ABELIAN VARIETIES WITH ISOGENOUS REDUCTIONS
CHANDRASHEKHAR B. KHARE AND MICHAEL LARSEN

ABSTRACT. Let Ay and A, be abelian varieties over a number field K. We prove that if
there exists a non-trivial morphism of abelian varieties between reductions of A; and A, at
a sufficiently high percentage of primes, then there exists a non-trivial morphism A; — As
over K. Along the way, we give an upper bound for the number of components of a reductive
subgroup of GL,, whose intersection with the union of Q-rational conjugacy classes of GL,,
is Zariski-dense. This can be regarded as a generalization of the Minkowski-Schur theorem
on faithful representations of finite groups with rational characters.

RESUME. Soient A; et Ay deux variétés abéliennes sur un corps de nombres K. Nous mon-
trons que, s’il existe un morphisme non trivial de variétés abéliennes entre réductions de A; et
A pour une proportion suffisamment grande d’idéaux premiers, il existe un morphisme non
trivial A; — Ag sur K. Nous donnons également une majoration du nombre du composantes
d’un sous-groupe réductif de GL,, dont I'intersection avec 'union des classes de conjugaison
Q-rationnelles de GL,, est dense pour la topologie de Zariski; cést une généralisation d’un
théoreme de Minkowski-Schur sur les représentations fideles des groupes finis a caractere
rationnel.

In this note, we answer a recent question of Dipendra Prasad and Ravi Raghunathan
[PR20, Remark 1]. We are grateful to Dipendra Prasad and Jean-Pierre Serre for helpful
correspondence. We would also like to thank the referee for several improvements and
corrections.

Let K be a number field and A; and A, abelian varieties over K. If p is a prime of K, we
denote by k, the residue field of p. If p is a prime of good reduction for A;, we denote by
Aj;,, the reduction and by Frob, the Frobenius element regarded as an automorphism, well
defined up to conjugacy, of the f-adic Tate module of A; or, dually, of H'(4;, Zy).

Theorem 1. Let Ay and Ay be abelian varieties over a number field K. Suppose that for
a density one set of primes o of K, there exists a non-trivial morphism of abelian varieties
over l%p from A, to Ay,,. Then there exists a non-trivial morphism of abelian varieties from
Ay to Ay defined over K.

Let G be a connected reductive algebraic group over an algebraically closed field F' of
characteristic 0, and let V' be a finite dimensional representation of GG. Let T be a maximal
torus of G and W the Weyl group of G with respect to T'. If V is irreducible, we say it is
minuscule if W acts transitively on the weights of V' with respect to T'. The highest weight
of V' with respect to any choice of Weyl chamber has multiplicity 1, so every element of the
Weyl orbit has multiplicity one.

For general finite dimensional representations V', we say V is minuscule if each of its
irreducible factors is so. Regarding the character of a representation V' as a function fy
from W-orbits in X*(7T") to non-negative integers, when V' is minuscule, for any dominant
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weight A, the multiplicity in V' of the irreducible G-representation V) with highest weight A
is the value of fi, on the W-orbit containing .

Proposition 2. Let Vi and V3 be minuscule representations of G. If dim Homp(Vy, V) > 0,
then dim Homg(Vi, V) > 0.

Proof. 1t dim Homp(V3,V2) > 0, then V; and Vo must have a common T-irreducible fac-
tor, and that means they have a common weight y with respect to T. If A is the domi-

nant weight in the orbit of y, then Vi and V5 each contain V) as a subrepresentation, so
dim Homg(V4, Vo) > 0. O

Now let A; and Ay denote abelian varieties over a number field K with absolute Galois
group Gk = Gal(K,K). Let £ be a fixed rational prime, and let F = Q;. Let V; =
Hl(fli, F), regarded as Gg-modules. Let Viy := V) @V, as Gg-module and G5 the Zariski
closure of Gi in Autp(Vis). By the semisimplicity of Galois representations defined by
abelian varieties [Fa83|, G2 is reductive. Let G denote the identity component GY,.

Proposition 3. There exists a positive density set of primes @ of K such that A; x As has
good reduction at @, and Frob,, generates a Zariski dense subgroup of a mazimal torus of G.

Proof. The condition that Frob,, lies in the identity component G has density [Gi : G]™! > 0.
By a theorem of Serre [LP97, Theorem 1.2], there exists a proper closed, conjugation-stable
subvariety X of G such that Frob, € G\ X implies that Frob,, generates a Zariski-dense
subgroup of a maximal torus of G. However, by a second theorem of Serre [Se81, Théoréme
10], the set of o such that Frob, € X has density 0. U

We can now prove the main theorem.

Proof. A well-known theorem of Tate [Ta66] asserts that the existence of a non-trivial -
morphism between abelian varieties over I, is equivalent to the existence of a Frob,-stable
morphism of their /-adic Tate modules. By the easy direction of this result, the existence of
a non-trivial morphism defined over Fq implies the existence of a Frob;"-stable morphism of
their Tate modules for some positive integer m.

By Proposition 3, the hypothesis of the theorem therefore implies that

dim Hom(Vy, V5)™P¢" > 0

for some prime g for which Frob,, generates a Zariski-dense subgroup of a maximal torus 7T
of G and some positive integer m. As T is connected, FrobgL likewise generates a Zariski-
dense subgroup of 7. Thus dim Homr(Vy,V2) > 0. By a theorem of Pink [Pi98, Corol-
lary 5.11], the G-representations Vi and V5, are minuscule. Thus Proposition 2 implies
that dim Homg(V4, V) > 0. Finally, Faltings’ proof of Tate’s Conjecture [Fa83] implies
Homg (A4, As) is non-zero. O

Remark 4. One might ask whether there exists a non-trivial homomorphism A; — A,
defined over K itself if for a density one set of o there exists a non-trivial £ ,-homomorphism
Ay, — Ag,. D. Prasad pointed out the following counterexample to us. Let E be an elliptic
curve over Q which does not have complex multiplication. Let E, denote the quadratic twist
of Ebyne Q. Let Ay = F, Ay = Fy x F3 x Eg. For every rational prime p > 3, either
2, 3, or 6 lies in IF;Q, so if E has good reduction at p, the same is true for both A; and A,
and there exists an [F,-isomorphism from (A;), to least one of (E»),, (E3),, and (Es),, and



ABELIAN VARIETIES WITH ISOGENOUS REDUCTIONS 3

therefore a non-trivial IF,-homomorphism to (As),. On the other hand, there is no Q-isogeny
from A; to any one of Fy, Fs3, or Fg, and therefore no non-trivial Q-homomorphism to As,.

We can prove a stronger version of Theorem 1 in analogy with the theorem of C. S. Rajan
[Ra98].

Theorem 5. Let n be a positive integer. If Ay and As are abelian varieties of dimension
< n over a number field K and the set of primes @ of K for which there em’sts a non-trivial

2
k: -morphism of abelian varieties from A1, to Ay, has upper density > 1 — S, then there
emsts a non-trivial K-morphism of abelian varieties from Ay to As.

The only additional ingredient necessary to prove Theorem 5 is an upper bound, depending
only on n, on the number of components of G15. This is an immediate consequence of the
following theorem.

Theorem 6. Let n be a positive integer, F a field of characteristic 0, and G C GL, a
reductive F-subgroup. If the set of F'-points of G consisting of matrices whose characteristic
polynomials lie in Q[z] is Zariski-dense, then |G /G°| < €5’ n!?".

We remark that without the rationality assumption, this statement fails even for n = 1,
where G could be an arbitrarily large cyclic group.

Proof. The locus of F-points of G whose characteristic polynomials lie in Q[z] is Gg-stable,
so the Zariski-closure does not change when the base field is changed from F to F. This
justifies assuming that F' is algebraically closed.

We can write G° = DZ°, where D and Z := Z(G°) are the derived group and the
center of G° respectively. By [Sp79, Corollary 2.14], the outer automorphism group of D is
contained in the automorphism group of the Dynkin diagram A of D. Every automorphism
of A preserves the set of isomorphic components. We claim that | Aut A| < n!l. It suffices
to prove this when A consists of m mutually isomorphic connected diagrams A, of rank
r = n/m. The claim obviously holds when r = 1. It is easily verified for n < 4. For n > 5,
the classification of connected Dynkin diagrams gives | Aut(Ag)|*" < v/6 < n/2, so if r > 2,

| Aut(A)] = | Aut(Ag) [ (n/r)! < (n/2)"*|n/2]! < n!.

Any automorphism of G° is determined by its restrictions to the characteristic subgroups
D and Z°. An automorphism which is inner on D and trivial on Z° is inner. Thus, the
homomorphism Aut(G°) — Aut(D) x Aut(Z°) gives an injective homomorphism

Out(G°) — Out(D) x Aut(Z°) = Out(D) x GLk(Z),

where k = dim Z° < n. By Minkowski’s theorem [Sel6, Theorem 9.1], every finite subgroup
of GLk(Z) has order at most
= szizo L(pfkl)piJ
p

We have

k
kpl 1)1 1
log M (k Z pogp Z (4 + 1) log(i + )§2k2’

72

since (i + 1) log(i + 1) < 24 for all i > 1. Thus, any finite subgroup of Out(G°) has order
< nle™
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The conjugation action on G° defines a homomorphism G/G° — Out(G°). Let I'y denote
the kernel of this homomorphism and G| the inverse image of I'y in G. Thus, the index of T’y
in the component group G/G° is < nle?n® < e3n’, Arguing by contradiction, we may assume
the order of 'y is at least

6_3n2‘G/GO‘ 2 €3n2n!2n'

Let I' := Zg,(G°)/Z°, so Ty = Zg,(G°)/Z is a quotient group of I". Consider the short
exact sequence
0—2°— Zg,(G°) - T — 0.

The extension class a € H*(T', Z°) is annihilated by N := |[|. As Z° = (F*)* is a divisible
group, it follows that the extension class « lies in the image of H?*(T', Z°[N]), where Z°[N]
denotes the kernel of the Nth power map on Z°. We can therefore represent a by a 2-cocycle
with values in Z°[N]. This means that there exists a set-theoretic section i: I' = Zg,(G°)
such that the associated 2-cocycle takes values in Z°[N], and it follows that Ty := Z°[N]i(T")
is a finite subgroup of Zg,(G°) C G which maps onto I and therefore onto T'y.

By Jordan’s theorem, Ty contains an abelian normal subgroup A, of index < .J (n), a
constant depending only on n. The optimal Jordan constant has been computed by Michael
Collins [Co07], and for all n, we have J(n) < 2. Indeed, for n > 71, the bound, (n + 1)!,

is given by Theorem A, and
(n+ 1)< (n+1)" < ()" < ((¢))" =

For 20 < n < 70 and n < 19, the bounds are given by Theorems B and D respectively, and
they can be checked by machine to be less than e in every case.
Let T' be a maximal torus of G°, so AyT is a commutative subgroup of Gy. As

AoﬂTcgomGO:keI'AO—)F(),

we have

|AgT/T| = |Ag/(AgNT)| > [Im Ay — Tp| > gg' > " nl?n,
Therefore, if M := e"n!?, then AT has at least M™ components. Since floT/ T is a quotient
group of Ay C GL,(F), it contains no elementary p-group of rank > n, so it must have an
element of order > M. Let g € Ay map to such an element.

By hypothesis, there exists ¢ € G° x {g} such that the characteristic polynomial of gt
has coefficients in Q. We can further assume that ¢ is semisimple, so we can choose our
maximal torus 7' to contain t. Let 7" = (g)T. Every element of 7" is the product of two
commuting elements, one which is of finite order, and one which belongs to T', so both are
semisimple, from which it follows that their product is semisimple. Thus 7" is diagonalizable,
so it is a closed subgroup of a maximal torus of GL,, [Bo91, Proposition 8.4]. Without loss
of generality, we may assume this maximal torus is the group GLY of invertible diagonal
matrices.

The contravariant functor taking an algebraic group to its character group gives an equiv-
alence of categories between diagonalizable groups and finitely generated abelian groups
[Bo91, Proposition 8.12]. In particular, there is a bijective correspondence between sub-
groups A C Z"™ and closed subgroups D, of the group GL] of diagonal matrices in GL,,
where

Dy ={(z1,...,2z,) € GL} | AM(z1,...,2,) =1 VX € A}
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Let A be the subgroup of Z" such that Dy = T and A’ the subgroup such that Dy = T".
The inclusion T < T” corresponds to the surjection Z" /A" — Z" /A and thus to the inclusion
AN C A AsT'/T is cyclic, A/A is cyclic of the same order k. Let A € A map to a generator
of A/A’. Then the smallest integer m such that \((¢gt)™) = 1 is the smallest such that
A(g™) = 1, which is k.

Writing gt = (z1,...,2,) € GL(F)" C GL,(F), the z; are the eigenvalues of gt, so they
all lie in some Galois extension of Q of degree < n!. Therefore A(gt) lies in this extension.
Since it is a primitive kth root of unity, this implies ¢(k) < n!. Now ¢(q) > /q for all prime

powers ¢ except 2, and it follows from the multiplicativity of ¢ that ¢(k) > \/k/2 for all
kE>1,s0 M <k <2n!?, which is a contradiction.
O
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