayer Perceptron Model to 
inform local law enforcement officers of high likelihood accident hot
spots for any given day. This issue was approached by analyzing 
different spatial attributes, such as roadway aggregation and historical 
accident counts, and temporal attributes, such as weather, associated 
with accident occurrence. This leads to several different predictive 

Fig. 5. Performance of model prediction for the first week in January 2020 using models from Table 5.  

Fig. 6. Performance of model prediction across January 2020 using TS 5050 FS TA model. Best presented in color. FS is Feature Selection, where the colors reflect if 
feature selection was applied. 

Table 7 
Model prediction averages for January 1 to January 7, 2020.  

Model name TP FN TN FP Recall Precision F1 Score 

TS 50–50 FS TA 49 35 3753 668 60.18 7.04 12.33 
Weather- 

Exclusion 
58 25 3513 909 70.92 6.03 10.99  
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models being created, each yielding varying results. However, the 
application of feature selection allowed for a marked increase of Recall, 
Precision, and F1 Score values. The best performing accident prediction 
model resulted from changing the hour, date, and location values of an 
accident entry when creating negative samples, having an even split of 
negative to positive data, providing all available variables for analysis, 
and applying feature selection, referred to as Total Shift 50–50 FS TA. 
The variety of results presented across the dates of study we believe stem 
from the inherent chaotically random nature of accident occurrence. In 
addition to the prediction capabilities, our project can provide local 
government officials prescriptive analysis on dangerous areas and bring 
to light certain features of these areas that lead to higher accident 
counts. With this information, local governments can take the necessary 
measures to reduce the hazardous nature of these locations, such as 
adding in yield signs, speed bumps, traffic lights, etc. 

The greatest limitation of this project is the lack of available data. 
Specifically, the manner in which accidents are reported for our area of 
study provides no driver specific information or vehicle specific infor
mation. Additionally, traffic volume and velocity data are not viable 
data to be gathered from ETRIMS. While the data does exist in the 
ETRIMS database, it is very sparse and inconsistent for the majority of 
the roadways in Chattanooga, leading to most of the roadway entries in 
the database containing missing volume and velocity data. However, 
this severe limitation provides our project with a unique feature. The 
creation of a model that uses widely and easily available data increases 
the use case potential of the project to different counties and cities which 
may not have highly specific roadway or driver specific data. With the 
creation of a reliable traffic accident prediction model that uses easily 
obtainable data, a wider group of individuals can benefit from its 
implementation. 

As the project proceeds, adjustments to the model and its input 
features will continue to provide the optimal output. One such future 
branch of this study includes further investigation into the creation of a 
singular adverse weather variable, as presented by Hébert et al. (2019). 
The current individual weather binaries presented within this study 
could be complicating the models unnecessarily, although this is subject 
to be determined by further testing. Additionally, demographic data as 
presented in Dan et al. (2018), Yuan et al. (2017) could be accessed from 
Geographical Information System (GIS) and incorporated into future 
modelling, providing some of the missing human factors sought by this 
team. Lastly, regarding the limitation of a lack of data, any future 
implementations of this project in different cities/counties could 
potentially benefit from additional roadway or driver specific data 
should that city/county have access to said data. 
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