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Abstract. If w is a word in d > 1 letters and G is a finite group,
evaluation of w on a uniformly randomly chosen d-tuple in G gives a
random variable with values in G, which may or may not be uniform.
It is known [LST] that if G ranges over finite simple groups of given
root system and characteristic, a positive proportion of words w give a
distribution which approaches uniformity in the limit as |G| → ∞. In
this paper, we show that the proportion is in fact 1.

1. Introduction

A word for the purposes of this paper is an element of the free group
Fd. For any finite group G, the word w defines a word map wG : Gd → G
by substitution; we denote it w when G is understood. If UG defines the
uniform measure on G, we can measure the failure of random values of w to
be uniform by comparing the pushforward w∗UGd to the uniform distribution
UG. We say w is almost uniform for an infinite family of finite groups G if

lim
|G|→∞

‖w∗UGd − UG‖ = 0,

where ‖ ·‖ denotes the L1 norm, and G ranges over the groups of the family.
We are particularly interested in the family of finite simple groups.

When w is of the form wk0 for some k ≥ 2, then w is said to be a power
word. It is easy to see that power words are not almost uniform for finite
simple groups; for instance, in large symmetric groups, most elements are
not kth powers at all [P]. There has been speculation as to whether all
non-power words are almost uniform for finite simple groups (see, e.g., [Sh,
Problem 4.7] and [L, Question 3.1]). Since power words are exponentially
thin [LM], one could ask an easier question: is the set of words which are
not almost uniform for finite simple groups thin? Or, easier still, does it
have density 0? Some words are known to be almost uniform for finite
simple groups: primitive words, which are exactly uniform for all groups;
the commutator word x1x2x

−1
1 x−12 by [GS], words of the form xm1 x

n
2 by

[LS2], and, recently, all words of Waring type, i.e., words which can be
written as a product of two non-trivial words involving disjoint variables
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[LST, Theorem 1]. The fundamental group of any orientable genus g surface
is therefore covered for all g ≥ 1, and, more generally, various words in which
some variables appear exactly twice can also be treated by combining the
idea of Parzanchevski-Schul [PS] with the method of Liebeck-Shalev [LiS]
All of these words, of course, are in some sense rare and atypical.

From the point of view of algebraic geometry, the easiest families of finite
simple groups to consider are those of the form G(Fqn)/Z(G(Fqn)), where G
is a simple, simply connected algebraic group over Fq, and n ranges over the
positive integers. We say that w is geometrically almost uniform for G if it
is so for this family of groups. In [LST, Theorem 2], it is proved that this
property is equivalent to an algebro-geometric condition on w, namely that
the morphism of varieties wG : Gd → G (which by a theorem of Borel [B] is
dominant) has geometrically irreducible generic fiber. Using this criterion,
it is proved in [LST, Theorem 3] that for each d, there exists a set of words
of density greater than 1/3 which are almost uniform for G for all G/Fq.
(Note that this does not imply that these words are almost uniform for the
family of all finite simple groups of Lie type.)

The main result of this paper is that for each G the set of words which
are geometrically almost uniform for G has density 1. More explicitly:

Theorem 1.1. Let Fq and G be fixed. Let (i1, e1), (i2, e2), . . . be chosen
independently and uniformly from {1, . . . , d} × {±1}. Let w = xe1i1 · · ·x

el
il

be
a random word of length l defined in this way. Then the probability that w
is geometrically almost uniform for G goes to 1 as l→∞.

The idea of the proof is as follows. In [LST, Corollary 2.3], it is proved
that if the image w of w under the abelianization map Fd → Zd is primitive,
i.e., if γ(w) = 1, where γ denotes the g.c.d. of its coordinates, then w is
almost uniform for every G, the idea being that wG(Fqn ) is then surjective
for all n, and this implies that wG does not factor through a non-birational
generically finite morphism X0 → G.

Now, the image of a random walk on Fd under the abelianization map is
a random walk on Zd. If Xd,l is the endpoint of a random walk of length l

on Zd, then

lim sup
l→∞

P[γ(Xd,l) = 1] < 1

for all d, so this is not good enough to get a result which covers almost all
words. A new idea is needed.

By a probabilistic analysis, we prove that for each d,

lim
M→∞

lim inf
l→∞

P[1 ≤ γ(Xd,l) ≤M ] = 1.

Thus, it suffices to prove that for each d ≥ 2 and k > 0, in the limit as l
goes to infinity, the fraction of w of length l with γ(w) = k for which w is
almost uniform in rank ≤ r goes to 1. For any such w and any group G, the
image of wG contains all kth powers in G. For k > 1, this no longer implies
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geometric irreducibility of the generic fiber of wG, but it puts very strong
constraints on which quasi-finite morphisms X0 → G it can factor through.

To see how to exploit such constraints, consider the following toy problem.
Suppose c polynomial map f : A1 → A1 is defined over Fq; for all n, f(Fqn)
contains all squares in Fqn ; and for some n0, f(Fqn0 ) contains a non-square.
We claim this implies f is purely inseparable.

Indeed, consider the curve C : y2 = f(x). For C to fail to be geometrically
irreducible would mean that f(x) = g(x)2 for some g(x) ∈ Fq[x]. Either
g(x) ∈ Fq[x] or f(x) = ah(x)2 for some non-square a ∈ Fq and some h(x) ∈
Fq[x]. In the first case, f(Fqn0 ) contains only squares in Fqn0 , contrary to
assumption. In the second case, for all n ≥ 1, f(Fqn) contains no non-zero
square in Fqn .

Thus, the conditions on the image of f imply that C is geometrically
irreducible, so it has (1+o(1))qn points over Fqn by the Lang-Weil estimate.
Consider the y-map, that is, the morphism of degree deg f from C to the
affine line given by the function y. By the Chebotarev density theorem for
finite extensions of Fq(t), in the limit as n→∞, a fixed positive proportion
of points in A1(Fqn) have preimage in C(Fqn) consisting of deg f points.
Since the y-map is surjective on Fqn-points, this implies that f is purely
inseparable.

To apply this idea in the word map setting, one needs to find elements
in w(G(Fqn)d) which play the role of non-square elements in f(Fqn). We
do not need to find them for all w, just for almost all in an asymptotic
sense. An approach to achieving this is to fix a d-tuple g ∈ G(Fqn)d and
estimate the probability that w(g) is a “non-square” element. For large
enough n, one can view w(g) as uniformly distributed in G(Fqn). In order
to get the probability of success to approach 1, it is necessary to use not a
single g but a sufficiently large number of independent choices g1, . . . ,gN .
The existence of N elements of G(Fqn)d which are independent in this sense
(in the limit n → ∞) depends on G(Fqn)N being d-generated. There is a
substantial literature, going back to work of Philip Hall [H], concerning the
size of minimal generating sets of GN , where G is a finite simple group. We
use a recent result of Maróti and Tamburini [MT].

I would like to thank Aner Shalev for his useful comments on an earlier
version of this paper. I also want to express my gratitude to the referee for
pointing out a number of inaccuracies in an earlier draft of this paper and
suggesting several improvements in the exposition.

2. Varieties over Finite Fields

Throughout this section, a variety will always mean a geometrically inte-
gral affine scheme of finite type over a finite field. Let A ⊂ B be an inclusion
of finitely generated Fq-algebras such that X := Spec A and Y := Spec B
are normal varieties. Let φ : Y → X = Spec A correspond to the inclusion
A ⊂ B. Let K and L denote the fraction fields of A and B respectively. Let
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K0 denote the separable closure of K in L, which is a finite extension of K
since L is finitely generated. Let A0 denote the integral closure of A in K0,
X0 the spectrum of A0, and ψ : X0 → X the morphism corresponding to
the inclusion A ⊂ A0. As B ⊃ A is integrally closed in L ⊃ K0 it follows
that B contains A0, so φ factors through ψ.

Proposition 2.1. For all positive integers n,

(2.1) φ(Y (Fqn)) ⊂ ψ(X0(Fqn)),

and

(2.2) |ψ(X0(Fqn))| − |φ(Y (Fqn))| = o(qn dimX).

Moreover ψ is an isomorphism if and only if φ has geometrically irreducible
generic fiber; if not, there exists ε > 0 and a positive integer m such that

(2.3) |ψ(X0(Fqn))| < (1− ε)qn dimX

if m divides n.

Proof. As A ⊂ A0 ⊂ B, the morphism φ factors through ψ, implying (2.1).
By [EGA IV2, Proposition 4.5.9], K = K0 if and only if the generic fiber of

φ is geometrically irreducible. By the same proposition, the generic fiber of
Y → X0 is always geometrically irreducible. By [EGA IV3, Théorème 9.7.7],
there is a dense open subset of X0 over which the fibers of Y → X0 are
all geometrically irreducible. Let C denote the complement of this subset,
endowed with its structure of reduced closed subscheme of X0.

It is well known that the Lang-Weil estimate is uniform in families. There
does not seem to be a canonical reference for this fact, but a proof is sketched,
for instance in [LS1, Proposition 3.4] and in [T, Theorem 5]. From this, it
follows that if n is sufficiently large, for every point of X0(Fqn) over which
the morphism Y → X0 has geometrically irreducible fiber, there exists an
Fqn-point in this fiber. In particular, every point in X0(Fqn) \C(Fqn) lies in
the image of Y (Fqn)→ X0(Fqn). By the easy part of the Lang-Weil bound,

|C(Fqn)| = O(qn dimC) ≤ O(qn(dimX0−1)).

Thus, the complement of the image of Y (Fqn) → X0(Fqn) has cardinality

o(qn dimX), which implies (2.2).
If φ is not geometrically irreducible, then [K0 : K] > 1. Let K1 denote

the Galois closure of K0/K in a fixed separable closure K. We choose m
so that Fqm contains the algebraic closure of Fq in K1. If we are content to
limit consideration to Fqn-points of X and X0, where m divides n, we may
replace X and X0 by the varieties XFqm

and (X0)Fqm
respectively, obtained

by base change. This has the effect of replacing K, K0, and K1 by KFqm ,
K0Fqm , and K1Fqm = K1 respectively. Replacing q by qm, we may now
assume that Fq is algebraically closed in K1.
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Now, Gal(K1/K) acts faithfully on A1 as Fq-algebra. As A is integrally
closed in K and A1 is the integral closure of A in K1, it follows that

A ⊂ AGal(K1/K)
1 ⊂ A1 ∩K = A,

so A = A
Gal(K1/K)
1 ; likewise, A0 = A

Gal(K1/K0)
1 . Geometrically, this means

that X and X0 are the quotients of X1 := Spec A1 by Gal(K1/K) and
Gal(K1/K0) respectively. We denote these quotient maps π and π0 respec-
tively. Thus we have the diagram

X1

π0

��
π

��

X0

ψ

��
X

As the action of Gal(K1/K) on X1 is faithful and X1 is irreducible,
there is a dense affine open subvariety of X1 on which Gal(K1/K) acts
freely. Replacing X1 by this subvariety and X and X0 by quotients of this
subvariety by Gal(K1/K) and Gal(K1/K0) respectively affects o(qn dimX)
of the Fqn-points of X, X0, and X1, so without loss of generality, we may
assume that Gal(K1/K) acts freely on X1. Now

(2.4) ψ(X0(Fqn)) = ψ(X0(Fqn) \ π0(X1(Fqn))) ∪ π(X1(Fqn)).

By Lang-Weil, |X1(Fqn)| = (1 + o(1))qn dimX , so

|π0(X1(Fqn)))| = ([K1 : K0]
−1 + o(1))qn dimX ,

|π(X1(Fqn))| = ([K1 : K]−1 + o(1))qn dimX .

By (2.4),

|ψ(X0(Fqn))| ≤ (1− [K1 : K0]
−1 + [K1 : K]−1 + o(1))qn dimX ,

which implies (2.3). �

Lemma 2.2. Let G be a finite group acting transitively on a set S with more
than one element and H a normal subgroup of G such that every element
of H has at least one fixed point in S. Then for all s ∈ S, H StabG(s) is a
proper subgroup of G.

Proof. By a classical theorem of Jordan, every non-trivial transitive permu-
tation group contains a derangement, so H must act intransitively. Thus,
the orbit of H StabG(s) containing s is a proper subset of S, which implies
the lemma. �

Lemma 2.3. Let K be a field, K a separable closure of K, and K1 and K2

finite extensions of K in K. Suppose K1 is Galois over K and K2 6= K. If
K1 ∩ K2 = K, then there exists an element of Gal(K/K1) which does not
stabilize any K-embedding of K2 in K.
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Proof. LetK3 be the Galois closure ofK2 inK and defineG := Gal(K1K3/K).
Thus G acts transitively on the set S of K-embeddings of K2 in K. Let
H = Gal(K1K3/K1), which is normal in G since K1/K is Galois. If every
element of Gal(K/K1) fixes at least one element of S, then by Lemma 2.2,
H StabG(s) is a proper subgroup of G, where s denotes the identity embed-
ding of K2 in K. If L is the fixed field of K1K3 under H StabG(s), then
L is a non-trivial extension of K contained in both (K1K3)

H = K1 and

(K1K3)
StabG(s) = K2.

�

Proposition 2.4. Let X be a variety over Fq with coordinate ring A with

function field K. Let K ⊂ K0,K2 ⊂ K, and let K1 (resp. K3) denote the
Galois closure of K0 (resp. K2) in K. Let Ai for 0 ≤ i ≤ 3 denote the
integral closure of A in Ki, and let Xi := Spec Ai. If K1 and K2 satisfy the
hypotheses of Lemma 2.3, then there exists ε > 0 so that for all sufficiently
large integers n, there are at least εqn dimX elements of X(Fqn) which lie in
the image of Xi(Fqn)→ X(Fqn) for i = 0 but not for i = 2.

Proof. Let K13 = K1K3, A13 denote the integral closure of A in K13, and
X13 denote Spec A13. Let G := Gal(K13/K). The action of G on X13 is
faithful, and X13 is irreducible, so there exists a dense open affine subvariety
U13 ⊂ X13 on which G acts freely. Replacing X13, together with its quo-
tients by subgroups of G, by U13 and its corresponding quotients affects only
o(qn dimX) Fqn-points of these quotients, and therefore does not affect the
statement of the proposition. We may therefore assume that we are in the
setting of [Se, Theorem 6] and can apply the Chebotarev density theorem
for varieties.

By Lemma 2.3, there exists g ∈ G such that g acts trivially on K1 but acts
without fixed points on the set of K-embeddings K2 → K or, equivalently,
on the geometric points lying over any given geometric point of X for the
covering map X2 → X. This implies that if x ∈ X(Fqn) and g belongs to the
Frobenius conjugacy class of x, then there is no qn-Frobenius stable point
lying over x on X2 → X, i.e., x does not lie in the image of X2(Fqn) →
X(Fqn). On the other hand, every geometric point of X0 lying over x is
stable by the qn-Frobenius, so x lies in the image of X0(Fqn) → X(Fqn).
By Chebotarev density [Se, Theorem 7], the proposition follows for every
ε < |G|−1. �

The main technical result of this section is the following.

Proposition 2.5. Let φ : Y → X be a dominant morphism of normal vari-
eties over Fq. Then there exists a positive integer m and for every positive
integer n, there exist subsets Xn,i ⊂ X(Fqn), 1 ≤ i ≤ m, with the following
properties.

(1) For each i from 1 to m, we have lim infn
|Xn,i|
|X(Fqn )|

> 0.
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(2) If θ : Z → X is any dominant morphism of normal varieties over Fq
such that
(a) For all n ≥ 1, θ(Z(Fqn)) ⊃ φ(Y (Fqn)), and
(b) there exists an integer n0 ≥ 1 such that θ(Z(Fqn0 )) ∩ Xn0,i is

non-empty for each i = 1, . . . ,m,
then the generic fiber of θ is geometrically irreducible.

Proof. Let A, B, C denote the coordinate rings of X, Y , and Z respectively.
Let K, L, and M be the fields of fractions of A, B, and C respectively. We
regard B and C as A-algebras via φ and θ respectively, so L and M are
extensions of K. Let K0 and K2 denote the separable closures of K in L
and M respectively. As B and C are finitely generated Fq-algebras, L and
M are finitely generated K-extensions, and K0 and K2 are finite separable
extensions of K. The claimed generic irreducibility of the generic fiber of
θ amounts to the equality K = K2. We define K, K1, K3, and K13 as in
Proposition 2.4.

Let F1, . . . , Fm denote all subfields of K1 over K, excluding K itself. Thus,
we have the following diagram of fields:

(2.5) L K M

K13

K1 K3

F1 · · ·Fm K0 K2

K

For 0 ≤ i ≤ 3, let Ai denote the integral closure of A in Ki and Xi =
Spec Ai; likewise for A13 and X13. For 1 ≤ i ≤ m, let Di denote the integral
closure of A in the field Fi, and let W i := Spec Di. By (2.5), we have the
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following diagram of schemes:

Y

��

Z

��

X13

}} !!
X1

��}}vv

X3

��
W 1 · · ·

++

Wm

((

X0

!!

X2

}}
X

Let Xn,i denote the complement of the image of W i(Fqn) in X(Fqn). By
(2.3) and the Lang-Weil estimate, for 1 ≤ i ≤ m,

(2.6) |Xn,i| ≥ εqdimX >
ε

2
|X(Fqn)|

if n is sufficiently large, which implies property (1).
Moreover, if θ : Z → X is a dominant morphism satisfying condition (a),

then for all n ≥ 1, θ(Z(Fqn)) ⊃ φ(Y (Fqn)), implying that

|im(X1(Fqn)→ X(Fqn)) \ im(X2(Fqn)→ X(Fqn))|
≤ |im(X0(Fqn)→ X(Fqn)) \ im(X2(Fqn)→ X(Fqn))|

= |im(Y (Fqn)→ X(Fqn)) \ im(Z(Fqn)→ X(Fqn))|+ o(qn dimX)

= |φ(Y (Fqn)) \ θ(Z(Fqn))|+ o(qn dimX)

= o(qn dimX).

If K2 6= K, Proposition 2.4 implies that K1 ∩ K2 must be a non-trivial
extension of K, so Fi ⊂ K2 for some i ∈ [1,m]. Thus, for n0 as in (b),

θ(Z(Fqn0 )) ⊂ im(X2(Fqn0 )→ X(Fqn0 )) ⊂ im(W i(Fqn0 )→ X(Fqn0 )),

contrary to the assumption that θ(Z(Fqn0 ))∩Xn0,i is non-empty for each i.
We conclude that K2 = K, and the proposition follows.

�

3. Random walks

This section does not claim any original results. Its goal is to present
well known ideas in probability theory in the form needed for the proof of
Theorem 1.1.

For any positive integer d and non-negative integer l, we define Xd,l to be

the convolution of l i.i.d. random variables on Zd, each uniformly distributed
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over the 2d-element set {±e1, . . . ,±ed}, where e1, . . . , ed are the standard
generators of Zd. When d = 2, we write Xl for short.

The main result in this section is the following.

Proposition 3.1. For all d ≥ 2 and ε > 0, there exist M and N such that
for l ≥ N ,

P[Xd,l ∈
⋃
i>M

iZd] < ε.

We begin with a general result.

Lemma 3.2. Let G be a finite group and S a (not necessarily symmetric)
set of generators. Let S1, S2, . . . be i.i.d. random variables on G with support
S. Let Gl = S1 · · · Sl. Suppose that there does not exist a homomorphism
from G to any non-trivial cyclic group C mapping S to a single element.
Then the limit as l→∞ of the distribution of Gl is the uniform distribution
on G.

Proof. Consider the Markov chain with state space G in which the probabil-
ity of a transition from g to hg is P[Si = h]. Since the uniform distribution
is stationary, it suffices to check that this Markov chain is irreducible and
periodic [LPW, Theorem 4.9]. Irreducibility is immediate from the condition
that S generates G. If the Markov chain is periodic, then for some proper
subset X ⊂ G and some integer j, s1 · · · sj ∈ StabG(X) for all si ∈ S. Let
Gj denote the subgroup of G generated by

{s1 . . . sj | s1, . . . , sj ∈ S}.
As Gj ⊂ StabG(X) ( G, Gj is a proper subgroup of G.

Consider the subgroup G̃ of G × Z/jZ generated by {(s, 1) | s ∈ S}. By
definition, the kernel of projection on the second factor is Gj . By Goursat’s

Lemma, G̃ is the pullback to G × Z/jZ of the graph of an isomorphism
between G/Gj and a quotient of Z/jZ. This identifies G/Gj with a non-
trivial cyclic group C, and all elements of S map to the same generator of
C, contrary to hypothesis. �

The remaining results in this section are needed for the proof of Proposi-
tion 3.1.

Lemma 3.3. Let p > 2 be prime, k a positive integer, and ε > 0. For l
sufficiently large,

P[Xl ∈ pkZ2] <
1 + ε

p2k
.

Proof. The image under (mod pk) reduction of our random walk on Z2 is a
random walk on G = (Z/pkZ)2 with generating set S = {±1, 0), (0,±1)}.
As differences between elements of S generate G, there is no proper coset
of G which contains S. By Lemma 3.2, Xl becomes uniformly distributed
(mod pk) in the limit l→∞, which implies the lemma.

�
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Lemma 3.4. Let k be a positive integer, and ε > 0. For l sufficiently large,

P[Xl ∈ 2kZ2] <
2 + ε

4k
.

Proof. If l is odd, the probability that Xl ∈ 2Z2 is zero. We therefore assume
l = 2l0, so Xl is the sum of l0 i.i.d. random variables supported on

{(±2, 0), (0,±2), (±1,±1), (0, 0)}.

Reducing (mod 2k), we obtain an irreducible aperiodic random walk on
ker(Z/2kZ)2 → Z/2Z, and the argument proceeds as before by Lemma 3.2.

�

Proposition 3.5. For all ε > 0, there exist M and N such that for l ≥ N ,

P[Xl ∈
⋃
i>M

iZ2] < ε.

Proof. By [LST, Proposition 3.2], if p > 2 is prime,

P[Xl ∈ pZ2 \ {(0, 0)}] < 4

(p+ 1)2
.

We choose s ≥ 2 large enough that∑
p>s

4

(p+ 1)2
<
ε

2

and choose k such that 3s
4k

< ε
2 , so that if l is sufficiently large, the total

probability that Xl ∈ pkZ2 for some p ≤ s is less than ε/2. Note that this
includes the probability that Xl = (0, 0). Let M be larger than s

∏
p≤s p

k.
If i > M , then either i has a prime factor greater than s or a prime factor
≤ s with multiplicity at least k. The probability that there exists i > M
such that G ∈ iZ2 is therefore less than ε. �

We can now prove Proposition 3.1

Proof. The projection of a random walk on Zd onto the first two coordinates
gives a random walk on Z2 where each of the four possible non-zero steps
are equally likely, but a zero step is also possible in the projection if d > 2.
Since the projection of an element of iZd is an element of iZ2, the conditional
probability that Xd,l ∈

⋃
i>M iZd if we condition on at least l0 steps which

are non-zero in the projection is less than ε/2 if l0 is large enough. Given l0
the probability that there are less than l0 steps non-zero in the projection
goes to 0 as l goes to infinity, so it can be taken to be less than ε/2, implying
that P[Xd,l ∈

⋃
i>M iZd] < ε. �
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4. Proof of Theorem 1.1

We now prove the main theorem.

Proof. Fix a simple, simply-connected algebraic group G over a finite field
Fq. We will apply Proposition 2.5 in the case X = G, Y = G, Z = Gd, φ is
the kth power map for some positive integer k, and θ is the evaluation map
w for some w ∈ Fd for which w = (a1, . . . , ad) and γ(a1, . . . , ad) = k. Given
w, there exist integers b1, . . . , bd for which k = a1b1 + · · ·+ adbd, so that

wG(Fqn )(g
b1 , . . . , gbd) = gk

for all n and all g ∈ G(Fqn), so φ(G(Fqn)) ⊂ θ(G(Fqn)) for all n ≥ 1.
By the main theorem of [MT], for every finite simple group Γ, there

exists a 2-element generating set of ΓN whenever N ≤ 2
√
|Γ|. Let n0

be any positive integer. Defining N0 := qn0 and applying this to Γ :=
G(Fqn0 )/Z(G(Fqn0 )), we see that ΓN0 is d-generated. As G := G(Fqn0 )N0

is a perfect central extension of ΓN0 , lifting any set of d generators of the
latter to the former, we again obtain a generating set.

We denote by
S = {(gi1, . . . , giN0) | 1 ≤ i ≤ d}

a generating set of G and consider an l-step random walk on this group with
generating set S. By Lemma 3.2, for all δ > 0, if l sufficiently large, the
probability that the walk ends in any subset T ⊂ G is at least

(1− δ/2)|T |/|G|.
We define T := T0 ∪ · · · ∪ TbN0/mc−1, where

Ti := G(Fqn0 )im ×Xn0,1 × · · · ×Xn0,m ×G(Fqn0 )N0−(i+1)m,

and Xn0,i are defined as in Proposition 2.5.
To estimate the probability that a uniformly randomly chosen element of

G lies in T , we note that membership in the Ti are independent conditions.
The probability of membership in each Ti is

m∏
j=1

|Xn0,j |
|G(Fqn0 )|

≥ εm

2m

by (2.6). Therefore, the probability of membership in T for a uniformly
chosen element of G is at least

1− (1− εm/2m)bN0/mc.

Taking n0 (and therefore N0) sufficiently large, we can guarantee this exceeds
1 − δ/2. Thus, the probability that the random walk ends in T is greater
than 1− δ.

For 1 ≤ j ≤ N0, let gj = (g1j , . . . , gdj). We have seen that for a random
word w of length n, the probability that (w(g1), . . . , w(gN0)) ∈ T is greater
than 1− δ. Membership in T implies membership in some Ti, which implies

w(gim+1) ∈ Xn0,1, . . . , w(gim+m) ∈ Xn0,m,
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and therefore, by Proposition 2.5, if γ(w) = k, then w is geometrically
almost uniform for G.

Thus, for each k, the probability is ≤ δ that a random word w of length
l satisfies γ(w) = k and that w is not geometrically almost uniform. By
Proposition 3.1, for each fixed ε > 0, there exists M such that if l is large
enough, then the probability that γ(w) is zero or greater than M for a
word of length l is less than ε. Therefore, the probability that w is not
geometrically almost uniform for G is less than ε+Mδ. Choosing first ε and
then δ, we can make this quantity as small as we wish, proving the theorem.

�

We remark that the proof also shows that almost all words w are almost
uniform for the family of groups {G(Fqn) | n ≥ 1}. The proof, together with
that of [LST, Theorem 2], implies that w is almost always uniform for all
finite simple groups with fixed root system and characteristic. For instance,
almost all w are almost uniform for the Suzuki and Ree groups.

5. Questions

Question 5.1. If G is a simple, simply connected group scheme over Z, does
the probability that a random word is almost uniform for all simple groups
of the form G(Fq)/Z(G(Fq)) go to 1?

It seems likely that the methods of this paper will allow one to prove this
for all characteristics satisfying some Chebotarev-type condition, but can
one do it for all characteristics simultaneously, or even a density one set of
characteristics? Even more optimistically, one can ask:

Question 5.2. Does the probability that a random word is geometrically
almost uniform for all simple, simply connected algebraic groups over finite
fields go to 1?

Given an e-tuple of words w1, . . . , we ∈ Fd, for each G we can define a
function Gd → Ge, and we can ask about almost uniformity. In geometric
families, this reduces again to the question of the geometric irreducibility
of the generic fiber of the morphism Gd → Ge for simple, simply connected
algebraic groups over finite fields. In the case that

Zd/SpanZ(w1, . . . , we) ∼= Zd−e,

the function G(Fqn)d → G(Fqn)e is surjective. Geometric irreducibility for
such words follows as before.

Question 5.3. For e < d, does the probability that a random e-tuple of
elements of Fd of length n is geometrically almost uniform go to 1 as n→∞?

Question 5.2 has an analogue for simple, simply connected compact Lie
groups. As a special case, one can ask:



MOST WORDS ARE GEOMETRICALLY ALMOST UNIFORM 13

Question 5.4. Does the probability that for a random word w of length n

lim
m→∞

‖w∗USU(m)d − USU(m)‖ = 0

go to 1 as n→∞?
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