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ABSTRACT. In the high rank limit, the fraction of non-zero character
table entries of finite simple groups of Lie type goes to zero.

1. INTRODUCTION

Let G be a finite group. Let G¢ denote the set of conjugacy classes of
G and Trr(G) the set of irreducible characters, so k(G) = |GY| = |Irr(G)|.
A well-known theorem of Burnside asserts that if x € Irr(G) and x(1) > 1,
then there exists ¢ € G such that x(g) = 0; in particular, there are zero
entries in the character table of every non-abelian GG. In fact, one can make
much stronger statements about the subset of G x Irr(G) determined by
the vanishing condition, and there is a substantial literature devoted to such
results. We are interested in the opposite extreme from abelian groups,
namely groups for which almost all entries are zero.

We define the sparsity ¥(G) to be the fraction of non-zero entries in the
character table of G:

{9 x) € G% x Irr(G) | x(g) # 0}

R(G)e(G) |
For finite simple groups of bounded rank, it is not too difficult to analyze
the asymptotic behavior of X(G). For instance,

lim ¥(Ls2(q)) = 1

q—o0 2

X(G) =

In this paper, we consider what happens when G ranges over finite simple
groups of Lie type of unbounded rank. Our result is the following.

Theorem 1.1. Given any sequence G; of finite simple groups of Lie type
with rank tending to oo, lim;_, o %(G;) = 0.

To round out the story, it would be interesting to know whether ¥(A4,,) —
0 (or, equivalently, whether X(.S,,) — 0) as n — oo. This remains open. The
numerical evidence [16] seems to point to a limit strictly between 0 and 1.
Interestingly, Miller proved [15] that for random pairs (x,g) € Irr(G) x G,
the probability that x(g) = 0 goes to 1 as G ranges over symmetric groups.
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The proof of Theorem 1.1 uses a trick of Burnside and roughly parallels
that of [7]. Given a pair (¢, x), let

o x()
B0 = (1), 199

By [7], x(g) is divisible by d e , in a ring of cyclotomic integers. If a # 0 is
an algebraic integer, then the average of |a;|? over all conjugates «; of a is at
least 1 [6, p. 459]. Therefore, if « is divisible by a rational integer d, then the
average is at least d2. The multiset of values x(g) # 0 where x(g) is divisible
by some rational integer d > D is stable under the action of Gal(Q((|q)/Q),
so the average of |x(g)|® over all such values is greater than D?. By the
orthonormality of characters, the average of |x(g)|?> over all pairs (x, g) is
1. Of course, this average is over elements rather than conjugacy classes,
so a key ingredient of the argument is Proposition 10.1, which implies that,
for finite simple groups of Lie type, it does not make much difference which
kind of average one takes. This is not true for alternating groups, since the
partition associated to a randomly chosen element of S,, has logn + o(log n)
parts [3], while a typical partition of n has (7714/3/2+ o(1))y/nlogn parts
[2].

To show that dyc , is usually large, we show that for most choices of
(9%, %), we can find a large Zsigmondy prime ¢ such ordy|¢g®| < ordyx(1).
To do this, we need to have a good qualitative understanding of the degrees
of irreducible characters of G. This is provided by the Lusztig theory. In the
large ¢ limit, regular semisimple elements and irreducible Deligne-Lusztig
characters predominate, and it is relatively easy prove the needed estimates.
For fixed ¢, we have to work harder, but most of what is needed is already
available in work of Fulman-Guralnick [4, 5] and Larsen-Shalev [10].

We would like to thank the referee for a number of improvements, espe-
cially the argument about Suzuki and Ree groups in Theorem 10.2 below.

2. GENERAL FRAMEWORK

A key technical difficulty in implementing our strategy is that in counting
conjugacy classes and characters, it is often easier to work not with G but
with some closely related group. For instance, for PSL,,(F,), it is easier to
study conjugacy classes of SL,(FF,) and characters of PGL,(F,). To deal
with these difficulties, we consider the following general situation. Suppose
that we have maps of finite sets

(2.1) Ait.p? B
‘| |
A B

and a subset X C Ax B. Our goal is to show that, under suitable conditions,
| X | is small compared to |A x B|. We say P° C P and A° C A are compatible



SPARSE CHARACTER TABLES IN HIGH RANK 3

it f~ ( °)=¢" (AO), and likewise for P° and B°. In this case, we define
A° C A (respectively B° C B) to be this common inverse image.

In the intended application, A will be the set of conjugacy classes of a
finite simple group G, B the set of irreducible characters of G, and X, which
we want to prove small, will be the set of pairs (¢¢, x) for which x(g) # 0.
The precise definitions of A, B, and P are given in §5. The definitions of
the sets A°, A°, B, B°, P° depend on a single parameter as explained in §9.

Proposition 2.1. There exists an absolute constant N with the following
property. For all e > 0 there exists 6 > 0 such that given data (2.1), a subset
X C A x B, and compatible subsets A° C A, B° C B, and P° C P which
are compatible and satisfy the following conditions, then |X| < €|A x B|:
(1) 4% > (1 - 6)|A].
(2) |B°| > (1 - §)|BI.
(3) For ay € A°, ag € A we have |¢p~(a1)| > |¢~1(az)|.
(4) For by € B°, by € B we have [¢p~(b1)| > |1 (b)].
(5) For alln > N, {P € P | |f~YP)| > n} has less than n~2|P]
elements.
(6) For alln > N, {P € P | |g7Y(P)| > n} has less than n=2|P]
elements.
(1) [P < |4,
(8) IP| <[B.
(9) The set of pairs (Py, Py) € P°xP° such that (P1, P2) € (f,9)((¢,9) 7"
has cardinality less than &|P|?.

Proof. By conditions (3) and (4), every (¢, ¢)-fiber over A° x B° has cardi-
nality at least o

|A x B|

|A x Bl
Let x = | X|/|A x B|. Then by conditions (1) and (2),

X N (A° x B°)| > (z — 20)|A x B,

SO

(2:2) 1(6,9) 7 (X)N(A°XB%)| = (6, 4) T (XN(A°xB°))| > (2—26)| Ax B].
Let Py, denote the set of elements P € P° such that | f~1(P)| = n. Let
M > N. By condition (5),

(2.3)
| U 7 Pra) |= D nlPra
n>M n>M

=M{PeP°||f(P)| =M} +> {PeP [|f(P)>M+i}

i=1
P «— |P < 2P|
< —_— .
- M +Z (M+i)?2~ M
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Likewise, condition (6) implies
_ 2|P
U ot < 2L

n>M

By inequality (2.2) and conditions (7) and (8), the subset of (¢, ) 1 (X)
consisting of elements which map by (f,g) to

{PeP||fH(P) <M} x{PeP||g"(P) <M}

has more than

(. — 26 —AM Y| P|?
elements. On this set the map (f, g) takes at most M? elements to any given
element, so the cardinality of the image by (f,¢g) is at least

(x — 26 —4M 1) |P|?

M? )

By condition (9), this must be less than §|P|?, so x < M2§ + 26 +4M L.
By choosing M larger than N and 8/¢, we get = < € if § < O

€
2M?2+4-

3. SUBEXPONENTIAL SEQUENCES

In this section, we prove some basic facts about subexponential sequences
that will be useful for checking the hypotheses of Proposition 2.1.

We say that a sequence aq, as, ... of nonnegative integers is subexponen-
tial if for all v > 1 we have lim, o0 Y "a, = 0. This is equivalent to
the condition that ) a,2" converges in the open unit disk. It is clear
from this criterion that the coefficients of the product of power series with
subexponential coefficients again has subexponential coefficients. From the
definition, it is clear that the termwise product of subexponential sequences
is again subexponential.

Lemma 3.1. If (a;)i=12,.. is subexponential, then the sequence A, of coef-
ficients of the formal power series

[e.9]

A(z) =J =2 =D Apnz"

i=1
18 likewise subexponential.

Proof. As a; > 0 for all i,

(n)

has nonnegative coefficients, and for each m > 0, the sequence (A’ )n=12,...
is nondecreasing. Therefore, for any zy € (0, 1), the sequence (A(”)(zo))n:1,27,,,
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is nondecreasing. As A,, = Ag,?), for all n > m, we have
n
A (z0) > > A
m=0

Thus, if A(z) converges at z = zp, then lim,_,o, A (2g) exists and equals
A(zp), and conversely, if lim,, o, A™(z) exists, then its limit is an upper
bound for the increasing sequence of partial sums of >~ Apz(", so this
series converges.

log(1—2)

As lim, g =— = —1, the function is bounded on every interval

of the form (0,a] C (0,1). Applying this for a = zy, we obtain

log(1—=2)

n n
log AM () = Z —a;log(l —28) < C Z aizh,
i=1 i=1
where C depends on zy but not on n. As a; is subexponential, the right
hand side in this inequality is bounded independent of n, so the sequence
A (%) is bounded, so it converges. O

In particular, when a; = 1 for all ¢, we obtain the well-known fact that
the partition function p(n) is subexponential.

Lemma 3.2. Let (a;)i=12,. and (b;)i=12... be two sequences of positive
integers such that a; is subexponential and b; is arbitrary. Define ¢, to
be the mazximum of Hj a;j as 19122 ... ranges over all partitions of k with
e; < b; for all i. Then ci is subexponential.

Proof. For all € > 0, there exists r such that a; < (1 + ¢€)? for i > r. Thus

cr < a?l---aﬁr(l + o)k

4. COUNTING POLYNOMIALS

In this section, we introduce several sets of polynomials which are candi-
dates for the set P in Proposition 2.1.

For P(x) € Fp[z] a monic polynomial with non-zero constant term, we
define

(4.1) P*(z) := P(0) 2% P p(1/x),

where P is the polynomial obtained from P by applying the g-Frobenius
automorphism to each coefficient. In particular, if P(z) € F,[z], then
P*(z) = P(0)"'2%&PP(1/z). Note that P*(z) is a monic polynomial of
the same degree as P. If P(x) =[[,(z — r;), then
Pra) =@ -1/m) = [ =7,
i i
Therefore, if P = P, then the roots of P, taken with multiplicity, form a
union of orbits in F;* under the map = + z79. Any orbit under this map is
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stable by the ¢?-Frobenius, so if P(z) is irreducible in F,2[z], its roots form
a single orbit under z — x79. If P(x) € F4[z] and P is irreducible as a
polynomial over F,, then it may form one orbit or two mutually reciprocal
orbits.

Following [10], we denote by L, (g) the set of monic polynomials P(z) €
F,lx] of degree n such that P(0) = (—1)". We define by U,(q) the set
of monic polynomials P(x) € Fj[z] of degree n such that P = P* and
P(0) = (=1)". When n is even, we denote by O,(q) the set of monic
polynomials P(z) € F4[z] of degree n such that P = P* and P(0) = 1. For
c € F, we denote by L, .(q) the set of monic polynomials P(x) € F,[x] of
degree n such that P(0) = c. Likewise, for ¢ € IF‘;Z with c¢ = 1, let Uy, (q)
denote the set of monic polynomials P(x) € Fp[z] of degree n such that
P = P* and P(0) =c.

Lemma 4.1. Let r be a positive integer and q a prime power. Then

[Lry1(@)] = Urs1(q)] = |02 (q)| = ¢"

Proof. In each case, the leading coefficient and the constant coefficient are
fixed. For £,41(q), the remaining r coefficients can be chosen independently
from F,. For U,41(q), if 0 < i < (r +1)/2, the 2* coefficient can be any
element of F2 and it uniquely determines the 2"t coefficient. That fin-

ishes the U case if r + 1 is odd. If it is even, the 25 coefficient can be
any element of F,, so again |Uy41(q)| = ¢". For Oa,.(q), the 2' coefficients
can be chosen independently from F, for 0 < ¢ < r, and the x' coefficient
determines the 22"~ coefficient. U

Proposition 4.2. There ezists a positive real sequence (€;)i=12... tending
to 0 such that all of the following statements hold for all integers r > 1.

(1) Letn=r+1. If m > \/n and c € F, then the number of elements
in Ln.c(q) with an irreducible factor whose degree is divisible by m
is less than €.|Lyc(q)|. Likewise, the number of elements with an
irreducible factor whose degree is > \/n and divides ¢ — 1 for some
prime divisor £ of n is less than €.|Ly ¢(q)|.

(2) Letn =r+1. Ifm > \/nandc € FZQ with c¢ = 1, then the number of

elements in Uy, (q) with an irreducible factor whose degree is divisible
by m is less than €Uy (q)|. Likewise, the number of elements with
an irreducible factor whose degree is > \/n and divides £ —1 for some
prime dwisor ¢ of n is less than €.|Up (q)].

(3) Let n = 2r. If m > \/n, then the number of elements in O,(q)
with an irreducible factor whose degree is divisible by m is less than

€r’0n(Q)"

Proof. A monic irreducible polynomial over F; of degree k corresponds to
a g-Frobenius orbit of length k in . Any such orbit is contained in the

(¢* — 1)-roots of 1 in F,, so there are less than ¢*/k such polynomials.
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Therefore, the number of monic polynomials of degree n with constant term
n—1

¢ and an irreducible factor of degree k is less than “5—. Summing over

multiples of m, the number of monic polynomials of degree n with constant

term ¢ and an irreducible factor whose degree lies in mZ is less than

)

3 ¢" _q'(L+logn) _ |Lnc(a)(L+1logn)
\<i<n/m mi m m
which gives the first claim in part (1). For the second claim, we note that n
has at most one prime divisor £ > /n. So it suffices to prove that the sum
of 1/m over divisors m of n which are larger than \/n is o((1 + logn)~!).
This follows from the fact that the total number of divisors of any integer
n is n°M),
For (2), we proceed in the same way, using the fact that |l .(¢)| = ¢" L.
If Q@ € Uye(q) and P divides @, then P* divides Q. It follows that if
P # P*, then any element of U, .(¢q) divisible by P is the product of PP*
and a polynomial in U, o cp(0)s-1- If P = P, then any element of Uy .(q)
divisible by P is the product of P and an element of U, _j .p()-1. The first
case gives less than
ﬂ n—2k—1 _ q;ﬂ
ko &
elements of U, .(q).
For the second term, every monic irreducible degree k polynomial P(z) €

[F,2[x] such that P = P* corresponds to a length-k orbit

rr 0 =
so ris a (g% — (—=1)F)-root of 1. If k > 2, the ¢ + 1 fixed points of x +» 271
do not belong to such an orbit, so the number of orbits is again less than
¢"/k, thus contributing less than

elements of Uy, (¢). The argument therefore goes through as before.

For (3), we follow (2). The number of elements in O,(q) is ¢". If a
monic polynomial P(z) € F,[z] satisfies P # P* and P divides Q € O,(q),
then @ is the product of PP* and an element of O, _sr(q). For k > 2, a
monic irreducible polynomial P of degree k satisfying P = P* must be of
even degree, and every element of O, (q) divisible by P is the multiple of
P by an element of O, _r(q). By the proof of [10, Prop. 2.6], the number
of irreducible monic polynomials of degree k > 4 satisfying P = P* is the
same as the number of monic irreducible polynomials of degree k/2, and for
k = 2, the number is at most ¢ — 1. Thus, the argument goes through as

before.
O
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For any monic polynomial P(x) over a field F', we define p(P) to be the
sum ZLI bi(a;—1), where P = P/ - - P;zj , and the P; are pairwise distinct
monic irreducible polynomials over F' of degree b;. For a perfect field F,
p(P) does not change if F' is replaced by a field extension.

Lemma 4.3. Let m and n be positive integers.

(1) The number of polynomials P € L,(q) with p(P) > m is less than
2¢~"2|L,(q)].

(2) The number of polynomials P € Uy,(q) with p(P) > m is less than
g7 Un (q)-

(8) If n is even, the number of polynomials P € O, (q) with p(P) > m
is less than 2¢~"/4|On(q)|.

Proof. Recall that P = ngl P, and let

/ /9 P
Q:HPiLaz/ J7 R:@
i=1
For claim (2) (resp. (3)), if P = Pj, then a; = a;, so the multiplicities of
P; and Pj in @ (or in R) are the same. Therefore, Q € Z/ldegQ,Q(O)(q) and
R € Ugeg r,P(0)(0)~2(q) (tesp. Q € Ogeg(q) and R € Oqegr(q).) As

> bilas/2) > ;Zbi(ai _ ),

we have deg Q > p(P)/2 and 2deg @ + deg R = n.
For £,,(q), the total number of possibilities for (@, R) with p(P) > m is

therefore at most
Z qiqn—Zi—l < 2qn—1—m/2‘
i>m/2
For Uy, (q), there are g+ 1 elements ¢ € IF 2 with c¢ = 1, and for each of these

[Uk..| = ¢"71, so the total number of possibilities for (Q, R) with p(P) > m
is at most

Z (q + 1)qi—1qn—2i—1 < 4qn—1—m/2.
i>m/2
For O,,(q), the number of possibilities is at most
Z g/2m=20/2 < ggn/2-m/4,
i>m/2

With a;, b;, and j as above, we define
i (1+q7%)
1—qg 1
Lemma 4.4. For all € > 0 there exists M such that for all n > 1 and all
prime powers q:

a(P) =
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(1) The number of polynomials P € L,(q) with a(P) < (1 + ¢ HM is
greater than (1 — €)|L,(q)|.

(2) The number of polynomials P € Uy, (q) with a(P) < (1 4+ ¢ )M is
greater than (1 — €)|Uy(q)|.

(3) If n is even, the number of polynomials P € Oy(q) with a(P) <
(14 ¢~ HM is greater than (1 — €)|0n(q)|.

Proof. As there exists C such that (1 —¢ )™ [[~;(1+¢7) < (1+q¢H°
for all ¢ > 2, it suffices to prove that there exists e > 2 such that the
fraction of polynomials P in L, (q) (resp. Un(q) or On(q)) divisible by e
different irreducible polynomials of the same degree is less than e. The
number of monic irreducible polynomials of degree k in Fy[z] is less than
q"/k, so the number of sets {Q1,...,Qx} of e such polynomials is at most
k—eqk /el. For each possibility, there are ¢"~°¢=1 choices for the remaining
factor P/[]; Qi, so there are at most (k=¢/e!)g" ! elements of £,(q) with
e distinct irreducible degree k factors. Summing over k, we get an upper
bound of ¢(2)g" 1/e!, and ¢(2)/e! goes to 0 as e goes to oco.

For statements (2) and (3) we consider factors of degree k which are either
of the form @, where @ = Q* is irreducible (in FF 2[z] or F,[x] respectively)
or which are of the form QQ*, where @ is of degree k/2 and @ # Q*. As in
Lemma 4.2, the two cases together contribute less than 2¢*/k possibilities.
The number of e-element sets of such polynomials is therefore less than
(2k)~¢¢%* /e!, and the argument goes through as before. O

Lemma 4.5. Let n > 2 be an integer and q a prime power. The number of
elements P € L,(q) such that

P(Cx) = P(x)
for some ¢ € Fy\ {1} is less than 2¢"/271. Likewise, the number of elements
P € Uy,(q) such that

P(Cz) = P(z)
for some ¢ € Fp2 \ {1} is less than 2¢"/2 1,
Proof. In both cases, if P(Cz) = P(x) for some ¢ # 1, then by comparing
coefficients, the order d > 1 of ¢ divides n, and P(x) = P’(z%) for some
element P' € L, /q(—1y2(q) (vesp. Uy, q(-1)n(q)), for which there are g4t

possibilities. So the number of P € £,,(q) (resp. U, (q)) with P(Cx) = P(z)
for some ¢ € F, \ {1} (resp. Fp2 \ {1}) is at most

Z qn/ifl < 2qn/271'
2<i<n/2

5. CLASSICAL GROUPS

Finite simple groups G of rank » > 8 must be of type A,, 24,, B,,
C,, D,, or 2D,. In each case, G is closely related to a classical group G,
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which we define below. We also define the sets A, A, B, B, and P used in
Proposition 2.1.

In every case, A denotes the set of conjugacy classes of G and A, the set
of conjugacy classes of the universal central extension G of G. We denote
by Z the center of G, so that we can think of |Z| as the “generic” size of
the fibers of the map ¢ obtained from the covering homomorphism G -G
by taking conjugacy classes. The map f takes a conjugacy class of G to its
characteristic polynomial, with a slight modification when G is of type B.

We can regard G as the commutator group [G,4(Fy), G.q(Fy)], where G, 4
is an adjoint simple algebraic group defined over F,. We define B := Irr(G),
while B denotes the set of pairs (x, Xad) € Irr(G) x Irr(G,q(F,)) such that
(x,Resgxad)a = 1. We define 1(x, Xad) := Xx. The Lusztig classification
(see §8 below) assigns to each character x,q a semisimple conjugacy class in
the [F -points of the dual group to G,4. This is a simply connected simple
algebraic group of classical type, so it has a natural representation, and we
define g((, xad)) to be the characteristic polynomial of this semisimple class
in this natural representation, with a slight modification in the case that G
is of type C.

We divide into cases. A reference for dual groups for the various groups
of classical types is [1, §2].

Case A. In this case, G must be of the form PSL,,(F,) or PSU,(F,), where
n =1+ 1. We define G’ to be SL,,(F,) or SU,(F,) respectively. As G,q is
PGL,, or PGU,, respectively, the dual group (G,4)* is SL,, or SU,, respec-
tively, and P = L,(q). We have |Z| < n.

Case B. In this case, G is of the form Q,(F,), where n = 2r + 1, and we
define G’ to be SO, (F,). In this case, G’ is a subgroup of G of index < 2. As
G,q = SOy, the dual group (G,q)* is Sp,y,.. The characteristic polynomial of
every element of Sp,, (IFy) lies in P := O9,.(¢). The characteristic polynomial
of every element of SO,,(F,) is (z — 1) times an element of O, (q), and we
define f as the composition of G — G, G — GL,(F,), the characteristic
polynomial map, and division by (z — 1). We have |Z] < 2.

Case C. In this case, G is of the form PSp, (F,), where n = 2r, and we
define G’ to be Sp,,(F,), so G is the quotient of G by a normal subgroup of
order < 2, and f is defined via the usual map Sp,,(F;) = O, (F;). As G,q =
PGSp,,, the dual group (G,q)* is Sping,., . We define the map g by compos-
ing the maps Spiny, 1 (Fg) — SO2r41(Fy), SO2:41(Fg) — GLor41(Fy), the
characteristic polynomial map, and division by (z —1). We have |Z| < 2.

Case D. In this case, G is of the form PQ:5(F,), where n = 2r, and we define
G’ to be SO (F,), so G is the quotient of a subgroup 2 (F,) of index < 2 in
G’ by a normal subgroup of order < 2. As G,q = PO, the dual group (G,4)*
is Spin-. Both f and g are defined by composing Spinf(]Fq) — SO%(FQ),

SOE(F,) — GL,(F,), and the characteristic polynomial map, which sends
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orthogonal n x n matrices to elements of O,,(¢q). Note that in this case f
and ¢ are not surjective. We have |Z| < 4.

We summarize all this information in the following table.

G G’ G Goa
PSL,1(F,) | SLy11(Fy) | SLy1(F,) | PGL, 1
PSU,11(F,) | SU,1(F,) | SU(Fy) | PGUyy
QQT_H(IFQ) SOQT+1(FQ) SpiHQ,,_H Fq) SOQT_H
PSpQr(Fq) Sp?r(FQ) Sp?r(Fq) PGSpQT
PQ3, (Fy) 803, (F) Sping, (F) PO;,
PQQT(FQ) SOQ_T(F(]) Spln;r(FQ) POQ_T

Lemma 5.1. In all four cases, conditions (7) and (8) of Proposition 2.1
hold if N > 2.

Proof. By [4, Theorem 1.1], k(G) > ¢". By Lemma 4.1,
Al = k(G) > q¢" = |P|.

This implies condition (7). As the projection map from B to Trr(G,q(F,))
is surjective,

|B] 2 Irr(Goq (Fy)) = k(Gaa(Fg)) = ¢" = [P,

again by [4, Theorem 1.1].
[l

Proposition 5.2. Let G' C GL,(F2) be a classical group. The characteris-
tic polynomial of every element of g belongs to Ly, (q), Un(q), (x—1)Op-1(q),
On(q), On(q), or On(q) if G' is of type A, 2A, B, C, D, or 2D respectively.
Moreover, for each such element, there exist at most 4 semisimple conjugacy
classes in G' whose elements have this characteristic polynomial.

Proof. The first part is well-known; see, e.g., [10]. The second part follows
from the following two claims. First, we assert the map from the variety of
semisimple conjugacy classes of the underlying linear, unitary, symplectic,
or orthogonal algebraic group to the variety of conjugacy classes of GL,, is
at most 2 to 1. Second, we assert that the elements of G’ in any semisimple
conjugacy class of the underlying algebraic group G split into at most 2
G’-conjugacy classes.

For the first assertion, we may work over IF, and fix a maximal torus T
of G which lies in the maximal torus D of diagonal elements in GL,,. Let
W denote the Weyl group of G with respect to T and consider the map
T/W — D/S,. We claim that for any ¢ € T, there are at most 2 different
W-orbits in T N t%». This is obvious for type A. If n = 2r, two n-tuples of
the form

(a:l,a:fl, T )

are the same up to rearrangement if and only if the multisets

{{xlvxfl}v RRE) {xhx;l}}



12 M. J. LARSEN AND A. R. MILLER

are the same, and this implies that the n-tuples lie in the same (Z/27)" x S,-
orbit. This shows that the map T/W — D/S,, is one-to-one in case C and
at most 2 to 1 in case D. If n = 2r + 1, then two n-tuples

(:pl,mfl,...,mr,xgl, 1)

are the same up to rearrangement if and only if the n-tuples lie in the same
(Z/2Z)" » Sy-orbit, so again the map is one-to-one.

For the second assertion, we use the fact that the map from the universal
cover of G to G is at most 2 to 1. From Steinberg’s theorem [17, Theorem 9.1]
it follows if Z is the centralizer of a semisimple element s in G, then Z_/Z
is of order 1 or 2. By Lang’s theorem, it follows that there are at most two
G’-conjugacy classes of elements in G’ conjugate to s under G.

O

6. UNIPOTENT CONJUGACY CLASSES

Lemma 6.1. The sequence whose rth term is mazimum number of unipotent
conjugacy classes in any classical group of rank r over any field F, has
subexponential growth.

Proof. By [8, Prop. 2.1], the number of unipotent conjugacy classes in
SL,,(Fq) is < np(n). By [8, Prop. 2.2], the same bound applies for SU,(Fy).
By [8, Prop. 2.3], for a symplectic group of rank r, the number of unipotent
conjugacy classes is the sum of 2%* over partitions A of 2r, where a) denotes
the number of distinct even parts. Since the sum of a) distinct positive
even integers is at least ai + ay < 2r, it follows that the maximum of 29* is
subexponential in r, as is p(2r). By [8, Prop. 2.4], for any orthogonal group
of rank r, the number of unipotent conjugacy classes is the sum of 2%* over
partitions A of 2r, where a) is one less than the number of odd parts in A,
with the exception that if A has no odd parts, the summand is either 0 or
1, depending on whether G is of the form SO~ or SO™.
For G either orthogonal or symplectic and ¢ even, [8, Prop. 3.1] gives
a more complicated classification of unipotent conjugacy classes, but the
number of representations is certainly bounded above by ordered quadruples
of partitions summing to r, which is the 2" coefficient of [[52, (1 —2%)~* and
therefore subexponential in 7.
O

Proposition 6.2. For all € > 0 there exists N with the following property.
For any finite field Fy, any n > N, and any semisimple element s in a
classical subgroup G' = G'(Fy) of GL,(Fy), let H be the centralizer of s in
G', H° the identity component of H, S the derived group of H®, and r the
absolute rank of S. Then the number of H(F,)-conjugacy classes of unipotent
elements in H°(F,) is less than ¢°". The analogous statement is also true
when H is the centralizer of a semisimple element s in G' = SU,(Fy).

Proof. It suffices to prove that the number of conjugacy classes of unipotent
elements in H°(IF,) is subexponential. As H°/S is diagonal, every unipotent
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element of H°(F,) lies in S(F,). Thus it suffices to prove a subexponential
bound for the unipotent conjugacy classes of S(Fy).

We decompose the natural representation space of Fy of GL,(F;) by s
into s-isotypic factors Vg = WgQ indexed by monic irreducible polynomials
Q(z) € Fy[z] and denote by by the dimension dim Wy = deg@. If G’ =
SL,,(Fy), then

S = H ReSFqbQ /Fq SLaQ,an
Q

where Res denotes restriction of scalars. Each factor is of rank bg(ag — 1)
over Fy, so the rank of S is p(P), where P is the characteristic polynomial
of s.

For orthogonal groups G’, let II denote the set of orbits for the involution
Q — Q* defined in (4.1). For 7w € II, we denote by Vi, Wy, ar, and b,
the sum @QGW Vo, EBQEW Wq, ag = ag+, and dim W respectively. As s
preserves the inner product (, ), we have Vg L Vi unless Q and R belong
to the same orbit, so the centralizer of s in G’ is

(6.1) H AUthbW (Vm <7 >)

well

The derived group of the identity component is therefore a product of simple
algebraic groups S, indexed by w € I. If 7 = {z — 1} or # = {x + 1}, then
S, is of absolute rank |a;/2] and of type D or B as a, is even or odd.
Otherwise, it is of type D or A, depending on whether 7w has one element or
two and of absolute rank b;(ar — 1) in either case. For symplectic groups,
we proceed in the same way, with the difference that polynomials Q = Q*
give rise to factors of type C.

For unitary groups, G’ acts on an n-dimensional vector space over F.
We decompose 22 into isotypical spaces Vg = WgQ for the action of s,
where () ranges over monic irreducible polynomials in F2[z]. Let II denote
the set of orbits of {Q | ag > 0} under @ — Q*. Let Wr = P, Wo
and Vi = @ge, Vo = Wi Let (,) denote the sesquilinear form which
G’ respects. The different V. are mutually orthogonal with respect to this
form, and the centralizer of s in G’ is again given by (6.1). The derived
group is therefore a product of simple algebraic groups indexed by ), and
each is of type A and absolute rank b;(ar — 1), where b, = dim W.

In every case, therefore, S(IF,) is a product of classical groups of total rank
r < p(P). The number of unipotent conjugacy classes is therefore < HQ Cbo s
where (¢;)i=12,... is the subexponential sequence given by Lemma 6.1. By
Lemma 3.2, for any fixed ¢, the number of conjugacy classes is O(q“"/ 2)
and therefore less than ¢ if r is sufficiently large. On the other hand, there
exists o such that ¢; < o for all 4. If ¢ > «!/¢, then the number of conjugacy
classes is less than or equal to o” < ¢".

O
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7. UNIPOTENT CHARACTERS

Let G be a connected reductive group over F,. Following Lusztig [13], we
say that an irreducible character of G(F,) is unipotent if it appears with non-
zero multiplicity in the Deligne-Lusztig character R%(l) associated to the
trivial character on maximal torus T'(F). In particular, the trivial character
is unipotent. The classication of unipotent characters depends only on the
adjoint quotient of G (see [14, Remark]), therefore only on the root system
of G together with Frobenius action.

Assuming G has connected center, Lusztig gave [13, p. x] a “Jordan de-
composition” of irreducible characters x of G(F,). We briefly recall the
setup, referring the reader to [13] for details. Each such character has non-
zero multiplicity in some Deligne-Lusztig character R%(é?), and 6 determines
a semisimple element ¢ of the dual group G*(IF;), where G* is the connected
reductive algebraic group over F, whose root datum is dual to that of G,
with corresponding Frobenius action. The element ¢ is well-defined up to
conjugacy class by x. As G has connected center, the derived group of G*
is simply connected, so choosing a representative ¢, the centralizer H* of ¢
in G* is a connected reductive group. If H denotes the dual group of H*,
there is a bijective correspondence m — X, between the set of unipotent
characters m of H(F,;) and the set £(¢) of irreducible characters x, of G(IF,)
associated to the class of t. For us, the most important point is that

(7.1) () = IEED

- |H(F)l
where m’ denotes the largest divisor of m prime to q.
We record the following consequence.

Lemma 7.1. If xaq is a character of G,q(F,) associated to the class of a
semisimple element t € (G,q)*(Fy), and if the order of the centralizer of t is
not divisible by a prime {1 q, then

ordgXad(1) = ordy|Gq(Fy)|-

Proof. As £t q, we have ord|G,q(F,)| = ord¢|G,q(Fq)|’. Defining 7 so that
Xad = X, by (7.1),

ordgxad(1) = ord|Goq(Fy)|m(1) > orde|Gaq(Fy)|-

The opposite inequality follows from the fact that x,q(1) divides |G,q(F,)|.
([

Proposition 7.2. For all € > 0 there exists N with the following property.
For any finite field ¥y, any v > N, any adjoint simple group G over Iy of
type A, B, C, or D, and any semisimple element t € G*(F,), such that the
centralizer of t in G* has absolute semisimple rank r, the number of elements
in E(t) is less than g .
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Proof. The proof is essentially the same as that of Proposition 6.2. The
only difference is that instead of Lemma 6.1, we use a subexponential esti-
mate for the number of unipotent characters of a classical simple group of
rank r. The number of unipotent characters is independent of ¢. For spe-
cial linear and unitary groups, it is given by the partition function p(r) [13,
p. 358]. For orthogonal and symplectic groups, there are at most two differ-
ent unipotent characters associated to a Lusztig symbol of rank r [13, p. 359].
The number of such symbols grows subexponentially by [12, Prop. 3.4] and
Proposition 3.1. (|

The irreducible characters of the finite simple group G can be regarded
as the Z-trivial characters of G, where Z is the center of G = Gy (Fy).
By [14, Prop. 5.1], Irr(G) can be decomposed into rational Lusztig series
&(s) indexed by semisimple conjugacy classes in (G.)*(F,). Moreover, the
conjugation action of G,4(F,)/G on Irr(G) preserves this decomposition,
and the orbits corresponding to elements of t € (G, )*(F,) with connected
centralizer are singletons. For such s, therefore, each character of G extends
to |Z| different characters of G,4(F,), obtained from one another by tensor
product by 1l-dimensional characters of G,4(F,)/G (which are necessarily
trivial on G). Thus the correspondence between Irr(G,4(F,)) and Irr(G)
is given by a function (namely, restriction) on the complement of the set
of characters of Irr(G) corresponding to ¢ with disconnected centralizer. If
t € (Goq)*(Fy) is a lift of t to an element on the universal cover, then t fails
to have connected centralizer only if the multiple of £ by some non-trivial
central element is conjugate to ¢ and therefore only if the characteristic
polynomial of  is a polynomial P(z) satisfying P((x) = P(x) for some

¢# 1.

8. ZSIGMONDY PRIMES

We recall that given ¢ and m, a Zsigmondy prime for the pair (g, m) is a
prime £ such that ¢ has order exactly m in F . Zsigmondy’s theorem asserts
that such a prime always exists if m > 6.

Lemma 8.1. If { is a Zsigmondy prime for (q,m), then ¢ divides ¢* — 1 if
and only if m divides k, and ¢ divides ¢* + 1 if and only if 2 | m and k is
an odd multiple of m/2.

Proof. The condition that ¢ divides ¢* — 1 is equivalent to the condition that
the kth power of ¢ in F) is 1, i.e., that m divides k. The condition that ¢
divides ¢* + 1 is equivalent to the condition that m divides 2k but not k,
i.e., dm = 2k for some odd integer d. Equivalently k is an odd multiple of
m/2. O

Lemma 8.2. If a semisimple element s € SL,,(F,) has characteristic poly-
nomial P, m > 2p(P), and no irreducible factor of P has degree a multiple
of m, then any Zsigmondy prime ¢ for (q,m) is relatively prime to the order
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of the centralizer of s in SL,(F,). Likewise, if m > 4p(P), s € SU,(F,),
and no irreducible F 2 (x| factor of P has degree an integer multiple of m/2,
then any Zsigmondy prime £ for (q, m) is relatively prime to the order of the
centralizer of s in SU,(Fy).

Proof. For SL,(F,), it suffices to prove that ¢ does not divide the order of
the centralizer of s in GL,(F,). Factoring

J
P =[]
1=1

with deg Q; = b;, the centralizer of s can be written
J
1 GLa, (F ).
i=1
For each i, b;(a; — 1) < p(P), so if a; > 2, we have a;b; < 2p(P) < m, so

(li—l

|GLai (Fqbi)’ = H qbik(qbi(ai_k) - 1)
k=0

is prime to £. If a; = 1, then GL;(F ;) has order g% — 1 which is again
prime to /.

For SU,(F,), we proceed as before, computing the centralizer of s in
Un(Fy) as in Proposition 6.2. In this case, the centralizer factors are of the
form Uy, (F ;) or GLg, (ngi) depending on whether Q; = Q;. As a; > 2
implies 2a;b; < 4p(P) < m, it follows that no Zsigmondy prime for (g, m)
can divide the order of a factor of either kind, so we may assume a; = 1.
As b; is not a multiple of m/2, ¢ divides neither the order of GLl(ngi) nor

[l

We remark that if £ is a Zsigmondy prime for (g, m), then m divides £ — 1.

9. WEAK REGULARITY CONDITIONS

Let £ > 1 and m > 0 be integers. We say a polynomial P(z) € Fy[z] is
m-reqular if the following two conditions hold:

(1) p(P) < m.
(2) P(x) is not identical to P(¢x) for any ¢ # 1.

If the characteristic polynomial of an element in GLn(Fq) is m-regular, we
say that this element is m-regular. This depends only on the semisimple part
s in the Jordan decomposition of the element. Likewise, we say an irreducible
character of G,4(IF,) is m-regular if and only if it belongs to £(s), where the
characteristic polynomial of the image of s under the natural representation
of (Gnq)*(Fy) is m-regular.
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Let G be a classical finite simple group. We define G', A, A, B, B, P
as in §5. Given a fixed choice of m, we define P° to be the subset of m-
regular polynomials in P, A° := f~1(P°), A° := ¢(4°), B° := g~ '(P°),
B° := ¢)(B°). Note that ¢—1(A°) = A° since p(P(z)) = p(w™ &P P(wz))
for all scalars w # 0. Likewise, v ~1(B°) = B°, since if (X, xad) and (X, Xhg)
both lie in B, and s € G lies in the semisimple class associated to x.q, then
there exists z € Z such that zs lies in the semisimple class associated to x/ -

By definition, the image of any element of A° in G’ is m-regular. Part (2)
of the definition of m-regularity guarantees that the fibers of ¢ over A° and
of 1 over B° all have exactly |Z| elements, where Z is the center of G. Since
G — Gis |Z] to 1 and G is of index |Z| in G,q(F,), all fibers of ¢ and 1
have cardinality < |Z|. This gives conditions (3) and (4) of Proposition 2.1.

If s € G’ is semisimple and m-regular, its centralizer in G’ is the group of
[F,-points of a reductive algebraic group H over IF,. We have seen that H has
at most 2 components, so if ¢ is odd, every unipotent element u € G’ which
commutes with s lies in H°(F,). If ¢ is even, we can regard G’ as the group
of F,-points of a simply connected semisimple group, so the centralizer of s
is connected, and again u € H°(F,;). To bound the number of G’-conjugacy
classes of elements in G’ with semisimple part conjugate to s, it suffices to
bound the H°(F,)-conjugacy classes of unipotent elements in H°(F,). By
Proposition 6.2, we have a subexponential bound for this quantity. As the
homomorphism G — @' is at most 2 to 1, we have a subexponential bound
in m for the number of elements of A° mapping to any element of P°, the
set of m-regular polynomials in P. Likewise, by Proposition 7.2, we have
a subexponential bound for the number of elements of B® mapping to any
element of P°.

By Lemma 4.3, the fraction of elements P of P with p(P) > m is less
than or equal to 4-27™/%, There exists a subexponential sequence o1, o, . . .
such that

17U, g (P)| < om

if p(P) < m, so there exists N for which conditions (5) and (6) of Propo-
sition 2.1 hold. Each element in A\ A° either has p-invariant greater than
m or has invariant < m but satisfies P(x) = P((x) for some ¢ # 1. If m
is sufficiently large in absolute terms, we may assume that the contribution
of all elements with p-invariant greater than m to either A or B represents
less than a §/2 fraction of the total elements of A or B respectively. Once
m is fixed, we have an upper bound for the size of fibers of f or g, so if ¢" is
sufficiently large, Lemma 4.5 implies that the contribution of all fibers of all
elements of P with P(x) = P((z), as ¢ ranges over all elements other than
1, is again less than a 0/2 fraction of the elements of A or B. To summarize,
we have proven the following.
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Proposition 9.1. If G is sufficiently large, for all § > 0 if m is chosen to be
sufficiently large, conditions (1)—(6) of Proposition 2.1 hold for P° defined
by m-regularity.

10. END OF THE PROOF

Proposition 10.1. For all € > 0, there exists C such that if G is a classical
finite simple group of rank r, the fraction of elements P € P such that some
element of f=Y(P) has centralizer order greater than Cq" in G is less than
€.

Proof. By Lemma 4.3, if ¢ > 8/¢, the fraction of elements P € P for which
p(P) > 0 is less than ¢/2. When p(P) = 0, the centralizer of every element
of f71(P) is the group of F,-points of a maximal torus. We claim that this
group has order < a(P)q". For semisimple s € SL,1(FF,) with characteristic
polynomial Q1 --- @, Q; irreducible, the order of the centralizer of s is

[T (g% 1)
q—1
For semisimple s € SU,1(F,) with characteristic polynomial @1 ---Q;, the
order of the centralizer is
I_ (g8 Qi — (—1)deg @)

=
q+1

For SO9,11(F,), Sps,.(F,) or SOL.(F,) every irreducible Q; = QF of degree
> 2 contributes a factor of ¢d¢8%i/2 — 1, while every pair {Q:,Q;} with
Q; = Q7 contributes a factor of qes@i 11 = ¢de8@; 1 1, 50 the centralizer
order is less than a(P)q".

By Lemma 4.4, if ¢ is sufficiently large, we may assume «(P) < 2 for all
but an €/2 fraction of elements of P, and the lemma follows. It therefore
suffices to prove the lemma when ¢ is fixed. By Lemma 4.3, we may addi-
tionally assume p(P) is bounded. We can therefore factor P as a product
of two polynomials, a square-free factor ) and a factor R relatively prime
to @ and of bounded degree. The centralizer of s is therefore a product of a
torus with < a(Q)q" ™" elements, and a connected reductive group of rank
ro, with a bounded number of elements. This gives the desired bound.

<(1-qg¢"H ¢ <alP)".

< a(P)q".

O

The following theorem is not needed for the main result but may be of
interest in its own right.

Theorem 10.2. For all € > 0 there exists § > 0 such that if G is a finite
simple group of Lie type, and S is a normal subset of G with less than 0|G]|
elements, then S consists of less than ek(G) conjugacy classes.

Proof. First we assume that G is of type A—D and of sufficiently high rank,
so we are in the setting of Proposition 2.1. Let T C A denote the set of
conjugacy classes in G corresponding to elements of S. By construction, the
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cardinality of any fiber of ¢: A — A over A° is |Z|. By Proposition 9.1,
hypotheses (1) and (3) of Proposition 2.1 hold when A = G“ and A = G,
Choosing the parameter 0 of this proposition sufficiently small, we may
assume that |¢~1(T)| > |Z||T|/2.

Let S denote the inverse image of S in G, so |S|/|G| = |S|/|G|. Let
T C A denote the set of conjugacy classes in G corresponding to elements
of S. Then T = ¢~ 1(T), so

012 ot
Al 214] 2[4
It therefore suffices to prove that for all € > 0 there exists 6 > 0 such that
for all normal subsets S of G with |S | <9 |G| elements, the number |T| of
conjugacy classes in S is < e|A| = ek(G).

By Proposition 10.1, fixing C' sufficiently large, the fraction of elements
in P whose fibers have elements with centralizer order greater than Cq"
as small as desired. By inequality (2.3) and condition (7), the fraction of
elements in G with centralizer order greater than Cq" is likewise as small
as desired. Therefore, we may assume that in any normal subset S of G
containing ek(G) conjugacy classes, at least ek(G)/2 have centralizer order
< C4q". These account for at least

ek(G)|G
2Cq"

clements in S. By [4, Theorem 1.1], k(G) > ¢", so we may take & := €/2C.
This leaves the bounded rank case.

In the limit as ¢ — oo, the fraction of elements of G which are regular
semisimple goes to 1. The centralizers of any semisimple element is con-
nected reductive, and for regular semisimple elements, the centralizer is a
torus and therefore has at most (¢ +1)" elements. As r is fixed, this gives
an upper bound of the form Cq". Thus, the above claim for S holds as in
the high rank classical case.

In the large ¢ limit, the fraction of elements g of G which are conjugate
to gz for some non-trivial central element z € Z goes to 0, essentially by
the uniform version of the Lang-Weil estimate. The precise statement we
want is that if G is a split, simply connected, semisimple group scheme over
SpecZ, H is a closed subscheme of G, p is a rational prime such that H(Fp)
is a proper subset of G(F,), and F is a generalized Frobenius map (possibly
of Suzuki-Ree type), then the fraction of elements of G(F,)¥ which lie in
H(]F'p) goes to zero as the degree of F' goes to oo, independently of the value
of p. A proof of this statement is given in [9, Prop. 3.4]. The proposition is
proved in the setting that G is a power of a simple group scheme and H is
the fiber of a word map, but the proof makes no use of these assumptions.
In the complement of the set of elements g which are conjugate to gz, the
map from conjugacy classes of G to conjugacy classes of G is |Z]| to 1. Thus,
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the theorem for S again reduces to the claim for S, just as in the classical
case.

For Suzuki and Ree groups, the proof of [9, Prop. 3.4] uses deep algebraic
geometry, and we are grateful to the referee for pointing out the following
direct proof. For G of type 2Bs(q?), 2G2(q?), and 2Fy(q?) respectively, by
[11], the number of conjugacy classes (regular semisimple conjugacy classes)
is > +3 (¢ —1), *+8 (¢*>—2), and ¢* +2¢> +17 (¢* —2¢® +1) respectively.
Therefore, if ¢ is sufficiently large, the number of conjugacy classes in S
which are not regular semisimple is less than dk(G). Again, if ¢ is sufficiently
large, the number IV of regular semisimple conjugacy classes in S satisfies

&TG’ < 1.5]8| < 1.50|G],
so N < 1.56¢" < 20k(G). Choosing § < €/3 small enough that ¢ must be
sufficiently large, we conclude that together the number of conjugacy classes
in S is less than 30k(G) < €k(G). O

We now prove Theorem 1.1.

Proof. We need only prove that given € > 0, if |G| is sufficiently large, we can
choose § > 0 and then m so that for P° defined by m-regularity, condition
(9) of Proposition 2.1 holds.

For all £ > 0 there exists N such if n > 2 and q is a prime power, then the
fraction of elements of £, (q), Un(q), or Op(q) with more than N logn factors
is less than n=* [10, Prop. 2.4-2.6]. Therefore, for every k, for sufficiently
large n, in any of these groups, the fraction of elements with no irreducible
factor of degree > 2,/n is less than n %, which can be taken as small as we
wish. In the case that G is of linear or unitary type, by Lemma 4.2, we may
further assume that no prime factor of n is = 1 modulo the degree of an
irreducible factor with degree > 2y/n. Assuming P; € P° has an irreducible
factor @ of degree > 2y/n, then by Lemma 4.2, the fraction of elements
P, € P° such that P» has an irreducible factor whose degree is an integer
multiple of deg Q/2 goes to 0 as n — oo. By Lemma 8.2, if ¢; > 0 and n is
sufficiently large, at least a 1 — ¢ fraction of pairs (Pi, P,) € P? have the
property that if s; € G is semisimple and maps to P; for i = 1 and i = 2,
then there exists a prime ¢ such that

(10.1) C11Za (sl €1 124(s2)l-

By construction, £ does not divide n.
To prove condition (9), we may partition the set

{(P1,P) € P° x P° | (P1, ) € (f,9)((¢,¢) (X))}

into two subsets, one consisting of pairs satisfying (10.1) and one consisting
of pairs which do not satisfy it. We have already bounded the latter set,
and it suffices to prove that for e5 > 0, if n is sufficiently large, the first set
has less than ez|P|? elements. Suppose that this is not the case.
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If (P1, P,) belongs to the subset satisfying (10.1), choose §& € A lying over
Py and (X, Xaq) in B lying over P such that x(g) # 0, where ¢ = ¢(5%).
We denote the semisimple conjugacy class of G = (G,q)*(IF,) associated to
Xad by t€, so the image of ¢ in its natural representation has characteristic
polynomial P». By Lemma 8.1, there exists a Zsigmondy prime ¢ > /n
which divides the order of the centralizer of g in G but not the order of the
centralizer of ¢ in G. Therefore,

ordg|g¥| < ordy|G| = ordy|G| = ordyxadq(1).

The fraction xaq(1)/x(1) is an integer dividing the order of the center of G
and therefore not divisible by ¢, so £ divides d ¢ ,. As the map ¢ is at most

|Z| to 1, we obtain at least e2|P|?/|Z| such pairs (gG,X).
For any a € Q((|¢)), let T'(«) denote the normalized trace
! T
e - e/l

Note that Gal(Q((g)/Q) is commutative, and complex conjugation is an
element of the group, so if the Aut(C)-orbit of a non-zero algebraic integer
ais {ai,...,ar}, then

T(laf?) = T(aa) =

e

k
Zai@i > 1.

i=1
As (g%, x) € X, by definition x(g) # 0, so T(
> T(x()?) = nlg®).

hegC

x(g)?) > n. Therefore,

If n is sufficiently large, by Proposition 10.1, we may assume that at least
e3|P|?/|Z| pairs (g%, x) arising in this way satisfy |g¢| > |G|/Cq". Thus,

Gl (@) =T Y, k(WP

heG xelrr(G)
3| P> n|G
DSOS AR
heG xelrr(G) q
_ e3¢'n|G]
z|lc

By [4, Th. 1.1], |Irr(G)| < 27.2¢". For orthogonal and symplectic groups,
|Z] < 4, so that |Irr(G)| < 109¢"/|Z]|. By [4, Cor. 3.7], |Irr(G)| < 44"/|Z]
for G = PSL,;+1(q), and by [4, Prop. 3.10], |Irr(G)| < 9¢"/|Z| for G =
PSL,1+1(¢q). Putting these together, we deduce 109 > e3n/C, which is im-

possible for large n.
O
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