MOST WORDS ARE GEOMETRICALLY ALMOST
UNIFORM
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ABSTRACT. If w is a word in d > 1 letters and G is a finite group,
evaluation of w on a uniformly randomly chosen d-tuple in G gives a
random variable with values in G, which may or may not be uniform.
It is known [LST] that if G ranges over finite simple groups of given
root system and characteristic, a positive proportion of words w give a
distribution which approaches uniformity in the limit as |G| — oco. In
this paper, we show that the proportion is in fact 1.

1. INTRODUCTION

A word for the purposes of this paper is an element of the free group
F;. For any finite group G, the word w defines a word map wg: G¢ — G
by substitution; we denote it w when G is understood. If Ug defines the
uniform measure on G, we can measure the failure of random values of w to
be uniform by comparing the pushforward w,Uga to the uniform distribution
Ug. We say w is almost uniform for an infinite family of finite groups G if

lim ||w.Uga — Ug| =0,
|G| =00
where || - || denotes the L' norm, and G ranges over the groups of the family.
We are particularly interested in the family of finite simple groups.

When w is of the form wlg for some k£ > 2, then w is said to be a power
word. It is easy to see that power words are not almost uniform for finite
simple groups; for instance, in large symmetric groups, most elements are
not kth powers at all [P]. There has been speculation as to whether all
non-power words are almost uniform for finite simple groups (see, e.g., [Sh,
Problem 4.7] and [L, Question 3.1]). Since power words are exponentially
thin [LM], one could ask an easier question: is the set of words which are
not almost uniform for finite simple groups thin? Or, easier still, does it
have density 07 Some words are known to be almost uniform for finite
simple groups: primitive words, which are exactly uniform for all groups;
the commutator word zjzex;'wy' by [GS], words of the form z7'z} by
[LS2], and, recently, all words of Waring type, i.e., words which can be
written as a product of two non-trivial words involving disjoint variables
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[LST, Theorem 1]. The fundamental group of any orientable genus g surface
is therefore covered for all g > 1, and, more generally, various words in which
some variables appear exactly twice can also be treated by combining the
idea of Parzanchevski-Schul [PS] with the method of Liebeck-Shalev [LiS]
All of these words, of course, are in some sense rare and atypical.

From the point of view of algebraic geometry, the easiest families of finite
simple groups to consider are those of the form G(Fy»)/Z(G(F4n)), where G
is a simple, simply connected algebraic group over I, and n ranges over the
positive integers. We say that w is geometrically almost uniform for G if it
is so for this family of groups. In [LST, Theorem 2|, it is proved that this
property is equivalent to an algebro-geometric condition on w, namely that
the morphism of varieties wg: G — G (which by a theorem of Borel [B] is
dominant) has geometrically irreducible generic fiber. Using this criterion,
it is proved in [LST, Theorem 3] that for each d, there exists a set of words
of density greater than 1/3 which are almost uniform for G for all G/F,.
(Note that this does not imply that these words are almost uniform for the
family of all finite simple groups of Lie type.)

The main result of this paper is that for each G the set of words which
are geometrically almost uniform for G has density 1. More explicitly:

Theorem 1.1. Let Fy and G be fized. Let (i1,e1), (i2,€2),... be chosen
independently and umformly from {1,...,d} x {£1}. Let w = xel -apl be
a random word of length | defined in thzs way. Then the probabzlzty that w
is geometrically almost uniform for G goes to 1 as | — oo.

The idea of the proof is as follows. In [LST, Corollary 2.3], it is proved

that if the image @ of w under the abelianization map F; — Z? is primitive,
e., if y(w) = 1, where 7 denotes the g.c.d. of its coordinates, then w is

almost uniform for every G, the idea being that WG(F,) is then surjective
for all n, and this implies that wg does not factor through a non-birational
generically finite morphism X, — G.

Now, the image of a random walk on Fy under the abelianization map is
a random walk on Z9. If Xa, is the endpoint of a random walk of length [
on Z%, then

limsup P[y(Xg;) =1] < 1
l—o0

for all d, so this is not good enough to get a result which covers almost all
words. A new idea is needed.

By a probabilistic analysis, we prove that for each d,

lim liminf P[1 <~(Xq;) < M]=1.
M—oc0 [—o0

Thus, it suffices to prove that for each d > 2 and k > 0, in the limit as [
goes to infinity, the fraction of w of length | with v(w) = k for which w is
almost uniform in rank < r goes to 1. For any such w and any group G, the
image of wg contains all kth powers in G. For k > 1, this no longer implies
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geometric irreducibility of the generic fiber of wg, but it puts very strong
constraints on which quasi-finite morphisms X, — G it can factor through.

To see how to exploit such constraints, consider the following toy problem.
Suppose ¢ polynomial map f: A' — Al is defined over Fy; for all n, f(Fgn)
contains all squares in Fgn; and for some ng, f(Fgno) contains a non-square.
We claim this implies f is purely inseparable.

Indeed, consider the curve C: 2 = f(z). For C to fail to be geometrically
irreducible would mean that f(z) = g(z)? for some g(z) € F,[z]. Either
g(x) € Fylx] or f(x) = ah(x)? for some non-square a € F, and some h(z) €
F,lx]. In the first case, f(Fqno) contains only squares in F o, contrary to
assumption. In the second case, for all n > 1, f(F4n) contains no non-zero
square in Fyn.

Thus, the conditions on the image of f imply that C is geometrically
irreducible, so it has (14 0(1))¢"™ points over Fy» by the Lang-Weil estimate.
Consider the y-map, that is, the morphism of degree deg f from C to the
affine line given by the function y. By the Chebotarev density theorem for
finite extensions of F,(¢), in the limit as n — oo, a fixed positive proportion
of points in A'(F») have preimage in C(F,) consisting of deg f points.
Since the y-map is surjective on Fn-points, this implies that f is purely
inseparable.

To apply this idea in the word map setting, one needs to find elements
in w(G(Fyn)9) which play the role of non-square elements in f(Fy). We
do not need to find them for all w, just for almost all in an asymptotic
sense. An approach to achieving this is to fix a d-tuple g € Q(Fqn)d and
estimate the probability that w(g) is a “non-square” element. For large
enough n, one can view w(g) as uniformly distributed in G(Fgn). In order
to get the probability of success to approach 1, it is necessary to use not a
single g but a sufficiently large number of independent choices g1,...,gn.
The existence of N elements of G(IF;»)? which are independent in this sense
(in the limit n — oo) depends on Q(]Fqn)N being d-generated. There is a
substantial literature, going back to work of Philip Hall [H], concerning the
size of minimal generating sets of GV, where G is a finite simple group. We
use a recent result of Maréti and Tamburini [MT].

I would like to thank Aner Shalev for his useful comments on an earlier
version of this paper. I also want to express my gratitude to the referee for
pointing out a number of inaccuracies in an earlier draft of this paper and
suggesting several improvements in the exposition.

2. VARIETIES OVER FINITE FIELDS

Throughout this section, a variety will always mean a geometrically inte-
gral affine scheme of finite type over a finite field. Let A C B be an inclusion
of finitely generated F,-algebras such that X := Spec A and Y := Spec B
are normal varieties. Let ¢: ¥ — X = Spec A correspond to the inclusion
A C B. Let K and L denote the fraction fields of A and B respectively. Let
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K denote the separable closure of K in L, which is a finite extension of K
since L is finitely generated. Let Ag denote the integral closure of A in Ky,
X the spectrum of Ap, and 9: X, — X the morphism corresponding to
the inclusion A C Ay. As B D A is integrally closed in L O Kj it follows
that B contains Ag, so ¢ factors through .

Proposition 2.1. For all positive integers n,

(2.1) (Y (Fgn)) C (Xo(Fgn)),
and
(2:2) [0(Xo(Fgn))| — [¢(Y (Fgn))| = o(g" ™).

Moreover 1 is an isomorphism if and only if ¢ has geometrically irreducible
generic fiber; if not, there exists ¢ > 0 and a positive integer m such that

(2.3) (X (Fgn))| < (1 —e)g" ™%
if m divides n.

Proof. As A C Ay C B, the morphism ¢ factors through 1, implying (2.1).

By [EGA IVq, Proposition 4.5.9], K = K if and only if the generic fiber of
¢ is geometrically irreducible. By the same proposition, the generic fiber of
Y — X, is always geometrically irreducible. By [EGA IV3, Théoreme 9.7.7],
there is a dense open subset of X over which the fibers of ¥ — X, are
all geometrically irreducible. Let C denote the complement of this subset,
endowed with its structure of reduced closed subscheme of X).

It is well known that the Lang-Weil estimate is uniform in families. There
does not seem to be a canonical reference for this fact, but a proof is sketched,
for instance in [LS1, Proposition 3.4] and in [T, Theorem 5]. From this, it
follows that if n is sufficiently large, for every point of X(Fgn) over which
the morphism Y — X, has geometrically irreducible fiber, there exists an
Fyn-point in this fiber. In particular, every point in Xy(Fgn) \ C(Fgn) lies in
the image of Y (Fgn) — X(Fy4n). By the easy part of the Lang-Weil bound,

C{F] = O mE) < Ofgram o),

Thus, the complement of the image of Y (Fyn) — X (F,n) has cardinality
o(q"4mX) “which implies (2.2).

If ¢ is not geometrically irreducible, then [Ky : K] > 1. Let K; denote
the Galois closure of Ky/K in a fixed separable closure K. We choose m
so that [Fm contains the algebraic closure of F, in K. If we are content to
limit consideration to F,n-points of X and X, where m divides n, we may
replace X and X by the varieties X, Fym and (X, O)qu respectively, obtained
by base change. This has the effect of replacing K, Ky, and Ky by KF;m,
KoFyn, and K{F;n = K respectively. Replacing ¢ by ¢™, we may now
assume that F, is algebraically closed in Kj.
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Now, Gal(K/K) acts faithfully on A; as F,-algebra. As A is integrally
closed in K and A; is the integral closure of A in K7, it follows that

AcC Afal(Kl/K) CANK=A,
so A= Afal(Kl/ K); likewise, Ag = A?al(Kl/ Ko), Geometrically, this means
that X and X, are the quotients of X; := Spec A; by Gal(K;/K) and
Gal(K1/Ky) respectively. We denote these quotient maps 7 and g respec-
tively. Thus we have the diagram

X,

.

10”

‘

X

As the action of Gal(K;/K) on X, is faithful and X, is irreducible,
there is a dense affine open subvariety of X; on which Gal(K;/K) acts
freely. Replacing X; by this subvariety and X and X, by quotients of this
subvariety by Gal(Ki/K) and Gal(K;/Kg) respectively affects o(q™4mX)
of the Fyn-points of X, X, and X, so without loss of generality, we may
assume that Gal(K;/K) acts freely on X;. Now

(2.4) Y(Xo(Fgn)) = p(Xo(Fgn) \ mo (X, (Fgn))) U (X, (Fgn)).
By Lang-Weil, | X (F;n)| = (1+ 0o(1))g"¥™X 5o
|70(X 1 (Fgn)))| = ([K1 : Ko] ™' + 0(1))g" ™ <,
= (K

’F(Xl(Fq")) ([ 1 K]il + 0(1))qndim§.
By (2.4),
V(X o(Fgn))| < (1= [K1: Kol ™!+ [K1: K]7! 4 0(1))g" ™ X,
which implies (2.3). 0

Lemma 2.2. Let G be a finite group acting transitively on a set S with more
than one element and H a normal subgroup of G such that every element
of H has at least one fized point in S. Then for all s € S, H Stabg(s) is a
proper subgroup of G.

Proof. By a classical theorem of Jordan, every non-trivial transitive permu-
tation group contains a derangement, so H must act intransitively. Thus,
the orbit of H Stabg(s) containing s is a proper subset of S, which implies
the lemma. ([

Lemma 2.3. Let K be a field, K a separable closure of K, and K, and Ko
finite extensions of K in K. Suppose K1 is Galois over K and Ko # K. If
K1 N Ky = K, then there exists an element of Gal(K/Ky) which does not
stabilize any K-embedding of Koy in K.
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Proof. Let K3 be the Galois closure of K3 in K and define G := Gal(K; K3/K).
Thus G acts transitively on the set S of K-embeddings of K5 in K. Let
H = Gal(K;K3/K1), which is normal in G since K;/K is Galois. If every
element of Gal(K/Kj) fixes at least one element of S, then by Lemma 2.2,
H Stabg(s) is a proper subgroup of G, where s denotes the identity embed-
ding of K in K. If L is the fixed field of K K3 under H Stabg(s), then
L is a non-trivial extension of K contained in both (KiK3)? = K; and
(K1K3)Stabg(s) = K.

O

Proposition 2.4. Let X be a variety over Fy with coordinate ring A with
function field K. Let K C Ko, Ko C K, and let K1 (resp. K3) denote the
Galois closure of Ko (resp. Ko) in K. Let A; for 0 < i < 3 denote the
integral closure of A in K;, and let X; := Spec A;. If K1 and Ky satisfy the
hypotheses of Lemma 2.3, then there exists € > 0 so that for all sufficiently
large integers n, there are at least eg W™ X elements of X (Fgn) which lie in
the image of X;(Fgn) — X(Fyn) for i =0 but not fori=2.

Proof. Let K13 = K1K3, A3 denote the integral closure of A in K3, and
X5 denote Spec Aj3. Let G := Gal(K;3/K). The action of G on X3 is
faithful, and X5 is irreducible, so there exists a dense open affine subvariety
U3 C X3 on which G acts freely. Replacing X3, together with its quo-
tients by subgroups of G, by U3 and its corresponding quotients affects only
o(q"dimX) F n-points of these quotients, and therefore does not affect the
statement of the proposition. We may therefore assume that we are in the
setting of [Se, Theorem 6] and can apply the Chebotarev density theorem
for varieties.

By Lemma 2.3, there exists g € G such that g acts trivially on K but acts
without fixed points on the set of K-embeddings K, — K or, equivalently,
on the geometric points lying over any given geometric point of X for the
covering map X, — X. This implies that if € X (Fy4») and g belongs to the
Frobenius conjugacy class of x, then there is no ¢"”-Frobenius stable point
lying over z on X, — X, i.e.,  does not lie in the image of Xy(Fgn) —
X(F4n). On the other hand, every geometric point of X lying over z is
stable by the ¢"-Frobenius, so z lies in the image of X(Fgn) — X (Fgn).
By Chebotarev density [Se, Theorem 7], the proposition follows for every
e<|GI7L O

The main technical result of this section is the following.

Proposition 2.5. Let ¢: Y — X be a dominant morphism of normal vari-
eties over Fy. Then there exists a positive integer m and for every positive
integer n, there exist subsets X, ; C X (Fgn), 1 <1i < m, with the following
properties.

(1) For each i from 1 to m, we have liminf,, il s,
(X (Fgn)l
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(2) If 6: Z — X is any dominant morphism of normal varieties over Fy
such that
(a) For alln > 1, (Z(Fqn)) D ¢(Y(Fygn)), and
(b) there exists an integer ng > 1 such that O(Z(Fgno)) N Xy, i is
non-empty for each i =1,...,m,
then the generic fiber of 0 is geometrically irreducible.

Proof. Let A, B, C denote the coordinate rings of X, Y, and Z respectively.
Let K, L, and M be the fields of fractions of A, B, and C respectively. We
regard B and C' as A-algebras via ¢ and 6 respectively, so L and M are
extensions of K. Let Ky and K5 denote the separable closures of K in L
and M respectively. As B and C are finitely generated F4-algebras, L and
M are finitely generated K-extensions, and Ky and K5 are finite separable
extensions of K. The claimed generic irreducibility of the generic fiber of
§ amounts to the equality K = K. We define K, K, K3, and K3 as in
Proposition 2.4.

Let F1,..., F,, denote all subfields of K over K, excluding K itself. Thus,
we have the following diagram of fields:

For 0 < ¢ < 3, let A; denote the integral closure of A in K; and X, =
Spec A;; likewise for Ajz3 and X ;5. For 1 < i < m, let D; denote the integral
closure of A in the field F;, and let W, := Spec D;. By (2.5), we have the
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following diagram of schemes:

Y z
Xy
SN
X X3
| i
w, oW X, X

Let X,,; denote the complement of the image of W;(Fgn) in X (F4n). By
(2.3) and the Lang-Weil estimate, for 1 <1i < m,

€
X (Fyr)

if n is sufficiently large, which implies property (1).
Moreover, if §: Z — X is a dominant morphism satisfying condition (a),
then for all n > 1, §(Z(Fygn)) D ¢(Y (Fyn)), implying that

im (X (Fgn) = X(Fgn)) \ im(Xp(Fgn) — X (Fgn))|
< Jim (X (Fgn) = X(Fgn)) \ im(Xp(Fgn) — X(Fgn))|
= [im(Y(Fgn) = X (Fgn)) \ im(Z(Fgn) — X (Fgn))| + o(¢" ™)
= [$(Y (Fgn)) \ O(Z(EFqn))| + o(g" ™)

ndlm&)'

(2.6) | Xnil > eqi™E >

=o(q

If Ko # K, Proposition 2.4 implies that K1 N K9 must be a non-trivial
extension of K, so F; C K3 for some i € [1,m]. Thus, for ng as in (b),

0(Z(Fgm0)) Cim(Xy(Fyno) = X(Fgno)) Cim(W,;(Fyno) — X(Fyno)),

contrary to the assumption that 8(Z(Fgn)) N Xy, is non-empty for each 4.
We conclude that Ks = K, and the proposition follows.
([

3. RANDOM WALKS

This section does not claim any original results. Its goal is to present
well known ideas in probability theory in the form needed for the proof of
Theorem 1.1.

For any positive integer d and non-negative integer [, we define X;; to be
the convolution of [ i.i.d. random variables on Z?, each uniformly distributed
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over the 2d-element set {+ej,...,+ey4}, where eq,..., e, are the standard
generators of Z¢. When d = 2, we write X; for short.
The main result in this section is the following.

Proposition 3.1. For all d > 2 and € > 0, there exist M and N such that
forl >N,
PXq € | iz <e.
i>M
We begin with a general result.

Lemma 3.2. Let G be a finite group and S a (not necessarily symmetric)
set of generators. Let Sq,So, ... be i.i.d. random variables on G with support
S. Let G = S1---S;. Suppose that there does not exist a homomorphism
from G to any non-trivial cyclic group C' mapping S to a single element.
Then the limit as | — oo of the distribution of G is the uniform distribution
on G.

Proof. Consider the Markov chain with state space G in which the probabil-
ity of a transition from g to hg is P[S; = h]. Since the uniform distribution
is stationary, it suffices to check that this Markov chain is irreducible and
periodic [LPW, Theorem 4.9]. Irreducibility is immediate from the condition
that S generates G. If the Markov chain is periodic, then for some proper
subset X C G and some integer j, si---s; € Stabg(X) for all s; € S. Let
G; denote the subgroup of G generated by

{81...8j | 81,---,85 € S}
As G; C Stabg(X) € G, G is a proper subgroup of G.

Consider the subgroup G of G' x Z/jZ generated by {(s,1) | s € S}. By
definition, the kernel of projection on the second factor is G;. By Goursat’s
Lemma, G is the pullback to G x Z]jZ of the graph of an isomorphism
between G'/G; and a quotient of Z/jZ. This identifies G/G; with a non-

trivial cyclic group C, and all elements of S map to the same generator of
C, contrary to hypothesis. O

The remaining results in this section are needed for the proof of Proposi-
tion 3.1.

Lemma 3.3. Let p > 2 be prime, k a positive integer, and ¢ > 0. For |
sufficiently large,

1+e

p2k :

P[X; € pF7% <

Proof. The image under (mod p*) reduction of our random walk on Z? is a
random walk on G = (Z/p*7)? with generating set S = {41,0), (0,%1)}.
As differences between elements of S generate GG, there is no proper coset
of G which contains S. By Lemma 3.2, X; becomes uniformly distributed

(mod p*) in the limit [ — oo, which implies the lemma.
O
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Lemma 3.4. Let k be a positive integer, and € > 0. For | sufficiently large,

2+¢

P[X; € 2877 < 7

Proof. If I is odd, the probability that X; € 27?2 is zero. We therefore assume
I = 2lp, so X; is the sum of [y i.i.d. random variables supported on

{(£2,0), (0,£2),(£1,+1),(0,0)}.

Reducing (mod 2%), we obtain an irreducible aperiodic random walk on
ker(Z/2*7)? — 7,/27, and the argument proceeds as before by Lemma 3.2.
O

Proposition 3.5. For all € > 0, there exist M and N such that for 1 > N,

PX e | iz’ <e
i>M

Proof. By [LST, Proposition 3.2], if p > 2 is prime,

4

P[X; € pZ*\ {(0,0)}] < TSk

We choose s > 2 large enough that

4 €
Z(p—l—l)2 )

p>s

S

and choose k such that i’—k < §, so that if [ is sufficiently large, the total

probability that X; € p*Z? for some p < s is less than €/2. Note that this
includes the probability that X; = (0,0). Let M be larger than s Hpé s P
If i > M, then either i has a prime factor greater than s or a prime factor
< s with multiplicity at least k. The probability that there exists i > M
such that G € iZ? is therefore less than e. O

We can now prove Proposition 3.1

Proof. The projection of a random walk on Z? onto the first two coordinates
gives a random walk on Z? where each of the four possible non-zero steps
are equally likely, but a zero step is also possible in the projection if d > 2.
Since the projection of an element of iZ% is an element of iZ?, the conditional
probability that Xg; € ;s iZ% if we condition on at least ly steps which
are non-zero in the projection is less than €/2 if [y is large enough. Given [y
the probability that there are less than [y steps non-zero in the projection
goes to 0 as [ goes to infinity, so it can be taken to be less than €/2, implying
that P[X4; € Ui>M iZd] < €. O
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4. PROOF OF THEOREM 1.1
We now prove the main theorem.

Proof. Fix a simple, simply-connected algebraic group G over a finite field
F,. We will apply Proposition 2.5 in the case X =G, Y =G, Z = G, ¢ is
the kth power map for some positive integer k, and 6 is the evaluation map

w for some w € Fy for which w = (ay,...,aq) and y(ay,...,aq) = k. Given
w, there exist integers by, ..., by for which k = a1b1 + - - - + agbg, so that
weEq) (9" 9" = g"

for all n and all g € G(Fgn), so ¢(G(Fgn)) C §(G(Fgn)) for all n > 1.

By the main theorem of [MT], for every finite simple group I', there
exists a 2-element generating set of I'V whenever N < 2\/W. Let ng
be any positive integer. Defining Ny := ¢"° and applying this to I' :=
G(Fyn0)/Z(G(Fymo)), we see that TN0 is d-generated. As G := G(Fyno)No
is a perfect central extension of I'o, lifting any set of d generators of the
latter to the former, we again obtain a generating set.

We denote by

S ={(gi1,-..,9in,) | 1 i < d}
a generating set of G and consider an [-step random walk on this group with
generating set S. By Lemma 3.2, for all § > 0, if [ sufficiently large, the
probability that the walk ends in any subset T' C G is at least

(1=46/2)|T|/|G|.
We deﬁne T = TO U e U TI_NO/mJ_17 Where
T, = Q(Fqno)im X Xpg1 X - X Xpgm X Q(Fqno)No—(i—i-l)m7

and X, ; are defined as in Proposition 2.5.

To estimate the probability that a uniformly randomly chosen element of
G lies in T', we note that membership in the T; are independent conditions.
The probability of membership in each 7; is

ﬁ ’Xnmj’ > ﬁ

g, = 2
by (2.6). Therefore, the probability of membership in 7" for a uniformly
chosen element of GG is at least

1— (1 —¢m/2m)No/m]
Taking ng (and therefore Np) sufficiently large, we can guarantee this exceeds
1 — §/2. Thus, the probability that the random walk ends in T is greater
than 1 — 4.
For 1 < j < Ny, let g; = (g1, --,94;)- We have seen that for a random

word w of length n, the probability that (w(g1),...,w(gn,)) € T is greater
than 1 — 9. Membership in 7" implies membership in some 7;, which implies

w(gim—i-l) € Xn0,17 cee 7w(gim+m) S Xno,ma
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and therefore, by Proposition 2.5, if v(w) = k, then w is geometrically
almost uniform for G.

Thus, for each k, the probability is < ¢ that a random word w of length
[ satisfies v(w) = k and that w is not geometrically almost uniform. By
Proposition 3.1, for each fixed € > 0, there exists M such that if [ is large
enough, then the probability that v(w) is zero or greater than M for a
word of length [ is less than e. Therefore, the probability that w is not
geometrically almost uniform for G is less than e+ M§. Choosing first € and

then J, we can make this quantity as small as we wish, proving the theorem.
O

We remark that the proof also shows that almost all words w are almost
uniform for the family of groups {G(F4») | n > 1}. The proof, together with
that of [LST, Theorem 2], implies that w is almost always uniform for all
finite simple groups with fixed root system and characteristic. For instance,
almost all w are almost uniform for the Suzuki and Ree groups.

5. QUESTIONS

Question 5.1. If G is a simple, simply connected group scheme over Z, does
the probability that a random word is almost uniform for all simple groups
of the form G(IF,)/Z(G(F,)) go to 17

It seems likely that the methods of this paper will allow one to prove this
for all characteristics satisfying some Chebotarev-type condition, but can
one do it for all characteristics simultaneously, or even a density one set of
characteristics? Even more optimistically, one can ask:

Question 5.2. Does the probability that a random word is geometrically
almost uniform for all simple, simply connected algebraic groups over finite
fields go to 17

Given an e-tuple of words w1,...,w. € Fy, for each G we can define a
function G — G¢, and we can ask about almost uniformity. In geometric
families, this reduces again to the question of the geometric irreducibility
of the generic fiber of the morphism G¢ — G¢ for simple, simply connected
algebraic groups over finite fields. In the case that

Zd/spanZ(mb s 7we) = Zd_ea

the function G(Fyn)? — G(F4n)¢ is surjective. Geometric irreducibility for
such words follows as before.

Question 5.3. For e < d, does the probability that a random e-tuple of
elements of Fy of length n is geometrically almost uniform go to 1 as n — oo?

Question 5.2 has an analogue for simple, simply connected compact Lie
groups. As a special case, one can ask:
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Question 5.4. Does the probability that for a random word w of length n

Jim{lw.Ugymye = Usugm |l =0

gotolasn — oo?

(B]
(GS]

[EGA IV,

[EGA V3]

(H]

(L]

[LS1]
[LS2]
[LST]

[LPW]

[LiS]
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