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Abstract
In projects centered around rare event case data, the challenge of data comprehension is greatly increased due to
insufficient data for deriving insight and analysis. This is particularly the case with traffic crash occurrence, where positive
events (crashes) are rare with, in most cases, no data set existing for negative events (non crashes). One method to
increase available data is negative sampling, which is the process of creating a negative event based on the absence of
a positive event. In this work, four negative sampling techniques are presented with varying ratios of negative to positive
data. These types of techniques are based on spatial, temporal, and a mixture of the two types of data, with the data ratios
acting as class balancing tools. The best performing model found was with a negative sampling technique that shifted
temporal information and had an even 50/50 data split, with an F-1 score of 93.68. These results are promising for ITS
applications to inform of potential crash locations in an entire area for proactive measures to be put in place.

Introduction

The definition of negative sampling is dependent on the
use case. It is most popular among Natural Language
Processing (NLP) and numerical research environments (1),
where negative sampling is a method of data selection and
filtration. However, negative sampling is also being sought
after in the research of traffic patterns and crashes, as well as
other smart city applications (2), (3). The benefit of using
negative sampling on a traffic crash dataset is to gain a
more thorough understanding of the different factors that
contribute to vehicle crashes. It is critical to understand the
various available types of negative sampling techniques, and
which of these types may be best applied to answer a given
research question. The positive samples explored in this study
are traffic crash records from Hamilton County, Tennessee,
and include temporal and spatial specifics from the crash
location, as well as weather and roadway specifications.
Various negative sampling techniques are explored in this
paper, most of which are temporally and spatially reliant.

Using records of past crashes and their corresponding data,
our goal is to predict where crashes are most likely to happen.
Vehicular crash data does not have ’negative’ occurrences
recorded. Therefore, they are a perfect choice for exploration
of negative creation. The focus of this paper is the use of
negative sampling as a balancing tool to outline the different
methods available for creating non-crash records, as well
as discussing which methods yield the best results in crash
prediction.

The remainder of this paper is structured as follows:
Section provides the literature survey on negative sampling
techniques, Section covers the study data, the machine
learning algorithm used, and the negative sample creation
processes, Section displays the results on predicting crashes
using different negative sampling methods, Section discusses
our results in details, and Section concludes our findings and
future works.

Related Work

Roadway Safety Projects
A Convolutional Long-Short Term Memory (ConvLSTM)
(4) was applied to a study by (5) with vehicular accidents
in Iowa, between 2006 and 2013. Data included crash
reports from Iowa Department of Transportation, rainfall
data, roadway weather data, and specific roadway geometric
data including speed limits, AADT, and traffic camera counts.
Due to the area of study being so expansive, a five kilometer
square per block grid layout was constructed to cover the state
for crash prediction. Training data included 2006 to 2012
reports, with 2013 being reserved for testing. Tests involved
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predicting locations for the next week based on data provided
by the previous week. ConvLSTM results out performed
all baselines in prediction accuracy. Additionally, the team’s
predictive model correctly predicted crashes resulting from
the heavy snowstorm seen on December 8th in 2013.

An initiative led by the United States Department of
Transportation (USDOT) means to partner crowd-sourced
data provided by Waze and safety policy decisions to
help predict vehicular accidents (6). A combination use of
Classification and Regression Trees (CART) and Random
Forest models are used for crash prediction. The study
included 6 months of accident data from Maryland, which
was paired with the corresponding Waze alerts, if any existed.
While not perfectly identical, specific temporal and spatial
event patterns created by the model were fairly similar to
the actual crash records. Additionally, the model tended to
under predict crashes in the early morning hours, while over
predicting crashes for high-commute periods. This prediction
trend was attributed to the historical spread of accidents. Of
particular note is the model’s ability to predict Waze alerts for
minor crashes, which are crashes that are significant enough
to inhibit standard traffic flow, but not serious enough to
report to law enforcement.

The effects of weather conditions on daily crash
occurrences were analyzed using a discrete time-series model
by (7). An integer autoregressive model was used for
modeling count data with time interdependencies. The model
was then built using daily car crash data, weather data, and
traffic exposure data from three Netherland cities: Dordrecht,
Utrecht, and Haarlemmermeer. Loop detector data was used
to collect daily vehicle counts for each road segment of the
major road networks. From this, each city region’s major
roadway network had its day-to-day total kilometers driven
calculated. Weather data was also collected for the three
cities and was broken up into specific weather instances.
For example, precipitation was broken up into duration,
daily amount, rain intensity, etc. This type of deaggregation
was done for wind, temperature, sunshine, precipitation, air
pressure, and visibility. It was discovered that several weather
variables were significant in relation to accident occurrence.

State-specific Safety Performance Functions (SPFs) for
rural interstates and rural 2-lane roads was used by (8).
With these functions, 20 segments of each type of road were
identified with the highest Potential for Crash Reduction
(PCR). A Cost Benefit Analysis (CBA) was then performed
using Crash Modification Factors for the types of crashes
occurring. This resulted in an index that normalized the
safety benefit of all roadway classes based on the cost of
implementation. Model Minimum Uniform Crash Criteria
was also used along with Knee Airbag Deployment models
for identifying and classifying accident data. Once the road
segments that had the highest PCR values were identified,
CBA was used to identify which sites would provide a

return on investment and in ranking the segments deserving
treatment.

An investigation into roadway accident likelihood and
severity in Athens, Greece was conducted by (9). The study
consisted of roadway accident data from a main roadway
in Athens from 2006 to 2010. A logistic regression model
was developed for analyzing traffic patterns and performing
predictions. It was found that the severity of roadway
accidents was heavily influenced by the logarithm of traffic
density, the vehicle type, and the accident type. Additionally,
it was found that traffic density was the only statistically
significant variable when the traffic accident data was split
into peak and off-peak hour accidents. Furthermore, it was
found that traffic volume was the only variable with a
statistically significant impact on traffic accident likelihood.

Negative Sampling on Traffic Crash Predictions
A case study was conducted in (2) on predicting
traffic crashes by comparing the results of four different
classification models. In this study, a method of generating
non-crash data was performed and called negative sampling.
For each positive example (crash), the value of only one
feature (hour, day, or road ID) of the crash record was
changed. The resulting sample was then checked for a
positive (match found) or negative (no match found) result.
Once all negative sampling process was completed, the team
concluded the study with triple the number of negatives than
positives, roughly a 75/25 split of data. The study concluded
that an ideal performance can be achieved with a neural
network model and 3:1 ratio of negative to positive data. The
results of the study suggest that a data split that maintains the
nature of crashes as being rare events is required to achieve
acceptable prediction accuracy.

The team of (3) performed similar tests with crash
prediction and negative sampling. Antoine et al. created their
negatives through a process akin to brute force. Time and
location information of the crashes in their dataset were
examined and every possible combination was generated,
keeping only 0.1% of these newly created negatives. This
method resulted in 2.3 million negatives for their dataset.
While not explicitly stated, this ratio was likely chosen to
reach a desired data imbalance factor, as the authors say
”this corresponds to a total of 2.3 million examples with a
data imbalance reduced to a factor of 17.” This study is an
exemplary frame of reference dataset balancing. Even with
a method of producing an extraordinary amount of negative
samples, it is impractical to utilize all negatives as they could
lead to an imbalanced data problem.

The interactions between roadway geometry, weather, and
traffic data on the occurrence of vehicular crashes was studied
by (10). The area of study was on the mountainous freeway
of highway I-70 in Colorado, consisting of 301 crash records
and 880 non-crash records. These non-crash records were
obtained from an automated vehicle identification system,
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where each non-crash entry was extracted for situations
where no crash occurred 2 hours before the reported crash
entry. This type of negative sampling is best described as a
simple temporal shift, which is outlined later in this work.

Negative Sampling on Language Based
Projects
Negative sampling has been more commonly used in
projects not related to crash analysis, such as Natural
Language processor projects seen in (1). Four strategies
of negative sampling (local sampling, distance sampling,
uniform sampling, and refined sampling) were studied for
language processing applications. These four strategies were
applied in exploration of Yahoo! question and answer
community forums. Local Sampling negatives are those close
to the existing positive sample by some given measure of
approximation. This measure is able to be linguistically
handled by comparing how similar individual words are, or
based on how similar different grouped words were to other
groups of words. Distance Sampling negatives are those as
distinct and different from the positive entries as capability
allows. This ensures the data is correctly clustered in the
given space of study. Uniform Sampling, simply said, is the
random selection of negatives within the given space. This
ensures that the entire space to be explored is represented
equally, without preference to similarities or lack there of.
Refined Sampling was defined as the combination of Local
and Distance styled sampling, with the pursuit of a model
capable of spanning clustered embeddings within a single
category, as well as different categories. The study in (1)
also outlined some rules for negative samples; negative
samples should be i) as similar as possible to positive
samples to increase the model’s discriminative abilities, ii)
as different as possible to positive examples to avoid feeding
the model conflicting information, and iii) representative of
the entire space of negative samples. In other words, negative
samples need to be distinguishable enough from the positive
samples in a dataset to be considered their own entity, yet
still represent the same fundamental information as positive
samples to be used in conjunction with them.

Three unique divisions of negative sample creation were
also presented by (11). They are presented as incompatible
relations, domain specific rules, and random samples.
Incompatible Relations are relations that always, or almost
always, conflict with the relation wished to be extracted (11).
In the case of traffic crash prediction project, an incompatible
relation would be between generation of negative samples
that exactly match current positive samples. If a generated
negative sample has a certain time, date, and location, then
positive samples cannot exist with the same time, date, and
location, as there cannot be a non-crash where an crash was
recorded. Domain Specific Rules are negative samples that are
highly specific towards the particular data one is exploring
(11). Similar to the above mentioned example, one cannot

have a non-crash with the same time and location parameters.
Random Samples deal with marking some current data as
negative evidence. An example would be from the work of
(1), where the authors dealt with Yahoo! QnA posts. In this
work, random negative sampling is described as the process
of randomly sampling questions from a pool of all answered
questions across all categories of questions.

Negative sampling has the unique ability to generate
inherently present but not inherently available data, that
data being non-crash records. While there exists a
plethora of studies related to vehicle crash prediction, very
few implement negative sampling as a method of data
enhancement. Our contributions to this issue are outlining the
different methodologies behind negative sample generation,
identifying which methods yield worthwhile results, and
which methods perform best in real world implementation.

Methodology

Data

Figure 1 shows a flow chart of the process for data
collection, data processing and aggregation, and modeling
and visualization. The original crash data comes from the
Hamilton County Emergency Services Department, dating
from October 2016 to present day, and is updated daily.
After data cleaning, the dataset consisted of roughly 61,000
crash entries. This dataset consists of the latitude and
longitude of the crash, the time of the crash, and the
crash severity (e.g., no injury, injury, mass casualty). The
temporal and spatial information of the crashes are used to
retrieve the weather and roadway geometries of the crash.
Roadway geometrics were provided by E-Trims, a database
from Tennessee Department of Transportation containing
information on Tennessee roadway networks. Roadway data,
such as those seen in Table 1, were collected by providing
E-Trims with the Latitude and Longitude coordinates of
the traffic crashes. Weather was collected via DarkSky, a
Python API that collects data from many different weather
sources and returns the most suited weather source related
to the location provided. All weather data was collected by
providing DarkSky the Latitude, Longitude, date, and time
information of each traffic crash record.

Table 1. Data Features Used in Study
Variable Description

Crash Binary variable for crash occurrence
Hour Hour of entry
UnixTime Unix timestamp representation of entry
DayFrame Time frame of day entry occurred (see Table 3)
WeekDay / WeekEnd Binary variables representing weekend/weekday
Clear/Cloudy/Rain/Fog/Snow Binary weather
RainBefore If there was rain 1 hour before the crash
GridBlock Spatial aggregation of the study area
Grid Col / Grid Row Column and row of grid within grid layout (see Figure 2)
Highway If there was a highway going through the GridBlock
Land Use Mode Type of surrounding area (Ex. Commercial, Urban, etc)
Road Count Count of roadways within GridBlock of entry
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Figure 1. Illustration of Data Collection and Processing

All variables used in the negative sampling procedures
and the creation of the given data set are shown in Table
1, along with a brief explanation of each variable. Grid
Blocks, one of the variables used throughout this paper,
refers to the image spaces seen in Figure 2. Each block
seen is a Grid Block covering a 0.2 square mile area.
The orientation of the grid block layout is matched to the
orientation of Hamilton County’s roadway network. Note
that within the image, bolded black lines represent major
interstates/highways. Additionally, white segments in the
image convey bodies of water whose Grid Blocks are ignored
in model creation/testing.

Figure 2. Grid Layout of Hamilton County used in Testing.

Originally, the project had no spatial aggregation and
attempted to predict crashes for each roadway segment along
the roadways in Chattanooga. This lead to massive over-
prediction issues and excess noise, leading to the necessity
for spatial aggregation. Initially, the grid blocks covered a
.25 square mile area following the footsteps of (12). Further
testing with grid blocks covering a .2 square mile area yielded
superior model performance.

Machine Learning Model

A simple Multilayer Perceptron (MLP) acts as this work’s
machine learning model. Research into the various models
used for crash prediction has shown that different regression
style models examine traffic flow differently, and as such,
lead to varying results (13). An example of this previous
research shows that Poisson distribution proved valuable
in crash frequency analysis relating to crash frequency
modeling. Poisson also prevailed over traditional linear
regression in highway safety applications (14). Additionally,
Negative Binomial models are useful in exploration of crash
severity, as shown in previous works (15). Furthermore,
Negative Binomial models can be used for crash counts in
datasets where over-dispersion occurs (16). In such cases,
Negative Binomial models are more fitting than Poisson
models. Ordered logit/probit models are commonly applied,
although usage of these highly depends on the levels of injury
severity (15). Within previous binary level injury severity
studies, many research teams chose to apply binary logistic
modeling (17), (18), (19).

When attempting to determine which analysis method
would best fit our data and project (20), we conducted
several different types of testing. Some techniques were
based on conventional regression, while others were based
on machine learning. Their results were overall lackluster.
Before utilization of an MLP, select K Best testing (21) was
applied for possible dimension reduction. When compared to
the standard results of the MLP, the results of the various
Select K Best tests underperformed in both accuracy and
area under the curve, with K ranging from 5 to 25. These
statistics were demonstrated by an accuracy range of 66.53-
77.35% and an AUC range of 50-83.03%. Additional tests
consisted of Naive Bayes, resulting in 62% accuracy, and a
standard accuracy score test provided by Sklearn, resulting
in 67.76%. Due to the lackluster testing results mentioned
above, a standard MLP Model (22) was chosen for our
study’s machine learning technique. We use labelled inputs
for classification prediction, which MLPs are suitable for.
Furthermore, MLPs are very flexible with the use of data,
which is extremely beneficial to our study as our dataset is
very complex and intricate. MLP networks are comprised
of an input layer, an output layer, and at least one hidden
layer between the two. The details of the architecture used
by our model are displayed in Table 2. Initially, compilation
was provided by binary cross-entropy, which is particularly
useful for binary results and classification. However, it was
found that MSE (mean squared error) provided a significantly
lower loss score with only a 2% cost in accuracy. Sigmoid
acted as the model’s activation function, as sigmoid is
particularly useful for probability predictions because it
limits a prediction model’s output to a range of 0 to 1.

Table 2 displays the basic structural layout of the MLP
model. Note in the Node column, a specific numerical value
is provided for the number of nodes used for the sake of
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Table 2. MLP Neural Network Architecture
Layer Location Type Node Activation

1 Input Dense # of Variables Sigmoid
2 Hidden Dense # of Variables - 5 Sigmoid
3 Hidden Dropout (0.1) - -
4 Hidden Dense # of Variables - 10 Sigmoid
5 Output Dense 1 Sigmoid

simplicity. For the different tests performed for this study,
it was decided to have a method in place where instead of
manually adjusting how many variables would be used for the
three layers, a simple subtraction equation was put in place
to set the number of nodes per layer based on the number
of variables supplied to the model. Note that this method of
automated node count per layer requires there to be no less
than 10 variables present for the model to use. Lastly, the
training and testing split was 70% and 30%, respectively.

Creating Negative Samples
When a dataset consists solely of positive examples,
attempts at discovering important features are impeded.
Initial prediction trials for our work (20) utilized solely
positive examples, leading to a high count of false positives,
representing that the model was predicting crashes occurring
at some location when in fact none did. Thus, even when
many entries exist for crashes, attempts in prediction may
fail. The results of (2) introduced the idea of implementing
a negative sampling procedure for generating non-crash
records. The procedure involves changing a single value of
an crash record (hour, date, location) and checking if there
is a matching crash record for the newly altered record. For
example, if an crash occurred in hour 4, a new random hour
was chosen between 0 and 23, excluding hour 4 for that
day (2). The newly altered record was compared to all other
crash records in the dataset to find any possible match. If no
match was found, then the newly altered record was saved
as a negative sample (non-crash). This process was repeated
for every single crash entry in the dataset, and was done for
each of the other two variable entries (date and location).
This resulted in an increase in their dataset containing
roughly 3 times more negative samples than positive samples.
This process of negative sample generation was somewhat
followed in previous implementation of our project (20), as
at the time of initial implementation no roadway specific
information, such as Road ID, was available.

During the creation of negative samples, it is possible
that the acquired ”non-crash” record is actually a crash
that is missing from our dataset. However, this possibility
is negligible as starting in late 2016, Hamilton County
Emergency Services Department began to actively take
records of all 911 calls received in a day and format them
in a consistent manner.

After completing preliminary trials with the negative
sampling implemented, issues arose with accurate crash

forecasting. Specifically, there was an under-prediction of
crashes leading to high false negative counts. Therefore, it
was decided to take a different approach to negative sample
generation. In the negative sampling types described below,
the process of negative sample generation was repeated 9
times for each crash record in an attempt to reach a 90/10
split in data (90 percent non-crashes, and 10 percent crashes).
The concept for a greater number of non-crashes came from
an article written by (23) that discussed the importance of
having a greater amount of negative examples of an event
class scenario when the positive examples of the specific
event are rare by nature. Given the rarity of crashes occurring,
the concept of maintaining the rare nature of a crash’s
occurrence holds true for this project, thus the particular
90/10 method.

Sampling Types To examine the different effects that
different negative sampling types had on model performance,
four distinct types of negative sampling methods were
created. These methods involved shifting spatial points,
temporal points, or a mix of the two. Temporal Shift involves
shifting either one or both of the temporal variables (Hour and
Weekday), while freezing the spatial variable (Grid Block).
Grid Fix is similar to Temporal Shift, in that the spatial
variable is not changed when creating negative samples.
However, each record in the crash list was examined and
the hour and date of the record was changed. Spatial Shift
involves shifting the Grid Block of the crash entry, while
freezing the temporal variables. Total Shift, or Random
Negatives, involves changing the hour, date, and grid block
of the entry. This type of negative sampling is most similar to
the negative sampling technique used in (3).

Negative Ratios In (24), an examination of traffic crashes
is performed in Utah, exploring the importance of enough
negative samples to clearly convey the rare occurrences of
crashes, but not so many as to create a severe class imbalance.
This imbalance leads to heavy bias toward the higher count
occurrence, skewing prediction results. Conversely, training
a model with an even split of non-crash and crash data may
instruct the model that crashes and non-crashes occur with the
same level of frequency. Now that the idea of varying ratios
of negative to positive data has been introduced, the varying
splits utilized by the aforementioned data may be explored
further.

Original Modeling Split (66% - 33%): The negatives
created at this stage of research were greatly inspired by
(2), but included shifting the hour or date variable as at the
time of initial creation, the 911 Project did not have roadway
information. Increased Negative Sampling Split (75% -
25%): This split was inspired by the team of (2), as location
negative samples were added to the dataset. For these, the
location, date, and time variables for an crash record were
changed. Even Split (50% - 50%): The even split was built
upon the increased negative sampling split. The negative
samples were scanned and every 3rd negative sample was
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retained, effectively cutting each negative sample case in
thirds while retaining the original span of the negatives
created. ’Rare’ Circumstance Split (>90% - 10 %): This
type of split was used to see how much of an impact an
overwhelming amount of negative samples would have on
model performance and crash prediction, while retaining the
’rarity’ of crash occurrence. The 90/10 split only applies to
the Temporal Shift and Spatial Shift negative sampling types,
as the methods used to generate those negatives created an
excessive amount of negatives.

Table 3. DayFrame Time Coverage

DayFrame Hours Covered
DayFrame 1 0 - 4 and 19 - 23 (Overnight)
DayFrame 2 5 - 9 (Morning rush)
DayFrame 3 10 - 13 (Lunch hours)
DayFrame 4 14 - 18 (Evening rush)

Further Data Splitting Table 3 shows the different hourly
aggregations that each DayFrame covers. This temporal
aggregation came from the process of removing highly
specific variables from the dataset to simplify the prediction
process. Attempting prediction with highly specific temporal
and spatial variables led to over-prediction. The different
hour splits were selected based on crash trends seen in Figure
3, with DayFrame 1 (orange) covering the overnight hours,
DayFrame 2 (green) covering the first spike in the Figure
starting at hour 5, DayFrame 3 (blue) covering the second
spike starting at hour 10, and DayFrame 4 (purple) covering
the final spike starting at hour 14.

Figure 3. crashes by Hour and Weekday. Distribution of
DayFrame hours encompasses the various crash trends
throughout the day.

When conducting tests using the different negative
sampling techniques, the terms ”cut” and ”full” are used
in regard to negative samples. Full refers to the entire set
of negative samples created through the respective method,
while cut refers to a trimmed version of the negatives.
This trimmed version was obtained based on the aggregated

temporal variable DayFrame, see Table 3. For example, if
a method of negative sampling produced 2 negatives, each
negative’s Hour variable was aggregated into the DayFrame
variable, which values represent certain hour intervals of the
day. Once properly aggregated, if the two created negatives
have the same DayFrame, Date, and Grid Block, then one of
the negatives are dropped so only 1 negative entry with that
specific DayFrame, Date, and Grid Block remains. This was
done to better represent the raw data as well as simplify the
model’s input variables.

All variables used for each of the data types and
splits in the study were scored with a feature importance
test utilizing the ExtraTreesClassifier algorithm. The most
commonly occurring important variables are listed as
follows: precipIntensity, Unix, Hour, Grid Block, Grid Col,
Road Count, DayFrame, Land Use Mode, WeekEnd, Cloudy,
RainBefore, and Clear. Note that some of these variables
repeated in different importance slots across all the data types
and splits. These twelve recurring variables represent the core
identifying trends the model interprets when analyzing crash
occurrence and expects when predicting crashes.

Results

In this section, we have used the following metrics to
analyze the performance of the given models using True
Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN), where TP refers to correctly predicted
crashes, FP refers to incorrectly predicted crashes, and so
on. In regards to crash prediction, TP represents when the
model predicts an crash correctly, TN represents when the
model predicts a non-crash correctly, FP represents when the
model predicts an crash when there was not one, and FN
represents when the model predicts a non-crash when there
was an crash.

Recall = TP
(TP+FN)

Precision = TP
(TP+FP )

F1 Score = 2 ∗ (Recall∗Precision)
(Recall+Precision)

For the model testing results presented here, the performance
of the model is based upon the recall, precision, and F1
scores. Recall refers to the percentage of correctly predicted
crashes amongst all actual crashes. Precision is the ratio of
correctly predicted crashes to all of the predicted crashes. F1
score is the weighted average of recall and precision, and the
higher the value the better.

The results in Table 4 display our first attempts at negative
sampling, consisting of the Original Modeling Split ratio of
66-33, and the Rare Circumstance Split of 90-10. These test
results act as a baseline for comparison against the ratio tests
seen in Table 5.
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Table 4. Best Performing Test Runs for Negative Sample Datasets

NS Type Train Acc Train Loss Test Acc Test Loss AUC Recall Specificity Precision F1 Score
Cut GridFix (66/33) 95.13 0.043 94.83 0.043 0.967 90.5 96.5 91 90.75
Full GridFix (66/33) 94.62 0.046 94.62 0.046 0.84 43.4 98.8 75 54.99
Cut Random (66/33) 94.55 0.046 94.39 0.046 0.957 78.7 98.3 92 84.83
Full Random (66/33) 67.97 0.040 68.02 0.214 0.84 81.6 66.8 18 29.49
Temporal Shift (90/10) 96.19 0.032 96.12 0.032 0.92 50.4 99.2 81 62.14
Spatial Shift (90/10) 99.65 0.003 99.66 0.003 0.789 37.5 100 100 54.55

Discussion

Ratio Tests
As mentioned in the previous section, recall, precision, and
F1 scores are the ultimate determining scores for how well the
crash prediction model performed. By using these metrics,
the model results can be more confidently reported and a
better understanding behind what a model is actually doing
be gained.

When exploring classification data problems, there are
many options on what exactly the ratio between positive
and negative records should be. Considering the performance
differences between the data splits, only 75%/25% and
50%/50% splits are explored here. Figure 4 displays a
direct comparison between all the 50/50 and 75/25 model
performances for correctly predicted crashes (top half) and
non-crashes (lower half). Note the trend for 75/25 split
models correctly identifying negative occurrences, but falling
behind the 50/50 split models in positive event classification.
Meanwhile more 50/50 split models correctly identified
positive entries than 75/25, with a lower percentage of (yet
not entirely atrocious) accurate classification when dealing
with negative entries.

All of the above mentioned testing presented the even
split producing the highest F-1 score, precision, and recall.
As with the previous testing, the cut version of the grid
fix negatives performed better overall in predicting crashes,
resulting in Cut GridFix (50/50) yielding the highest values
for F-1, precision, and recall. This is quite contrary to the
original hypothesis regarding the necessity for a higher count
of negative entries to represent the rarity of crashes in
daily occurrences. Therefore we emphasize that the specific
negative sampling technique and ratio of data must be
deciphered for each unique research situation.

Limitations
The most severe limitation of this study is a lack of data,
mainly resulting from the way crashes are reported. The
majority of the specific data for crashes, such as the number
of individuals involved, the drivers’ ages, psychological
profiles, intoxication levels, the age and conditions of
vehicles, etc. are not available for analysis in our area of
study, that being Chattanooga, Tennessee. Furthermore, with
only three years of crash data available for analysis, there is
the possibility of an insufficient amount of data to learn from.

Figure 4. Percentages of Positive and Negative Entries
correctly predicted via Ratio Models over 50 training cycles.
Note that the x-axis represents the 50 training cycles.

Due to the previously mentioned chaotically random nature
of crashes, a significantly additional amount of data is needed
for a complete analysis of crash occurrence and cause.

Conclusion

Historically, negative sampling had been explored primarily
in natural language processing projects or numerical research
environments. However, the utilization of negative sampling
is now being sought after in the research of traffic patterns,
crashes, and various smart city research projects. This paper
explored several negative sampling techniques, many of
which take into account both temporal and spatial concerns
that previous research into negative sampling had not
addressed. It was found that fixing the Grid Block parameter
and altering the Hour and Date variables produced the best
result in predicting traffic crash records, with an F-1 score of
93.68, a precision score of 95, and a recall of 92.4. Thus, it
can be stated for this application and data, that a temporal
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Table 5. Ratio Test Runs for Best Performing Negative Sample Datasets.

NS Type Train Acc Train Loss Test Acc Test Loss AUC Recall Specificity Precision F1 Score
Cut GridFix (75/25) 94.81 0.046 94.84 0.044 96.6 87.1 97.9 94 90.42
Cut GridFix (50/50) 93.75 0.056 93.24 0.057 96.6 92.4 94.2 95 93.68
Full GridFix (75/25) 85.13 0.115 84.96 0.114 86.3 47.9 97.1 84 61.01
Full GridFix (50/50) 75.08 0.171 75.19 0.167 83.1 68.1 82.1 79 73.15
Cut Randoms (75/25) 94.89 0.044 94.74 0.044 95.7 81.5 98.0 91 85.99
Cut Randoms (50/50) 89.05 0.083 88.62 0.083 95.2 86.4 90.9 90 88.16
Full Randoms (75/25) 85.48 0.107 85.44 0.106 89.6 61.2 93.9 78 68.59
Full Randoms (50/50) 81.58 0.135 81.37 0.132 89.3 80.9 81.8 81 80.95
Temporal Shift (75/25) 86.86 0.096 87.05 0.093 91.4 63.1 94.9 80 70.55
Temporal Shift (50/50) 83.12 0.128 83.53 0.122 90.5 83.5 83.6 84 83.75
Spatial Shift (75/25) 87.68 0.091 87.56 0.093 90.1 59.1 97.0 87 70.39
Spatial Shift (50/50) 82.11 0.130 81.09 0.130 89.3 80.6 81.5 81 80.80

shift with an even split between negatives and positives is the
optimal route for a better crash prediction performance.

Of additional note is the robustness of the negative
sampling methods outlined in this paper, as no one method
is strictly locked to only work in a given environment.
Additionally, the accident prediction project itself is robust
as it uses easily gathered and widely available information
that the majority of cities and counties would have access to.
Should additional traffic crash projects attempt any negative
sampling methods described in this paper, they would simply
need the crash records to have hour, date, and location
information. Currently the manner in which crashes are
reported for our area of study, Chattanooga Tennessee, does
not include more specific information regarding crashes, such
as driver specific information, vehicle specific information,
and traffic volume for Chattanooga itself. While this is a
general limitation for the project, it also proves a valuable
benefit to the project, as the lack of highly specific
roadway, vehicle, or driver information means that, as stated
previously, the majority of cities and counties would be able
to implement this model in their area of study with relative
ease.

As future implementations of negative sampling are
performed, more detailed information would be added to
the dataset as a whole. In particular, additional information
regarding the crashes themselves would be greatly beneficial
to their analysis. Additionally, using variable importance
scoring would likely provide additional insight into the
more important and meaningful variables available for
analysis. Finally, further spatial aggregation measures could
be implemented to enhance the project, such as those
discussed by (25).

End of Paper Special Sections
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