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Abstract. In the high rank limit, the fraction of non-zero character
table entries of finite simple groups of Lie type goes to zero.

1. Introduction

Let G be a finite group. Let GG denote the set of conjugacy classes of
G and Irr(G) the set of irreducible characters, so k(G) = |GG| = |Irr(G)|.
A well-known theorem of Burnside asserts that if χ ∈ Irr(G) and χ(1) > 1,
then there exists g ∈ G such that χ(g) = 0; in particular, there are zero
entries in the character table of every non-abelian G. In fact, one can make
much stronger statements about the subset of GG × Irr(G) determined by
the vanishing condition, and there is a substantial literature devoted to such
results. We are interested in the opposite extreme from abelian groups,
namely groups for which almost all entries are zero.

We define the sparsity Σ(G) to be the fraction of non-zero entries in the
character table of G:

Σ(G) :=
|{(gG, χ) ∈ GG × Irr(G) | χ(g) 6= 0}|

k(G)|Irr(G)|
.

For finite simple groups of bounded rank, it is not too difficult to analyze
the asymptotic behavior of Σ(G). For instance,

lim
q→∞

Σ(L2(q)) =
1

2
.

In this paper, we consider what happens when G ranges over finite simple
groups of Lie type of unbounded rank. Our result is the following.

Theorem 1.1. Given any sequence Gi of finite simple groups of Lie type
with rank tending to ∞, limi→∞Σ(Gi) = 0.

To round out the story, it would be interesting to know whether Σ(An)→
0 (or, equivalently, whether Σ(Sn)→ 0) as n→∞. This remains open. The
numerical evidence [16] seems to point to a limit strictly between 0 and 1.
Interestingly, Miller proved [15] that for random pairs (χ, g) ∈ Irr(G) × G,
the probability that χ(g) = 0 goes to 1 as G ranges over symmetric groups.
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The proof of Theorem 1.1 uses a trick of Burnside and roughly parallels
that of [7]. Given a pair (gG, χ), let

dgG,χ :=
χ(1)

(χ(1), |gG|)
.

By [7], χ(g) is divisible by dgG,χ in a ring of cyclotomic integers. If α 6= 0 is

an algebraic integer, then the average of |αi|2 over all conjugates αi of α is at
least 1 [6, p. 459]. Therefore, if α is divisible by a rational integer d, then the
average is at least d2. The multiset of values χ(g) 6= 0 where χ(g) is divisible
by some rational integer d > D is stable under the action of Gal(Q(ζ|G|)/Q),

so the average of |χ(g)|2 over all such values is greater than D2. By the
orthonormality of characters, the average of |χ(g)|2 over all pairs (χ, g) is
1. Of course, this average is over elements rather than conjugacy classes,
so a key ingredient of the argument is Proposition 10.1, which implies that,
for finite simple groups of Lie type, it does not make much difference which
kind of average one takes. This is not true for alternating groups, since the
partition associated to a randomly chosen element of Sn has log n+ o(log n)

parts [3], while a typical partition of n has (π−1
√

3/2 + o(1))
√
n log n parts

[2].
To show that dgG,χ is usually large, we show that for most choices of

(gG, χ), we can find a large Zsigmondy prime ` such ord`|gG| < ord`χ(1).
To do this, we need to have a good qualitative understanding of the degrees
of irreducible characters of G. This is provided by the Lusztig theory. In the
large q limit, regular semisimple elements and irreducible Deligne-Lusztig
characters predominate, and it is relatively easy prove the needed estimates.
For fixed q, we have to work harder, but most of what is needed is already
available in work of Fulman-Guralnick [4, 5] and Larsen-Shalev [10].

We would like to thank the referee for a number of improvements, espe-
cially the argument about Suzuki and Ree groups in Theorem 10.2 below.

2. General framework

A key technical difficulty in implementing our strategy is that in counting
conjugacy classes and characters, it is often easier to work not with G but
with some closely related group. For instance, for PSLn(Fq), it is easier to
study conjugacy classes of SLn(Fq) and characters of PGLn(Fq). To deal
with these difficulties, we consider the following general situation. Suppose
that we have maps of finite sets

(2.1) Ã
f //

φ
����

P B̃
goo

ψ
����

A B

and a subset X ⊂ A×B. Our goal is to show that, under suitable conditions,
|X| is small compared to |A×B|. We say P◦ ⊂ P and A◦ ⊂ A are compatible
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if f−1(P◦) = φ−1(A◦), and likewise for P◦ and B◦. In this case, we define

Ã◦ ⊂ Ã (respectively B̃◦ ⊂ B̃) to be this common inverse image.
In the intended application, A will be the set of conjugacy classes of a

finite simple group G, B the set of irreducible characters of G, and X, which
we want to prove small, will be the set of pairs (gG, χ) for which χ(g) 6= 0.

The precise definitions of Ã, B̃, and P are given in §5. The definitions of
the sets A◦, Ã◦, B◦, B̃◦,P◦ depend on a single parameter as explained in §9.

Proposition 2.1. There exists an absolute constant N with the following
property. For all ε > 0 there exists δ > 0 such that given data (2.1), a subset
X ⊂ A × B, and compatible subsets A◦ ⊂ A, B◦ ⊂ B, and P◦ ⊂ P which
are compatible and satisfy the following conditions, then |X| ≤ ε|A×B|:

(1) |A◦| > (1− δ)|A|.
(2) |B◦| > (1− δ)|B|.
(3) For a1 ∈ A◦, a2 ∈ A we have |φ−1(a1)| ≥ |φ−1(a2)|.
(4) For b1 ∈ B◦, b2 ∈ B we have |ψ−1(b1)| ≥ |ψ−1(b2)|.
(5) For all n ≥ N , {P ∈ P | |f−1(P )| ≥ n} has less than n−2|P|

elements.
(6) For all n ≥ N , {P ∈ P | |g−1(P )| ≥ n} has less than n−2|P|

elements.
(7) |P| ≤ |Ã|.
(8) |P| ≤ |B̃|.
(9) The set of pairs (P1, P2) ∈ P◦×P◦ such that (P1, P2) ∈ (f, g)((φ, ψ)−1(X))

has cardinality less than δ|P|2.

Proof. By conditions (3) and (4), every (φ, ψ)-fiber over A◦ ×B◦ has cardi-
nality at least

|Ã× B̃|
|A×B|

.

Let x = |X|/|A×B|. Then by conditions (1) and (2),

|X ∩ (A◦ ×B◦)| > (x− 2δ)|A×B|,
so

(2.2) |(φ, ψ)−1(X)∩(Ã◦×B̃◦)| = |(φ, ψ)−1(X∩(A◦×B◦))| > (x−2δ)|Ã×B̃|.
Let Pf,n denote the set of elements P ∈ P◦ such that |f−1(P )| = n. Let

M ≥ N . By condition (5),

∣∣ ⋃
n≥M

f−1(Pf,n)
∣∣= ∑

n≥M
n|Pf,n|

= M |{P ∈ P◦ | |f−1(P )| ≥M}|+
∞∑
i=1

|{P ∈ P◦ | |f−1(P )| ≥M + i}|

≤ |P|
M

+
∞∑
i=1

|P|
(M + i)2

≤ 2|P|
M

.

(2.3)



4 M. J. LARSEN AND A. R. MILLER

Likewise, condition (6) implies∣∣ ⋃
n≥M

g−1(Pg,n)
∣∣≤ 2|P|

M
.

By inequality (2.2) and conditions (7) and (8), the subset of (φ, ψ)−1(X)
consisting of elements which map by (f, g) to

{P ∈ P◦ | |f−1(P )| < M} × {P ∈ P◦ | |g−1(P )| < M}

has more than

(x− 2δ − 4M−1)|P|2

elements. On this set the map (f, g) takes at most M2 elements to any given
element, so the cardinality of the image by (f, g) is at least

(x− 2δ − 4M−1)|P|2

M2
.

By condition (9), this must be less than δ|P|2, so x < M2δ + 2δ + 4M−1.
By choosing M larger than N and 8/ε, we get x < ε if δ < ε

2M2+4
. �

3. Subexponential sequences

In this section, we prove some basic facts about subexponential sequences
that will be useful for checking the hypotheses of Proposition 2.1.

We say that a sequence a1, a2, . . . of nonnegative integers is subexponen-
tial if for all γ > 1 we have limn→∞ γ

−nan = 0. This is equivalent to
the condition that

∑
n anz

n converges in the open unit disk. It is clear
from this criterion that the coefficients of the product of power series with
subexponential coefficients again has subexponential coefficients. From the
definition, it is clear that the termwise product of subexponential sequences
is again subexponential.

Lemma 3.1. If (ai)i=1,2,... is subexponential, then the sequence Am of coef-
ficients of the formal power series

A(z) :=

∞∏
i=1

(1− zi)−ai =
∑
m

Amz
m

is likewise subexponential.

Proof. As ai ≥ 0 for all i,

A(n)(z) :=

n∏
i=1

(1− zi)−ai =

∞∑
m=0

A(n)
m zm

has nonnegative coefficients, and for each m ≥ 0, the sequence (A
(n)
m )n=1,2,...

is nondecreasing. Therefore, for any z0 ∈ (0, 1), the sequence (A(n)(z0))n=1,2,...
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is nondecreasing. As Am = A
(n)
m , for all n ≥ m, we have

A(n)(z0) ≥
n∑

m=0

Amz
m
0 .

Thus, if A(z) converges at z = z0, then limn→∞A
(n)(z0) exists and equals

A(z0), and conversely, if limn→∞A
(n)(z0) exists, then its limit is an upper

bound for the increasing sequence of partial sums of
∑∞

m=0Amz
m
0 , so this

series converges.

As limz↓0
log(1−z)

z = −1, the function log(1−z)
z is bounded on every interval

of the form (0, a] ⊂ (0, 1). Applying this for a = z0, we obtain

logA(n)(z0) =
n∑
i=1

−ai log(1− zi0) < C
n∑
i=1

aiz
i
0,

where C depends on z0 but not on n. As ai is subexponential, the right
hand side in this inequality is bounded independent of n, so the sequence
A(n)(z0) is bounded, so it converges. �

In particular, when ai = 1 for all i, we obtain the well-known fact that
the partition function p(n) is subexponential.

Lemma 3.2. Let (ai)i=1,2,... and (bi)i=1,2,... be two sequences of positive
integers such that ai is subexponential and bi is arbitrary. Define ck to
be the maximum of

∏
j a

ej
j as 1e12e2 · · · ranges over all partitions of k with

ei ≤ bi for all i. Then ck is subexponential.

Proof. For all ε > 0, there exists r such that ai < (1 + ε)i for i > r. Thus

ck < ab11 · · · a
br
r (1 + ε)k.

�

4. Counting polynomials

In this section, we introduce several sets of polynomials which are candi-
dates for the set P in Proposition 2.1.

For P (x) ∈ Fq2 [x] a monic polynomial with non-zero constant term, we
define

(4.1) P ∗(x) := P̄ (0)−1xdegP P̄ (1/x),

where P̄ is the polynomial obtained from P by applying the q-Frobenius
automorphism to each coefficient. In particular, if P (x) ∈ Fq[x], then

P ∗(x) = P (0)−1xdegPP (1/x). Note that P ∗(x) is a monic polynomial of
the same degree as P . If P (x) =

∏
i(x− ri), then

P ∗(x) =
∏
i

(x− 1/r̄i) =
∏
i

(1− r−qi ).

Therefore, if P = P ∗, then the roots of P , taken with multiplicity, form a
union of orbits in F̄×q under the map x 7→ x−q. Any orbit under this map is
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stable by the q2-Frobenius, so if P (x) is irreducible in Fq2 [x], its roots form

a single orbit under x 7→ x−q. If P (x) ∈ Fq[x] and P is irreducible as a
polynomial over Fq, then it may form one orbit or two mutually reciprocal
orbits.

Following [10], we denote by Ln(q) the set of monic polynomials P (x) ∈
Fq[x] of degree n such that P (0) = (−1)n. We define by Un(q) the set
of monic polynomials P (x) ∈ Fq2 [x] of degree n such that P = P ∗ and
P (0) = (−1)n. When n is even, we denote by On(q) the set of monic
polynomials P (x) ∈ Fq[x] of degree n such that P = P ∗ and P (0) = 1. For
c ∈ F×q , we denote by Ln,c(q) the set of monic polynomials P (x) ∈ Fq[x] of

degree n such that P (0) = c. Likewise, for c ∈ F×
q2

with cc̄ = 1, let Un,c(q)
denote the set of monic polynomials P (x) ∈ Fq2 [x] of degree n such that
P = P ∗ and P (0) = c.

Lemma 4.1. Let r be a positive integer and q a prime power. Then

|Lr+1(q)| = |Ur+1(q)| = |O2r(q)| = qr.

Proof. In each case, the leading coefficient and the constant coefficient are
fixed. For Lr+1(q), the remaining r coefficients can be chosen independently
from Fq. For Ur+1(q), if 0 < i < (r + 1)/2, the xi coefficient can be any
element of Fq2 and it uniquely determines the xr+1−i coefficient. That fin-

ishes the U case if r + 1 is odd. If it is even, the x
r+1
2 coefficient can be

any element of Fq, so again |Ur+1(q)| = qr. For O2r(q), the xi coefficients
can be chosen independently from Fq for 0 < i ≤ r, and the xi coefficient
determines the x2r−i coefficient. �

Proposition 4.2. There exists a positive real sequence (εi)i=1,2,... tending
to 0 such that all of the following statements hold for all integers r ≥ 1.

(1) Let n = r + 1. If m >
√
n and c ∈ F×q , then the number of elements

in Ln,c(q) with an irreducible factor whose degree is divisible by m
is less than εr|Ln,c(q)|. Likewise, the number of elements with an
irreducible factor whose degree is >

√
n and divides ` − 1 for some

prime divisor ` of n is less than εr|Ln,c(q)|.
(2) Let n = r+1. If m >

√
n and c ∈ F×

q2
with cc̄ = 1, then the number of

elements in Un,c(q) with an irreducible factor whose degree is divisible
by m is less than εr|Un,c(q)|. Likewise, the number of elements with
an irreducible factor whose degree is >

√
n and divides `−1 for some

prime divisor ` of n is less than εr|Un,c(q)|.
(3) Let n = 2r. If m >

√
n, then the number of elements in On(q)

with an irreducible factor whose degree is divisible by m is less than
εr|On(q)|.

Proof. A monic irreducible polynomial over Fq of degree k corresponds to
a q-Frobenius orbit of length k in F̄×q . Any such orbit is contained in the

(qk − 1)-roots of 1 in F̄q, so there are less than qk/k such polynomials.
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Therefore, the number of monic polynomials of degree n with constant term

c and an irreducible factor of degree k is less than qn−1

k . Summing over
multiples of m, the number of monic polynomials of degree n with constant
term c and an irreducible factor whose degree lies in mZ is less than∑

1≤i≤n/m

qn−1

mi
<
qr(1 + log n)

m
=
|Ln,c(q)|(1 + log n)

m
,

which gives the first claim in part (1). For the second claim, we note that n
has at most one prime divisor ` >

√
n. So it suffices to prove that the sum

of 1/m over divisors m of n which are larger than
√
n is o((1 + log n)−1).

This follows from the fact that the total number of divisors of any integer
n is no(1).

For (2), we proceed in the same way, using the fact that |Un,c(q)| = qn−1.
If Q ∈ Un,c(q) and P divides Q, then P ∗ divides Q. It follows that if
P 6= P ∗, then any element of Un,c(q) divisible by P is the product of PP ∗

and a polynomial in Un−2k,cP (0)q−1 . If P = P ∗, then any element of Un,c(q)
divisible by P is the product of P and an element of Un−k,cP (0)−1 . The first
case gives less than

q2k

k
qn−2k−1 =

qr

k

elements of Un,c(q).
For the second term, every monic irreducible degree k polynomial P (x) ∈

Fq2 [x] such that P = P ∗ corresponds to a length-k orbit

r, r−q, rq
2
, . . . , r(−q)k = r,

so r is a (qk − (−1)k)-root of 1. If k ≥ 2, the q + 1 fixed points of x 7→ x−q

do not belong to such an orbit, so the number of orbits is again less than
qk/k, thus contributing less than

qk

k
qn−k−1 =

qr

k

elements of Un,c(q). The argument therefore goes through as before.
For (3), we follow (2). The number of elements in On(q) is qr. If a

monic polynomial P (x) ∈ Fq[x] satisfies P 6= P ∗ and P divides Q ∈ On(q),
then Q is the product of PP ∗ and an element of On−2k(q). For k ≥ 2, a
monic irreducible polynomial P of degree k satisfying P = P ∗ must be of
even degree, and every element of On(q) divisible by P is the multiple of
P by an element of On−k(q). By the proof of [10, Prop. 2.6], the number
of irreducible monic polynomials of degree k ≥ 4 satisfying P = P ∗ is the
same as the number of monic irreducible polynomials of degree k/2, and for
k = 2, the number is at most q − 1. Thus, the argument goes through as
before.

�
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For any monic polynomial P (x) over a field F , we define ρ(P ) to be the

sum
∑j

i=1 bi(ai−1), where P = P a11 · · ·P
aj
j , and the Pi are pairwise distinct

monic irreducible polynomials over F of degree bi. For a perfect field F ,
ρ(P ) does not change if F is replaced by a field extension.

Lemma 4.3. Let m and n be positive integers.

(1) The number of polynomials P ∈ Ln(q) with ρ(P ) ≥ m is less than

2q−m/2|Ln(q)|.
(2) The number of polynomials P ∈ Un(q) with ρ(P ) ≥ m is less than

4q−m/2|Un(q)|.
(3) If n is even, the number of polynomials P ∈ On(q) with ρ(P ) ≥ m

is less than 2q−m/4|On(q)|.

Proof. Recall that P =
∏j
i=1 P

ai
i , and let

Q =

j∏
i=1

P
bai/2c
i , R =

P

Q2
.

For claim (2) (resp. (3)), if P ∗i = Pj , then ai = aj , so the multiplicities of
Pi and Pj in Q (or in R) are the same. Therefore, Q ∈ UdegQ,Q(0)(q) and
R ∈ UdegR,P (0)Q(0)−2(q) (resp. Q ∈ OdegQ(q) and R ∈ OdegR(q).) As∑

i

bibai/2c ≥
1

2

∑
i

bi(ai − 1),

we have degQ ≥ ρ(P )/2 and 2 degQ+ degR = n.
For Ln(q), the total number of possibilities for (Q,R) with ρ(P ) ≥ m is

therefore at most ∑
i≥m/2

qiqn−2i−1 < 2qn−1−m/2.

For Un(q), there are q+1 elements c ∈ Fq2 with cc = 1, and for each of these

|Uk,c| = qk−1, so the total number of possibilities for (Q,R) with ρ(P ) ≥ m
is at most ∑

i≥m/2

(q + 1)qi−1qn−2i−1 < 4qn−1−m/2.

For On(q), the number of possibilities is at most∑
i≥m/2

qi/2q(n−2i)/2 < 2qn/2−m/4.

�

With ai, bi, and j as above, we define

α(P ) :=

∏j
i=1(1 + q−bi)

1− q−1
.

Lemma 4.4. For all ε > 0 there exists M such that for all n ≥ 1 and all
prime powers q:
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(1) The number of polynomials P ∈ Ln(q) with α(P ) < (1 + q−1)M is
greater than (1− ε)|Ln(q)|.

(2) The number of polynomials P ∈ Un(q) with α(P ) < (1 + q−1)M is
greater than (1− ε)|Un(q)|.

(3) If n is even, the number of polynomials P ∈ On(q) with α(P ) <
(1 + q−1)M is greater than (1− ε)|On(q)|.

Proof. As there exists C such that (1− q−1)−1
∏
i≥1(1 + q−i) < (1 + q−1)C

for all q ≥ 2, it suffices to prove that there exists e ≥ 2 such that the
fraction of polynomials P in Ln(q) (resp. Un(q) or On(q)) divisible by e
different irreducible polynomials of the same degree is less than ε. The
number of monic irreducible polynomials of degree k in Fq[x] is less than

qk/k, so the number of sets {Q1, . . . , Qk} of e such polynomials is at most
k−eqek/e!. For each possibility, there are qn−ek−1 choices for the remaining
factor P/

∏
iQi, so there are at most (k−e/e!)qn−1 elements of Ln(q) with

e distinct irreducible degree k factors. Summing over k, we get an upper
bound of ζ(2)qn−1/e!, and ζ(2)/e! goes to 0 as e goes to ∞.

For statements (2) and (3) we consider factors of degree k which are either
of the form Q, where Q = Q∗ is irreducible (in Fq2 [x] or Fq[x] respectively)
or which are of the form QQ∗, where Q is of degree k/2 and Q 6= Q∗. As in
Lemma 4.2, the two cases together contribute less than 2qk/k possibilities.
The number of e-element sets of such polynomials is therefore less than
(2k)−eqek/e!, and the argument goes through as before. �

Lemma 4.5. Let n ≥ 2 be an integer and q a prime power. The number of
elements P ∈ Ln(q) such that

P (ζx) ≡ P (x)

for some ζ ∈ Fq \{1} is less than 2qn/2−1. Likewise, the number of elements
P ∈ Un(q) such that

P (ζx) ≡ P (x)

for some ζ ∈ Fq2 \ {1} is less than 2qn/2−1.

Proof. In both cases, if P (ζx) ≡ P (x) for some ζ 6= 1, then by comparing
coefficients, the order d > 1 of ζ divides n, and P (x) = P ′(xd) for some

element P ′ ∈ Ln/d,(−1)n(q) (resp. Un/d,(−1)n(q)), for which there are qn/d−1

possibilities. So the number of P ∈ Ln(q) (resp. Un(q)) with P (ζx) ≡ P (x)
for some ζ ∈ Fq \ {1} (resp. Fq2 \ {1}) is at most∑

2≤i≤n/2

qn/i−1 < 2qn/2−1.

�

5. Classical groups

Finite simple groups G of rank r > 8 must be of type Ar,
2Ar, Br,

Cr, Dr, or 2Dr. In each case, G is closely related to a classical group G′,
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which we define below. We also define the sets A, Ã, B, B̃, and P used in
Proposition 2.1.

In every case, A denotes the set of conjugacy classes of G and Ã, the set
of conjugacy classes of the universal central extension G̃ of G. We denote
by Z the center of G̃, so that we can think of |Z| as the “generic” size of

the fibers of the map φ obtained from the covering homomorphism G̃→ G
by taking conjugacy classes. The map f takes a conjugacy class of G̃ to its
characteristic polynomial, with a slight modification when G is of type B.

We can regard G as the commutator group [Gad(Fq), Gad(Fq)], where Gad

is an adjoint simple algebraic group defined over Fq. We define B := Irr(G),

while B̃ denotes the set of pairs (χ, χad) ∈ Irr(G) × Irr(Gad(Fq)) such that
〈χ,ResGχad〉G ≥ 1. We define ψ(χ, χad) := χ. The Lusztig classification
(see §8 below) assigns to each character χad a semisimple conjugacy class in
the Fq-points of the dual group to Gad. This is a simply connected simple
algebraic group of classical type, so it has a natural representation, and we
define g((χ, χad)) to be the characteristic polynomial of this semisimple class
in this natural representation, with a slight modification in the case that G
is of type C.

We divide into cases. A reference for dual groups for the various groups
of classical types is [1, §2].

Case A. In this case, G must be of the form PSLn(Fq) or PSUn(Fq), where
n = r + 1. We define G′ to be SLn(Fq) or SUn(Fq) respectively. As Gad is
PGLn or PGUn respectively, the dual group (Gad)∗ is SLn or SUn respec-
tively, and P = Ln(q). We have |Z| ≤ n.

Case B. In this case, G is of the form Ωn(Fq), where n = 2r + 1, and we
define G′ to be SOn(Fq). In this case, G′ is a subgroup of G of index ≤ 2. As
Gad = SOn, the dual group (Gad)∗ is Sp2r. The characteristic polynomial of
every element of Sp2r(Fq) lies in P := O2r(q). The characteristic polynomial
of every element of SOn(Fq) is (x − 1) times an element of O2r(q), and we

define f as the composition of G̃ → G, G → GLn(Fq), the characteristic
polynomial map, and division by (x− 1). We have |Z| ≤ 2.

Case C. In this case, G is of the form PSpn(Fq), where n = 2r, and we
define G′ to be Spn(Fq), so G is the quotient of G by a normal subgroup of
order ≤ 2, and f is defined via the usual map Spn(Fq)→ On(Fq). As Gad =
PGSpn, the dual group (Gad)∗ is Spin2r+1. We define the map g by compos-
ing the maps Spin2r+1(Fq) → SO2r+1(Fq), SO2r+1(Fq) → GL2r+1(Fq), the
characteristic polynomial map, and division by (x− 1). We have |Z| ≤ 2.

Case D. In this case, G is of the form PΩ±n (Fq), where n = 2r, and we define
G′ to be SO±n (Fq), so G is the quotient of a subgroup Ω±n (Fq) of index ≤ 2 in
G′ by a normal subgroup of order ≤ 2. AsGad = PO±n , the dual group (Gad)∗

is Spin±n . Both f and g are defined by composing Spin±n (Fq) → SO±n (Fq),
SO±n (Fq) → GLn(Fq), and the characteristic polynomial map, which sends
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orthogonal n × n matrices to elements of On(q). Note that in this case f
and g are not surjective. We have |Z| ≤ 4.

We summarize all this information in the following table.

G G′ G̃ Gad

PSLr+1(Fq) SLr+1(Fq) SLr+1(Fq) PGLr+1

PSUr+1(Fq) SUr+1(Fq) SUr+1(Fq) PGUr+1

Ω2r+1(Fq) SO2r+1(Fq) Spin2r+1(Fq) SO2r+1

PSp2r(Fq) Sp2r(Fq) Sp2r(Fq) PGSp2r

PΩ+
2r(Fq) SO+

2r(Fq) Spin+
2r(Fq) PO+

2r

PΩ−2r(Fq) SO−2r(Fq) Spin−2r(Fq) PO−2r

Lemma 5.1. In all four cases, conditions (7) and (8) of Proposition 2.1
hold if N > 2.

Proof. By [4, Theorem 1.1], k(G̃) ≥ qr. By Lemma 4.1,

|Ã| = k(G̃) ≥ qr = |P|.

This implies condition (7). As the projection map from B̃ to Irr(Gad(Fq))
is surjective,

|B̃| ≥ Irr(Gad(Fq)) = k(Gad(Fq)) ≥ qr = |P|,
again by [4, Theorem 1.1].

�

Proposition 5.2. Let G′ ⊂ GLn(Fq2) be a classical group. The characteris-
tic polynomial of every element of g belongs to Ln(q), Un(q), (x−1)On−1(q),
On(q), On(q), or On(q) if G′ is of type A, 2A, B, C, D, or 2D respectively.
Moreover, for each such element, there exist at most 4 semisimple conjugacy
classes in G′ whose elements have this characteristic polynomial.

Proof. The first part is well-known; see, e.g., [10]. The second part follows
from the following two claims. First, we assert the map from the variety of
semisimple conjugacy classes of the underlying linear, unitary, symplectic,
or orthogonal algebraic group to the variety of conjugacy classes of GLn is
at most 2 to 1. Second, we assert that the elements of G′ in any semisimple
conjugacy class of the underlying algebraic group G split into at most 2
G′-conjugacy classes.

For the first assertion, we may work over Fq and fix a maximal torus T
of G which lies in the maximal torus D of diagonal elements in GLn. Let
W denote the Weyl group of G with respect to T and consider the map
T/W → D/Sn. We claim that for any t ∈ T , there are at most 2 different
W -orbits in T ∩ tSn . This is obvious for type A. If n = 2r, two n-tuples of
the form

(x1, x
−1
1 , . . . , xr, x

−1
r )

are the same up to rearrangement if and only if the multisets

{{x1, x
−1
1 }, . . . , {xr, x

−1
r }}
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are the same, and this implies that the n-tuples lie in the same (Z/2Z)roSr-
orbit. This shows that the map T/W → D/Sn is one-to-one in case C and
at most 2 to 1 in case D. If n = 2r + 1, then two n-tuples

(x1, x
−1
1 , . . . , xr, x

−1
r , 1)

are the same up to rearrangement if and only if the n-tuples lie in the same
(Z/2Z)r o Sr-orbit, so again the map is one-to-one.

For the second assertion, we use the fact that the map from the universal
cover of G toG is at most 2 to 1. From Steinberg’s theorem [17, Theorem 9.1]
it follows if Zs is the centralizer of a semisimple element s in G, then Zs/Z

◦
s

is of order 1 or 2. By Lang’s theorem, it follows that there are at most two
G′-conjugacy classes of elements in G′ conjugate to s under G.

�

6. Unipotent conjugacy classes

Lemma 6.1. The sequence whose rth term is maximum number of unipotent
conjugacy classes in any classical group of rank r over any field Fq has
subexponential growth.

Proof. By [8, Prop. 2.1], the number of unipotent conjugacy classes in
SLn(Fq) is ≤ np(n). By [8, Prop. 2.2], the same bound applies for SUn(Fq).
By [8, Prop. 2.3], for a symplectic group of rank r, the number of unipotent
conjugacy classes is the sum of 2aλ over partitions λ of 2r, where aλ denotes
the number of distinct even parts. Since the sum of aλ distinct positive
even integers is at least a2

λ + aλ ≤ 2r, it follows that the maximum of 2aλ is
subexponential in r, as is p(2r). By [8, Prop. 2.4], for any orthogonal group
of rank r, the number of unipotent conjugacy classes is the sum of 2aλ over
partitions λ of 2r, where aλ is one less than the number of odd parts in λ,
with the exception that if λ has no odd parts, the summand is either 0 or
1, depending on whether G is of the form SO− or SO+.

For G either orthogonal or symplectic and q even, [8, Prop. 3.1] gives
a more complicated classification of unipotent conjugacy classes, but the
number of representations is certainly bounded above by ordered quadruples
of partitions summing to r, which is the zr coefficient of

∏∞
i=1(1− zi)−4 and

therefore subexponential in r.
�

Proposition 6.2. For all ε > 0 there exists N with the following property.
For any finite field Fq, any n > N , and any semisimple element s in a
classical subgroup G′ = G′(Fq) of GLn(Fq), let H be the centralizer of s in
G′, H◦ the identity component of H, S the derived group of H◦, and r the
absolute rank of S. Then the number of H(Fq)-conjugacy classes of unipotent
elements in H◦(Fq) is less than qεr. The analogous statement is also true
when H is the centralizer of a semisimple element s in G′ = SUn(Fq).

Proof. It suffices to prove that the number of conjugacy classes of unipotent
elements in H◦(Fq) is subexponential. As H◦/S is diagonal, every unipotent
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element of H◦(Fq) lies in S(Fq). Thus it suffices to prove a subexponential
bound for the unipotent conjugacy classes of S(Fq).

We decompose the natural representation space of Fnq of GLn(Fq) by s

into s-isotypic factors VQ ∼= W
aQ
Q indexed by monic irreducible polynomials

Q(x) ∈ Fq[x] and denote by bQ the dimension dimWQ = degQ. If G′ =
SLn(Fq), then

S =
∏
Q

ResF
q
bQ
/FqSLaQ,Fq ,

where Res denotes restriction of scalars. Each factor is of rank bQ(aQ − 1)
over Fq, so the rank of S is ρ(P ), where P is the characteristic polynomial
of s.

For orthogonal groups G′, let Π denote the set of orbits for the involution
Q 7→ Q∗ defined in (4.1). For π ∈ Π, we denote by Vπ, Wπ, aπ, and bπ
the sum

⊕
Q∈π VQ,

⊕
Q∈πWQ, aQ = aQ∗ , and dimWπ respectively. As s

preserves the inner product 〈 , 〉, we have VQ ⊥ VR unless Q and R belong
to the same orbit, so the centralizer of s in G′ is

(6.1)
∏
π∈Π

AutF
qbπ

(Vπ, 〈 , 〉).

The derived group of the identity component is therefore a product of simple
algebraic groups Sπ indexed by π ∈ Π. If π = {x− 1} or π = {x+ 1}, then
Sπ is of absolute rank bax/2c and of type D or B as ax is even or odd.
Otherwise, it is of type D or A, depending on whether π has one element or
two and of absolute rank bπ(aπ − 1) in either case. For symplectic groups,
we proceed in the same way, with the difference that polynomials Q = Q∗

give rise to factors of type C.
For unitary groups, G′ acts on an n-dimensional vector space over Fq2 .

We decompose Fnq2 into isotypical spaces VQ ∼= W
aQ
Q for the action of s,

where Q ranges over monic irreducible polynomials in Fq2 [x]. Let Π denote
the set of orbits of {Q | aQ > 0} under Q 7→ Q∗. Let Wπ =

⊕
Q∈πWQ

and Vπ =
⊕

Q∈π VQ = W aπ
π . Let 〈 , 〉 denote the sesquilinear form which

G′ respects. The different Vπ are mutually orthogonal with respect to this
form, and the centralizer of s in G′ is again given by (6.1). The derived
group is therefore a product of simple algebraic groups indexed by Q, and
each is of type A and absolute rank bπ(aπ − 1), where bπ = dimWπ.

In every case, therefore, S(Fq) is a product of classical groups of total rank
r ≤ ρ(P ). The number of unipotent conjugacy classes is therefore ≤

∏
Q cbQ ,

where (ci)i=1,2,... is the subexponential sequence given by Lemma 6.1. By

Lemma 3.2, for any fixed q, the number of conjugacy classes is O(qεr/2)
and therefore less than qεr if r is sufficiently large. On the other hand, there
exists α such that ci < αi for all i. If q > α1/ε, then the number of conjugacy
classes is less than or equal to αr ≤ qεr.

�
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7. Unipotent characters

Let G be a connected reductive group over Fq. Following Lusztig [13], we
say that an irreducible character of G(Fq) is unipotent if it appears with non-

zero multiplicity in the Deligne-Lusztig character R
G
T (1) associated to the

trivial character on maximal torus T (Fq). In particular, the trivial character
is unipotent. The classication of unipotent characters depends only on the
adjoint quotient of G (see [14, Remark]), therefore only on the root system
of G together with Frobenius action.

Assuming G has connected center, Lusztig gave [13, p. x] a “Jordan de-
composition” of irreducible characters χ of G(Fq). We briefly recall the
setup, referring the reader to [13] for details. Each such character has non-

zero multiplicity in some Deligne-Lusztig character R
T
G(θ), and θ determines

a semisimple element t of the dual group G∗(Fq), where G∗ is the connected
reductive algebraic group over Fq whose root datum is dual to that of G,
with corresponding Frobenius action. The element t is well-defined up to
conjugacy class by χ. As G has connected center, the derived group of G∗

is simply connected, so choosing a representative t, the centralizer H∗ of t
in G∗ is a connected reductive group. If H denotes the dual group of H∗,
there is a bijective correspondence π 7→ χπ between the set of unipotent
characters π of H(Fq) and the set E(t) of irreducible characters χπ of G(Fq)
associated to the class of t. For us, the most important point is that

(7.1) χπ(1) =
|G(Fq)|′

|H(Fq)|′
π(1),

where m′ denotes the largest divisor of m prime to q.
We record the following consequence.

Lemma 7.1. If χad is a character of Gad(Fq) associated to the class of a
semisimple element t ∈ (Gad)∗(Fq), and if the order of the centralizer of t is
not divisible by a prime ` - q, then

ord`χad(1) = ord`|Gad(Fq)|.

Proof. As ` - q, we have ord`|Gad(Fq)| = ord`|Gad(Fq)|′. Defining π so that
χad = χπ, by (7.1),

ord`χad(1) = ord`|Gad(Fq)|π(1) ≥ ord`|Gad(Fq)|.

The opposite inequality follows from the fact that χad(1) divides |Gad(Fq)|.
�

Proposition 7.2. For all ε > 0 there exists N with the following property.
For any finite field Fq, any r > N , any adjoint simple group G over Fq of
type A, B, C, or D, and any semisimple element t ∈ G∗(Fq), such that the
centralizer of t in G∗ has absolute semisimple rank r, the number of elements
in E(t) is less than qεr.
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Proof. The proof is essentially the same as that of Proposition 6.2. The
only difference is that instead of Lemma 6.1, we use a subexponential esti-
mate for the number of unipotent characters of a classical simple group of
rank r. The number of unipotent characters is independent of q. For spe-
cial linear and unitary groups, it is given by the partition function p(r) [13,
p. 358]. For orthogonal and symplectic groups, there are at most two differ-
ent unipotent characters associated to a Lusztig symbol of rank r [13, p. 359].
The number of such symbols grows subexponentially by [12, Prop. 3.4] and
Proposition 3.1. �

The irreducible characters of the finite simple group G can be regarded
as the Z-trivial characters of G̃, where Z is the center of G̃ = Gsc(Fq).
By [14, Prop. 5.1], Irr(G̃) can be decomposed into rational Lusztig series
E(s) indexed by semisimple conjugacy classes in (Gsc)

∗(Fq). Moreover, the
conjugation action of Gad(Fq)/G on Irr(G) preserves this decomposition,
and the orbits corresponding to elements of t ∈ (Gsc)

∗(Fq) with connected
centralizer are singletons. For such s, therefore, each character of G extends
to |Z| different characters of Gad(Fq), obtained from one another by tensor
product by 1-dimensional characters of Gad(Fq)/G (which are necessarily
trivial on G). Thus the correspondence between Irr(Gad(Fq)) and Irr(G)
is given by a function (namely, restriction) on the complement of the set
of characters of Irr(G) corresponding to t with disconnected centralizer. If
t̃ ∈ (Gad)∗(Fq) is a lift of t to an element on the universal cover, then t fails
to have connected centralizer only if the multiple of t̃ by some non-trivial
central element is conjugate to t̃ and therefore only if the characteristic
polynomial of t̃ is a polynomial P (x) satisfying P (ζx) ≡ P (x) for some
ζ 6= 1.

8. Zsigmondy primes

We recall that given q and m, a Zsigmondy prime for the pair (q,m) is a
prime ` such that q has order exactly m in F×` . Zsigmondy’s theorem asserts
that such a prime always exists if m > 6.

Lemma 8.1. If ` is a Zsigmondy prime for (q,m), then ` divides qk − 1 if
and only if m divides k, and ` divides qk + 1 if and only if 2 | m and k is
an odd multiple of m/2.

Proof. The condition that ` divides qk−1 is equivalent to the condition that
the kth power of q in F×` is 1, i.e., that m divides k. The condition that `

divides qk + 1 is equivalent to the condition that m divides 2k but not k,
i.e., dm = 2k for some odd integer d. Equivalently k is an odd multiple of
m/2. �

Lemma 8.2. If a semisimple element s ∈ SLn(Fq) has characteristic poly-
nomial P , m > 2ρ(P ), and no irreducible factor of P has degree a multiple
of m, then any Zsigmondy prime ` for (q,m) is relatively prime to the order
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of the centralizer of s in SLn(Fq). Likewise, if m > 4ρ(P ), s ∈ SUn(Fq),
and no irreducible Fq2 [x] factor of P has degree an integer multiple of m/2,
then any Zsigmondy prime ` for (q,m) is relatively prime to the order of the
centralizer of s in SUn(Fq).

Proof. For SLn(Fq), it suffices to prove that ` does not divide the order of
the centralizer of s in GLn(Fq). Factoring

P =

j∏
i=1

Qaii ,

with degQi = bi, the centralizer of s can be written

j∏
i=1

GLai(Fqbi ).

For each i, bi(ai − 1) ≤ ρ(P ), so if ai ≥ 2, we have aibi ≤ 2ρ(P ) < m, so

|GLai(Fqbi )| =
ai−1∏
k=0

qbik(qbi(ai−k) − 1)

is prime to `. If ai = 1, then GL1(Fqbi ) has order qbi − 1 which is again
prime to `.

For SUn(Fq), we proceed as before, computing the centralizer of s in
Un(Fq) as in Proposition 6.2. In this case, the centralizer factors are of the

form Uai(Fqbi ) or GLai(F2bi
q ) depending on whether Qi = Q∗i . As ai ≥ 2

implies 2aibi ≤ 4ρ(P ) < m, it follows that no Zsigmondy prime for (q,m)
can divide the order of a factor of either kind, so we may assume ai = 1.
As bi is not a multiple of m/2, ` divides neither the order of GL1(F2bi

q ) nor

U1(Fbiq ).
�

We remark that if ` is a Zsigmondy prime for (q,m), then m divides `−1.

9. Weak regularity conditions

Let k ≥ 1 and m ≥ 0 be integers. We say a polynomial P (x) ∈ F̄q[x] is
m-regular if the following two conditions hold:

(1) ρ(P ) ≤ m.
(2) P (x) is not identical to P (ζx) for any ζ 6= 1.

If the characteristic polynomial of an element in GLn(F̄q) is m-regular, we
say that this element is m-regular. This depends only on the semisimple part
s in the Jordan decomposition of the element. Likewise, we say an irreducible
character of Gad(Fq) is m-regular if and only if it belongs to E(s), where the
characteristic polynomial of the image of s under the natural representation
of (Gad)∗(Fq) is m-regular.
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Let G be a classical finite simple group. We define G′, A, Ã, B, B̃, P
as in §5. Given a fixed choice of m, we define P◦ to be the subset of m-
regular polynomials in P, Ã◦ := f−1(P◦), A◦ := φ(Ã◦), B̃◦ := g−1(P◦),
B◦ := ψ(B̃◦). Note that φ−1(A◦) = Ã◦ since ρ(P (x)) = ρ(ω− degPP (ωx))

for all scalars ω 6= 0. Likewise, ψ−1(B◦) = B̃◦, since if (χ, χad) and (χ, χ′ad)

both lie in B̃, and s ∈ G̃ lies in the semisimple class associated to χad, then
there exists z ∈ Z such that zs lies in the semisimple class associated to χ′ad.

By definition, the image of any element of Ã◦ in G′ is m-regular. Part (2)
of the definition of m-regularity guarantees that the fibers of φ over A◦ and
of ψ over B◦ all have exactly |Z| elements, where Z is the center of G̃. Since

G̃ → G is |Z| to 1 and G is of index |Z| in Gad(Fq), all fibers of φ and ψ
have cardinality ≤ |Z|. This gives conditions (3) and (4) of Proposition 2.1.

If s ∈ G′ is semisimple and m-regular, its centralizer in G′ is the group of
Fq-points of a reductive algebraic group H over Fq. We have seen that H has
at most 2 components, so if q is odd, every unipotent element u ∈ G′ which
commutes with s lies in H◦(Fq). If q is even, we can regard G′ as the group
of Fq-points of a simply connected semisimple group, so the centralizer of s
is connected, and again u ∈ H◦(Fq). To bound the number of G′-conjugacy
classes of elements in G′ with semisimple part conjugate to s, it suffices to
bound the H◦(Fq)-conjugacy classes of unipotent elements in H◦(Fq). By
Proposition 6.2, we have a subexponential bound for this quantity. As the
homomorphism G̃→ G′ is at most 2 to 1, we have a subexponential bound
in m for the number of elements of Ã◦ mapping to any element of P◦, the
set of m-regular polynomials in P. Likewise, by Proposition 7.2, we have
a subexponential bound for the number of elements of B̃◦ mapping to any
element of P◦.

By Lemma 4.3, the fraction of elements P of P with ρ(P ) ≥ m is less

than or equal to 4 ·2−m/4. There exists a subexponential sequence σ1, σ2, . . .
such that

|f−1(P )|, |g−1(P )| ≤ σm

if ρ(P ) ≤ m, so there exists N for which conditions (5) and (6) of Propo-

sition 2.1 hold. Each element in Ã \ Ã◦ either has ρ-invariant greater than
m or has invariant ≤ m but satisfies P (x) ≡ P (ζx) for some ζ 6= 1. If m
is sufficiently large in absolute terms, we may assume that the contribution
of all elements with ρ-invariant greater than m to either Ã or B̃ represents
less than a δ/2 fraction of the total elements of Ã or B̃ respectively. Once
m is fixed, we have an upper bound for the size of fibers of f or g, so if qn is
sufficiently large, Lemma 4.5 implies that the contribution of all fibers of all
elements of P with P (x) ≡ P (ζx), as ζ ranges over all elements other than

1, is again less than a δ/2 fraction of the elements of Ã or B̃. To summarize,
we have proven the following.
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Proposition 9.1. If G is sufficiently large, for all δ > 0 if m is chosen to be
sufficiently large, conditions (1)–(6) of Proposition 2.1 hold for P◦ defined
by m-regularity.

10. End of the proof

Proposition 10.1. For all ε > 0, there exists C such that if G is a classical
finite simple group of rank r, the fraction of elements P ∈ P such that some
element of f−1(P ) has centralizer order greater than Cqr in G̃ is less than
ε.

Proof. By Lemma 4.3, if q > 8/ε, the fraction of elements P ∈ P for which
ρ(P ) > 0 is less than ε/2. When ρ(P ) = 0, the centralizer of every element
of f−1(P ) is the group of Fq-points of a maximal torus. We claim that this
group has order ≤ α(P )qr. For semisimple s ∈ SLr+1(Fq) with characteristic
polynomial Q1 · · ·Qj , Qi irreducible, the order of the centralizer of s is∏j

i=1(qdegQi − 1)

q − 1
≤ (1− q−1)−1qr ≤ α(P )qr.

For semisimple s ∈ SUr+1(Fq) with characteristic polynomial Q1 · · ·Qj , the
order of the centralizer is∏j

i=1(qdegQi − (−1)degQi)

q + 1
≤ α(P )qr.

For SO2r+1(Fq), Sp2r(Fq) or SO±2r(Fq) every irreducible Qi = Q∗i of degree

≥ 2 contributes a factor of qdegQi/2 − 1, while every pair {Qi, Qj} with

Qj = Q∗i contributes a factor of qdegQi + 1 = qdegQj + 1, so the centralizer
order is less than α(P )qr.

By Lemma 4.4, if q is sufficiently large, we may assume α(P ) < 2 for all
but an ε/2 fraction of elements of P, and the lemma follows. It therefore
suffices to prove the lemma when q is fixed. By Lemma 4.3, we may addi-
tionally assume ρ(P ) is bounded. We can therefore factor P as a product
of two polynomials, a square-free factor Q and a factor R relatively prime
to Q and of bounded degree. The centralizer of s is therefore a product of a
torus with ≤ α(Q)qr−r0 elements, and a connected reductive group of rank
r0, with a bounded number of elements. This gives the desired bound.

�

The following theorem is not needed for the main result but may be of
interest in its own right.

Theorem 10.2. For all ε > 0 there exists δ > 0 such that if G is a finite
simple group of Lie type, and S is a normal subset of G with less than δ|G|
elements, then S consists of less than εk(G) conjugacy classes.

Proof. First we assume that G is of type A–D and of sufficiently high rank,
so we are in the setting of Proposition 2.1. Let T ⊂ A denote the set of
conjugacy classes in G corresponding to elements of S. By construction, the
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cardinality of any fiber of φ : Ã → A over A◦ is |Z|. By Proposition 9.1,

hypotheses (1) and (3) of Proposition 2.1 hold when Ã = G̃G̃ and A = GG.
Choosing the parameter δ of this proposition sufficiently small, we may
assume that |φ−1(T )| > |Z||T |/2.

Let S̃ denote the inverse image of S in G̃, so |S̃|/|G̃| = |S|/|G|. Let

T̃ ⊂ Ã denote the set of conjugacy classes in G̃ corresponding to elements
of S̃. Then T̃ = φ−1(T ), so

|T̃ |
|Ã|

>
|Z||T |
2|Ã|

≥ |T |
2|A|

.

It therefore suffices to prove that for all ε > 0 there exists δ > 0 such that
for all normal subsets S̃ of G̃ with |S̃| ≤ δ|G̃| elements, the number |T̃ | of

conjugacy classes in S̃ is ≤ ε|Ã| = εk(G̃).
By Proposition 10.1, fixing C sufficiently large, the fraction of elements

in P whose fibers have elements with centralizer order greater than Cqr is
as small as desired. By inequality (2.3) and condition (7), the fraction of

elements in G̃ with centralizer order greater than Cqr is likewise as small
as desired. Therefore, we may assume that in any normal subset S̃ of G̃
containing εk(G̃) conjugacy classes, at least εk(G̃)/2 have centralizer order
≤ Cqr. These account for at least

εk(G̃)|G̃|
2Cqr

elements in S̃. By [4, Theorem 1.1], k(G̃) ≥ qr, so we may take δ := ε/2C.
This leaves the bounded rank case.

In the limit as q → ∞, the fraction of elements of G̃ which are regular
semisimple goes to 1. The centralizers of any semisimple element is con-
nected reductive, and for regular semisimple elements, the centralizer is a
torus and therefore has at most (q + 1)r elements. As r is fixed, this gives

an upper bound of the form Cqr. Thus, the above claim for S̃ holds as in
the high rank classical case.

In the large q limit, the fraction of elements g of G̃ which are conjugate
to gz for some non-trivial central element z ∈ Z goes to 0, essentially by
the uniform version of the Lang-Weil estimate. The precise statement we
want is that if G is a split, simply connected, semisimple group scheme over
SpecZ, H is a closed subscheme of G, p is a rational prime such that H(F̄p)
is a proper subset of G(F̄p), and F is a generalized Frobenius map (possibly
of Suzuki-Ree type), then the fraction of elements of G(F̄p)F which lie in
H(F̄p) goes to zero as the degree of F goes to∞, independently of the value
of p. A proof of this statement is given in [9, Prop. 3.4]. The proposition is
proved in the setting that G is a power of a simple group scheme and H is
the fiber of a word map, but the proof makes no use of these assumptions.
In the complement of the set of elements g which are conjugate to gz, the
map from conjugacy classes of G̃ to conjugacy classes of G is |Z| to 1. Thus,
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the theorem for S again reduces to the claim for S̃, just as in the classical
case.

For Suzuki and Ree groups, the proof of [9, Prop. 3.4] uses deep algebraic
geometry, and we are grateful to the referee for pointing out the following
direct proof. For G of type 2B2(q2), 2G2(q2), and 2F4(q2) respectively, by
[11], the number of conjugacy classes (regular semisimple conjugacy classes)
is q2 +3 (q2−1), q2 +8 (q2−2), and q4 +2q2 +17 (q4−2q2 +1) respectively.
Therefore, if q is sufficiently large, the number of conjugacy classes in S
which are not regular semisimple is less than δk(G). Again, if q is sufficiently
large, the number N of regular semisimple conjugacy classes in S satisfies

N |G|
qr
≤ 1.5|S| < 1.5δ|G|,

so N < 1.5δqr < 2δk(G). Choosing δ < ε/3 small enough that q must be
sufficiently large, we conclude that together the number of conjugacy classes
in S is less than 3δk(G) < εk(G). �

We now prove Theorem 1.1.

Proof. We need only prove that given ε > 0, if |G| is sufficiently large, we can
choose δ > 0 and then m so that for P◦ defined by m-regularity, condition
(9) of Proposition 2.1 holds.

For all k > 0 there exists N such if n ≥ 2 and q is a prime power, then the
fraction of elements of Ln(q), Un(q), or On(q) with more than N log n factors
is less than n−k [10, Prop. 2.4–2.6]. Therefore, for every k, for sufficiently
large n, in any of these groups, the fraction of elements with no irreducible
factor of degree > 2

√
n is less than n−k, which can be taken as small as we

wish. In the case that G is of linear or unitary type, by Lemma 4.2, we may
further assume that no prime factor of n is ≡ 1 modulo the degree of an
irreducible factor with degree > 2

√
n. Assuming P1 ∈ P◦ has an irreducible

factor Q of degree > 2
√
n, then by Lemma 4.2, the fraction of elements

P2 ∈ P◦ such that P2 has an irreducible factor whose degree is an integer
multiple of degQ/2 goes to 0 as n→∞. By Lemma 8.2, if ε1 > 0 and n is
sufficiently large, at least a 1 − ε1 fraction of pairs (P1, P2) ∈ P2 have the

property that if si ∈ G̃ is semisimple and maps to Pi for i = 1 and i = 2,
then there exists a prime ` such that

(10.1) ` | |ZG̃(s1)|, ` - |ZG̃(s2)|.

By construction, ` does not divide n.
To prove condition (9), we may partition the set

{(P1, P2) ∈ P◦ × P◦ | (P1, P2) ∈ (f, g)((φ, ψ)−1(X))}

into two subsets, one consisting of pairs satisfying (10.1) and one consisting
of pairs which do not satisfy it. We have already bounded the latter set,
and it suffices to prove that for ε2 > 0, if n is sufficiently large, the first set
has less than ε2|P|2 elements. Suppose that this is not the case.
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If (P1, P2) belongs to the subset satisfying (10.1), choose g̃G̃ ∈ Ã lying over

P1 and (χ, χad) in B̃ lying over P2 such that χ(g) 6= 0, where gG = φ(g̃G̃).

We denote the semisimple conjugacy class of G̃ = (Gad)∗(Fq) associated to

χad by tG̃, so the image of t in its natural representation has characteristic
polynomial P2. By Lemma 8.1, there exists a Zsigmondy prime ` >

√
n

which divides the order of the centralizer of g in G but not the order of the
centralizer of t in G̃. Therefore,

ord`|gG| < ord`|G| = ord`|G̃| = ord`χad(1).

The fraction χad(1)/χ(1) is an integer dividing the order of the center of G̃
and therefore not divisible by `, so ` divides dgG,χ. As the map φ is at most

|Z| to 1, we obtain at least ε2|P|2/|Z| such pairs (gG, χ).
For any α ∈ Q(ζ|G|), let T (α) denote the normalized trace

1

[Q(ζ|G|) : Q]
TrQ(ζ|G|)/Q(α).

Note that Gal(Q(ζ|G|)/Q) is commutative, and complex conjugation is an
element of the group, so if the Aut(C)-orbit of a non-zero algebraic integer
α is {α1, . . . , αk}, then

T (|α|2) = T (αᾱ) =
1

k

k∑
i=1

αiᾱi ≥ 1.

As (gG, χ) ∈ X, by definition χ(g) 6= 0, so T (|χ(g)|2) ≥ n. Therefore,∑
h∈gG

T (|χ(h)|2) ≥ n|gG|.

If n is sufficiently large, by Proposition 10.1, we may assume that at least
ε3|P|2/|Z| pairs (gG, χ) arising in this way satisfy |gG| > |G|/Cqr. Thus,

|G| · Irr(G) = T (
∑
h∈G

∑
χ∈Irr(G)

|χ(h)|2)

=
∑
h∈G

∑
χ∈Irr(G)

T (|χ(h)|2) ≥ ε3|P|2

|Z|
n|G|
Cqr

=
ε3q

rn|G|
|Z|C

.

By [4, Th. 1.1], |Irr(G)| ≤ 27.2qr. For orthogonal and symplectic groups,
|Z| ≤ 4, so that |Irr(G)| < 109qr/|Z|. By [4, Cor. 3.7], |Irr(G)| < 4qr/|Z|
for G = PSLr+1(q), and by [4, Prop. 3.10], |Irr(G)| ≤ 9qr/|Z| for G =
PSLr+1(q). Putting these together, we deduce 109 > ε3n/C, which is im-
possible for large n.

�
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