IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 20, 2020, accepted August 31, 2020, date of publication September 11, 2020, date of current version September 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023394

Reinforcement Learning Interpretation

Methods: A Survey

ALNOUR ALHARIN “, (Member, IEEE), THANH-NAM DOAN,

AND MINA SARTIPI, (Senior Member, IEEE)

Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Corresponding author: Alnour Alharin (dyc881@mocs.utc.edu)

This work was supported in part by NSF-US Ignite under Grant 1647161.

ABSTRACT Reinforcement Learning (RL) systems achieved outstanding performance in different domains
such as Atari games, finance, healthcare, and self-driving cars. However, their black-box nature complicates
their use, especially in critical applications such as healthcare. To solve this problem, researchers have pro-
posed different approaches to interpret RL models. Some of these methods were adopted from machine learn-
ing, while others were designed specifically for RL. The main objective of this paper is to show and explain
RL interpretation methods, the metrics used to classify them, and how these metrics were applied to
understand the internal details of RL models. We reviewed papers that propose new RL interpretation
methods, improve the old ones, or discuss the pros and cons of the existing methods.

INDEX TERMS Reinforcement learning, machine learning, interpretability, interpretation, survey.

I. INTRODUCTION

Reinforcement learning algorithms achieved a good perfor-
mance on multiple domains. However, our inability to explain
and justify their decisions, makes it harder to deploy RL
systems in some critical fields such as healthcare, where
interpretability is necessary [1].

Researchers proposed various RL interpretation methods
and applied them to multiple applications. While the broad
objective of RL interpretation is to make RL policies more
understandable, each method has its own special purposes,
sets of applicable problems, limitations, and challenges.
Nonetheless, RL interpretability lacks the same variety and
depth of survey papers, when compared to ML interpretabil-
ity, despite the fact that some researchers made a good effort
in reviewing and categorizing the work related to their pro-
posed approaches such as the work done by Nikulin ef al. [2]
in classification of saliency maps.

The goal of this paper is to list, classify and com-
pare different methods used to interpret RL. We consider
the interpretation methods of both classical and deep RL.
There are several papers on RL interpretation, and this
paper will help with organizing, summarizing, and adding
to those existing survey works. This paper will also provide

The associate editor coordinating the review of this manuscript and

approving it for publication was Ioannis Schizas

171058

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

engineers and researchers using RL means to compare dif-
ferent interpretability approaches to help them choosing the
most appropriate method for their RL systems. Finally, it will
help us to identify the gaps, open challenges, and future
directions so that new researchers find it easier to contribute
to this field.

The rest of this paper is organized as follows: Section II
summarizes the related work. Section III illustrates our rel-
evancy criteria in selecting papers. Section IV gives a brief
explanation to the concepts used in this field. Section V
gives a high level overview of the RL interpretation methods.
Section VI lists and explains different categorization metrics
used to classify RL interpretation methods, and how these
metrics can be applied. Section VII explains RL interpreta-
tion methods in more details. Finally, Section VIII gives the
conclusion of the paper.

Il. RELATED WORK

Interpretability models are challenging to evaluate. One of
the main reasons is the ambiguity of the used terms. Some
authors focused on defining these terms and illustrating the
differences between the similar ones. For example, Weller [3]
discussed transparency, its different meanings, motivations
and related challenges. They also showed that transparency
is not always useful, as sometimes it might make the system
vulnerable to abuse and manipulation by outside intruders.

VOLUME 8, 2020

https://orcid.org/0000-0001-9652-8309
https://orcid.org/0000-0002-1714-5578

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

Similarly, Gilpin et al. [4], [5] tried to distinguish between
interpretability and explainability, and proposed some prin-
ciples to evaluate ML interpretation methods. They used
the explanation with a meaning of an answer to a why-
question and interpretability of the system to be its ability
to provide understandable explanations to the users. They
also defined the completeness of the generated explana-
tions to be their ability to describe the system as accu-
rate as possible. In addition, Mohseni er al. [6] showed
that differing goals is another source of confusion and
ambiguity. According to the authors [6], having different
objectives can lead to building different evaluation criteria.
To support their claim, the authors mapped the goals of
people from different domains (e.g., ML, psychology, etc.)
to the corresponding evaluation methods and proposed a
framework to link between the interpretability evaluation
method and the goals of the corresponding group. On the
same track, Guidotti et al. provided a theoretical frame-
work that divides the interpretability problem into three
parts: model explanation, outcome explanation, and model
inspection [7]. Then, they provided formal definitions for
each part, and applied it on the interpretation methods they
reviewed.

Several researchers summarized, classified, and evaluated
the interpretability of machine learning as general. For exam-
ple, Molnar [8] explained the importance of machine learning
interpretability, classified different ML interpretation meth-
ods by utilizing different metrics, and provided examples of
their application on three selected datasets.

We also know of some efforts of building theoretical
frameworks for interpretability evaluation. For instance,
Bibal and Frénay [9] proposed a unified and struc-
tured framework to answer the two questions of ‘“‘what
is interpretability?” and ‘“‘how to measure it”’. Similarly,
James Murdoch et al. [10] proposed a predictive, descrip-
tive, relevant (PDR) framework for ML accuracy evalua-
tion that takes the interpretability part into account. Their
method evaluates ML systems based on their predictive
accuracy, descriptive accuracy (fidelity of the interpreta-
tion method as explained in Section VI-F), and relevancy
(how much domain-relevant insights are provided by the
model), instead of only using predictive accuracy in the
typical ML evaluation pipeline. We should note that rel-
evance in this context is measured by humans through
surveys.

In addition to working on the theoretical principles of
interpretability and their evaluation metrics, some researchers
classified and evaluated the existent interpretability tech-
niques. For example, Biran and Cotton [11] classified
ML interpretation methods into prediction interpretation
and interpretable models and made a survey based on this.
Adadi and Berrada [12] provided an overview for the dif-
ferent approaches in ML interpretability by analyzing more
than 280 papers in the field.

Besides the papers that classify the interpretation meth-
ods regardless of the application domain, there are also

VOLUME 8, 2020

specialized work such as [13] which focuses on healthcare
applications. The authors [13] discussed the challenges facing
ML interpretability in healthcare and the different parameters
that should be considered in their application. Similarly,
Zhang and Zhu [14], [15] focused on the interpretation
of CNNs. They studied different methods for CNN
visualizations, and the methods used to understand the
CNN layers representations and their internal filters (namely
filter interpretability [16] and location instability [15]).

IIl. RELEVANCY CRITERIA

We consider a paper relevant for our survey if it proposes
a new method of RL interpretation or improves an old one.
We also consider papers that discuss a known RL interpre-
tation method (e.g., states its advantages and drawbacks),
or study the conditions or metrics that RL interpretation
methods should satisfy. We collected the papers mainly from
Google Scholar search engine, and we also followed the cita-
tions and references of each paper looking for more relevant
papers.

IV. BACKGROUND

Machine Learning (ML) systems learn patterns automatically
from data without writing an explicit algorithm [17]. Instead,
they rely on picking a model that best fits the data from a
hypothesis set. A more formal way to define ML systems
is the one proposed by Mitchel [17] “A machine is said
to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks
in T, as measured by P, improves with experience E”. Rein-
forcement Learning (RL) is one of the emerging sub-fields
of ML that achieved outstanding performance in different
domains such as robotics [18], self driving cars [19], health
informatics [20], beating humans in complex games such as
Go [21], and playing Atari games [22]. It studies the systems
that can be represented with an agent which interacts with
a dynamic environment through taking different actions in
order to maximize its cumulative reward [23]. The agent
has a specific state that belongs to a set of limited legal
possible states known as the state space. After choosing an
action from the set of legal actions (actions set), the agent
receives a reward (a numeric value) that depends on the
chosen action and its current state. State space and actions
set are determined by the environment. RL systems might
have more than one agent, and in this case we call the system
a multi-agent RL (MARL). However, we will focus mainly
on the interpretability of single-agent RL systems. Generally,
RL systems can be formulated by using the Markov Decision
Process (MDP), and the more generic form of it: Partially
Observable Markov Decision Process (POMDP) which will
be explained in sections IV-A and IV-B respectively. Then
after that, we will speak about some important concepts
in RL such as policy in Section IV-C, types of RL sys-
tems in Section IV-D, and different RL learning algorithms
in Section IV-E.

171059

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

A. MARKOV DECISION PROCESS (MDP)
MDP is a mathematical framework used to study decision
problems, where the resultant state of any decision does
not depend on the history of the previous states. Instead,
it depends only on the current state and the action of the agent.
In addition, there is also an uncertainty in determining the
final decision. i.e., agent decisions are partially random. This
process can be described mathematically as follows:

The agent is at state s € S. It can choose any allowed action
a € A. The legal actions are a subset of A, since not all actions
are allowed from a given state. The set of these legal actions
can be described as A(s) C A. Taking an action a changes the
agent state from a current state s to a new state s’ through the
transition function 7', and subsequently it receives a reward
R,(s,s") € R that depends on the previous state s, the new
state s and the action a. Mathematically, MDP is a tuple of
(S,A, T, R) where:

1) S:set of all possible states (state space).

2) A: set of all possible actions.

3) Tu(s,5):A xS xS — [0, 1]: a transition probability
function that returns the probability of moving from
state s to s’ when performing action a.

4) R,(s, s'): the reward that the agent receives when action
a leads from s to s’

B. PARTIALLY OBSERVABLE MARKOV DECISION PROCESS
In Partially Observable Markov Decision Processes (POMDP),
the state is not fully observable by the agent. Mathematically
we can define POMDP as a tuple of (S,A,T,R, 2,0, y)
where:

1) S,A,T,R: the
Section IV-A.

2) : set of all observations.

3) O: set of observation probabilities.

4) y € [0, 1]: the discount factor that is used to penal-
ize the future rewards compared with the immediate
reward.

same meanings of MDP in

C. POLICY AND VALUE FUNCTION
As mentioned above, the agent needs to choose an action from
the actions set. This action is chosen is based on the agent’s
policy, which can be defined as the strategy that the agent
follows to choose the actions. It is a mapping between the
agent state and the chosen action at that state. A policy can be
either deterministic or non-deterministic. In a deterministic
policy, the agent takes the same action at the same state, and
its policy 7 can be described by the equation: 7 (s) = a, where
s is the agent state and a is the action. For non-deterministic
policies, the mapping is formulated in a probabilistic format,
where we have a probability for each action, given the agent
state as follows: mw(als) = Pr(a; = a|s; = s) where 7 (als) €
[0, 1].

In addition to the policy, one of the most important con-
cepts in RL is value function. It is a way to measure how
good is to be in a specific state under a given policy ().

171060

Different policies assign different values for the same state.
The value function for a state s, is the sum of the expected
rewards of the agent starting from s. This can be written as
follows:

T
Vi) =EQ v '), (1

i=1

where y € [0, 1]1is the discounting factor, r; € Ris the reward
at time 7, 7 is the number of time steps, 7 is the policy, and
s is the agent state.

D. TYPES OF RL SYSTEMS

Generally, RL models can be either value based, policy based,
or model based. In the value based RL, we first calculate
the value function for each state as stated in Equation 1,
and then we use these values to evaluate the policy. In con-
trast, we evaluate and improve the agent’s policy iteratively
in policy based RL. Note that both these methods do not
include assumptions about the transition function (the model
of the environment), and hence they are called model-free RL.
Moreover, we can also combine these approaches in a new
type called actor-critic RL, where the critic calculates the
value function while the actor updates the policy using the
values calculated by the critic.

On the other side, model based-RL includes a model about
the environment (a transition function). This function gives
the probability of moving from a state to another given the
agent action. We should note that the agent state might either
be fully or partially observable. Fully observable environ-
ments are modeled by MDP while partially observable envi-
ronments are modeled by POMDP.

E. LEARNING ALGORITHMS

The optimal policy is the one that maximizes the long term
expected rewards as described by Equation 1. This maximiza-
tion can be formulated by the Bellman equation which gives
the optimal policy for a state s as follows [24]:

7*(s) = argmax Y T(s,a, sV (s)),)
a s'eS
where V7 is the value function under the policy r. Different
methods are used to optimize this problem, such as value iter-
ation, policy iteration, temporal difference learning, Monte
Carlo methods, and Q—learning [24]. In the next sections,
we will give brief overviews of these methods.

1) VALUE ITERATION

In this approach, we first initialize the value functions with
random values, and then we use Equation 3 to update these
values. This update process is repeated until convergence.

Vis1(s) = R(s) + ¥ m;lx Z T(s, a, sV(s), 3)

s'eS
where R(s) is the immediate reward, and a is the taken action.

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

2) POLICY ITERATION
This method differs from the value iteration in what gets
updated. Instead of updating the value functions, we update
the policy. It can be summarized in three steps:

1) Initialize = with random values.

2) Use 7 to calculate the value function V.

3) Change m iteratively until convergence using
Equation 4.
71 = argmax) T(s, a, sHVi(s) @)
a

3) MONTE CARLO METHOD

The Monte Carlo method is a model-free RL approach where
only a record of states, actions, and rewards resulting from
the agent interactions with the environment is used for learn-
ing [23]. The task is divided into episodes, where each
episode ends with a terminal state, and then after reaching this
end, the episode data is fed back into the model to improve the
policy. Firstly, we follow the old policy to generate a list of
episodes. Then, we iterate over all these episodes and update
the value function for each episode by using its average
returns from the current episode, and all previous episodes
in which this state was seen the first time [23].

4) TEMPORAL DIFFERENCE

Temporal Difference (TD) is a model-free RL approach that
combines between dynamic programming (includes policy
iteration and value iteration) and Monte Carlo method [23].
It is like Monte Carlo method in the way that no transition
function is required, and at the same time, we don’t need
to wait until the end of the episode in order to update the
parameters (as in dynamic programming method) [23].

5) Q—LEARNING

It is a model-free RL method to give an agent the ability to act
optimally in a MDP or POMDP setup. Q—learning objective
is to learn a policy that tells the agent what action to take at
which state by maximizing the total reward. The total reward
consists of the immediate reward and the expected value of
the future rewards penalized by the discount factor y. The
optimization is done by having a function that calculates the
Quality of every decision (taking action a at state s). This
function can be written as:

0:SxA—R (5)

At the start, Q is initialized with random values (or by
using another initialization mechanism). Then the agent start
learning as follows:

Starting from state s; at time ¢, the agent takes action a;
based on the current Q function. It receives a reward r; and
its state changes to s;4. Based on this reward, the Q function
is updated using the following equation:

Q" (spyar) = (1 —y) - Q% (s;, ar)
+a(r; + y - argmax Q(s;, @) (6)

VOLUME 8, 2020

where « is the discount factor, r is the reward and y is the
learning rate.

6) FUNCTION APPROXIMATORS

Q—learning creates a table with the Q values of all possible
combinations of states and actions. This can be infeasible
when the state space is very large. To solve this problem,
several methods are used to replace Q—table by approximat-
ing it using a function that maps state-action pairs to the
Q—values [23]. Different methods such as linear regression,
decision trees [25], and artificial neural networks can be used
as function approximators.

V. HIGH LEVEL OVERVIEW

In order to help the reader grasp the full picture of the
current RL interpretation methods, we provided a high level
classification of these methods as illustrated in Figure 1.
We divided the methods into five main groups: decision trees,
summarization, computer vision, natural languages, and cus-
tom models. Then at each parent node we connected its sub-
groups. At the leaf nodes of the graph we added the papers
that belong to each category.

VI. CATEGORIZATION METRICS OF RL INTERPRETATION
METHODS

RL interpretation methods -similar to ML’s- can be cate-
gorized into groups based on different metrics [8]. In this
section, we first defined different categorization metrics,
and then we applied them on the interpretation meth-
ods shown in Figure 1 and described in more details
in Section VII.

A. EXPLANATION TYPE

RL interpretation can be performed in three different
ways [26]: using another method to generate explanations
while keeping the original model (Post-Hoc), introducing a
new interpretable learning model (Intrinsic), or a combination
both methods by altering the original model to improve the
interpretability instead of replacing it entirely. The follow-
ing sections show this classification applied on the methods
described in Section VII.

1) POST-HOC METHODS

These methods are used beside the original model to help
users understand the decisions and details of the model. How-
ever, the model architecture is left as it is. All summarization
methods explained in Section VII-C belong to this category.
Moreover, all the computer vision explanations described in
Section VII-B (with the exception of intrinsic saliency maps
explained in Section VII-B1b) are post-hoc methods. Natural
language explanations in Section VII-E are also classified
under this category. Finally, the model reconciliation method
explained in Section VII-F belong to this category too, since
the robot model is left as it is which represents the original
black-box model.

171061

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

TABLE 1. Basic classification of RL interpretation methods.

Explanation Type
Post-Hoc Intrinsic
Local Global Local global
Textual Template-based, Query-based
Images | Post-hoc Saliency, Counterfactuals Intrinsic-Saliency, RS-Rainbow
Rules Reconstruction, Interstingness Decision-Trees, Custom Models
List State Importance

<&

404142

[Combined |
DTs

\

With Alteration

™ Distiling |
78)€E—| soom

39 1— U-Trees

%%-

2,57,58,60,
61,62,63

Saliency

e Maps

e ‘_- e
: «—f - \——»

——a——
€D —

90,91,92,93

69.70

Custom Models

Custom-dom
Programming Llllgalqus

2 et Interpretable HRL

Formal Spec.
Language

FIGURE 1. General overview of RL interpretation methods.

2) INTRINSIC METHODS

Intrinsic methods relies on using inherently interpretable
models such as logistic regression and decision trees [8].
Since tree-based methods explained in Section VII-A replace
the original black-box model by some sort of decision trees,
they belong to this category. In addition, we also think of cus-
tom learning models described in Section VII-D as intrinsic
interpretation methods since the original black-box model is
replaced.

3) COMBINATION OF BOTH

Sometimes the actual model is altered in some way in order
to give explanations instead of replacing it entirely. This was
applied on attention based saliency maps that we explained
in Section VII-B1b, where the basic learning model is used
with more layers to produce the saliency maps.

B. SCOPE OF INTERPRETATION
RL interpretation methods can either explain:

171062

LJ I_"“*

cal

—ap
— &

VIPER

Without alteration =

DDT

I—)l HIGHLIGHTS |—)< 78,77 >
Abstracted
B D

e

Natural Language

| > Template-based Ly 2 95,96,97

=== — €D

1) Local decisions of the model such as why a specific
action or group of actions were chosen by the agent.
2) Its global behavior or strategy in taking decisions.

This metric was inspired by Molnar [8] in their inter-
pretable ML book where they applied this concept on
ML interpretation methods. We should also note that this
metric is related to model replacement concept explained
in section VI-A2. Because replacing a black-box model
with a new interpretable learning model is done for the
whole model and not only a subset of samples, all intrin-
sic methods described in section VI-A2 are considered as
global interpretation methods. However, the opposite is not
true. Post-hoc interpretation methods can be designed to get
insights about global behavior, or to give interpretations for
a specific decision. As a result, decision tree based meth-
ods explained in section VII-A and custom learning models
described in section VII-D are global. In the following sec-
tions, we comment on the scope of the other RL interpretation
methods.

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

1) GLOBAL METHODS
The following RL interpretation methods are global:

1) HIGHLIGHTS method in section VII-Cla because it
generates summaries to explain the agent policy.

2) Abstracted Policy Graphs (APG) method explained in
section VII-C1b since the generated graphs represent
the policy.

3) Model reconstruction method in section VII-C2 is used
to generate a list of state-action pairs in order to explain
the agent’s behavior generally and not based on a
single decision, and hence it is a global explanation
method.

4) Interestingness summaries in Section VII-C3 are gen-
erated to explain the policy, and hence, classified under
global interpretation category too.

5) t-SNE method explained in Section VII-B4 is global,
since it abstracts the whole state space.

2) LOCAL METHODS
The following RL interpretation methods are local:

1) Saliency maps in Section VII-B1 is used to explain
the agent’s local decisions such as why a specific
move in a game is chosen and hence are local
models.

2) Counterfactual method in Section VII-B3 as every
counterfactual image is generated for a specific
sample.

3) Query based explanations in Section VII-E2, since they
are used to answer a specific query.

C. EXPLANATION FORMAT

The output of the interpretation method (explanation) can
be produced in different formats that can be classified
as follows:

1) Textual Explanations: The explanation is formatted in
natural language. All methods under Section VII-E [27]
belong to this category. They are actually classified
based on this property. In addition, the model reconcili-
ation method described in Section VII-F is also textual,
since the model differences are shown to the user in a
natural language format.

2) Image Explanations: In these methods, explanation is
shown as an image. This category includes the methods
described in Section VII-B.

3) List of States or State-Action Pairs: Here a list of
states or pairs of states and actions are chosen based
on some criteria to produce the final explanation.
The summarization methods explained in
sections VII-C1 belong to this category.

4) Rules: Here the explanation is shown as rules that
humans can apply to understand the final decision
of the agent. We consider all types of decision trees
as rules in addition to the formats. As a result,
methods under Section VII-A and Section VII-D2
belong here.

VOLUME 8, 2020

D. ORDER OF APPLYING THE MODEL

The interpretation can be applied before training the model,
during the training, or after. The order of applying the inter-
pretation method can produce different insights. Pre-model
interpretation gives a better idea about the environment setup.
On the other hand, applying interpretation methods during
the training helps us to understand the learning procedure,
and can clarify issues such as whether the agent is actually
learning, doing random weight changes, or memorizing [26].
Post-training interpretation methods explain what the model
actually learned. The order of applying the method is affected
by whether the interpretation method is an intrinsic or
post-hoc VI-A. For example, in intrinsic methods, since we
have a new learning model that replaces the black-box model,
the order of applying the interpretation is irrelevant. As a
result, we only consider this metric for post-hoc interpretation
methods.

1) ORDER OF POST-HOC METHODS
In this section, we comment on the order of applying the
interpretation on post-hoc interpretation methods as follows:

a: SUMMARIZATION METHODS
For summarization methods, we can categorize the order of
applying the interpretation into two groups;

1) State importance and model’s reconstruction methods
explained in sections VII-C1,VII-C2 are applied after
training the model.

2) Interestingness method in Section VII-C3 has three
components that are applied during the three phases.

b: COMPUTER VISION

In computer vision interpretation methods explained in
Section VII-B, both the saliency map and gaze method are
applied after the training.

c: NATURAL LANGUAGE
All natural language methods explained in Section VII-E are
applied after the training.

E. MODEL AGNOSTIC VS MODEL SPECIFIC

Interpretation of a complex model can either be performed by
replacing the complex model with an inherently interpretable
model such as decision trees, or by utilizing another method
beside the complex model to generate the explanations. The
first type is called intrinsic, while the second type is called
post-hoc [8].

Decision trees methods explained in Section VII-A and
the custom models explained in Section VII-D are both
intrinsic interpretation methods. On the other hand, natu-
ral languages-based approaches and summarization meth-
ods are post-hoc. For computer vision methods, we have
both types. For example, saliency maps can be either intrin-
sic or post-hoc based on the way we implement them as
shown in Section VII-B1. The other sub-groups of computer

171063

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

TABLE 2. High level overview of tree-based methods.

Method Applications Nodes # Replacement?
VIPER Cart-Pole, Pong <IK Explanation
CQI 2D navigation <100 Replacement
DDT StarCraft N/A Replacement
Distilling SDTs Mario game depth <8 Explanation
U-Trees Cart-Pole, Mountain-Car 100 - 10K Explanation
MoET Cart-Pole, Pong, Acrobat, Mountain-Car ? Explanation

Gradient Boosting Cart-Pole, Mountain-Car ? Both

vision (namely: RS-rainbow, t-SNE, and counterfactuals) are
post-hoc.

F. FIDELITY & ACCURACY

Fidelity means the extent to which the interpretation is truth-
ful to the actual model [8], [28]. Before using the inter-
pretation, we need to make sure that it explains the actual
model, and hence fidelity metric is important [8]. Measuring
fidelity is affected by the scope of interpretation methods.
For example, local interpretation methods are truthful to their
corresponding black-box model only on the limited region of
inputs they intended to explain [8]. Papenmeier et al. [29]
studied the effect of explanations fidelity on gaining users’
trust. They found that while the accuracy of the model has
a higher effect, low-fidelity explanations can decrease user’s
trust.

Fidelity is more important for post-hoc interpretation
methods since they are used to explain the black-box model
instead of replacing it entirely. On the other hand, model
accuracy is more important for intrinsic methods because
after replacing the black-box model by an inherently inter-
pretable model, the alignment between the two models is
not as important as getting a high accuracy from the new
interpretable model, since we are not going to use the old
black-box model anymore. Generally, measuring fidelity and
comparing between different methods is not an easy task,
we will comment on it whenever we have data inside while
explaining each method in Section VII.

In summary, Table 1 shows the application of three catego-
rization metrics on the RL interpretation methods at the same
time (The interpretation methods are explained in more depth
in Section VII). The three metrics included in the summary
are: explanation type, scope of explanations, and explanation
format.

VII. RL INTERPRETATION METHODS
This section states and classifies different methods used to
interpret RL.

A. USING DECISION TREES

Since decision trees can be visualized textually or graphically
very easily (inherently interpretable) [30], they are used in
several formats to replace the original black box model for
the purpose of interpretation. However, learning a decision
tree is not an easy process [31]. As a result, in several RL
decision tree-based methods, different tricks in the learning
algorithm are used, such as imitation learning. Imitation

171064

learning or distillation is guiding a shallow model such as
decision trees by a more complex model like DNNs [32].
In other words, instead of training the shallow model on the
dataset directly, the DNN is trained first on the data, and then
the trained DNN transfer its knowledge to the shallow model
by generating a soft-labeled dataset. A soft-labeled dataset
is a dataset with continuous values for the labels instead of
the original hard-labeled datasets. The complex model in imi-
tation learning setup is called the teacher while the shallow
one is called the student. Before explaining these methods
in detail, we first give a high level comparison between them
based on the applications that the authors tested their methods
on, the average number of nodes in the generated trees, and
whether the method is originally used to replace a complex
model or just to explain its decisions. This comparison is
given in Tab. 2. Note that we can not compare the number
of nodes directly since we do not have a unified application.
For example, it is not possible to compare CQI to VIPER
(see sections VII-A1b and VII-Ala) because CQI was tested
on a simpler problem, but at least we can get an idea about
the length of the trees that each method is able to generate.
Although some games such as Cart-Pole were tested for most
of the methods, we need to set up a unified experiment that
includes all the methods in order to come up with a more solid
comparison.

1) DECISION TREES WITHOUT ALTERATIONS

a: VERIFIABILITY VIA ITERATIVE POLICY ExtRaction (VIPER)
Bastani et al. [31] replaced RL black-box models with deci-
sion trees. They also proposed their own learning algorithm
that applies imitation learning from a DNN model. The
authors used the Q—function of the DNN model (the teacher)
to generate values for training the decision tree model (the
student), in addition to the optimal actions for each state
(the learnt policy). This imitation learning-based method is
called VIPER. It was applied on two different Atari games:
Cart-Pole and Pong. Although the main focus of this method
is verification, it can be considered as an RL interpreta-
tion method, since decision trees are inherently interpretable.
However, the relatively high number of nodes in their final
output (limited by a maximum of 1000 nodes) makes it
harder for humans to comprehend the output. Moreover, we
reached maximum accuracy within this limit only on simpler
versions of Pong and Cart-Pole, which open questions for the
applicability of the method on more complex problems. The
authors applied their method for model-based RL policies.

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

b: CONSERVATIVE Q-IMPROVEMENT (CQI)

CQI [30] also interprets RL models by using decision trees.
In contrast to the previous method, CQI can be applied for
model-free RL such as Q—learning which was the main focus
of the authors. The main contribution of this method is its
ability to generate shorter trees (less than 100 nodes for a toy
navigation problem), since adding new nodes to the final tree
is constrained by the amount of the discounted future reward
we gain from the additions. As a result, we need to set a
threshold that reflects the trade-off between the length of the
tree (and subsequently interpretability), and the accuracy of
the RL policy in performing the task at hand. The resulting
decision tree consists of two types of nodes: branch nodes
and leaf nodes. Each branch node has two children, and
the split is based on one of the features of the state vector,
while a branch node represents the action that the agent takes
for the path ends with this node. Because of this, CQI can
be applied only when it is possible to represent the state
with a features vector. The authors implemented their own
learning algorithm and no other external complex model is
used for training as in VIPER. Similar to VIPER, this algo-
rithm was applied on a simple 2D robot navigation problem,
where the agent has to move towards the goal and avoid the
obstacles.

c: DIFFERENTIAL DECISION TREES (DDT)

Rodriguez et al. [33], [34] proposed a method that updates
the tree entirely during the learning phase instead of adding
the nodes incrementally as in the previous two methods.
They made this possible by introducing a differential decision
tree so that gradient decent algorithm can be applied. The
main difference between DDT and normal decision trees is
using sigmoid function for splitting the nodes instead of the
non-differentiable if/else rules. The leaf nodes in the resultant
tree represent single features because the authors applied
a discretization technique by replacing the features vector
with the maximum feature. This algorithm was applied on
three Atari games: Cart-Pole, Lunar Lander and Acrobat.
According to the authors, the accuracy of their model out-
performed their MLP model which was mainly created for
comparison purposes. However, the authors did not comment
on the length of the final decision tree, despite the fact that
it affects the interpretability, since it is hard for humans to
comprehend decision trees with large number of nodes. It is
worth mentioning that the authors were able to approximate
a policy for StarCraft II Micro-battle using a tree of only
15 nodes. This method was applied on Q—learning RL.

d: CAUSAL DECISION TREES (CDT)

Madumal et al. [35] used decision trees to show causal expla-
nations. To implement this, first a decision tree is trained
using a list of state-action pairs. The authors limited the
depth of the decision tree to be as large as the size of the
possible actions (size of action set). Similar to other decision
trees-based models such as CQI, the leaf nodes in the deci-

VOLUME 8, 2020

sion tree represent the actions while the split (spilt nodes) is
based on the state features. Then an action influence graph is
used to generate casual explanations from the fitted decision
tree nodes. The action influence graph is constructed by
using the influence of actions on variables (features of the
state) [36]. The explanations resulting from this method are
not just for justifying why a specific action was taken, but
also used to explain why the agent did not take an alternative
scenario. The authors conducted an experiment to evaluate
their method by asking humans to predict the agent decisions
based on the given explanation, and then the accuracy of this
prediction is used to evaluate the quality of the generated
explanations.

2) ALTERED DECISION TREES
In these methods decision trees are used with adding some
alterations such as using probabilities inside nodes or adding
linear equations to leaf nodes.

a: DISTILLING SOFT DECISION TREES (SDTs)

Coppens et al. [37] proposed a method for interpreting DNN
RL models using SDTs. They used imitation learning to
transfer the knowledge of the DNN model into the SDTs.
SDTs method is a combination between binary decision trees
and neural networks. In SDTs, branching nodes represent
individual perceptrons and the output the probability p of
moving to the right sub-tree (and accordingly 1 — p is the
probability of moving to the left sub-tree), while the output
nodes represent the actions. This method was applied on
Mario Al benchmark [38] where a DNN agent was trained
to play Mario game. The application of this method is more
complex compared to the previous tree-based RL methods
mentioned above in terms of both the state, complexity of
the environment, and the number of the allowed actions.
The authors trained a DNN of type actor-critic, and then
its information was distilled to the soft decision trees. They
performed the imitation learning by generating pairs of states
and actions from the trained model, and then they fit SDTs
of different depths ranging from 3 to 7. Note that each node
in the tree includes a complete set of weights equal to the
number of features. For humans to understand the decisions
of this model, they have to traverse the tree from the top
node to the leaf nodes. This process gets harder with increas-
ing depth. The authors found that the fidelity of the model
decreases with increasing depth and they have to sacrifice
fidelity if they want to generate more understandable expla-
nations. However, it is not fair to compare the fidelity of this
approach with the previous decision tree based methods since
the application (Mario game) is more complex.

b: LINEAR MODEL U-TREES

Liu et al. [39] also used imitation learning to distill the
knowledge of a DNN RL model into their proposed deci-
sion trees-based model which is called linear model U-trees.
The authors tried two different methods to generate the data
from the DNN model: saving all state-action pairs with their

171065

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

corresponding Q—values during training, and generating data
online from the trained model by making it interact with the
environment. The state is represented in this method by a
vector of features, while branching nodes are used to split
the tree using if/else rules based on one of the features just
like normal decision trees. They differ mainly in having a
different linear model in each leaf node that covers all the
features, which is responsible for producing Q—values for
its corresponding path. The authors used Stochastic Gradient
Descent (SGD) to train the linear models in the leaf nodes and
the splitting branching nodes are added when the improve-
ment (in rewards) introduced by the linear layer is not enough.
This method was tested on three games: Mountain Car, Cart-
Pole, and Flappy Bird. The state space was unified to be an
80*80 grey-scale image. The authors compared their method
with two different methods in building general decision trees
(not used explicitly for interpretability). They concluded that
u-trees is better than the baseline methods in both fidelity and
the number of nodes used. However, the number of nodes is
still very large and hard to visualize (hundreds to thousands of
nodes). One of the possible reasons might be the complexity
of the application.

c: COMBINING SEVERAL DECISION TREES
Sometimes several smaller decision trees are combined in
different formats as follows:

1) Mixer of Expert Trees (MoET): The main idea of

MOoET [40] is to use multiple smaller and specialized
decision trees to interpret a DNN-based RL policy. The
authors adopted the same learning algorithm used in
VIPER with replacing the decision trees in VIPER (the
student) with the mixture of expert trees. Generally,
Mixture of Experts (ME) is a model that consists of sev-
eral models (experts) where each one specializes in a
sub-space of the inputs. The specialization is performed
by using a gate function that determines the contri-
bution of each expert in a specific input sample [41].
To get the final result, a weighted sum of the experts is
calculated.
Vasic et al. [40] used decision trees as expert models
and combined them by a soft-max gating function. The
authors followed the same imitation learning approach
of VIPER to transfer the knowledge from the RL DNN
model to MoET. Instead of using all experts with dif-
ferent probabilities as in general ME models, in MoET
only one expert is selected for the explanation to make
it more understandable. This way of selection might
be easier for a human to understand, but it decreases
the fidelity of the given explanation. The authors
tested their method on Cart-Pole, Pong, Acrobat and
Mountaincar Atari games and compared their results
with VIPER. The authors found that their approach
is better than VIPER in both fidelity (the alignment
between the teacher and the student) and performance
(as expressed by the rewards).

171066

2) Gradient Boosting Decision Trees: Similar to the

MOoET method mentioned above, gradient boosting is a
different way of combining a group of models together
to come up with the final decision. In this group of
models, the first one is trained on the whole data and
the second model is trained on the portion of data where
the first model made errors and so on. In other words,
each model corrects the mistakes of its predecessors.
The resulting individual models are combined together
in a weighted sum format to give the desired output
for a given input. Brown and Petrik [42] used this
approach to interpret RL models using decision trees.
Moreover, they also proposed retraining the recent trees
with the knowledge of the older ones in order to solve
the problem of having large number of trees.
This method was tested on two Atari games: Cart-Pole
and Mountain-Car. It is worth mentioning that the
authors also used imitation learning by training a com-
plex model first (neural network for Cart-Pole and
SARSA model for Mountain-Car), and then they used
it for generating data for their model. Although one
of the critical motivations behind using this method is
interpretability, the authors did not provide a compari-
son for these methods in terms of some interpretability
measures such as fidelity and the number of nodes, and
focused instead on the performance of their method in
terms of the total reward they were able to collect.

B. COMPUTER VISION EXPLANATIONS

In this category we list the methods where the explanation is
shown as an image, a list of images, or an image with some
other corresponding information.

1) SALIENCY MAPS

A saliency map is an image that highlights the contribution of
individual pixels to the model’s decision. For example, pixels
with higher value in the output image may indicate higher
importance for their corresponding locations in the input
image. As a result, changing the values of these pixels in the
input image should affect the output more significantly [2].
The generated image can be either 1) local to explain the
model decision for a specific image, or 2) global to generate
the important pixels for a chosen class across the model as a
whole. The latter is used to justify why that class is picked
instead of the others. Saliency maps interpretation method
was used originally to explain ML models such as DNNs [43]
and ConvNets [44]. For example, Simonyan et al. [44] intro-
duced a method that uses the gradient of the output with
respect to the input image to generate both local and global
saliency maps.

Generally, there are different methods to generate saliency
as reviewed by Nikulin at el. [2]. They investigated these
methods and categorized them into post-hoc and built-in
saliency maps. In post-hoc methods saliency maps are gener-
ated after training the model, while in intrinsic approach the
same learning model is used to generate the maps as well as

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

the class predictions. We should note that this categorization
metric is similar to explanation type that we described in
Section VI-A. However, we used intrinsic term borrowed
from the authors of [26] instead of built-in with the same
meaning.

Post-hoc methods were used broadly in different formats
to explain ML [2]. For instance:

1y

2)

3)

4)

Guided BackProp Springenberg et al. [45] proposed
this method to test the importance of pooling layers
in ConvNets. Their method is based on deconvolu-
tion, where the direction of the ConvNet is reversed
to produce an image from the high level feature maps.
For each neuron that got activated, its corresponding
pixels are highlighted in the resulting image. This is
performed by using the gradient of the neurons con-
ditioned on the input image. Shrikumar et al. [43]
introduced DeepLift where they used back-propagation
to calculate the contribution of every pixel to the final
prediction. For any input image, a reference input is
selected based on the application domain. Then the
difference between the predicted class and the opposite
class is expressed in terms of a difference between the
input and this reference.

Layerwise Relevance Propagation (LRP) [46]: It
generates the contribution of every pixel to the final
prediction by decomposing the classifier first into mul-
tiple layers. This decomposition is done pixel-wise
which results in scores for single pixels.

Integrated Gradients: One of the problems of the pre-
vious two methods (DeepLift and LRP) is that some-
times they generate different saliency maps for equiv-
alent neural networks. We call two neural networks
equivalent if they produce the same outputs when the
inputs are identical despite their differences in imple-
mentation. Equivalent networks should generate the
same saliency maps and this property is called imple-
mentation invariance. Sundararajan et al. [47] pro-
posed Integrated Gradients approach which preserves
implementation invariance by using continous gradient
instead of the discrete gradients used in the other two
methods.

SmoothGrad [48]: To generate a saliency for a spe-
cific input image, difference copies of it are created
with adding noise, and then a saliency map is gener-
ated for each one. After that, these saliency maps are
averaged to get the final representative output. This
process is aimed to remove the noise from the resultant
saliency. Similarly, VarGrad [49] method follows the
same methodology of SmoothGrad, and the only dif-
ference is using the variance instead of the mean. Seo
et al. [50] found that SmomothGrad conflicts one of its
basic objectives by not making the gradients smooth,
while VarGrad was independent of the Gradient of the
scores.

In the following sections we describe different saliency
maps methods used to interpret RL:

VOLUME 8, 2020

a: POST-HOC SALIENCY MAPS
Post-hoc saliency maps can be divided into the following:

1y

2)

Backpropagation-based Saliency Maps: This appro-
ach is based on the work of Simonyan et al. [44].
It produces two types of saliency maps: one to show the
importance of image locations for the whole class, and
another one for just one input image. They used back-
propagation to compute the derivative of the output
with respect to every input pixel and then this derivative
is converted to the image dimensions to be visualized.
The conversion depends on whether the original image
is grey-scale or RGB. For grey-scale images, the abso-
lute values of the derivative are taken directly, while
for RGB images the maximum channel value is chosen
for each location. Simonyan et al. [44] method was
utilized by Wang ar el. [51] to interpret their dueling
O-network that has two streams: one to estimate state
values and the other to estimate action advantages.
The two streams are then aggregated to produce the
Q values for the state-action pairs. The authors used
Simonyan at el. [44] method to generate maps for the
two streams separately. When they applied this on a car
Atari game, they found that saliency maps for the state
values pay attention to the road while the saliency maps
for the action scores pay attention only when there are
cars to avoid collision. Their application proved that
this method helps to understand the behavior of the two
networks separately.

Perturbation Saliency Maps: Unlike backpropaga-
tion method, perturbation is used (different changes
to inputs) instead of taking the derivative. The reason
behind that is sometimes the generated saliency from
backpropagation-based methods does not make sense
from a practical point of view, because it explains
the prediction by changes to meaningless pixels [52].
Perturbation methods solve this problem by making
custom meaningful changes to the input images that
affect the final prediction more significantly. Moreover,
they are also more model-agnostic since no constraints
such as being differentiable are required from the
model [53]. On the other hand, perturbation methods
suffer from the need of making multiple passes in order
to generate a saliency for a single input image [54].
Greydanus et al. [52] proposed their own perturbation
algorithm of generating saliency maps and then applied
it to understand the agent’s behavior in different Atari
games to perform the following goals: visualizing the
agent’s policy during learning phase, following the rea-
sons behind badly-performed agents, and identifying
wrong situations of giving the agents high rewards.
Perturbation methods may generate saliency maps that
do not highlight only the relevant features to the
action we need to explain, but the other actions too.
Puri et al. [55] proposed Specific and Relevant Feature
Attribution (SARFA) method that avoids this problem
by keeping the perturbations that alters only the action

171067

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

we need explain and ignoring changes to the expected
rewards applied by other actions.

b: INTRINSIC SALIENCY MAPS

Instead of using another model to generate saliency maps,
in this interpretation method the original black-box model
is altered to produce the maps in addition to the predictions.
Altering the model to generate saliency maps beside its main
objective most probably results in having a lower perfor-
mance, which makes it harder to keep both interpretability
and accuracy [2].

To the best of our knowledge, all these methods utilize
some sort of attention mechanism. Attention can be described
as adding a new layer (vector of weights) to the DNN to
represent how much attention is payed for each input pixel (in
case of visual inputs) [56]. One example of these methods is
Deep Attention Recurrent Q-Network (DARQN) [57]. Itis an
extension to Deep Recurrent Q-Network (DRQN) proposed
by [58]. In DRQN, an LSTM is used in the architecture of
DQN [59] in order to represent temporal patterns more effi-
ciently. Sorokin et al. [57] altered DRQN by adding attention
mechanism to it. They built an architecture that consists of a
convolutional, attention, and recurrent networks. The feature
maps produced by the convolutional layer are applied to the
attention layer that produces a list of vectors with the same
number of feature maps and each vector has the same dimen-
sions of the input image. The authors applied two types of
attention mechanism: soft attention where a weighted sum of
the vectors is calculated to produce the saliency map, and hard
attention where at every time step only one pixel (attention
location) is selected. DARQN was applied on several Atari
games and the results were comparable to DQN and DRQN.
The interpretation here is provided by the saliency maps gen-
erated from the attention layer. Similarly, Mousavi et al. [60]
used the same architecture with soft attention mechanism
to play different Atari games. They also used two metrics
to compare the ability of the generated maps to identify
the fixation locations across different models: Normalized
Scanoath Saliency (NSS) and Area Under Curve (AUC). The
two metrics compare the saliency map and the locations that
humans focus on the most. This human data is obtained
by asking people about the places they consider important
while playing the game. In contrast, Zhang et al. [61] used
a different approach for collecting human data. They used
eye tracking sensors to collect the locations of human’s
gazes while they are playing. Then this collected data are
used to train a network that predicts human gazes (both
position and saliency maps by using attention). After that
they built a DNN that predicts the actions. An interesting
aspect about this approach is that attention is learnt from
humans by utilizing the eye tracking data and instead of
just utilizing it for evaluation like the previous method [60].
Nikuli er al. [2] suggested a quantitative method to eval-
uate the generated saliency maps by comparing them with
the eye tracking data publicly available by [62]. They used
their proposed metric to compare different attention based

171068

RL models. In addition, Querishi ez al. [63] proposed a similar
architecture that differs in using recurrent attention models
(RAM) [57] for the attention layer. They also used a dual
network where a two distinct networks for the value function
and state scores are created. This architecture is inspired
by [51] as described in backpropagation-based saliency maps
above. Querishi er al. [63] applied their architecture on
a human-robot interaction problem and used the attention
in order to show people robot attentions when interacting
with it.

c: CHALLENGES OF SALIENCY MAPS
Saliency maps also have some problems and challenges that
need to be solved. Adebayo et al. [64] proposed an experi-
ment that can be used to compare between the performance
of different saliency maps methods. It consists of basically
two tests: a model parameter randomization test, and a data
randomization test. The first test assures whether a randomly
and untrained network with the same architecture can produce
a similar result to the model under testing, while in the second
test we first change the data labels randomly, and then retrain
the model to see the effects of this new altered dataset on
the resulting saliency maps. Within the four methods tested
by the authors, two passed their tests (Gradients and Grad-
CAM) while the others failed (Guided GradCAM and Guided
backProp). Note that this test was conducted on a limited set
saliency maps generation methods. Moreover, it does not take
the sequential nature of the RL systems into account [65].

In addition to the subjectivity problem, and according to
a survey performed by Atrey et al. [65], saliency maps in
RL interpretability suffer from unfalsiability and cognitive
bias. In order to face these challenges, the authors created
a methodology to test the conclusions drawn from the gen-
erated saliency maps. They applied this by formatting the
conclusions in the following format X = *“{concept} is
salient —> agent has learned {representation)} resulting in
{behaviour}”. For example, we can fill this template by
the following data from an autonomous driving agent: stop
signals text is salient — agent has learned to identify stop
signals resulting in taking a complete stop. The concept is
the body represented by the pixels in the saliency, represen-
tation is the abstract concept like ““identifying the enemy in a
game”’, while the behaviour is the agent action or sequence of
actions. After doing this, the state is reversed, and a counter-
factual saliency map is generated to test whether this pattern
given in the format above holds. If it turned out to be the case,
then we have a stronger evidence that the agent has actually
learnt the concept stated in X. The authors concluded from
their study that saliency maps should be used for exploration
rather than explanation since it is not easy to draw a solid
conclusion from them [65]. The authors suggested using
saliency maps with other supporting tools, and we think this
experiment can be integrated with the two tests proposed by
Adebayo et al. [64] as explained above to get a clearer picture
about the behaviour of an RL agent.

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

Furthermore, RL systems have two properties that make
explaining them by saliency maps a harder [66]; the
non-deterministic nature of the policy, and the non-static
(temporal) pattern of the inputs. It is not easy to capture these
two properties by saliency maps.

2) REGION SENSITIVE RAINBOW (RS-RAINBOW) METHOD
Yang et al. invented Region Sensitive Rainbow (RS-rainbow)
interpretation method [54] to identify the important regions
in the input image (rainbows) while taking actions in deep
Q—learning setup. The difference between saliency maps
and this method is that here the output is a part of the
original image while the pixels of saliency maps represent
the importance (e.g., in terms of intensity). Rainbows are
generated by an architecture similar to attention method used
to generate built-in saliency maps. The authors incorporated
different techniques in RL such as double DQN [67], Dueling
DQN [51] and multi-step learning [68] in their architec-
ture [54] which consists of three main components: image
encoder that transforms the input frames into feature maps,
region-sensitive module that outputs the local image prob-
abilities used to generate the important regions and policy
layers to output Q—values. In addition to providing built-in
interpretation, this method also outperforms DQN method
as it has a more efficient representation for the states since
it incorporates the most important region as a part of this
representation.

3) COUNTERFACTUAL STATES

A counterfactual state is a state which is slightly different
from the original state, but it leads to a different action.
Dhurandhar et al. [69] followed this approach to explain
ML models by highlighting both the important pixels in the
given output (their presence is important), as well as the one
which their absence is critical in producing the output class.
Generally, the goal of this method is similar to saliency maps
method explained in section VII-B1: trying to identify which
aspects of the visual input are important in agent’s decisions.
However, instead of getting an image that shows which pixels
are more important in choosing actions, a new image with
the minimum changes is created instead. Olson ef al. [70]
developed a deep generative network model to produce coun-
terfactual examples that can be added to an already learned
agent (the underlying learning model need not to be altered).
In order to do this, first the input image is converted into a
latent space, and then in the next phase this space is converted
to actions. The authors proposed a deep network architecture
that consists of a generator, discriminator and an encoder. The
model is trained by a list of state-action pairs generated from
the learned model. The authors added an adversarial autoen-
coder in order to make the generated counterfactual more
realistic. By realistic we mean an image that can occur in the
real world. For example, it is not realistic to have an image
with two players in a one-player Atari game. Furthermore,
the authors wanted to make humans involved in evaluating
the explanations, and conducted an experiment by asking

VOLUME 8, 2020

non-experts to evaluate whether the generated counterfactuals
are realistic. They found that, on average, their results are not
far from being realistic. Generally, one of the challenges of
counterfactual states is how to define the minimum change
between the generated state and the original one [69]. The
difference that was defined by equation to be minimal might
not be expressive for humans. Moreover, we might have more
than one counterfactual example with the same difference
from the original state (within some threshold) and it is a
new challenge to determine the best one since the evaluation
contains a subjective part.

4) t-DISTRIBUTED STOCHASTIC NEIGHBOR

EMBEDDING (t-SNE)

t-SNE is a dimensionality reduction technique used for data
visualization by converting a high dimensional data into two
or three dimensions [71]. This method keeps the similar
points (in terms of distance) close to each other in the new
dimensions.

Zrihem et al. [72] proposed a method that utilizes t-SNE
for RL policy explanation. Their method first deduces a semi-
MDP space from a DQN RL that consists of a sequence
of states with their activations and Q values. Then t-SNE
is applied on this space and the generated t-SNE points are
clustered. The next step is to evaluate the transition function
for these clusters by utilizing the temporal patterns in the
previously generated sequences. Finally, the clustered t-SNE
points are converted into images from the original inputs
by calculating the average image of each cluster, and then
these images with their corresponding transition probabilities
are visualized in a directed graph. This method is useful
in summarizing the transition function of a model-free RL
system such as DQN. However, it lacks a proper way of
evaluating the results, and hence, some good tests similar to
these of saliency maps explained in Section VII-B1.c should
be developed.

Zahavy et al. [73] improved this approach by generating
saliency maps and adding them to the visualization beside the
original images. Mnih et al. [59] also used t-SNE method to
visualize the state representation of a DQN agent for Space
Invaders Atari game. They found that the t-SNE method tends
to group the embeddings of the perceptually different images
together if they have a similar cumulative reward.

C. SUMMARIZATION METHODS

A summary is generated to describe the agent’s interaction
with the environment in different formats. Some summa-
rization methods aim to describe the agent’s policy in a
limited set of states while others try to state the minimum
possible information enough to reconstruct the agent’s model
by humans [74]. Amir et al. [75] studied different meth-
ods in literature and proposed a conceptual framework for
building policy summarization systems. They suggested three
important conditions that should exist in any summarization
method:

171069

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

1) It should state the important states from the human’s
prospective.

2) It should add a way to transform state space into a new
more understandable format.

3) Human input is important in determining the format of
the summary output.

These stated conditions might be useful in evaluating the
quality of the generated summary. However, since they
include the human factor, it is hard to quantify their results.
We should also note that state importance is not the only way
of RL policy summarization, and there are different methods
as we will see in the next sections.

We can classify the summarization methods based on their
explanation format. It might be a subset of the agent states
either in their original format (state importance), or in a new
dimension (abstracted policy graphs). In addition, they can
be in a format of a scattered list of information such as
interestingness method, or a set of the minimum information
that can be used to reconstruct the RL model by humans.
Based on this, we can classify the current summarization
methods into the following:

1) STATE IMPORTANCE

Here the summary is generated based on a limited set of
states that are indicated to be important. The definition of
this importance is application dependent. We can list the
following methods under this category:

a: HIGHLIGHTS

HIGHLIGHTS method proposed by Amir et al. [76] is used to
explain model-based RL policies in a list of trajectories. Each
trajectory consists of a sequence of important state-action
pairs. According to the authors, a state is said to be important
if taking different actions from that state leads to different
scenarios (e.g., taking an exit in a high way VS not taking it).
The number of the trajectories is a configurable parameter
and it depends on how much time the users can spend in
watching the summary before losing attention. The same
applies on the number of pairs within each trajectory. The
authors conducted an experiment that involves humans to see
whether their explanations help users to evaluate the agent
performance more efficiently. They provide the users with
the summaries of several agents with different performance,
and asked them to choose the best performance based on the
shown explanation. The authors found that HIGHLIGHTS
improved the capability of humans in choosing the most
performing agent. However, sometimes the important states
repeat in multiple trajectories which decreases the richness of
the explanation. In order to solve this, they propose another
variant of their approach called HIGHLIGHTS-DIV, which
has another constraint to prevent repetition. The authors
found that HIGHLIGHTS-DIV is better than the basic version
of the algorithm in helping users choosing the best perform-
ing agent. Similarly, Huang et al. [77] proposed a method that
helps human users to build trust by showing the most critical
states, and then evaluating the decisions taken at theses states

171070

by humans. This method is useful for applications that require
robot-human interaction, because it can be used to decide
when the humans should take control.

b: ABSTRACTED POLICY GRAPHS(APG)

APG method proposed by Topin and Veloso [78] aims to
explain the agent’s local decisions by first creating a con-
nected abstract state space. The method is applied only on
model-based RL systems (formulated by MDP), since the
transition function is needed to generate the abstract space.
The abstracted states are created by grouping the states based
on the Feature Importance Ranking Measure introduced by
Zien et al. [79]. This measure takes a set of states and
returns the importance of each feature in these states so that
if the feature tends to take the same values it is pointed as
less important. This method is similar to the t-SNE method
proposed by [72] in the way that it maps the states into
another abstracted space and visualizes them in a directed
graph with probabilities. However, APG needs the transition
function and can not be applied for model-free methods
as t-SNE. In addition, the method of mapping to the law
dimensional space is different (features importance compared
with t-SNE).

2) MODEL RECONSTRUCTION

The philosophy of building summaries is different in this
approach. Instead of applying a method to extract the impor-
tant states or state-action pairs, we assume that humans have
some implicit models for the RL agent, and then we try
to give them the minimum possible amount of information
enough to make their model more representative to the actual
agent model. In other words, we think of a summary as a
medium that can be used by humans to reconstruct the agent’s
model [74], [80], [81]. This problem is the opposite of Inverse
Reinforcement Learning (IRL) where we aim to make the
RL imitate the user’s model [81].

Huang et al. [81] applied this idea on autonomous driving
cars. They built a model that helps users understand the agent
objective function by showing a chosen set of agent decisions
in selected scenarios. The goal of their method is to show the
user scenarios that reflect the weight of different parameters
in the agent optimization function. For example, in their
autonomous car application, they choose scenarios where a
safety based action (keeping the same lane) is different from
an efficiency based action (bypass other cars), and hence
based on the taken action the user can have an idea about the
what parameters are more important in the agent objective
function.

Moreover, Lage et al. [74], [80] used the reconstruction
accuracy to evaluate different summary extractions methods
generated by simulation, and then conducted experiments that
involve humans to test their methods on the real world.

3) INTERESTINGNESS SUMMARY
Instead of summarizing the agent’s policy with a list or a
sequence of one data type as in the previous summarization

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

methods, multiple data items are collected from the inter-
action between a POMDP based agent and its environment.
Then we use these generated items to deduce what is called
interestingness elements [82]. Interestingness elements can
be defined as some important measurements about the agent
and its environment that are collected before (environment
analysis), during (interaction analysis), and after (meta anal-
ysis) the interaction with the environment. The collected data
are used to summarize both the agent behavior and its envi-
ronment characteristics. We can describe the steps followed
to generate these items as follows:

1) Environment Analysis: This step is done before start-
ing the learning process where the certainty of transi-
tions and observations (whether transition from a spe-
cific state/observation to another is certain or not) are
recorded. Moreover, it includes reward analysis where
any pair of state-action that results in a relatively high
or low reward is recorded.

2) Interaction Analysis: This step contains the infor-
mation that is collected during the interaction with
the environment. Multiple measurements are collected
from the observations of the agent such as: its obser-
vation coverage with respect to the observation space
to measure the quality of exploration, actions cover-
age to reflect the level of interaction, the distribution
of the recorded observations, and which observations
are more frequent and which are rare. In addition,
data about the correlation between observations and
features, and between observations and actions are
recorded. Statistical measures about the value function
are also collected such as the outliers and the mean
prediction error.

3) Meta Analysis: This step is performed on the
trained agent. Data are collected about the associa-
tions between the value function and the observations,
the pattern of actions sequence, and observations that
lead to low/high value function. A contradiction analy-
sis is conducted to show the situations where the agent
took unexpected actions. This is done by highlighting
the observations that have values different from their
rewards, actions that are different from their values, and
domain-specific sub-goals that are not reached.

One of the challenges of this method is that it generates a
relatively huge amount of information. Since one of the main
objectives is to help humans understand the behavior of the
model, we think this method can be improved by conducting
experiments that involve interaction with humans similar to
the one carried out by the authors of HIGHLIGHTS [76].
Then we can see how the generated elements achieve their
goal.

As an extension to this method, Sequeira and Gervasio [83]
created a visual explanation in a short video clip that contains
these interestingness elements. This contribution can help
humans comprehend the huge number of items generated
from the original method. The authors [83] also asked users
to evaluate the visual form of the generated explanations, and

VOLUME 8, 2020

found that if we have different agents, we need different set of
interestingness elements to help users understand them more
clearly.

D. CUSTOM LEARNING MODELS

In these methods, a new inherently interpretable learning
model is proposed. Note that decision trees can also be clas-
sified under this category. However, since decision trees are
generic and used to interpret other ML models, in addition to
the fact that they have a lot of sub-categories, we put them in a
separate section. For this category, we list only the inherently
interpretable methods which were built specifically for RL.

1) ALGEBRAIC LANGUAGES

Maes et al. [84] proposed a new model that represents
MDP-based RL policies in a human-readable language. The
steps to build the model can be described as follows:

1) Selecting a custom human-readable language that con-
sists of a limited set of operators and terminal sym-
bols. The operators of the chosen language are used to
explain the scores of state-actions.

2) Defining a metric to evaluate the language selected in
the first step.

3) Applying the chosen metric to evaluate the inter-
pretability of the policy we need to explain.

The authors defined a language that consists of either
binary or unitary operators applied on a limited set of vari-
ables and constants. Then, the interpretability of the model
is defined by the total number of variables, constants and
operators that were used to represent the policy. For the
operators, the authors used min and max functions, in addition
to some simple algebraic operators such as plus, minus and
square root. The variables are the states and actions in the
RL policy we want to explain. In order to come up with
the optimal policy in this representation, they used Monte
Carlo simulations to generate the search space. Then after
that, the problem is formulated as a multi-armed bandit prob-
lem. The authors did not include samples for the generated
explanations or conduct any type of experiments or surveys
that involve non-expert judgement of the interpretability of
their approach. We think this part should be studied more
deeply. Although the used language was described as human-
readable, it is actually an algebraic based language, which
can be considered human-readable only if its statements have
a relatively short length in a way that enables humans to
understand them easily.

Similarly, Hein et al. [85] introduced another algebraic
based method for RL interpretation but with using genetic
algorithms. The authors collected data of four dimensions
that include: current state, action, next state and the received
reward, and then trained their algorithm for two Atari games:
Mountain Car and Cart-Pole. They also showed an example
for their generated interpretable policies, which consists of
linear equations accompanied with if/else rules. This expla-
nation is very similar to the these generated by decision
trees-based policies explained in Section VII-A. However, we

171071

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

think more data is needed in order to see whether their method
can be applied to more complex problems.

2) CUSTOM DOMAIN PROGRAMMING LANGUAGE

For this method, instead of using a neural network as a
learning model, we first design a custom domain program-
ming language [86], [87]. we have to design a language with
instructions as a first step. Some examples of these instruc-
tions are: change the car’s direction and increase/decrease
the speed. Then, the generated language is used to fit a
program that maximizes the policy reward. In other words,
it is like making the computer uses a dataset to write an inter-
pretable algorithm automatically. There are two challenges
that needs to be solved:

1) How to design a custom and interpretable programming

language for the application domain.

2) How to optimize the policy within the designed lan-

guage.

The authors of this method [86], [87] solved the second
challenge by using imitation learning. However, designing
a custom domain language for each new domain is still
needed. In addition to being human-readable, this approach
also makes it easier for the user to add his own knowledge or
customize the learned policy by altering the generated code
after the learning phase.

3) FORMAL SPECIFICATION LANGUAGE

Li and Xiao [88] proposed a formal method for RL inter-
pretation that allows us to prevent the RL agent from doing
unwanted behaviors. They perform this by adding more com-
plex constrains to the reward function using temporal logic.
As a result, instead of using one reward function that might
lead to a non-desired output (e.g., a cleaning robot might
learn to mess the place first before cleaning it), these new
constraints are stated explicitly in the reward function to
prevent such behaviors. However, the altered reward func-
tion has a non-markovian nature (does not satisfy Markov
assumption). To solve this problem, the authors introduced
a new policy search algorithm based on temporal logic that
utilizes constraint optimization to get the optimal policy and
proved to satisfy the added constraints. The authors tested
their method on a vehicle navigation application with adding
obstacle avoidance constraints explicitly, instead of assigning
a negative reward, and it outperformed another agent trained
on a normal reward function. The main benefit of this method
is that it makes the model more explainable by showing the
motivation objectives explicitly instead of hiding them behind
a negative reward. However, these constraints have to be
defined manually by domain experts which might limit the
applicability of this method in different fields.

4) INTERPRETABLE HIERARCHICAL RL

Hierarchical RL (HRL) tries to solve RL problems by
converting the optimization goal into smaller sub-goals
first, and then the optimization is done for each sub-goal

171072

separately [89]. In other words, instead of having only one
policy that maps states to actions, we have multiple local
policies where each one is responsible for achieving a spe-
cific sub-goal [90], [91], in addition to a global policy that
learns these sub-goals. Sometimes, the generated sub-goals
are divided again into smaller sub-goals which results in more
than two-levels hierarchical reinforcement learning [91].
If the sub-goals are understandable to humans and can be
used to explain the agent’s behaviour, they are considered a
type of RL interpretation. Note that not all the hierarchical
RL methods are used for interpretation, and hence we survey
in this section the methods that have interpretable sub-goals.

One of the problems of hierarchical RL is that the global
policy must use only the list of available local policies to
achieve the goal. Shu and Socher [91] introduced a hierarchi-
cal learning model that solves this challenge by adding the
sub-goals dynamically by humans during the learning in a
setup called weak supervision. In addition, the newly added
sub-goal can also be decomposed into other new sub-goals.
Although the generated explanations might be useful for
understanding the agent’s policy, we need them to be created
by actual domain experts which challenges the generalization
of this method across different applications, and increases the
cost of implementation.

Beyre et al. [92] proposed a similar algorithm called Dot-
to-Dot to apply interpretable HRL on robotic systems. Their
implementation is based on two agents: a high level agent
that learns the environment and task dynamics (the global
policy) and a low level agent that performs the raw law-level
actions (the local policies). In their application, a robotic arm
that needs to reach a specific point by moving in different
directions, is explained by training it to reach intermediate
points (sub-goals) which lead to the final goal. The sub-goals
are trained automatically and do not need to be defined in
advance.

We can also think of state space abstraction methods as
some sort of interpretable HRL. However, the difference here
instead of dividing the learning objective into multiple sub-
goals, we convert the state space into a smaller space, and then
we make the policy map the actions to this new domain. This
approach was followed by Akrour et al. [93]. They performed
this by clustering the states into new interpretable centers.

5) RECONSTRUCTION

This method is used to interpret DQN architecture and is
applied on different Atari games that have image inputs [94].
In addition to the normal architecture used to generate the
Q values in DQN, more layers (deconvoutional layers) are
added that are able to reconstruct the inputs again and the
reconstruction error (the quality of the reconstructed images)
is used as one of the parameters to learn the whole net-
work. Before applying the DQN outputs to the reconstruction
network, a latent space is first created which represents the
input source of the reconstruction network. The reconstructed
image together with the latent space is used to understand

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

which parts of the image were effective in taking decisions
by the agent.

E. NATURAL LANGUAGE EXPLANATIONS

One of RL interpretation methods is to explain the pol-
icy or some parts of it in human’s natural languages.
Note that the methods classified under this category
are different from the custom models which are based
on a human-readable language that we explained in
Section VII-D. In this approach, instead of using an inher-
ently human readable language-based model, we add the
natural language explanations to the already existent black
box models. Explanations can be made either to explain an
individual decision to justify why a specific action is chosen
(local template-based explanations), the entire policy, or to
answer user’s specific queries. Natural language explanations
can also be made to justify the selection of a specific decision
instead of another one (contrastive explanations).

1) TEMPLATE-BASED EXPLANATIONS

This approach is used to explain individual decisions of
MDP-based RL policies. The goal is to explain why a specific
action was recommended by an RL agent by filling a natural
language-based template. Wang et al. [95] built a frame-
work that generates template-based explanations to interpret
POMDP based robotic systems. Their system communicates
the different components of the POMDP systems (e.g., state
space, and action space) in human readable formats. For
example, it can explain the observed state to give the user an
idea about its sensors view.

Similarly, Khan et al. [96], [97] first created a domain
independent template. If we need to explain a specific action,
a template is filled by the states and scenarios that make
taking this action more likely. The next step is to fill this
template with the specific states and scenarios by running
the algorithm from the starting point (the action we want
to explain) until the final goal. Moreover, the authors of
this method [96] also proposed a framework for multiple
template generation that claimed to be minimal and sufficient.
According to their definition, an explanation (a group of
templates) is sufficient if it can justify the optimality of a
recommendation without need to use more templates. On the
other hand, an explanation is said to be minimal if it includes
the minimum possible number of templates. This method was
applied to two different problems: 1) advising students in
course selection, and 2) helping people who have dementia
to wash their hands. Since this explanation method is similar
to the task advisor in course selection task, the authors asked
student advisors to evaluate the generated explanations and
their responses were mainly positive. However, they did not
conduct a quantitative evaluation.

Dodson et al. [98], [99] applied a similar model on
academic advising. However, their model is a mixture of
domain independent and domain specific methodologies. The
explanation model is domain independent, while domain
knowledge is represented in the generated language

VOLUME 8, 2020

(system’s interface) and the explanation inputs (data sources).
This interpretation method explains why a specific action is
recommended by the agent’s policy in terms of both past
and predicted data. The authors designed their system in a
modular way to contain the following parts:

1) Model Based Explanation Module: explains the rec-
ommended action in terms of the best possible actions
it leads to.

2) Case-Based Explanation Module: explains the rec-
ommended action in terms of the past performance.

3) Natural Language Generator Module: this module
is responsible for generating domain-dependent natural
language expressions using the outputs of the previous
modules.

2) QUERY-BASED EXPLANATIONS

A query is a question asked by the user that explains
the agent’s policy or its individual decisions. Explanations
are provided through answering these queries. Hayes and
Shah [100] designed a method that answers the following
types of questions for both MDP based and Q— learning RL
systems.

1) What are the environmental conditions of performing a
specific action?

2) State the actions that the agent performs for a given set
of environmental conditions.

3) Why the agent did not take a given action.

The authors were able to answer these questions by perform-
ing the following steps:

1) Write the query in a natural language. For example,
we can make the following query to a self-driving car
agent: “When do you turn left?”.

2) Map the query to a template (for example, “When do
you do{action}?”")

3) Investigate the state space in order to find the states
where this action is likely.

4) Convert the list of these states (state map) to a natural
language representation that is shown to the user as the
final explanation.

The authors tested their method on three different robot
control applications and showed their explanations. They also
compared some samples from their explanations with expert
explanations which showed some similarities. However, it is
hard to evaluate this part quantitatively since it includes a
natural language input. A different type of query based expla-
nations is contrastive explanations. This method proposed by
van der Waa et al. [101] gives an explanation to justify why
an RL agent took a specific action instead of an alternative.
In other words, an answer to a contrastive question such as
why the agent performs action x instead of y is answered
as an explanation to the agent’s decision. Before answering
this question, first the state space is transformed into another
domain that is more understandable to humans. For example,
in a maze game we transform the x, y coordinates into a more
meaningful location descriptions, such as near the goal and

171073

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

near the monster. Also, a similar transformation is applied
on the reward function (e.g., instead of using the continuous
scores, we can change them into two discrete values: positive
and negative only). After this step, the contrastive question
is used to generate a foil policy that is very similar to the
agent’s original policy, but it does the contrastive behavior
stated in the question. Then this new constructed policy is
used to generate the most likely actions and states that will be
investigated by the agent. Finally, these states and actions are
combined together to construct the final textual explanation.

F. MODEL RECONCILIATION

These methods are based on the following assumptions:
1) humans have their own conceptual model M}, of the agent’s
model M,, which might be different from the actual agent’s
model, and 2) their ability to predict the agent’s behavior is
limited [102]. This approach was also used for classical plan-
ning problems that uses algorithms such as A*. For example,
Korpan and Epstein [103] proposed utilizing M, and M),
to generate natural language explanations to bridge the gap
between the two models. The objective of these methods is
to help humans understand the agent decisions starting from
their mental model M. We can divide this approach into two
main sub-categories: certain and uncertain.

1) CERTAIN MODEL RECONCILIATION

This method is built on the assumption that we have a com-
plete knowledge about the human’s model My [27] -just
like the agent model M,, - that is described in the Planning
Domain Definition Language (PDDL). The authors of this
method [27] called the process of making humans understand
M, through this type of explanation model reconciliation. The
human expects some action from the agent based on their
M},. When this expectation is different from the actual action,
the agent tries to correct My, to match M, and decrease the dif-
ference between the two models M}, and M. This correction
is given also in PDDL format. For example, it may tell the
user that the previous action has some preconditions, and that
is why action x is performed before what they expected [104].

2) UNCERTAIN MODEL RECONCILIATION

This method proposed by Sreedharan et al. [27] is an exten-
sion to the previous method where the full knowledge of
the human model is no longer required i.e., it generates an
explanation despite having different possible combinations
of M. The provided explanations are called conformant
explanations since they work for all combinations.

VIIl. CONCLUSION

In this paper, we gave a high level overview of the approaches
followed in RL interpretations, discussed categorization met-
rics used to classify interpretation methods, and applied
them on the methods we reviewed. Some of these methods
were borrowed from the interpretability literature of machine
learning such as saliency maps, while others were proposed

171074

mainly to interpret RL policies such as the custom learning
models.

Categorization of interpretation methods is difficult. The
ambiguity of terms such as “interpretation”, ‘“‘explanation”,
“justification”, and others muddy the waters. We tried to
use “interpretation’ to describe the objective of the meth-
ods, and “‘explanations” to describe the individual outputs
of the different approaches. In addition, we described the
applications tested by the method’s authors, and the majority
of these methods were applied on Atari games. It stands to
reason this property can be utilized to build a benchmark
platform for RL interpretability which enables comparisons
between methods on the same problem. It is understandable
this might not be possible when the domains are very differ-
ent. However, even benchmarking for homogeneous groups
of interpretation methods is absent. For example we do not
have a benchmark platform for saliency maps that target
explaining the same kind of RL policies. The subjective part
of interpretability is mainly measured by surveys. Different
surveys have been adopted by different authors, and we think
an added unified layer of output (domain experts and non-
experts) to the evaluation process will be beneficial for the
advancement of this field.

REFERENCES

[1] H. Chia, “In machines we trust: Are robo-advisers more trustworthy than
human financial advisers?”” Law, Tech. Hum., vol. 1, p. 129, 2019.

[2] D. Nikulin, A. Ianina, V. Aliev, and S. Nikolenko, “‘Free-lunch saliency
via attention in atari agents,” 2019, arXiv:1908.02511. [Online]. Avail-
able: http://arxiv.org/abs/1908.02511

[3] A. Weller, “Transparency: Motivations and challenges,” in Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. Springer,
2019, pp. 23-40.

[4] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in Proc. IEEE 5th Int. Conf. Data Sci. Adv. Analytics (DSAA),
Oct. 2018, pp. 80-89.

[5] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and
L. Kagal, “Explaining explanations: An overview of interpretability
of machine learning,” 2018, arXiv:1806.00069. [Online]. Available:
http://arxiv.org/abs/1806.00069

[6] S. Mohseni, N. Zarei, and E. D. Ragan, “A multidisciplinary survey and
framework for design and evaluation of explainable Al systems,” 2018,
arXiv:1811.11839. [Online]. Available: http://arxiv.org/abs/1811.11839

[71 R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D.
Pedreschi, “‘A survey of methods for explaining black box models,” ACM
Comput. Surveys, vol. 51, no. 5, pp. 1-42, Jan. 2019.

[8] C. Molnar, “Interpretable machine learning,” Lulu.com, 2019.

[9] A.Bibal and B. Frénay, “‘Interpretability of machine learning models and
representations: An introduction,” in Proc. ESANN, 2016, pp. 1-6.

[10] W. James Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and
B. Yu, “Interpretable machine learning: Definitions, methods,
and applications,” 2019, arXiv:1901.04592. [Online]. Available:
http://arxiv.org/abs/1901.04592

[11] O. Biran and C. Cotton, “Explanation and justification in machine learn-
ing: A survey,” in Proc. IJCAI Workshop Explainable Al (XAl), vol. 8,
2017, p. 1.

[12] A. Adadi and M. Berrada, “Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),” IEEE Access, vol. 6,
pp. 52138-52160, 2018.

[13] M. A. Ahmad, A. Teredesai, and C. Eckert, “Interpretable machine
learning in healthcare,” in Proc. IEEE Int. Conf. Healthcare Informat.
(ICHI), Jun. 2018, pp. 559-560.

[14] Q.-S. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: A
survey,” Frontiers Inf. Technol. Electron. Eng., vol. 19, no. 1, pp. 27-39,
Jan. 2018.

VOLUME 8, 2020

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[34]

[35]

[36]

[37]

Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8827-8836.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, ‘“‘Network dissec-
tion: Quantifying interpretability of deep visual representations,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 6541-6549.
T. M. Mitchell et al., Machine Learning, vol. 45, no. 37. Burr Ridge, IL,
USA: McGraw-Hill, 1997, pp. 870-877.

J. Kober, J. A. Bagnell, and J. Peters, ‘“‘Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238-1274, Sep. 2013.
A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electron. Imag., vol. 2017,
no. 19, pp. 70-76, Jan. 2017.

X. Hu, P-Y. Hsueh, C.-H. Chen, K. M. Diaz, F. Parsons, I. Ensari,
M. Qian, and Y.-K. Cheung, “An interpretable health behavioral inter-
vention policy for mobile device users,” IBM J. Res. Develop., vol. 62,
no. 1, pp. 1-4, Jan./Feb. 2018.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, p. 484, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

E. Akhtar and S. Farrukh, Practical Reinforcement Learning: Develop
Self-Evolving, Intelligent Agents With OpenAl Gym, Python and Java.
Birmingham, U.K.: Packt Publishing, 2017.

L. D. Pyeatt and A. E. Howe, “Decision tree function approximation
in reinforcement learning,” in Proc. 3rd Int. Symp. Adapt. Syst., Evol.
Comput. Probabilistic Graph. Models, vol. 2, 2001, pp. 70-77.

D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, ‘“Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, p. 832, Jul. 2019.

T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan
explanations as model reconciliation: Moving beyond explanation as
soliloquy,” in Proc. IJCAI Int. Joint Conf. Artif. Intell., vol. 1802, 2017,
pp. 156-163.

D. Kazhdan, Z. Shams, and P. Lido, “MARLeME: A multi-agent rein-
forcement learning model extraction library,” 2020, arXiv:2004.07928.
[Online]. Available: https://arxiv.org/abs/2004.07928

A. Papenmeier, G. Englebienne, and C. Seifert, “‘How model accuracy
and explanation fidelity influence user trust,” 2019, arXiv:1907.12652.
[Online]. Available: http://arxiv.org/abs/1907.12652

A. M. Roth, N. Topin, P. Jamshidi, and M. Veloso, “Conser-
vative Q-improvement: Reinforcement learning for an interpretable
decision-tree policy,” 2019, arXiv:1907.01180. [Online]. Available:
http://arxiv.org/abs/1907.01180

O. Bastani, Y. Pu, and A. Solar-Lezama, ‘‘Verifiable reinforcement learn-
ing via policy extraction,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 2494-2504.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, arXiv:1503.02531. [Online]. Available:
https://arxiv.org/abs/1503.02531

A. Silva, T. Killian, I. D. J. Rodriguez, S.-H. Son, and M. Gombolay,
“Optimization methods for interpretable differentiable decision trees in
reinforcement learning,” 2019, arXiv:1903.09338. [Online]. Available:
https://arxiv.org/abs/1903.09338

I. D. J. Rodriguez, W. T. Killian, S. Son, and C. M. Gombolay, ‘“‘Inter-
pretable reinforcement learning via differentiable decision trees,” 2019,
arXiv:1903.09338. [Online]. Available: http://arxiv.org/abs/1903.09338
P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, ““Distal explanations
for explainable reinforcement learning agents,” 2020, arXiv:2001.10284.
[Online]. Available: http://arxiv.org/abs/2001.10284

P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, ‘“Explainable rein-
forcement learning through a causal lens,” 2019, arXiv:1905.10958.
[Online]. Available: https://arxiv.org/abs/1905.10958

Y. Coppens, K. Efthymiadis, T. Lenaerts, and A. Nowe, “Distilling deep
reinforcement learning policies in soft decision trees,” in Proc. IJCAI
Workshop Explainable Artif. Intell. (IJCAI) Workshop Explainable Artif.
Intell., Macao, China, T. Miller, R. Weber, and D. Magazzeni, Eds.
Aug. 2019, pp. 1-6.

VOLUME 8, 2020

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

S. Karakovskiy and J. Togelius, “The mario Al benchmark and compe-
titions,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 55-67,
Mar. 2012.

G. Liu, O. Schulte, W. Zhu, and Q. Li, ““Toward interpretable deep rein-
forcement learning with linear model u-trees,” in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discovery Databases. Dublin, Ireland: Springer,
2018, pp. 414-429.

M. Vasic, A. Petrovic, K. Wang, M. Nikolic, R. Singh, and S. Khur-
shid, “MOoET: Interpretable and verifiable reinforcement learning via
mixture of expert trees,” 2019, arXiv:1906.06717. [Online]. Available:
http://arxiv.org/abs/1906.06717

S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8,
pp. 1177-1193, Aug. 2012.

A. Brown and M. Petrik, “Interpretable reinforcement learning with
ensemble methods,” 2018, arXiv:1809.06995. [Online]. Available:
http://arxiv.org/abs/1809.06995

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” 2017,
arXiv:1704.02685. [Online]. Available: https://arxiv.org/abs/1704.02685
K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside
convolutional networks: Visualising image classification models
and saliency maps,” 2013, arXiv:1312.6034. [Online]. Available:
http://arxiv.org/abs/1312.6034

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, *“Striv-
ing for simplicity: The all convolutional net,” 2014, arXiv:1412.6806.
[Online]. Available: https://arxiv.org/abs/1412.6806

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PLoS ONE, vol. 10, no. 7,
Jul. 2015, Art. no. e0130140.

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution
for deep networks,” 2017, arXiv:1703.01365. [Online]. Available:
https://arxiv.org/abs/1703.01365

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth-
grad: Removing noise by adding noise,” 2017, arXiv:1706.03825.
[Online]. Available: https://arxiv.org/abs/1706.03825

S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for
interpretability methods in deep neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 9734-9745.

J. Seo, J. Choe, J. Koo, S. Jeon, B. Kim, and T. Jeon, ‘“Noise-adding meth-
ods of saliency map as series of higher order partial derivative,” 2018,
arXiv:1806.03000. [Online]. Available: http://arxiv.org/abs/1806.03000

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas, “Dueling network architectures for deep rein-
forcement learning,” 2015, arXiv:1511.06581. [Online]. Available:
http://arxiv.org/abs/1511.06581

S. Greydanus, A. Koul, J. Dodge, and A. Fern, ““Visualizing and under-
standing atari agents,” 2017, arXiv:1711.00138. [Online]. Available:
http://arxiv.org/abs/1711.00138

R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes by
meaningful perturbation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 3429-3437.

Z. Yang, S. Bai, L. Zhang, and P. H. S. Torr, “Learn to interpret
atari agents,” 2018, arXiv:1812.11276. [Online]. Available:
http://arxiv.org/abs/1812.11276

P. Gupta, N. Puri, S. Verma, S. Singh, D. Kayastha, S. Deshmukh, and
B. Krishnamurthy, “Explain your move: Understanding agent actions
using focused feature saliency,” 2019, arXiv:1912.12191. [Online].
Available: https://arxiv.org/abs/1912.12191

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

I. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignateva, “Deep
attention recurrent Q-Network,” 2015, arXiv:1512.01693. [Online].
Available: http://arxiv.org/abs/1512.01693

M. Hausknecht and P. Stone, “Deep recurrent q-learning for
partially observable MDPs,” in Proc. AAAI Fall Symp., 2015,
pp. 1-52.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

171075

IEEE Access

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

S. Mousavi, M. Schukat, E. Howley, A. Borji, and N. Mozayani,
“Learning to predict where to look in interactive environments using
deep recurrent g-learning,”” 2016, arXiv:1612.05753. [Online]. Available:
https://arxiv.org/abs/1612.05753

R. Zhang, Z. Liu, L. Zhang, A. Jake Whritner, S. Karl Muller, M. Mary
Hayhoe, and H. Dana Ballard, “AGIL: Learning attention from human for
visuomotor tasks,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 663-679.
R. Zhang, C. Walshe, Z. Liu, L. Guan, K. S. Muller, J. A. Whritner,
L. Zhang, M. M. Hayhoe, and D. H. Ballard, “Atari-HEAD: Atari human
eye-tracking and demonstration dataset,” 2019, arXiv:1903.06754.
[Online]. Available: https://arxiv.org/abs/1903.06754

A. H. Qureshi, Y. Nakamura, Y. Yoshikawa, and H. Ishiguro, “Show,
attend and interact: Perceivable human-robot social interaction through
neural attention Q-network,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2017, pp. 1639-1645.

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim,
“Sanity checks for saliency maps,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 9505-9515.

A. Atrey, K. Clary, and D. Jensen, ““Exploratory not explanatory: Counter-
factual analysis of saliency maps for deep reinforcement learning,” 2019,
arXiv:1912.05743. [Online]. Available: http://arxiv.org/abs/1912.05743
J. Luo, S. Green, P. Feghali, G. Legrady, and C. Kaya Kog, “Visual
diagnostics for deep reinforcement learning policy development,” 2018,
arXiv:1809.06781. [Online]. Available: http://arxiv.org/abs/1809.06781
H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp- 1-13.

J. Peng and R. J. Williams, “Incremental multi-step g-learning,” in
Machine Learning Proceedings. Amsterdam, The Netherlands: Elsevier,
1994, pp. 226-232.

A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam,
and P. Das, “Explanations based on the missing: Towards contrastive
explanations with pertinent negatives,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 592-603.

M. L. Olson, L. Neal, F. Li, and W.-K. Wong, “Counterfactual states
for atari agents via generative deep learning,” 2019, arXiv:1909.12969.
[Online]. Available: http://arxiv.org/abs/1909.12969

L. V. D. Maaten and G. Hinton, ‘“Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

N. B. Zrihem, T. Zahavy, and S. Mannor, *“Visualizing dynamics: From
t-SNE to SEMI-MDPs,” 2016, arXiv:1606.07112. [Online]. Available:
https://arxiv.org/abs/1606.07112

T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black
box: Understanding DQNs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1899-1908.

I. Lage, D. Lifschitz, F. Doshi-Velez, and O. Amir, “Exploring
computational user models for agent policy summarization,” 2019,
arXiv:1905.13271. [Online]. Available: http://arxiv.org/abs/1905.13271
O. Amir, F. Doshi-Velez, and D. Sarne, “Agent strategy summariza-
tion,” in Proc. 17th Int. Conf. Auto. Agents MultiAgent Syst., 2018,
pp- 1203-1207.

D. Amir and O. Amir, “Highlights: Summarizing agent behavior to
people,” in Proc. 17th Int. Conf. Auton. Agents MultiAgent Syst., 2018,
pp. 1168-1176.

S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, “Establishing
appropriate trust via critical states,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2018, pp. 3929-3936.

N. Topin and M. Veloso, “Generation of policy-level explanations for
reinforcement learning,” 2019, arXiv:1905.12044. [Online]. Available:
http://arxiv.org/abs/1905.12044

A.Zien, N. Kraemer, S. Sonnenburg, and G. Raetsch, “The feature impor-
tance ranking measure,” 2009, arXiv:0906.4258. [Online]. Available:
https://arxiv.org/abs/0906.4258

I. Lage, D. Lifschitz, F. Doshi-Velez, and O. Amir, “Toward robust policy
summarization,” in Proc. 18th Int. Conf. Auton. Agents MultiAgent Syst.,
2019, pp. 2081-2083.

S. Huang, D. Held, P. Abbeel, and A. Dragan, “Enabling robots to
communicate their objectives,” in Robotics: Science and Systems XIII.
Jul. 2017.

P. Sequeira and M. Gervasio, “Interestingness elements for explain-
able reinforcement learning: Understanding agents’ capabilities and
limitations,” Artif. Intell., vol. 288, Nov. 2020, Art. no. 103367, doi:
10.1016/j.artint.2020.103367.

171076

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

F. Sado, C. Kiong Loo, M. Kerzel, and S. Wermter, “Explainable
goal-driven agents and robots - a comprehensive review and
new framework,” 2020, arXiv:2004.09705. [Online]. Available:
http://arxiv.org/abs/2004.09705

F. Maes, R. Fonteneau, L. Wehenkel, and D. Ernst, “Policy search in a
space of simple closed-form formulas: Towards interpretability of rein-
forcement learning,” in Proc. Int. Conf. Discovery Sci. Lyon, France:
Springer, Oct. 2012, pp. 37-51.

D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for rein-
forcement learning by genetic programming,” 2017, arXiv:1712.04170.
[Online]. Available: https://arxiv.org/abs/1712.04170

A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, ‘“‘Programmat-
ically interpretable reinforcement learning,” 2018, arXiv:1804.02477.
[Online]. Available: http://arxiv.org/abs/1804.02477

A. Verma, ““Verifiable and interpretable reinforcement learning through
program synthesis,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 9902-9903.

X. Li, “A formal methods approach to interpretability, safety and com-
posability for reinforcement learning,” Ph.D. dissertation, Dept. Mech.
Eng., Boston Univ., Boston, MA, USA, 2020.

A. G. Barto and S. Mahadevan, ‘“Recent advances in hierarchical rein-
forcement learning,” Discrete Event Dyn. Syst., vol. 13, nos. 1-2,
pp. 41-77, 2003.

O. Nachum, S. S. Gu, H. Lee, and S. Levine, ‘“‘Data-efficient hierarchical
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 3303-3313.

T. Shu, C. Xiong, and R. Socher, “Hierarchical and interpretable
skill acquisition in multi-task reinforcement learning,” 2017,
arXiv:1712.07294. [Online]. Available: http://arxiv.org/abs/1712.07294
B. Beyret, A. Shafti, and A. A. Faisal, “Dot-to-Dot: Explainable
hierarchical reinforcement learning for robotic manipulation,” 2019,
arXiv:1904.06703. [Online]. Available: https://arxiv.org/abs/1904.06703
R. Akrour, D. Tateo, and J. Peters. Towards Reinforcement
Learning of Human Readable Policies. [Online]. Available: https:/
www.ias.informatik.tu-darmstadt.de/uploads/Team/Riad Akrour/
decodeml2019.pdf

R. M. Annasamy and K. Sycara, “Towards better interpretability in
deep g-networks,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 4561-4569.

N. Wang, D. V. Pynadath, and S. G. Hill, “Trust calibration within a
human-robot team: Comparing automatically generated explanations,”
in Proc. 11th ACM/IEEE Int. Conf. Human-Robot Interact. (HRI),
Mar. 2016, pp. 109-116.

0. Z. Khan, P. Poupart, and J. P. Black, “Minimal sufficient explanations
for factored Markov decision processes,” in Proc. 19th Int. Conf. Auto-
mated Planning Scheduling, 2009, pp. 1-7.

O. Z. Khan, Policy Explanation and Model Refinement in Decision-
Theoretic Planning. Waterloo, ON, Canada: Univ. of Waterloo,
2013.

T. Dodson, N. Mattei, and J. Goldsmith, ““A natural language argumenta-
tion interface for explanation generation in Markov decision processes,”
in Proc. Int. Conf. Algorithmic Decis. Theory. Piscataway, NJ, USA:
Springer, 2011, pp. 42-55.

T. Dodson, N. Mattei, J. T. Guerin, and J. Goldsmith, “An English-
language argumentation interface for explanation generation with Markov
decision processes in the domain of academic advising,” ACM Trans.s
Interact. Intell. Syst., vol. 3, no. 3, p. 18, 2013.

B. Hayes and J. A. Shah, “Improving robot controller transparency
through autonomous policy explanation,” in Proc. ACM/IEEE Int. Conf.
Hum.-Robot Interact., Mar. 2017, pp. 303-312.

J. van der Waa, J. van Diggelen, K. van den Bosch, and
M. Neerincx, “Contrastive explanations for reinforcement learning
in terms of expected consequences,” 2018, arXiv:1807.08706. [Online].
Available: http://arxiv.org/abs/1807.08706

S. Penney, J. Dodge, C. Hilderbrand, A. Anderson, L. Simpson, and
M. Burnett, “Toward foraging for understanding of StarCraft agents: An
empirical study,” in Proc. 23rd Int. Conf. Intell. User Interfaces, 2018,
pp. 225-237.

R. Korpan, S. L. Epstein, A. Aroor, and G. Dekel, “WHY: Natural
explanations from a robot navigator,” 2017, arXiv:1709.09741. [Online].
Available: http://arxiv.org/abs/1709.09741

S. Sreedharan and S. Kambhampati, ‘““Handling model uncertainty and
multiplicity in explanations via model reconciliation,” in Proc. 28th Int.
Conf. Automated Planning Scheduling, 2018, pp. 1-10.

VOLUME 8, 2020

http://dx.doi.org/10.1016/j.artint.2020.103367

A. Alharin et al.: Reinforcement Learning Interpretation Methods: A Survey

IEEE Access

ALNOUR ALHARIN (Member, IEEE) is cur-
rently pursuing the data science master’s degree
(area of specialization is statistics). He is also a
Machine Learning Engineer and a Researcher with
a solid experience in software engineering, and a
strong background in computer science. His cur-
rent research interests include machine learning
(especially reinforcement learning) interpretabil-
ity and car traffic estimation through computer
vision (objects detection and tracking) in smart
city applications. He has extensive experience in multiple programming
languages especially Python, C/C++, and Java. He has also a full working
knowledge both in back-end and Android development through the imple-
mentation of several projects.

THANH-NAM DOAN received the bachelor of
engineering degree in computer science from the
Ho Chi Minh City University of Technology,
in 2011, and the Ph.D. degree from Singapore
Management University, in 2018, where he stud-
ied about the two new latent features of location
named: neighborhood competition and area attrac-
tiveness. After his doctoral training, he spent one
year as a Postdoctoral Researcher in the State Uni-
versity of New York, Albany, honing his exper-
tise in the characterization of deep learning for recommender systems and
educational data mining. He has been joining The University of Tennessee
at Chattanooga since August 2019 under the supervision of Dr. Sartipi.
In UTC, he focuses on working with transportation data and his goal is to
apply big data techniques, data mining, and machine learning toward more
cost-effective public transportation as well as more efficient way to manage
traffic lights. He is also working with other students to build an interpretable
machine learning models which could help people to understand the under-
lying process without much mathematical knowledge.

VOLUME 8, 2020

MINA SARTIPI (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
the Sharif University of Technology, Tehran, Iran,
in 2001, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Georgia Tech,
in 2003 and 2006, respectively. She is currently
the Director of the Center for Urban Informatics
and Progress (CUIP). She is also a UC Foundation
Professor with the Computer Science and Engi-
neering Department, where she leads the Smart
Communications and Analysis Lab (SCAL). Her research interests include
communications and data science, in particular advanced wireless com-
munications and data analysis for smart healthcare and urban futures. Dr.
Sartipi has been a member of the board of directors for Variable, Inc.,
Chattanooga, TN, USA, since 2013, and The Enterprise Center, Chattanooga,
TN, USA, since 2017. In 2008, she was named UC Foundation Assistant
Professor. This award was given to her based on her research activities and
students evaluating her teaching. She was awarded the UTC Outstanding
Faculty Research and Creative Achievement Award in 2016. She had been
awarded the Best Researcher with the Department of CSE and the College
of CECS in 2010, 2013, 2014, and 2015. She has served as the Technical
Program Chair of conferences in the areas of wireless communications and
networking. Additionally, she has been called on to review several articles
on data compression and error control coding for various IEEE, ACM, and
EURASIP conferences and journals in the past several years.

171077

