

ABELIAN VARIETIES WITH ISOGENOUS REDUCTIONS

CHANDRASHEKHAR B. KHARE AND MICHAEL LARSEN

ABSTRACT. Let A_1 and A_2 be abelian varieties over a number field K . We prove that if there exists a non-trivial morphism of abelian varieties between reductions of A_1 and A_2 at a sufficiently high percentage of primes, then there exists a non-trivial morphism $A_1 \rightarrow A_2$ over \bar{K} . Along the way, we give an upper bound for the number of components of a reductive subgroup of GL_n whose intersection with the union of \mathbb{Q} -rational conjugacy classes of GL_n is Zariski-dense. This can be regarded as a generalization of the Minkowski-Schur theorem on faithful representations of finite groups with rational characters.

RÉSUMÉ. Soient A_1 et A_2 deux variétés abéliennes sur un corps de nombres K . Nous montrons que, s'il existe un morphisme non trivial de variétés abéliennes entre réductions de A_1 et A_2 pour une proportion suffisamment grande d'idéaux premiers, il existe un morphisme non trivial $A_1 \rightarrow A_2$ sur \bar{K} . Nous donnons également une majoration du nombre du composantes d'un sous-groupe réductif de GL_n dont l'intersection avec l'union des classes de conjugaison \mathbb{Q} -rationnelles de GL_n est dense pour la topologie de Zariski; c'est une généralisation d'un théorème de Minkowski-Schur sur les représentations fidèles des groupes finis à caractère rationnel.

In this note, we answer a recent question of Dipendra Prasad and Ravi Raghunathan [PR20, Remark 1]. We are grateful to Dipendra Prasad and Jean-Pierre Serre for helpful correspondence. We would also like to thank the referee for several improvements and corrections.

Let K be a number field and A_1 and A_2 abelian varieties over K . If \wp is a prime of K , we denote by k_\wp the residue field of \wp . If \wp is a prime of good reduction for A_i , we denote by $A_{i\wp}$ the reduction and by Frob_\wp the Frobenius element regarded as an automorphism, well defined up to conjugacy, of the ℓ -adic Tate module of A_i or, dually, of $H^1(\bar{A}_i, \mathbb{Z}_\ell)$.

Theorem 1. *Let A_1 and A_2 be abelian varieties over a number field K . Suppose that for a density one set of primes \wp of K , there exists a non-trivial morphism of abelian varieties over \bar{k}_\wp from $A_{1\wp}$ to $A_{2\wp}$. Then there exists a non-trivial morphism of abelian varieties from A_1 to A_2 defined over \bar{K} .*

Let G be a connected reductive algebraic group over an algebraically closed field F of characteristic 0, and let V be a finite dimensional representation of G . Let T be a maximal torus of G and W the Weyl group of G with respect to T . If V is irreducible, we say it is *minuscule* if W acts transitively on the weights of V with respect to T . The highest weight of V with respect to any choice of Weyl chamber has multiplicity 1, so every element of the Weyl orbit has multiplicity one.

For general finite dimensional representations V , we say V is minuscule if each of its irreducible factors is so. Regarding the character of a representation V as a function f_V from W -orbits in $X^*(T)$ to non-negative integers, when V is minuscule, for any dominant

ML was partially supported by NSF grant DMS-2001349.

weight λ , the multiplicity in V of the irreducible G -representation V_λ with highest weight λ is the value of f_V on the W -orbit containing λ .

Proposition 2. *Let V_1 and V_2 be minuscule representations of G . If $\dim \text{Hom}_T(V_1, V_2) > 0$, then $\dim \text{Hom}_G(V_1, V_2) > 0$.*

Proof. If $\dim \text{Hom}_T(V_1, V_2) > 0$, then V_1 and V_2 must have a common T -irreducible factor, and that means they have a common weight χ with respect to T . If λ is the dominant weight in the orbit of χ , then V_1 and V_2 each contain V_λ as a subrepresentation, so $\dim \text{Hom}_G(V_1, V_2) > 0$. \square

Now let A_1 and A_2 denote abelian varieties over a number field K with absolute Galois group $G_K := \text{Gal}(\bar{K}, K)$. Let ℓ be a fixed rational prime, and let $F = \bar{\mathbb{Q}}_\ell$. Let $V_i = H^1(\bar{A}_i, F)$, regarded as G_K -modules. Let $V_{12} := V_1 \oplus V_2$ as G_K -module and G_{12} the Zariski closure of G_K in $\text{Aut}_F(V_{12})$. By the semisimplicity of Galois representations defined by abelian varieties [Fa83], G_{12} is reductive. Let G denote the identity component G_{12}° .

Proposition 3. *There exists a positive density set of primes \wp of K such that $A_1 \times A_2$ has good reduction at \wp , and Frob_\wp generates a Zariski dense subgroup of a maximal torus of G .*

Proof. The condition that Frob_\wp lies in the identity component G has density $[G_{12} : G]^{-1} > 0$. By a theorem of Serre [LP97, Theorem 1.2], there exists a proper closed, conjugation-stable subvariety X of G such that $\text{Frob}_\wp \in G \setminus X$ implies that Frob_\wp generates a Zariski-dense subgroup of a maximal torus of G . However, by a second theorem of Serre [Se81, Théorème 10], the set of \wp such that $\text{Frob}_\wp \in X$ has density 0. \square

We can now prove the main theorem.

Proof. A well-known theorem of Tate [Ta66] asserts that the existence of a non-trivial \mathbb{F}_q -morphism between abelian varieties over \mathbb{F}_q is equivalent to the existence of a Frob_q -stable morphism of their ℓ -adic Tate modules. By the easy direction of this result, the existence of a non-trivial morphism defined over $\bar{\mathbb{F}}_q$ implies the existence of a Frob_q^m -stable morphism of their Tate modules for some positive integer m .

By Proposition 3, the hypothesis of the theorem therefore implies that

$$\dim \text{Hom}(V_1, V_2)^{\text{Frob}_\wp^m} > 0$$

for some prime \wp for which Frob_\wp generates a Zariski-dense subgroup of a maximal torus T of G and some positive integer m . As T is connected, Frob_\wp^m likewise generates a Zariski-dense subgroup of T . Thus $\dim \text{Hom}_T(V_1, V_2) > 0$. By a theorem of Pink [Pi98, Corollary 5.11], the G -representations V_1 and V_2 are minuscule. Thus Proposition 2 implies that $\dim \text{Hom}_G(V_1, V_2) > 0$. Finally, Faltings' proof of Tate's Conjecture [Fa83] implies $\text{Hom}_{\bar{K}}(A_1, A_2)$ is non-zero. \square

Remark 4. One might ask whether there exists a non-trivial homomorphism $A_1 \rightarrow A_2$ defined over K itself if for a density one set of \wp there exists a non-trivial k_\wp -homomorphism $A_{1\wp} \rightarrow A_{2\wp}$. D. Prasad pointed out the following counterexample to us. Let E be an elliptic curve over \mathbb{Q} which does not have complex multiplication. Let E_n denote the quadratic twist of E by $n \in \mathbb{Q}^\times$. Let $A_1 = E$, $A_2 = E_2 \times E_3 \times E_6$. For every rational prime $p > 3$, either 2, 3, or 6 lies in $\mathbb{F}_p^{\times 2}$, so if E has good reduction at p , the same is true for both A_1 and A_2 , and there exists an \mathbb{F}_p -isomorphism from $(A_1)_p$ to least one of $(E_2)_p$, $(E_3)_p$, and $(E_6)_p$, and

therefore a non-trivial \mathbb{F}_p -homomorphism to $(A_2)_p$. On the other hand, there is no \mathbb{Q} -isogeny from A_1 to any one of E_2 , E_3 , or E_6 , and therefore no non-trivial \mathbb{Q} -homomorphism to A_2 .

We can prove a stronger version of Theorem 1 in analogy with the theorem of C. S. Rajan [Ra98].

Theorem 5. *Let n be a positive integer. If A_1 and A_2 are abelian varieties of dimension $\leq n$ over a number field K and the set of primes \wp of K for which there exists a non-trivial \bar{k}_\wp -morphism of abelian varieties from $A_{1\wp}$ to $A_{2\wp}$ has upper density $> 1 - \frac{e^{-6n^2}}{n!^{2n}}$, then there exists a non-trivial \bar{K} -morphism of abelian varieties from A_1 to A_2 .*

The only additional ingredient necessary to prove Theorem 5 is an upper bound, depending only on n , on the number of components of G_{12} . This is an immediate consequence of the following theorem.

Theorem 6. *Let n be a positive integer, F a field of characteristic 0, and $G \subset \mathrm{GL}_n$ a reductive F -subgroup. If the set of \bar{F} -points of G consisting of matrices whose characteristic polynomials lie in $\mathbb{Q}[x]$ is Zariski-dense, then $|G/G^\circ| < e^{6n^2} n!^{2n}$.*

We remark that without the rationality assumption, this statement fails even for $n = 1$, where G could be an arbitrarily large cyclic group.

Proof. The locus of \bar{F} -points of G whose characteristic polynomials lie in $\mathbb{Q}[x]$ is G_F -stable, so the Zariski-closure does not change when the base field is changed from F to \bar{F} . This justifies assuming that F is algebraically closed.

We can write $G^\circ = DZ^\circ$, where D and $Z := Z(G^\circ)$ are the derived group and the center of G° respectively. By [Sp79, Corollary 2.14], the outer automorphism group of D is contained in the automorphism group of the Dynkin diagram Δ of D . Every automorphism of Δ preserves the set of isomorphic components. We claim that $|\mathrm{Aut} \Delta| \leq n!$. It suffices to prove this when Δ consists of m mutually isomorphic connected diagrams Δ_0 of rank $r = n/m$. The claim obviously holds when $r = 1$. It is easily verified for $n \leq 4$. For $n \geq 5$, the classification of connected Dynkin diagrams gives $|\mathrm{Aut}(\Delta_0)|^{2/r} \leq \sqrt{6} < n/2$, so if $r \geq 2$,

$$|\mathrm{Aut}(\Delta)| = |\mathrm{Aut}(\Delta_0)|^{n/r} (n/r)! < (n/2)^{n/2} \lfloor n/2 \rfloor! < n!.$$

Any automorphism of G° is determined by its restrictions to the characteristic subgroups D and Z° . An automorphism which is inner on D and trivial on Z° is inner. Thus, the homomorphism $\mathrm{Aut}(G^\circ) \rightarrow \mathrm{Aut}(D) \times \mathrm{Aut}(Z^\circ)$ gives an injective homomorphism

$$\mathrm{Out}(G^\circ) \rightarrow \mathrm{Out}(D) \times \mathrm{Aut}(Z^\circ) = \mathrm{Out}(D) \times \mathrm{GL}_k(\mathbb{Z}),$$

where $k = \dim Z^\circ \leq n$. By Minkowski's theorem [Se16, Theorem 9.1], every finite subgroup of $\mathrm{GL}_k(\mathbb{Z})$ has order at most

$$M(k) := \prod_p p^{\sum_{i \geq 0} \left\lfloor \frac{k}{(p-1)p^i} \right\rfloor}.$$

We have

$$\log M(k) \leq \sum_{p=2}^{k+1} \frac{kp \log p}{(p-1)^2} = k \sum_{i=1}^k \frac{(i+1) \log(i+1)}{i^2} \leq 2k^2,$$

since $(i+1) \log(i+1) \leq 2i^2$ for all $i \geq 1$. Thus, any finite subgroup of $\mathrm{Out}(G^\circ)$ has order $\leq n! e^{2n^2}$.

The conjugation action on G° defines a homomorphism $G/G^\circ \rightarrow \text{Out}(G^\circ)$. Let Γ_0 denote the kernel of this homomorphism and G_0 the inverse image of Γ_0 in G . Thus, the index of Γ_0 in the component group G/G° is $\leq n!e^{2n^2} \leq e^{3n^2}$. Arguing by contradiction, we may assume the order of Γ_0 is at least

$$e^{-3n^2}|G/G^\circ| \geq e^{3n^2}n!^{2n}.$$

Let $\Gamma := Z_{G_0}(G^\circ)/Z^\circ$, so $\Gamma_0 \cong Z_{G_0}(G^\circ)/Z$ is a quotient group of Γ . Consider the short exact sequence

$$0 \rightarrow Z^\circ \rightarrow Z_{G_0}(G^\circ) \rightarrow \Gamma \rightarrow 0.$$

The extension class $\alpha \in H^2(\Gamma, Z^\circ)$ is annihilated by $N := |\Gamma|$. As $Z^\circ \cong (F^\times)^k$ is a divisible group, it follows that the extension class α lies in the image of $H^2(\Gamma, Z^\circ[N])$, where $Z^\circ[N]$ denotes the kernel of the N th power map on Z° . We can therefore represent α by a 2-cocycle with values in $Z^\circ[N]$. This means that there exists a set-theoretic section $i: \Gamma \rightarrow Z_{G_0}(G^\circ)$ such that the associated 2-cocycle takes values in $Z^\circ[N]$, and it follows that $\tilde{\Gamma}_0 := Z^\circ[N]i(\Gamma)$ is a finite subgroup of $Z_{G_0}(G^\circ) \subset G$ which maps onto Γ and therefore onto Γ_0 .

By Jordan's theorem, $\tilde{\Gamma}_0$ contains an abelian normal subgroup \tilde{A}_0 of index $\leq J(n)$, a constant depending only on n . The optimal Jordan constant has been computed by Michael Collins [Co07], and for all n , we have $J(n) \leq e^{2n^2}$. Indeed, for $n \geq 71$, the bound, $(n+1)!$, is given by Theorem A, and

$$(n+1)! < (n+1)^n < (n^2)^n < ((e^n)^2)^n = e^{2n^2}.$$

For $20 \leq n \leq 70$ and $n \leq 19$, the bounds are given by Theorems B and D respectively, and they can be checked by machine to be less than e^{2n^2} in every case.

Let T be a maximal torus of G° , so $\tilde{A}_0 T$ is a commutative subgroup of G_0 . As

$$\tilde{A}_0 \cap T \subset \tilde{A}_0 \cap G^\circ = \ker \tilde{A}_0 \rightarrow \Gamma_0,$$

we have

$$|\tilde{A}_0 T / T| = |\tilde{A}_0 / (\tilde{A}_0 \cap T)| \geq |\text{Im } \tilde{A}_0 \rightarrow \Gamma_0| \geq \frac{|\Gamma_0|}{e^{2n^2}} \geq e^{n^2} n!^{2n}.$$

Therefore, if $M := e^n n!^2$, then $\tilde{A}_0 T$ has at least M^n components. Since $\tilde{A}_0 T / T$ is a quotient group of $\tilde{A}_0 \subset \text{GL}_n(F)$, it contains no elementary p -group of rank $> n$, so it must have an element of order $\geq M$. Let $g \in \tilde{A}_0$ map to such an element.

By hypothesis, there exists $t \in G^\circ \times \{g\}$ such that the characteristic polynomial of gt has coefficients in \mathbb{Q} . We can further assume that t is semisimple, so we can choose our maximal torus T to contain t . Let $T' = \langle g \rangle T$. Every element of T' is the product of two commuting elements, one which is of finite order, and one which belongs to T , so both are semisimple, from which it follows that their product is semisimple. Thus T' is diagonalizable, so it is a closed subgroup of a maximal torus of GL_n [Bo91, Proposition 8.4]. Without loss of generality, we may assume this maximal torus is the group GL_1^n of invertible diagonal matrices.

The contravariant functor taking an algebraic group to its character group gives an equivalence of categories between diagonalizable groups and finitely generated abelian groups [Bo91, Proposition 8.12]. In particular, there is a bijective correspondence between subgroups $\Lambda \subset \mathbb{Z}^n$ and closed subgroups D_Λ of the group GL_1^n of diagonal matrices in GL_n , where

$$D_\Lambda = \{(x_1, \dots, x_n) \in \text{GL}_1^n \mid \lambda(x_1, \dots, x_n) = 1 \ \forall \lambda \in \Lambda\}.$$

Let Λ be the subgroup of \mathbb{Z}^n such that $D_\Lambda = T$ and Λ' the subgroup such that $D_{\Lambda'} = T'$. The inclusion $T \hookrightarrow T'$ corresponds to the surjection $\mathbb{Z}^n/\Lambda' \rightarrow \mathbb{Z}^n/\Lambda$ and thus to the inclusion $\Lambda' \subset \Lambda$. As T'/T is cyclic, Λ/Λ' is cyclic of the same order k . Let $\lambda \in \Lambda$ map to a generator of Λ/Λ' . Then the smallest integer m such that $\lambda((gt)^m) = 1$ is the smallest such that $\lambda(g^m) = 1$, which is k .

Writing $gt = (x_1, \dots, x_n) \in \mathrm{GL}_1(F)^n \subset \mathrm{GL}_n(F)$, the x_i are the eigenvalues of gt , so they all lie in some Galois extension of \mathbb{Q} of degree $\leq n!$. Therefore $\lambda(gt)$ lies in this extension. Since it is a primitive k th root of unity, this implies $\phi(k) \leq n!$. Now $\phi(q) \geq \sqrt{q}$ for all prime powers q except 2, and it follows from the multiplicativity of ϕ that $\phi(k) \geq \sqrt{k/2}$ for all $k \geq 1$, so $M \leq k \leq 2n!^2$, which is a contradiction. \square

REFERENCES

- [Bo91] Borel, Armand: Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
- [Co07] Collins, Michael J.: On Jordan's theorem for complex linear groups. *J. Group Theory* **10** (2007), no. 4, 411–423.
- [Fa83] Faltings, Gerd: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. *Invent. Math.* **73** (1983), no. 3, 349–366.
- [LP97] Larsen, Michael; Pink, Richard: A connectedness criterion for ℓ -adic Galois representations. *Israel J. Math.* **97** (1997), 1–10.
- [Pi98] Pink, Richard: ℓ -adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture. *J. Reine Angew. Math.* **495** (1998), 187–237.
- [PR20] Prasad, Dipendra; Raghunathan, Ravi: Relations between cusp forms sharing Hecke eigenvalues. arXiv: 2007.14639.
- [Ra98] Rajan, C. S.: On strong multiplicity one for ℓ -adic representations. *Internat. Math. Res. Notices* **1998**, no. 3, 161–172.
- [Se81] Serre, Jean-Pierre: Quelques applications du théorème de densité de Chebotarev. *Inst. Hautes Études Sci. Publ. Math.* No. 54 (1981), 323–401.
- [Se16] Serre, Jean-Pierre: Finite groups: an introduction. With assistance in translation provided by Garving K. Luli and Pin Yu. Surveys of Modern Mathematics, 10. International Press, Somerville, MA; Higher Education Press, Beijing, 2016.
- [Sp79] Springer, T. A.: Reductive groups. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 3–27, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.
- [Ta66] Tate, John: Endomorphisms of abelian varieties over finite fields. *Invent. Math.* **2** (1966), 134–144.

UCLA DEPARTMENT OF MATHEMATICS, Box 951555, LOS ANGELES, CA 90095, USA

E-mail address: shekhar@math.ucla.edu

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN

E-mail address: mjlarsen@indiana.edu