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Abstract. Let A1 and A2 be abelian varieties over a number field K. We prove that if
there exists a non-trivial morphism of abelian varieties between reductions of A1 and A2 at
a sufficiently high percentage of primes, then there exists a non-trivial morphism A1 → A2

over K̄. Along the way, we give an upper bound for the number of components of a reductive
subgroup of GLn whose intersection with the union of Q-rational conjugacy classes of GLn

is Zariski-dense. This can be regarded as a generalization of the Minkowski-Schur theorem
on faithful representations of finite groups with rational characters.

Résumé. Soient A1 et A2 deux variétés abéliennes sur un corps de nombres K. Nous mon-
trons que, s’il existe un morphisme non trivial de variétés abéliennes entre réductions de A1 et
A2 pour une proportion suffisamment grande d’idéaux premiers, il existe un morphisme non
trivial A1 → A2 sur K̄. Nous donnons également une majoration du nombre du composantes
d’un sous-groupe réductif de GLn dont l’intersection avec l’union des classes de conjugaison
Q-rationnelles de GLn est dense pour la topologie de Zariski; cést une généralisation d’un
théorème de Minkowski-Schur sur les représentations fidèles des groupes finis a caractère
rationnel.

In this note, we answer a recent question of Dipendra Prasad and Ravi Raghunathan
[PR20, Remark 1]. We are grateful to Dipendra Prasad and Jean-Pierre Serre for helpful
correspondence. We would also like to thank the referee for several improvements and
corrections.

Let K be a number field and A1 and A2 abelian varieties over K. If ℘ is a prime of K, we
denote by k℘ the residue field of ℘. If ℘ is a prime of good reduction for Ai, we denote by
Ai℘ the reduction and by Frob℘ the Frobenius element regarded as an automorphism, well
defined up to conjugacy, of the `-adic Tate module of Ai or, dually, of H1(Āi,Z`).

Theorem 1. Let A1 and A2 be abelian varieties over a number field K. Suppose that for
a density one set of primes ℘ of K, there exists a non-trivial morphism of abelian varieties
over k̄℘ from A1℘ to A2℘. Then there exists a non-trivial morphism of abelian varieties from
A1 to A2 defined over K̄.

Let G be a connected reductive algebraic group over an algebraically closed field F of
characteristic 0, and let V be a finite dimensional representation of G. Let T be a maximal
torus of G and W the Weyl group of G with respect to T . If V is irreducible, we say it is
minuscule if W acts transitively on the weights of V with respect to T . The highest weight
of V with respect to any choice of Weyl chamber has multiplicity 1, so every element of the
Weyl orbit has multiplicity one.

For general finite dimensional representations V , we say V is minuscule if each of its
irreducible factors is so. Regarding the character of a representation V as a function fV
from W -orbits in X∗(T ) to non-negative integers, when V is minuscule, for any dominant
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weight λ, the multiplicity in V of the irreducible G-representation Vλ with highest weight λ
is the value of fV on the W -orbit containing λ.

Proposition 2. Let V1 and V2 be minuscule representations of G. If dim HomT (V1, V2) > 0,
then dim HomG(V1, V2) > 0.

Proof. If dim HomT (V1, V2) > 0, then V1 and V2 must have a common T -irreducible fac-
tor, and that means they have a common weight χ with respect to T . If λ is the domi-
nant weight in the orbit of χ, then V1 and V2 each contain Vλ as a subrepresentation, so
dim HomG(V1, V2) > 0. �

Now let A1 and A2 denote abelian varieties over a number field K with absolute Galois
group GK := Gal(K̄,K). Let ` be a fixed rational prime, and let F = Q̄`. Let Vi =
H1(Āi, F ), regarded as GK-modules. Let V12 := V1 ⊕ V2 as GK-module and G12 the Zariski
closure of GK in AutF (V12). By the semisimplicity of Galois representations defined by
abelian varieties [Fa83], G12 is reductive. Let G denote the identity component G◦12.

Proposition 3. There exists a positive density set of primes ℘ of K such that A1 ×A2 has
good reduction at ℘, and Frob℘ generates a Zariski dense subgroup of a maximal torus of G.

Proof. The condition that Frob℘ lies in the identity component G has density [G12 : G]−1 > 0.
By a theorem of Serre [LP97, Theorem 1.2], there exists a proper closed, conjugation-stable
subvariety X of G such that Frob℘ ∈ G \ X implies that Frob℘ generates a Zariski-dense
subgroup of a maximal torus of G. However, by a second theorem of Serre [Se81, Théorème
10], the set of ℘ such that Frob℘ ∈ X has density 0. �

We can now prove the main theorem.

Proof. A well-known theorem of Tate [Ta66] asserts that the existence of a non-trivial Fq-
morphism between abelian varieties over Fq is equivalent to the existence of a Frobq-stable
morphism of their `-adic Tate modules. By the easy direction of this result, the existence of
a non-trivial morphism defined over F̄q implies the existence of a Frobmq -stable morphism of
their Tate modules for some positive integer m.

By Proposition 3, the hypothesis of the theorem therefore implies that

dim Hom(V1, V2)Frobm
℘ > 0

for some prime ℘ for which Frob℘ generates a Zariski-dense subgroup of a maximal torus T
of G and some positive integer m. As T is connected, Frobm℘ likewise generates a Zariski-
dense subgroup of T . Thus dim HomT (V1, V2) > 0. By a theorem of Pink [Pi98, Corol-
lary 5.11], the G-representations V1 and V2 are minuscule. Thus Proposition 2 implies
that dim HomG(V1, V2) > 0. Finally, Faltings’ proof of Tate’s Conjecture [Fa83] implies
HomK̄(A1, A2) is non-zero. �

Remark 4. One might ask whether there exists a non-trivial homomorphism A1 → A2

defined over K itself if for a density one set of ℘ there exists a non-trivial k℘-homomorphism
A1℘ → A2℘. D. Prasad pointed out the following counterexample to us. Let E be an elliptic
curve over Q which does not have complex multiplication. Let En denote the quadratic twist
of E by n ∈ Q×. Let A1 = E, A2 = E2 × E3 × E6. For every rational prime p > 3, either
2, 3, or 6 lies in F×p

2
, so if E has good reduction at p, the same is true for both A1 and A2,

and there exists an Fp-isomorphism from (A1)p to least one of (E2)p, (E3)p, and (E6)p, and
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therefore a non-trivial Fp-homomorphism to (A2)p. On the other hand, there is no Q-isogeny
from A1 to any one of E2, E3, or E6, and therefore no non-trivial Q-homomorphism to A2.

We can prove a stronger version of Theorem 1 in analogy with the theorem of C. S. Rajan
[Ra98].

Theorem 5. Let n be a positive integer. If A1 and A2 are abelian varieties of dimension
≤ n over a number field K and the set of primes ℘ of K for which there exists a non-trivial

k̄℘-morphism of abelian varieties from A1℘ to A2℘ has upper density > 1− e−6n2

n!2n
, then there

exists a non-trivial K̄-morphism of abelian varieties from A1 to A2.

The only additional ingredient necessary to prove Theorem 5 is an upper bound, depending
only on n, on the number of components of G12. This is an immediate consequence of the
following theorem.

Theorem 6. Let n be a positive integer, F a field of characteristic 0, and G ⊂ GLn a
reductive F -subgroup. If the set of F̄ -points of G consisting of matrices whose characteristic
polynomials lie in Q[x] is Zariski-dense, then |G/G◦| < e6n2

n!2n.

We remark that without the rationality assumption, this statement fails even for n = 1,
where G could be an arbitrarily large cyclic group.

Proof. The locus of F̄ -points of G whose characteristic polynomials lie in Q[x] is GF -stable,
so the Zariski-closure does not change when the base field is changed from F to F̄ . This
justifies assuming that F is algebraically closed.

We can write G◦ = DZ◦, where D and Z := Z(G◦) are the derived group and the
center of G◦ respectively. By [Sp79, Corollary 2.14], the outer automorphism group of D is
contained in the automorphism group of the Dynkin diagram ∆ of D. Every automorphism
of ∆ preserves the set of isomorphic components. We claim that |Aut ∆| ≤ n!. It suffices
to prove this when ∆ consists of m mutually isomorphic connected diagrams ∆0 of rank
r = n/m. The claim obviously holds when r = 1. It is easily verified for n ≤ 4. For n ≥ 5,
the classification of connected Dynkin diagrams gives |Aut(∆0)|2/r ≤

√
6 < n/2, so if r ≥ 2,

|Aut(∆)| = |Aut(∆0)|n/r(n/r)! < (n/2)n/2bn/2c! < n!.

Any automorphism of G◦ is determined by its restrictions to the characteristic subgroups
D and Z◦. An automorphism which is inner on D and trivial on Z◦ is inner. Thus, the
homomorphism Aut(G◦)→ Aut(D)× Aut(Z◦) gives an injective homomorphism

Out(G◦)→ Out(D)× Aut(Z◦) = Out(D)×GLk(Z),

where k = dimZ◦ ≤ n. By Minkowski’s theorem [Se16, Theorem 9.1], every finite subgroup
of GLk(Z) has order at most

M(k) :=
∏
p

p
∑

i≥0

⌊
k

(p−1)pi

⌋
.

We have

logM(k) ≤
k+1∑
p=2

kp log p

(p− 1)2
= k

k∑
i=1

(i+ 1) log(i+ 1)

i2
≤ 2k2,

since (i + 1) log(i + 1) ≤ 2i2 for all i ≥ 1. Thus, any finite subgroup of Out(G◦) has order

≤ n!e2n2
.
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The conjugation action on G◦ defines a homomorphism G/G◦ → Out(G◦). Let Γ0 denote
the kernel of this homomorphism and G0 the inverse image of Γ0 in G. Thus, the index of Γ0

in the component group G/G◦ is ≤ n!e2n2 ≤ e3n2
. Arguing by contradiction, we may assume

the order of Γ0 is at least

e−3n2 |G/G◦| ≥ e3n2

n!2n.

Let Γ := ZG0(G
◦)/Z◦, so Γ0

∼= ZG0(G
◦)/Z is a quotient group of Γ. Consider the short

exact sequence

0→ Z◦ → ZG0(G
◦)→ Γ→ 0.

The extension class α ∈ H2(Γ, Z◦) is annihilated by N := |Γ|. As Z◦ ∼= (F×)k is a divisible
group, it follows that the extension class α lies in the image of H2(Γ, Z◦[N ]), where Z◦[N ]
denotes the kernel of the Nth power map on Z◦. We can therefore represent α by a 2-cocycle
with values in Z◦[N ]. This means that there exists a set-theoretic section i : Γ → ZG0(G

◦)
such that the associated 2-cocycle takes values in Z◦[N ], and it follows that Γ̃0 := Z◦[N ]i(Γ)
is a finite subgroup of ZG0(G

◦) ⊂ G which maps onto Γ and therefore onto Γ0.
By Jordan’s theorem, Γ̃0 contains an abelian normal subgroup Ã0 of index ≤ J(n), a

constant depending only on n. The optimal Jordan constant has been computed by Michael
Collins [Co07], and for all n, we have J(n) ≤ e2n2

. Indeed, for n ≥ 71, the bound, (n + 1)!,
is given by Theorem A, and

(n+ 1)! < (n+ 1)n < (n2)n < ((en)2)n = e2n2

.

For 20 ≤ n ≤ 70 and n ≤ 19, the bounds are given by Theorems B and D respectively, and
they can be checked by machine to be less than e2n2

in every case.
Let T be a maximal torus of G◦, so Ã0T is a commutative subgroup of G0. As

Ã0 ∩ T ⊂ Ã0 ∩G◦ = ker Ã0 → Γ0,

we have

|Ã0T/T | = |Ã0/(Ã0 ∩ T )| ≥ |Im Ã0 → Γ0| ≥
|Γ0|
e2n2 ≥ en

2

n!2n.

Therefore, if M := enn!2, then Ã0T has at least Mn components. Since Ã0T/T is a quotient
group of Ã0 ⊂ GLn(F ), it contains no elementary p-group of rank > n, so it must have an
element of order ≥M . Let g ∈ Ã0 map to such an element.

By hypothesis, there exists t ∈ G◦ × {g} such that the characteristic polynomial of gt
has coefficients in Q. We can further assume that t is semisimple, so we can choose our
maximal torus T to contain t. Let T ′ = 〈g〉T . Every element of T ′ is the product of two
commuting elements, one which is of finite order, and one which belongs to T , so both are
semisimple, from which it follows that their product is semisimple. Thus T ′ is diagonalizable,
so it is a closed subgroup of a maximal torus of GLn [Bo91, Proposition 8.4]. Without loss
of generality, we may assume this maximal torus is the group GLn1 of invertible diagonal
matrices.

The contravariant functor taking an algebraic group to its character group gives an equiv-
alence of categories between diagonalizable groups and finitely generated abelian groups
[Bo91, Proposition 8.12]. In particular, there is a bijective correspondence between sub-
groups Λ ⊂ Zn and closed subgroups DΛ of the group GLn1 of diagonal matrices in GLn,
where

DΛ = {(x1, . . . , xn) ∈ GLn1 | λ(x1, . . . , xn) = 1 ∀λ ∈ Λ}.
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Let Λ be the subgroup of Zn such that DΛ = T and Λ′ the subgroup such that DΛ′ = T ′.
The inclusion T ↪→ T ′ corresponds to the surjection Zn/Λ′ → Zn/Λ and thus to the inclusion
Λ′ ⊂ Λ. As T ′/T is cyclic, Λ/Λ′ is cyclic of the same order k. Let λ ∈ Λ map to a generator
of Λ/Λ′. Then the smallest integer m such that λ((gt)m) = 1 is the smallest such that
λ(gm) = 1, which is k.

Writing gt = (x1, . . . , xn) ∈ GL1(F )n ⊂ GLn(F ), the xi are the eigenvalues of gt, so they
all lie in some Galois extension of Q of degree ≤ n!. Therefore λ(gt) lies in this extension.
Since it is a primitive kth root of unity, this implies φ(k) ≤ n!. Now φ(q) ≥ √q for all prime

powers q except 2, and it follows from the multiplicativity of φ that φ(k) ≥
√
k/2 for all

k ≥ 1, so M ≤ k ≤ 2n!2, which is a contradiction.
�
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