
Transformation Groups c⃝Springer Science+Business Media New York (2019)

VERSAL TORSORS AND RETRACTS

A. S. MERKURJEV∗

Department of Mathematics
University of California

Los Angeles
CA, 90095-1555 USA

merkurev@math.ucla.edu

Abstract. Let G be an algebraic group over F and p a prime integer. We introduce
the notion of a p-retract rational variety and prove that if Y → X is a p-versal G-torsor,
then BG is a stable p-retract of X. It follows that the classifying space BG is p-retract
rational if and only if there is a p-versal G-torsor Y → X with X a rational variety, that
is, all G-torsors over infinite fields are rationally parameterized. In particular, for such
groups G the unramified Galois cohomology group H Fn

nr

(
(BG),Qp/Zp(j) coincides with

)
Hn(F,Qp/Zp(j)

)
.

Introduction

Let G be an algebraic group over a field F . In the present paper we study
G-torsors E → SpecK for field extensions K/F . In many cases G-torsors are
related to classical algebraic objects. For example, if G = PGLn such objects are
central simple algebras A of degree n over K. Every PGLn-torsor over SpecK is
the torsor of isomorphisms between A and the matrix algebra Mn(K).

A G-torsor f : Y → X is called versal if every G-torsor E → SpecK for
an extension K/F with K an infinite field is isomorphic to the pull-back of f
with respect to a morphism (a point) SpecK → X and the set of images of such
morphisms is dense in X. Thus, a versal G-torsor keeps information about all
G-torsors over field extensions K/F .

Versal G-torsors exist. For example, let V be a generically free representation
of G (that is the generic stabilizer of a vector in V is trivial). There is a nonempty
G-invariant open subset I ⊂ V and a G-torsor I → Z for some variety Z over F .
(One can think of Z as the variety of orbits I/G.) It appears that I → Z is a
versal G-torsor. We call such torsors standard versal G-torsors. We think of the
variety Z as an “approximation” of the stack BG of all G-torsors, which we call
the classifying space of G.

If I → Z and I ′ → Z ′ are two standard versal G-torsors, then the varieties Z
and Z ′ are stably birationally isomorphic. In other words, the stable birational
type of the classifying space BG is well defined.
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A. S. MERKURJEV

If I → Z is a standard versal G-torsor and Y → X is a versal G-torsor, then Z
and X may not be stably birationally isomorphic. But we prove in Theorem 9 that
Z is a stable retract of X, that is, there are rational morphisms f : Z 99K X ×An

F

and g : X × An
F 99K Z for some n such that the composition g ◦ f is defined and

equals the identity of Z.

We say that all G-torsors over infinite fields for an algebraic group G are
rationally parameterized if there is a versal G-torsor Y → X with X a rational
variety. We prove (Theorem 10) that all G-torsors over infinite fields are rationally
parameterized if and only if BG (that is, its approximation Z for a standard versal
torsor I → Z) is a retract of a rational variety.

We also consider the local setting. Namely, for a prime integer p we consider
p-versal torsors and define p-retracts, roughly, by ignoring the effects given by
dominant morphisms of finite degree prime to p. We prove local analogs of the
theorems mentioned above.

In Section 6 we prove (Theorem 15) that if X and X ′ are smooth varieties over
F such that X is a p-retract of X ′, then there is an injective homomorphism of
the groups of unramified cohomology

Hn
nr

(
F (X),Qp/Zp(j)

)
→ Hn

nr

(
F (X ′),Qp/Zp(j)

)
.

In particular, if X is a p-retract rational smooth variety over F , then the natural
homomorphism

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (X),Qp/Zp(j)

)
is an isomorphism.

We use the following notation. A variety over a field F is an integral separated
scheme of finite type over F . We write F (X) for the function field of X over F .
An algebraic group over F is an affine group scheme of finite type over F (not
necessarily smooth or connected). The degree of a dominant morphism Y → X of
varieties is the integer [F (X) : F (Y )]. We write X ≈ Y if X and Y are birationally
isomorphic, i.e., F (X) ≃ F (Y ) over F . If X is a scheme over F and L/F is a field
extension, we write XL for the scheme X ×F SpecL over L. The generic fiber
of a dominant rational morphism f : Y 99K X of varieties over F is the scheme
U ×X SpecK over K = F (X), where U ⊂ Y is the domain of definition of f . We
write pt for SpecF .

Let Y → X be a G-torsor with X a variety over F . The trivial vector bundle
Y × V → Y with the diagonal G-action on Y × V descends to a vector bundle
Y V → X (see [BK] and [V, Chap. 4]).

The letter p in the paper denotes either a prime integer or 0. An integer k is
said to be prime to p when k is prime to p if p > 0 and k = 1 if p = 0.

We collect technical (mostly known) results in the Appendix.

Acknowledgment. The author is grateful to Jean-Louis Colliot-Thélène, David
Harbater and Zinovy Reichstein for useful comments.
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VERSAL TORSORS AND RETRACTS

1. Split rational morphisms

A rational dominant morphism of varieties f : X ′ 99K X over a field F is called
(rationally) p-split if for every nonempty open subset U ′ ⊂ X ′ in the domain of
definition of f , there is a morphism of varieties g : Y → X ′ such that Im(g) ⊂ U ′

and the composition f ◦ g : Y → X is dominant of finite degree prime to p:

Y

of degree prime to p

��

g

~~||
||
||
|

X ′ f //___ X

.

Clearly, a dominant morphism f : X ′ 99K X is p-split if and only if the set of
closed points of degree prime to p in the generic fiber of f is everywhere dense.

Remark 1. By Lemma 21, the set of closed points of degree prime to p > 0 in a
regular variety is either empty or everywhere dense. It follows that in the case the
generic fiber of a dominant rational morphism f : X ′ 99K X is regular, the density
condition in the definition of p-retract for f can be removed if p > 0.

Example 1. If f : X ′ 99K X is a dominant rational morphism of finite degree
prime to p, then f is p-split. Indeed, we can take Y the domain of definition of f
and g the inclusion of Y into X ′.

We say that f is split if f is p-split for p = 0. By definition, f is split if and
only if for every nonempty open subset U ′ in the domain of definition of f , there
is a rational morphism g : X 99K X ′ such that Im(g) ∩ U ′ ̸= ∅ and f ◦ g = 1X .
Equivalently, f is split if and only if the rational points in the generic fiber of f
are everywhere dense.

Lemma 1.

(1) If f : X ′ 99K X and f ′ : X ′′ 99K X ′ are p-split morphisms of varieties over
F , then so is f ◦ f ′.

(2) Every birational isomorphism is split.

(3) If X is a variety over F such that the field F (X) is infinite, then the
projection X × An

F → X is split for all n.

Proof. (1): Let U ′′ ⊂ X ′′ be a nonempty open subset in the domains of definition
of f ′ and f ◦ f ′. Choose a morphism g′ : Y ′ → X ′′ such that Im(g′) ⊂ U ′′ and
t′ := f ′ ◦ g′ is dominant of finite degree prime to p.

By Lemma 19, there exists a nonempty open subset U ′ ⊂ X ′ in the domain of
definition of f such that for every point u ∈ U ′ there is y ∈ Y ′ with t′(y) = u and
finite [F (y) : F (u)] prime to p. Since f is p-split, there is a morphism g : Y → X ′

with Im(g) ⊂ U ′ such that t := f ◦ g is dominant of finite degree prime to p.

By Lemma 20, there exists a variety Y ′′, a morphism g′′ : Y ′′ → Y ′ and a
dominant morphism t′′ : Y ′′ → Y of finite degree prime to p such that t′◦g′′ = g◦t′′:
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A. S. MERKURJEV

Y ′′

g′′

}}{{
{{
{{
{{

t′′

��
Y ′

t′

��

g′

}}{{
{{
{{
{{

Y

t

��

g

}}{{
{{
{{
{{

X ′′ f ′
//___ X ′ f / /___ X.

We have

(f ◦ f ′) ◦ (g′ ◦ g′′) = f ◦ t′ ◦ g′′ = f ◦ g ◦ t′′ = t ◦ t′′

and Im(g′ ◦ g′′) ⊂ Im(g′) ⊂ U ′′. Moreover, deg(t ◦ t′′) = deg(t) deg(t′′) is prime to
p. Therefore, f ◦ f ′ is p-split.

(2) follows immediately from the definition.

(3): Under the assumption, the F (X)-points are dense in the generic fiber An
F (X)

of the projection X × An
F → X. �

Lemma 2. If f : X ′ 99K X is p-split, then so is f × 1 : X ′ × An
F 99K X × An

F for
every n.

Proof. Let W be the domain of definition of f and U ⊂ W ×An
F a nonempty open

subset. As the projection p : W ×An
F → W is flat, it is an open morphism, hence

the image U ′ := p(U) is open in W . As f is p-split, there is a morphism of varieties
g : Y → X ′ such that Im(g) ⊂ U ′ and the composition f ◦ g : Y → X is dominant
of finite degree prime to p. It follows that the image of g× 1 : Y ×An

F → X ′ ×An
F

intersects U . Therefore, the subset T := (g × 1)−1(U) ⊂ Y × An
F is nonempty

open. Then the restriction h := (g × 1)|T : T → X ′ × An
F satisfies Im(h) ⊂ U and

the composition (f × 1) ◦ h : T → X ×An
F is dominant of finite degree prime to p.

�

2. Retracts

We say that a variety X is a (rational ) p-retract of a variety X ′ if there is a
p-split rational morphism f : X ′ 99K X. We write X <p X ′ if X is a p-retract of
X ′.

If p = 0, we simply write X < X ′ for X <p X ′ and call X a retract of X ′.
Clearly, X < X ′ implies X <p X ′ for every p.

Our definition of retract coincides with the one in [R, Def. 1.1].

Example 2. If f : X ′ 99K X is a dominant rational morphism of finite degree
prime p, then X <p X ′ (see Example 1).

In the case p = 0, the following lemma was proved in [R, Lems. 1.3, 1.4, Ex. 1.5a].
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Lemma 3.

(1) If X <p X ′ and X ′ <p X ′′, then X <p X ′′.
(2) If X ≈ Y , then X <p Y <p X for all p.
(3) If X <p X ′, X ≈ Y and X ′ ≈ Y ′, then Y <p Y ′.
(4) If X is a variety over F such that the function field F (X) is infinite, then

X < (X × An
F ) for all n.

Proof. (3) follows from (1) and (2). The other statements are proved in Lemma 1.
�

Lemma 3 shows that the relation <p can be defined on the set of birational
isomorphism classes of varieties over F .

The following statement is proved in Lemma 2.

Lemma 4. If X <p X ′, then (X × An
F ) <p (X ′ × An

F ) for every n.

We say that X is a stable p-retract of X ′ and write X�pX
′ if X <p (X ′×An

F )
for some n ≥ 0 (cf. [R, Def. 4.1]). If X is a p-retract of X ′, i.e., X <p X ′, then
X �p X

′.

Corollary 5. If X �p X
′ and X ′ �p X

′′, then X �p X
′′.

Proof. We have X <p X ′×Am
F and X ′ <p X ′′×An

F for some m and n. By Lemma
4, X ′ × Am

F <p X ′′ × An+m
F , hence X <p X ′′ × An+m

F in view of Lemma 3. �

If X and Y are varieties over F , we write X
s.b.
≈ Y if X and Y are stably

birational, i.e., X × Am
F ≈ Y × An

F for some m and n.

Corollary 6. If F (Y ) is infinite, X�pX
′, X

s.b.
≈ Y and X ′ s.b.

≈ Y ′, then Y �p Y
′.

Proof. We have birational isomorphisms X ×Am
F ≈ Y ×An

F , X
′ ×Ar

F ≈ Y ′ ×Ak
F

and X <p X ′ × As
F for some m,n, r, k, s. By Lemmas 3 and 4,

Y <p (Y ×An+r
F ) <p (X×Am+r

F )�p(X×Ar
F ) <p (X ′×Ar+s

F ) <p (Y ′×Ak+s
F )�pY

′.

By Corollary 5, Y �p Y
′. �

A variety X is called p-retract rational if X is a p-retract of a rational variety.
Equivalently, by Lemma 3, X is p-retract rational if and only if X�p pt. A variety
X is called retract rational if X is p-retract rational for p = 0.

3. Versal torsors

Let G be an algebraic group over F . We consider G-torsors Y → X over a
variety X. Note that we do not assume that Y is a variety, i.e., Y is integral.

A G-torsor Y → X over a variety X is called p-versal if for every G-torsor E →
Spec (K) for a field extension K/F with K an infinite field and every nonempty
open subset U ⊂ X, there is a finite field extension L/F of degree prime to p such
that the G-torsor EL → SpecL is isomorphic to the pull-back of Y → X with
respect to a point x : Spec (L) → X with Im(x) ∈ U (see [DR]).

A G-torsor Y → X is called versal if it is p-versal for p = 0 (see [GMS]). Every
versal torsor is p-versal for every p.
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Proposition 7. Let f : X1 → X2 be a dominant morphism of varieties over F ,
Y2 → X2 a G-torsor and Y1 → X1 the pull-back of Y2 → X2 with respect to f .
Then

(1) If Y1 → X1 is a p-versal G-torsor, then so is Y2 → X2.
(2) If Y2 → X2 is a p-versal G-torsor and f is p-split, then Y1 → X1 is p-versal.

Proof. (1) Let E → SpecK be a G-torsor, where K is a field extension of F such
thatK is an infinite field, and U2 ⊂ X2 a nonempty open subset. As f is dominant,
the open subset U1 := f−1(U2) ⊂ X1 is nonempty. Since Y1 → X1 is a p-versal
torsor, there is a field extension L/K of finite degree prime to p and a point x1 :
SpecL → X1 with Im(x1) ⊂ U1 such that the torsor EL → SpecL is isomorphic
to the pull-back of Y1 → X1 with respect to x1. If x2 := f ◦ x1 : SpecL → X2,
then Im(x2) ⊂ U2 and EL → SpecL is isomorphic to the pull-back of Y2 → X2

with respect to x2.

(2) Let E → SpecK be a G-torsor, where K is a field extension of F such
that K is an infinite field, and U1 ⊂ X1 a nonempty open subset. Since f is
p-split, there is a morphism of varieties g : Y → X1 such that Im(g) ⊂ U1 and
the composition f ◦ g : Y → X2 is finite of degree prime to p. In view of Lemma
19 applied to the morphism f ◦ g : Y → X2 of finite degree prime to p, we find a
nonempty open subset U2 ⊂ X2 such that for every point x2 ∈ U2 there is a point
y ∈ Y with the property that f(g(y)) = x2 and the field extension F (y)/F (x2) is
finite of degree prime to p.

As Y2 → X2 is a p-versal G-torsor, there is a field extension L/K of finite
degree prime to p and a morphism h : SpecL → X2 such that {x2} := Im(h) ⊂ U2

and EL → SpecL is isomorphic to the pull-back of the torsor Y2 → X2 with
respect to h. Choose a point y ∈ Y such that f(g(y)) = x2 and the field extension
F (y)/F (x2) is finite of degree prime to p. By Corollary 18, applied to the morphism
f ◦ g : Y → X2, there is a field extension L′/L of finite degree prime to p and
a morphism k : SpecL′ → Y such that Im(k) = {y} and the composition of
SpecL′ → SpecL with h coincides with f ◦ g ◦ k:

SpecL′

k

��

// SpecL

h

##G
GG

GG
GG

GG

Y
g // X1

f // X2.

It follows that EL′ → SpecL′ is isomorphic to the pull-back of the torsor Y1 → X1

with respect to g ◦ k and [L′ : K] = [L′ : L] · [L : K] is prime to p. Finally,
Im(g ◦ k) = g(Im(k)) = {g(y)} ⊂ U1. It follows that Y1 → X1 is a p-versal torsor.
�

4. Standard versal torsors

Let G be an algebraic group over F . Let V be a generically free G-representation
and I ⊂ V a nonempty G-invariant open subset together with a G-torsor I → Z,
where Z is a variety over F . We call I → Z a standard G-torsor. We always
assume that I is chosen so that dim(Z) > 0, hence the field F (Z) is infinite.
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VERSAL TORSORS AND RETRACTS

Example 3. Embed G into GLn as a closed subgroup. Then the natural mor-
phism GLn → GLn/G is a standard G-torsor since GLn is an open subset of the
affine space of Mn(F ) and G acts on Mn(F ) by multiplication generically freely.

Let Y → X be a G-torsor with X a variety over F . The trivial vector bundle
Y × V → Y with the diagonal G-action on Y × V descends to a vector bundle
Y V → X. The open nonempty G-invariant subset Y × I ⊂ Y × V descends to an
open subset Y I ⊂ Y V . In particular, Y I is a variety over F birational to X × V ,

therefore, Y I s.b.
≈ X. The projection Y × I → I yields a morphism Y I → Z.

Let E → SpecK, where K = F (Z), be the generic fiber of I → Z. Write
Y E → SpecK for the generic fiber of Y I → Z. As Y E is a localization of Y I , Y E

is a variety over K.
If I1 → Z1 and I2 → Z2 are two standard G-torsors, then

Z1
s.b.
≈ (I1)

I2 ≃ (I2)
I1

s.b.
≈ Z2,

hence Z1 and Z2 are stably birationally isomorphic.
If Y is a variety, we write BG �p Y if Z �p Y for a standard G-torsor I → Z.

By Corollary 6, this makes sense. We say that BG is stably rational (respectively,
p-retract rational) if so is Z.

Example 4. If char(F ) = p > 0 and G is a finite p-group, then BG is stably
rational (see [G] and [JLY, §5.6]).

Example 5. Let H ⊂ G be a subgroup of finite index prime to p and I → Z a
standard G-torsor. Then I → T := I/H is a standard H-torsor. Since the natural
morphism T → Z is of degree [G : H] prime to p, we have Z <p T by Example 2.
In other words, BG <p BH.

By [GMS, Part 1, §5.4], every standard G-torsor I → Z is versal.

Proposition 8. Let Y → X be a G-torsor with X a variety and let I → Z be a
standard G-torsor. Then Y → X is p-versal if and only if the morphism Y I → Z
is p-split.

Proof. ⇒: Let K = F (Z) and E → SpecK the generic fiber of I → Z. It suffices
to show that closed points of degree prime to p are dense in Y E .

Let U ⊂ Y E be a nonempty open subset. We will show that U contains a closed
point of degree prime to p.

Since Y E is a localization of Y I , there is an open subset U ′ ⊂ Y I such that U
is the pull-back of U ′ under the natural morphism Y E → Y I . As the morphism
Y I → X is flat, it is open and the image W of U ′ is an open subset of X.

As Y → X is a p-versal torsor, there exists a field extension L/K of finite
degree prime to p and a point x : SpecL → X such that Im(x) ⊂ W and the
torsor EL → SpecL is isomorphic to the pull-back of Y → X with respect to x.
We can find a variety Z ′ over F , a morphism s : Z ′ → Z of varieties over F such
that the field extension F (Z ′)/F (Z) given by s is isomorphic to L/K, a morphism

t : Z ′ → X such that the composition SpecL
∼→ Z ′ t→ X coincides with x and
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Im(t) ⊂ W such that there is a commutative diagram

I

��

I ′
aoo

��

b // Y

��
Z Z ′soo t // X

with two fiber product squares.
The diagram

I × I

��

I ′ × I
a×1oo

��

b×1 // Y × I

��
I I ′

aoo b // Y

,

where the vertical maps are first projections, yields a fiber product diagram

II

��

(I ′)I
goo

��

f // Y I

��
Z Z ′soo t // X

.

Since Im(t) ⊂ W , we have Im(f) ∩ U ′ ̸= ∅. Therefore, the open subset T ′ :=
f−1(U ′) ⊂ (I ′)I is nonempty. As (I ′)E is a localization of (I ′)I , the inverse image
T of T ′ under the natural morphism (I ′)E → (I ′)I is a nonempty open subset of
(I ′)E . The commutativity of the diagram

(I ′)E

��

h // Y E

��
(I ′)I

f // Y I

implies that h(T ) ⊂ U .
The natural morphism g′ : (I ′)E → IE of varieties over K induced by g is

dominant of finite degree prime to p. By Lemma 19 applied to the restriction
k : T → IE of g′, there is a nonempty open subset U ′′ ⊂ IE such that for every
point x ∈ U ′′ there is a point t ∈ T with the property that k(t) = x and the field
extension K(t)/K(x) is finite of degree prime to p.

The variety I is a nonempty G-invariant open subset of a vector space V .
Therefore, IE is open in the twist (V × E)/G of V by E. By a variant of the
classical Hilbert Theorem 90, V E is a vector space over K, hence V E ≃ VK . It
follows that IE ≈ IK over K. Therefore, as K is an infinite field, the K-points of
IE are everywhere dense. Choose a K-point x ∈ U ′′ ⊂ IE . There is a closed point
t ∈ T of degree prime to p such that k(t) = x. Then h(t) ∈ U ⊂ Y E is a closed
point of degree prime to p.
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⇐: Consider the following diagram with two fiber product squares

I

��

Y × I
p2oo

��

p1 // Y

��
Z Y Ioo // X

.

As I → Z is versal and Y I → Z is p-split, by Proposition 7(2), the torsor Y × I →
Y I is p-versal. It follows from Proposition 7(1) that Y → X is p-versal. �
Remark 2. It was shown in [DR] that if Y → X is a versal torsor, the rational
points are dense in Y . The p-local analog is false if p > 0.

Example 6. Let p = 2 and G = µ3 over a field F of characteristic not 3 such that
G(F ) = 1. If K/F is a field extension and a ∈ K×, write Ka := K[x]/(x3 − a)
and set Ya = SpecKa. Then Ya → SpecK is a G-torsor and every G-torsor over
SpecK is of this form. If a ∈ K×3, the torsor Ya is trivial. Otherwise, Ka is a
field, hence Ya is a variety. Therefore, a nontrivial G-torsor Ya is split over the
cubic field extension Ka/K. It follows that the trivial G-torsor G → SpecF is
2-versal. But since G = SpecF +SpecL, where L/F is a quadratic field extension,
the closed points of G of odd degree are not dense in G.

Theorem 9. Let Y → X be a p-versal G-torsor. Then BG is a stable p-retract
of X.

Proof. As Y I s.b.
≈ X, we have Y I � X by Corollary 6. In view of Proposition 8,

the morphism Y I → Z is p-split. Therefore, Z is a p-retract of Y I , i.e., Z <p Y I .
Finally, Z �p X by Corollary 5. �
Theorem 10. Let G be an algebraic group over F . Then BG is p-retract rational
if and only if there is a p-versal G-torsor Y → X with X a rational variety.

Proof. ⇒: Choose a standard G-torsor I → Z over F . By assumption, Z is a p-
retract of a rational variety X, i.e., there is a p-split rational dominant morphism
f : X 99K Z. Shrinking X, we may assume that f is regular. Let Y → X be the
pull-back of I → Z with respect to f . By Proposition 7(2), the torsor Y → X is
p-versal.

⇐: Let Y → X be a p-versal G-torsor with X a rational variety. By Theorem
9, BG�p X. As X is rational, BG is p-retract rational. �
Corollary 11. Let G be an algebraic group over F . Then BG is retract rational if
and only if all G-torsors over field extensions of F can be rationally parameterized,
i.e., there is a versal G-torsor Y → X with X a rational variety.

Note that in the case G is a finite group and F is infinite, the corollary was
proved in [DM, Lem. 5].

5. An example

The classifying space of the alternating group An is stably rational if n ≤ 5 (see
[Ma] and [CS2, §4.7]). The case n ≥ 6 remains open.
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Theorem 12. The classifying space BAn of the alternating group An is p-retract
rational for every prime integer p.

Proof. Let p be a prime integer.

Case 1: p = char(F ). Let P be a Sylow p-subgroup of An. The space BP is
stably rational by Example 4. As BAn <p BP in view of Example 5, the classifying
space BAn is p-retract rational.

Case 2: p ̸= char(F ) and p is odd. We prove that BAn is p-retract rational
by induction on n. Let m := [n/p]. Consider the subgroup H := Cm o Am of
An, where C := Z/pZ. Let F ′ := F (ξp), where ξp is a primitive root of unity of
degree p. We consider C as the subgroup generated by ξp of the quasi-trivial torus
S := RF ′/F (Gm) over F and set T := S/C.

The group C acts by multiplication by p-th roots of unity on the affine space
A(F ′) of F ′ over F . Therefore, H acts faithfully naturally linearly on the affine
space A(F ′m). As Sm is an open H-invariant subset of A(F ′m), we have

BH
s.b.
≈ Sm/H = Tm/Am. (1)

The torus T is split by the cyclic cyclotomic field extension F ′/F . Choose a flasque
resolution 1 → S → P → T → 1 of T split by F ′/F (see [CS1]). As every flasque
module over a cyclic group is invertible (see [EM]), there is a torus S′ such that
the torus S × S′ is quasi-split. By [CS1, §2], there is a torus T ′ over F split by
F ′/F such that the torus T × T ′ is rational. The group Am acts by permutations
on Tm × T ′m, hence

BAm
s.b.
≈ (Tm × T ′m)/Am. (2)

The generic fiber of the projection f : (Tm × T ′m)/Am → Tm/Am is equal to

(T ′m × SpecL)/Am,

where L := F (T ′m). This is a torus T̃ over K := F (T ′m/Am) = LAm split by

F ′ ⊗F L. As K is infinite, the K-rational points are dense in the torus T̃ , i.e., f
is split and hence

Tm/Am < (Tm × T ′m)/Am. (3)

It follows from (1), (2) and (3) that BH is a stable retract of BAm. By the
induction hypothesis, BAm is p-retract rational, then so is BH . Since the index
[An : H] is prime to p, we have BAn <p BH by Example 5. Therefore, BAn is
p-retract rational.

Case 3: char(F ) ̸= 2 and p = 2. Let m := [n/2] and let B be the kernel
of the map (Z/2Z)m → Z/2Z taking (ai) to

∑
ai. The symmetric group Sm

acts by permutations on B. The group D := B o Sm is a subgroup of An. The
group (Z/2Z)m acts on Am

F = SpecF [t1, . . . , tm] by ti → ±ti and Sm acts by
permutations of the ti. Therefore, D acts faithfully and linearly on Am

F with

Am
F /D = SpecF [s1, . . . sm−1, t] ≃ Am

F ,

where si is the i-th symmetric function on t21, . . . , t
2
m and t = t1 · · · tm. Thus, BD

is stably rational. As the index [An : D] is odd, BAn <2 BD by Example 5, and
hence BAn is 2-retract rational. �
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6. Unramified cohomology

For every integer j ≥ 0 and a prime integer p, let Qp/Zp(j) denote an object in
the derived category of sheaves of abelian groups on the big étale site of Spec F ,
where

Qp/Zp(j) = colim (µpn)⊗j ,

if p ̸= charF , with µpn the sheaf of pn-th roots of unity. If p = charF > 0, the
complex Qp/Zp(j) is defined via logarithmic de Rham–Witt differentials (see [I,
I.5.7] or [K]). In particular, Qp/Zp(0) = Qp/Zp.

If X is a scheme over F , we write Hn
(
X,Qp/Zp(j)

)
for the degree n étale

cohomology group of X with values in Qp/Zp(j). If X = SpecR for a commutative
ring R, we simply write Hn

(
R,Qp/Zp(j)

)
for Hn

(
X,Qp/Zp(j)

)
. For example, if

char(F ) = p > 0 (see [BM]),

Hn(F,Qp/Zp(j)) =


KM

j (F )⊗Qp/Zp, if n = j;
H1(F,KM

j (Fsep)⊗Qp/Zp), if n = j + 1;
0, otherwise,

where KM
j are Milnor K-groups.

If L/F is a field extension, there is a natural homomorphism

βL/F : Hn(F,Qp/Zp(j)) → Hn(L,Qp/Zp(j)).

If L/F is finite, the norm map for Milnor K-groups and the corestriction in co-
homology yield the norm (corestriction) homomorphism

γL/F : Hn(L,Qp/Zp(j)) → Hn(F,Qp/Zp(j)).

The composition γL/F ◦ βL/F is multiplication by [L : F ].

We write Hn
X

(
Qp/Zp(j)

)
for the Zariski sheaf on X associated with the presheaf

U 7→ Hn
(
U,Qp/Zp(j)

)
.

Let OX,x denote the local ring of X at a point x ∈ X.

Proposition 13 (see [CHK, §2.1] and [GS, Thm. 1.4]). Let X be a smooth vari-
ety over F . Then the pull-back to the generic point yields an injective homomor-
phism

H0
Zar

(
X,Hn

X(Qp/Zp(j))
)

→ H0
Zar

(
SpecF (X),Hn

F (X)(Qp/Zp(j))
)
= Hn

(
F (X),Qp/Zp(j)

)
.

Its image coincides with the intersection of images of the natural homomorphisms

Hn
(
OX,x,Qp/Zp(j)

)
→ Hn

(
F (X),Qp/Zp(j)

)
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for all points x ∈ X of codimension 1.

Let K/F be a field extension and v a discrete valuation of K over F with
valuation ring Ov. Following [C],[CO], we say that an element a∈Hn

(
K,Qp/Zp(j)

)
is unramified with respect to v if a belongs to the image of the map

Hn
(
Ov,Qp/Zp(j)

)
→ Hn

(
K,Qp/Zp(j)

)
.

We write Hn
nr

(
K,Qp/Zp(j)

)
for the subgroup of all elements in Hn

(
K,Qp/Zp(j)

)
that are unramified with respect to all discrete valuations of K over F . We have
the natural homomorphism

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
K,Qp/Zp(j)

)
. (4)

Proposition 14 ([LM, Prop. 3.1]). Let K/F be a purely transcendental field ex-
tension. Then the map (4) is an isomorphism.

LetX be a smooth variety over F . If x ∈ X is a point of codimension 1, the local
ring OX,x is a discrete valuation ring. It follows from Proposition 13 that the image
of the injective homomorphism H0

Zar

(
X,Hn

X(Qp/Zp(j))
)
→ Hn

(
F (X),Qp/Zp(j)

)
contains the subgroup Hn

nr

(
F (X),Qp/Zp(j)

)
.

Theorem 15. Let X and X ′ be smooth varieties over F such that X is a p-retract
of X ′. Then there is a commutative diagram

Hn
(
F,Qp/Zp(j)

)
��

Hn
(
F,Qp/Zp(j)

)
��

Hn
nr

(
F (X),Qp/Zp(j)

) α // Hn
nr

(
F (X ′),Qp/Zp(j)

)
with α an injective homomorphism.

Proof. There is a rational dominant morphism f : X ′ 99K X and a morphism
g : Y → X ′ with Im(g) in the domain of definition of f such that the composition
f ◦ g is dominant of finite degree prime to p. Shrinking X ′ and Y , we may assume
that f is regular. We have the following commutative diagram:

Hn
(
F,Qp/Zp(j)

)
��

Hn
(
F,Qp/Zp(j)

)
��

Hn
nr

(
F (X),Qp/Zp(j)

)
� _

��

α // Hn
nr

(
F (X ′),Qp/Zp(j)

)
� _

��
H0

Zar

(
X,Hn

X(Qp/Zp(j))
)

� _

��

// H0
Zar

(
X ′,Hn

X′(Qp/Zp(j))
)

// H0
Zar

(
Y,Hn

Y (Qp/Zp(j))
)

��
Hn

(
F (X),Qp/Zp(j)

) β // Hn
(
F (Y ),Qp/Zp(j)

)
.
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The maps α and β are the pull-back homomorphisms induced by the field exten-
sions F (X ′)/F (X) and F (Y )/F (X), respectively. For every a ∈ Ker(β), we have

0 = γ(β(a)) = [F (Y ) : F (X)] · a,

where γ : Hn
(
F (Y ),Qp/Zp(j)

)
→ Hn

(
F (X),Qp/Zp(j)

)
is the norm homomor-

phism. As [F (Y ) : F (X)] is prime to p, we have a = 0, i.e., β is injective. It follows
that α is also injective. �

Corollary 16. Let X be a p-retract rational smooth variety over F . Then the
natural homomorphism

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (X),Qp/Zp(j)

)
is an isomorphism.

Proof. Let X be a p-retract of a rational variety X ′. As F (X ′) is purely transcen-
dental over F , the map

Hn
(
F,Qp/Zp(j)

)
−→ Hn

nr

(
F (X ′),Qp/Zp(j)

)
is an isomorphism by Proposition 14. The statement now follows from Theorem
15. �

Remark 3. The same argument shows that Corollary 16 holds for the cohomology
groups with coefficients in Z/pmZ(j) for all m in place of Qp/Zp(j).

Example 7. Let p be a prime integer and F an algebraically closed field of
characteristic not p. The classifying spaces BG for all p-groups of order dividing
p4 and 32 are stably rational by [CK] and [CHKP]. There are finite groups G such
that H2

nr

(
F (BG),Qp/Zp(1)

)
̸= 0 (see [S]). In [HKK] such groups of order p5 (if p

odd) and 64 (if p = 2) are given. By Corollary 16, BG is not p-retract rational for
finite groups G with H2

nr

(
F (BG),Qp/Zp(1)

)
̸= 0.

Example 8. Let G be a finite group and F a field of characteristic p > 0. Let V
be a generically free representation of G and I ⊂ V a nonempty G-invariant open
subset together with a G-torsor I → Z. If H is a Sylow p-subgroup of G, the H-
torsor I → S := I/H is standard and the degree [G : H] of the natural dominant
morphism S → Z is prime to p. By Example 5, Z <p S, hence BG <p BH. In
view of Example 4, BH is stably rational, therefore, the classifying space BG is
p-retract rational over F . It follows from Corollary 16 that

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (BG),Qp/Zp(j)

)
is an isomorphism.

Example 9. It follows from Theorem 12 and Corollary 16 that the natural homo-
morphism Hn

(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (BAn),Qp/Zp(j)

)
is an isomorphism for all

p. In the case F is algebraically closed this was proved in [BP].
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7. Appendix

In the appendix we collect a few technical results used in the paper.

Lemma 17 ([KM, Lem. 3.3]). Let K ′/K be a field extension of finite degree prime
to p, and K → L a field homomorphism. Then there exist a field extension L′/L
of finite degree prime to p and a field homomorphism K ′ → L′ extending K → L.

Corollary 18. Let f : X ′ → X be a morphism of varieties over F , and let x′ ∈ X ′

and x ∈ X be points such that f(x′) = x and the field extension F (x′)/F (x) is
finite of degree prime to p. Let L/F be a field extension and v : SpecL → X
a morphism over F with image {x}. Then there exists a field extension L′/L of
finite degree prime to p and a commutative diagram of morphisms over F

SpecL′

v′

��

// SpecL

v

��
X ′ f // X

such that Im(v′) = {x′}.

Proof. Apply Lemma 17 to the field extension F (x′)/F (x) and the field homomor-
phism F (x) → L. �
Lemma 19 ([Me, Lem. 6.2]). Let f : X ′ → X be a morphism of varieties over
F of degree prime to p. Then there is a nonempty open subset U ⊂ X such that
the restriction f−1(U) → U is finite flat and for every x ∈ U there exists a point
x′ ∈ X ′ with f(x′) = x and the degree [F (x′) : F (x)] is prime to p.

Lemma 20 ([Me, Lem. 6.3]). Let g : X → Y and h : Y ′ → Y be morphisms of
varieties over F . Let y ∈ Y be the image of the generic point of X. Suppose that
there is a point y′ ∈ Y ′ such that h(y′) = y and [F (y′) : F (y)] is finite and prime
to p. Then there exists a commutative square of morphisms of varieties

X ′

��

m // X

g

��
Y ′ h // Y

with m dominant of finite degree prime to p.

Lemma 21 ([GLL, Prop. 6.8]). Let X be a regular algebraic variety over a field
F , p a prime integer and S the set of all closed points in X of degree prime to p.
Then if S is nonempty, then S is dense in X.
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