
Environmental
Science
Nano

PAPER

Cite this: Environ. Sci.: Nano, 2021,

8, 795

Received 19th November 2020,
Accepted 19th January 2021

DOI: 10.1039/d0en01145b

rsc.li/es-nano

Predicting the adsorption of organic pollutants on
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DFT computations and QSAR modeling†
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Investigating the adsorption of organic pollutants onto boron nitride nanosheets is crucial for designing

novel boron nitride adsorbents so as to remove pollutants from the environment. In this study, we

performed density functional theory (DFT) computations to investigate the adsorption of 28 aromatic

compounds onto boron nitride nanosheets, and developed four quantitative structure–activity relationship

(QSAR) models for predicting the logarithm of the adsorption equilibrium constant (logK) values of organic

pollutants adsorbed onto boron nitride nanosheets in both gaseous and aqueous environments. The DFT-

predicted adsorption energies showed that boron nitride nanosheets exhibit stronger adsorption capability

than graphene. Our QSAR analyses revealed that van der Waals interactions play dominant roles in gaseous

adsorption, while van der Waals and hydrophobic interactions are the main driving forces in aqueous

adsorption. This work demonstrates that in silico QSAR models can serve as efficient tools for high-

throughput prediction of logK values for organic pollutants adsorbed onto boron nitride nanomaterials.

1. Introduction

To date, more than 350000 chemicals and their mixtures being
registered have been produced and utilized,1 and new chemical
products are entering the market with a rate of 12000 per day.2

These chemicals will be inevitably released into the
environment during their lifecycle and become potential
environmental pollutants, which give rise to adverse effects on
human beings and the environment. Removing these
pollutants from the environment is very important for
protecting the health of ecosystems. Adsorption, due to its
convenient operation, high efficiency, and low-energy
consumption, has been extensively applied for eliminating or
reducing pollutants from the environment.3–9 The hexagonal
boron nitride nanosheet, as an analogue for graphene, has
shown great potential in separating contaminants from the
environment by adsorption due to its high specific surface area
and chemical stability.10–13 Therefore, exploring the adsorption
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Environmental significance

The superior physical chemical properties of boron nitride nanomaterials endow them with diverse promising applications in different fields. However,
their applications as boron nitride adsorbents in removing organic pollutants from the environment is at a nascent stage. Investigating the adsorption
behaviors of organic pollutants onto boron nitride nanomaterials and developing prediction models to obtain the adsorption data efficiently are crucial for
designing novel adsorbents and extending their applications in the environment. Herein DFT computations were utilized for investigating the adsorption
of 28 organic compounds onto the boron nitride nanosheet in both gaseous and aqueous environments. Furthermore, four QSAR models for predicting
adsorption equilibrium constant values were established, which can serve as efficient tools for high-throughput screening of effective sorbents only via
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of pollutants onto boron nitride nanomaterials is of great
significance to develop novel boron nitride-based adsorbent
materials for removing contaminants.

Previous experimental studies indicated that boron
nitride nanomaterials have good adsorption capabilities
towards various species such as metal ions, dyes, and
organic solvents.3,7,14,15 Moreover, different adsorption
mechanisms, e.g., van der Waals forces, π–π stacking and
electrostatic interactions, may exist simultaneously during
adsorption processes. However, the adsorption behavior
of many organic pollutants, especially emerging pollutants
(e.g., phthalate ester), onto boron nitride nanomaterials
is still unclear, and the adsorption mechanism is not
well understood.

Modern computational techniques provide us with an
alternative method to investigate adsorption behaviors,
which is more efficient than conventional experiments and
can provide an atomic level of understanding.16–20

Considering the large quantities of environmental
contaminants, simulating their adsorption behavior towards
boron nitride one by one is daunting, time-consuming, and
costly, if not impossible. Therefore, it is essential to develop
predictive models to obtain the adsorption data on boron
nitride nanomaterials.

Very recent studies demonstrated the powerful ability
of quantitative structure–activity relationships (QSARs) in
predicting the adsorption of organic pollutants on carbon
nanomaterials.18,21–25 In these QSAR models, the most
important input parameters are the Abraham descriptors
for polyparameter linear free energy relationships (pp-
LFERs), which are determined experimentally, and the
descriptors characterizing the molecular structures, which
can be obtained by theoretical calculations. However, no
QSAR model has been proposed to predict the
adsorption of organic pollutants onto boron nitride
nanomaterials so far.

In this work, we theoretically investigated the adsorption
of 28 different aromatic compounds (including phthalate
esters) on boron nitride nanosheets in both gaseous and
aqueous phases by means of density functional theory
(DFT) computations. Based on the DFT computational
results, the logarithm of the adsorption equilibrium
coefficient (logK) was estimated. In combination with the
Abraham descriptors for these 28 compounds, we
established pp-LFER models for gaseous and aqueous
phases, and evaluated the contributions from different
adsorption mechanisms. Furthermore, by utilizing the
theoretical molecular structure descriptors, we developed
two QSAR models which can predict the adsorption of
emerging pollutants in the application domain (AD) whose
Abraham descriptors are not available. The QSAR models
established in this study not only can offer insights into the
adsorption mechanisms of boron nitride nanomaterials, but
also lay a foundation for further development of theoretical
prediction models to estimate adsorptions onto boron
nitride nanomaterials.

2. Computational details
2.1. Organic compounds and boron nitride nanosheets

Herein, 28 aromatic compounds (Table 1) with diverse
functional groups, i.e., –NO2, –CH3, –OH, –NH2, –CH2OH,
–CH2CH3, –C(O)CH3, –CH2CH2OH, –C(O)OCH3, –OC(O)CH3,
–CH2CH2CH3, –C(O)OCH2CH3 and –C6H5, are used as
adsorbate models; a boron nitride nanosheet with a supercell
size of 8 × 8 × 1 (containing 64 boron atoms and 64 nitrogen
atoms) is employed as the adsorbent model.

2.2. Density functional theory computations

All the computations were performed in the frame of density
functional theory (DFT) by the DMol3 program.26,27 The
Perdew–Burke–Ernzerhof (PBE) functional within the
generalized gradient approximation was employed to
describe the exchange and correlation potentials.28 The
chosen basis set was a double-numerical basis set with
polarization functions (DNP),29,30 which is comparable to
Gaussian 6-31G(d,p).31 Besides, the PBE + D2 method with
the Grimme van der Waals (vdW) correction32 was used for
describing the long-range electrostatic interactions. A 4 × 4 ×
1 Monkhorst–Pack k-point mesh was utilized, and a

Table 1 Organic compounds and estimated logarithm values for the
adsorption equilibrium coefficient (logK) from our DFT computations in
gaseous and aqueous environments

No. Compound Substituents

logK (DFT)

Gaseous
phase

Aqueous
phase

1 Benzene 2.50 1.61
2 Nitrobenzene –NO2 3.31 3.81
3 Toluene –CH3 4.35 5.04
4 Phenol –OH 5.06 1.47
5 Aniline –NH2 4.44 2.45
6 1,3-Dinitrobenzene –NO2 5.11 3.70
7 4-Nitrotoluene –NO2, –CH3 5.32 4.54
8 2, 4-Dinitrotoluene –NO2, –CH3 8.90 7.42
9 Anthracene 11.43 13.69
10 Pyrene 12.04 13.95
11 Biphenyl 11.00 7.76
12 3,5-Dimethylphenol –CH3, –OH 9.22 6.01
13 Ethylbenzoate –C(O)OCH2CH3 8.77 7.55
14 4-Ethylphenol –CH2CH3, –OH 7.28 6.03
15 Methylbenzoate –C(O)OCH3 6.88 5.66
16 (3-Methylphenyl)

methanol
–CH3, –CH2OH 6.11 4.68

17 1-Methylnaphthalene –CH3 9.66 9.04
18 Phenylacetate –OC(O)CH3 4.44 1.95
19 2-Phenylethanol –CH2CH2OH 5.28 5.03
20 Phenylmethanol –CH2OH 3.71 3.85
21 Propylbenzene –CH2CH2CH3 9.10 4.68
22 p-Xylene –CH3 6.17 4.34
23 Dimethyl phthalate

(DMP)
–C(O)OCH3 8.27 6.18

24 Diethyl phthalate
(DEP)

–C(O)OCH2CH3 10.51 9.71

25 Acetophenone –C(O)CH3 5.47 2.83
26 Naphthalene 7.36 6.34
27 1,2-Dinitrobenzene –NO2 5.13 4.69
28 Phenanthrene 11.14 11.55
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Methfessel–Paxton smearing of 0.005 Ha (ref. 33) was
employed for the Brillouin-zone integration. The popular
conductor-like screening model (COSMO)34 with the
dielectric constant (78.54) for water was used to implicitly
simulate the aqueous environment. COSMO is superior to
many other solvent reaction field methods. In this model, the
surface charges of a cavity having the same shape as the
solute molecule, which describe the electrostatic interactions
between the solvent and solute, are determined with the
electrostatic potentials directly.35

In order to simulate the adsorption onto a boron nitride
nanosheet, first the adsorbate models (28 aromatic
compounds) and the adsorbent model (a BN nanosheet)
were optimized respectively. Afterwards, the global
minimum sorbate locations for the 28 complex systems
(each including one compound adsorbed on the BN
nanosheet) were searched by using the sorption module of
Materials Studio 8.0. The most stable configurations
obtained were further optimized with the aforementioned
DFT method.

2.3. Estimation for the adsorption equilibrium coefficient (K)

The changes of Gibbs free energy (ΔG) during the
adsorption process can be estimated from the changes of
total energy (ΔE), zero point energy (ΔZPE), and entropy (ΔS)
following the equation:

ΔG = ΔE + ΔZPE – TΔS (1)

where T is temperature, and T = 298.15 K is used for all the
calculations. ΔE is also the adsorption energy of a specific
adsorbate on the BN nanosheet. ΔE, ΔZPE and ΔS can be
obtained using the following equations:

ΔE = EBN+X − EX − EBN (2)

ΔZPE = ZPEBN+X − ZPEX − ZPEBN (3)

ΔS = SBN+X − SX − SBN (4)

where the subscript BN stands for the boron nitride nanosheet,
X represents the adsorbate, while BN + X denotes the complex
system including the boron nitride nanosheet and the
adsorbed compound. The total energies (EBN+X, EX and EBN),
zero-point energies (ZPEBN+X, ZPEX and ZPEBN), and entropies
(SBN+X, SX and SBN) were obtained by DFT computations.

We further calculated the adsorption equilibrium
coefficient (K) with ΔG.

K ¼ e−
ΔG
RT (5)

where K is unitless; R is the universal gas constant, i.e., 8.314
J mol−1 K−1. The calculated K is equivalent to the
experimentally determined K, which is defined as

K = qe/Ce (6)

where qe represents the equilibrium concentration of the
compounds on boron nitride nanosheets; Ce denotes the
equilibrium concentration of the compounds in aqueous/
gaseous environments.

2.4. Molecular structure descriptors

Note that the adsorption of organic pollutants on boron
nitride nanomaterials is assumed to be governed by different
specific and nonspecific interactions.3,36 Abraham descriptors
can characterize these diverse molecular interactions, and are
widely utilized in pp-LFERs, which have the following forms
(eqn (7) is used for the partitioning within two condensed
phases; while eqn (8) is applied for the partitioning between
condensed and gas phases.),37–43

logK = eE + sS + aA + bB + vV + c (7)

logK = eE + sS + aA + bB + lL + c (8)

where K stands for the partition coefficient; the uppercase
letters, E, S, A, B, V and L, denote the Abraham descriptors; the
lowercase letters, e, s, a, b, v and l, are fitting coefficients and c
is the regression constant. E is the excess molar refraction. V
represents McGowan's molar volume [(cm3 mol−1)/100]. L is the
logarithmic hexadecane–air partition coefficient. eE represents
the interactions which arise through the presence of π- or
n-electrons in the compound.44,45 vV and lL describe the
dispersion interactions and cavity formation.46 Polar
interactions are characterized by aA, bB and sS. A refers to
hydrogen donor ability, while B denotes hydrogen acceptor
ability. S represents dipolarity/polarizability of adsorbates. All
the Abraham descriptor values for the adsorbates in this study
were obtained from the LSER Dataset for CompTox users in the
UFZ-LSER database.47

The three dimensional (3D) molecular structures of the 28
compounds were obtained by geometry optimization by DFT,
and confirmed to be the local minima by frequency analyses.
With these optimized molecular structures, we obtained 4885
theoretical molecular structure descriptor values by using the
Dragon software (Ver. 6.0).48 After deleting the descriptors
with constant and near-constant values, and selecting the
descriptors characterizing the property of molecules which
may influence the adsorption, we chose 108 theoretical
descriptors to establish QSAR models.

2.5. QSAR model development and evaluation

These 28 compounds were randomly split into a training set
consisting of 24 compounds and a validation set including 4
compounds. Based on the logK values of DFT calculations
and the molecular structure descriptor values for the training
set, we utilized the multiple linear regression (MLR) analysis
in the SPSS (SPSS 22.0) software package to build up QSAR
models, including pp-LFER models for which Abraham
descriptors are used as input variables and the models for
which Dragon descriptors are input variables. Furthermore,
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the determination coefficient (R2), root mean square error for
the training set (RMSEt) and for the validation set (RMSEv),
leave-one-out cross-validated Q2 (Q2

LOO) and external
explained variance (Q2

V) were calculated for assessing the
goodness of fit, robustness, and prediction ability of QSAR
models. Moreover, the application domains (ADs) for the
predictive models were characterized by Williams plots using
standardized residuals (δ*) and leverage values (hi).

49

3. Results and discussion
3.1. logK values of DFT calculations and adsorption energies
on boron nitride nanosheets

Table 1 lists the logK values of 28 aromatic compounds
adsorbed on BN nanosheets in the gaseous and aqueous
environments predicted by our DFT computations. The
predicted logK value of benzene on the boron nitride
nanosheet in the gaseous phase is 2.50, which is comparable
with the experimentally measured value, 2.88.50 We also
estimated the logK value of nitrobenzene onto graphene in the
aqueous phase for which the experimental value is available,
and found that the predicted value (4.96) is in good agreement
with the experimental one (5.31).51 These comparisons show
that DFT computations can well reproduce the experimental
adsorption data, and can be used to obtain adsorption data
when the experimental values are not available.

In addition, all the optimized equilibrium configurations
are summarized in Table S1 (ESI†). The benzene rings for the
28 organic compounds are all parallel to the boron nitride
nanosheet (Table S1†). The distances between the mass
center of these molecules and the BN nanosheet plane are in
the range of 3.168–3.680 Å, implying the existence of van der
Waals interactions. Besides, we performed Hirshfeld
population analysis for each compound's adsorption on the
BN nanosheet (Table S2†), and the small charge transfer
(−0.064–0.016 e in the gaseous phase and −0.096–0.023 e in

the aqueous phase) from the compound to the BN nanosheet
also indicates physisorption.

We further compared the adsorption energies of 18
different organic compounds onto BN nanosheets with the
corresponding values on graphene, in order to examine the
differences in adsorption capability between boron nitride
and carbon nanomaterials. As shown in Table 2 and Fig. 1,
the adsorption energies for these 18 aromatic compounds on
BN nanosheets are stronger than those on graphene both in
gaseous and aqueous environments, and the adsorption
energies on graphene correlate with those on the boron
nitride nanosheet significantly (Fig. 1). Based on these DFT
results, the boron nitride nanosheet possibly performs better
than graphene in removing contaminants by adsorption.

3.2. QSAR models with Abraham descriptors for logK values
on boron nitride

Based on the Abraham descriptors for the 28 organic
compounds, we built up and validated the following pp-LFER
predictive models, for the gaseous environment,

logK = −2.508 – 2.352 × E – 5.510 × S + 2.509 × A – 4.252 × B
+ 3.670 × L (9)

nt = 24, R2 = 0.89, RMSEt = 0.89, F = 29.73, p < 0.001,

nv = 4, Q2
LOO = 0.89, Q2

V = 0.99, RMSEV = 1.88

for the aqueous environment,

logK = −5.578 + 3.135 × E – 2.184 × S + 0.673 × A – 1.431 × B
+ 9.879 × V (10)

nt = 24, R2 = 0.90, RMSEt = 0.99, F = 34.12, p < 0.001,

Table 2 Adsorption energies (ΔE) for 18 aromatic compounds on the boron nitride nanosheet and graphene in gaseous and aqueous environments

No. Name

Gaseous Aqueous

ΔE_BN (kcal mol−1) ΔE_G24 (kcal mol−1) ΔE_BN (kcal mol−1) ΔE_G24 (kcal mol−1)

1 Benzene −17.1 −12.9 −15.9 −11.8
2 Nitrobenzene −21.2 −16.2 −19.7 −14.3
3 Toluene −19.2 −15.3 −19.2 −13.0
4 Phenol −19.2 −14.5 −16.6 −12.4
5 Aniline −21.2 −14.9 −18.1 −12.0
6 Phenylmethanol −19.4 −15.4 −19.8 −14.1
7 Phenylacetate −20.8 −15.5 −18.2 −12.5
8 Methylbenzoate −24.4 −19.3 −22.5 −17.0
9 Ethylbenzoate −27.2 −21.3 −25.0 −18.8
10 Acetophenone −23.8 −18.5 −20.9 −15.6
11 1,3-Dinitrobenzene −24.1 −20.0 −21.5 −17.5
12 1,2-Dinitrobenzene −22.4 −17.6 −20.5 −15.4
13 4-Nitrotoluene −23.9 −19.5 −22.8 −17.5
14 Biphenyl −29.3 −22.0 −26.6 −20.7
15 Naphthalene −25.0 −18.8 −23.9 −18.0
16 Phenanthrene −32.9 −26.6 −31.3 −25.1
17 Anthracene −33.1 −26.9 −32.7 −25.3
18 Pyrene −36.0 −30.5 −35.1 −27.0
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nv = 4, Q2
LOO = 0.83, Q2

V = 0.94, RMSEV = 0.80

where nt is the number of compounds in the training set, and
nv denotes the number of compounds in the validation set. The
values for R2, Q2

V, Q
2
LOO, RMSEt and RMSEV imply that these two

pp-LFER models have satisfactory goodness of fit, robustness
and prediction ability, as they comply with the criteria (R2 >

0.60 and Q2 > 0.50) proposed by Golbraikh et al.52

Fig. 2 shows that the predicted logK values from the pp-
LFER models agree well with the calculated logK values via
the DFT method. Note that for the emerging pollutants
phthalate esters, i.e., DMP and DEP in the current study,
their predicted logK values [8.00 (DMP_gaseous), 6.97
(DMP_aqueous), 11.48 (DEP_gaseous) and 9.57
(DEP_aqueous)] from the pp-LFER models are also
comparable with the calculated ones [8.27 (DMP_gaseous),
6.18 (DMP_aqueous), 10.51 (DEP_gaseous) and 9.71
(DEP_aqueous)] from DFT computational results. In terms of
the application of the two pp-LFER models, besides the four
compounds in the validation set (i.e., acetophenone,
naphthalene, 1, 2-dinitrobenzene, and phenanthrene), we
also predicted the logK value for a compound outside the

dataset, namely fluorene. The predicted logK values from the
models are comparable with those estimated with the DFT
method (Table S3†). All of these demonstrate that these two
pp-LFER models can effectively offer adsorption data for
organic pollutants including phthalate esters towards boron
nitride nanosheets in both gaseous and aqueous
environments, and thus can serve as a high-throughput
prediction tool.

As displayed in Fig. S1,† all the standardized residuals for
the compounds in the training set comply with the criteria
|δ*| <3, indicating that there are no outliers. These two pp-
LFER models (eqn (9) and (10)) can predict the adsorption
towards boron nitride nanosheets for diverse organic
compounds, i.e., benzene, phenols, nitrobenzenes,
alkylbenzenes, anilines, alcohols, esters, ketones, biphenyls
and polycyclic aromatic hydrocarbons (PAHs). In terms of the
functional groups, the application domain covers various
compounds with different functional groups including –NO2,
–CH3, –OH, –NH2, –CH2OH, –CH2CH3, –OC(O)CH3, –C(O)
CH3, –C(O)OCH3, –CH2CH2OH, –CH2CH2CH3 and –C(O)
OCH2CH3. When a compound is outside the application
domain of the developed models, its prediction is unreliable.

Fig. 1 Adsorption energies on graphene (ΔE_G) versus those on the boron nitride nanosheet (ΔE_BN) by DFT calculations.

Fig. 2 Predicted logK values with pp-LFER models (logK_pre) versus those calculated by the DFT method (logK_cal).
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3.3. QSAR models with Dragon descriptors for logK values on
boron nitride

Note that Abraham descriptor values depend on experimental
determinations, and the number of compounds having
Abraham descriptor values is ca. 3700.47 For some of the
organic compounds lacking Abraham descriptor values, if they
locate in the application domain of previous models,53,54 their
Abraham descriptor values can be estimated. However, the
accuracy of the predicted descriptor values is inferior to those
derived from experimental data. Meanwhile for many organic
compounds outside the application domain, the predicted
Abraham descriptor values for these compounds are unreliable.
Therefore, it is of great importance to develop QSAR models
with only theoretical molecular structure descriptors which can
be calculated by computational software directly.

Herein, the optimal QSAR models with Dragon descriptors
for predicting the adsorption of organic compounds onto
boron nitride nanosheets were developed: for the gaseous
environment,

log K = −6.950 + 1.318 × Sv + 1.323 × nArOH − 2.058
× B05[C–O] − 0.365 × F05[C–C] (11)

nt = 24, R2 = 0.91, RMSEt = 0.82, F = 47.175, p < 0.001,

nv = 4, Q2
LOO = 0.87, Q2

V = 0.94, RMSEV = 0.72

for the aqueous environment,

logK = −2.788 + 1.247 × nC − 2.210 × NRS + 1.193 × nArNO2

− 1.009 × H-051 (12)

nt = 24, R2 = 0.93, RMSEt = 0.88, F = 58.75, p < 0.001,

nv = 4, Q2
LOO = 0.82, Q2

V = 0.98, RMSEV = 0.85

Likewise, these two QSAR models with R2 > 0.60 and Q2

(Q2
LOO and Q2

V) > 0.50 have high goodness of fit, robustness

and prediction ability. All the values of variable inflation
factors (VIFs) for the descriptors utilized in eqn (10) and (11)
are less than 10, which implies that there is no serious multi-
collinearity among these variables.55

As shown in Fig. 3, the predicted logK values by the QSAR
models with Dragon descriptors (eqn (11) and (12)) are in
good agreement with those from DFT estimation. For the
gaseous phase, in comparison with the pp-LFER model (eqn
(9)), the QSAR model (eqn (11)) has fewer descriptors and
better goodness of fit, robustness and prediction ability. For
the aqueous phase, the QSAR model (eqn (12)) using fewer
descriptors has better goodness of fit, while the pp-LFER
model (eqn (10)) has a lower RMSEV value and comparable
robustness. In terms of the prediction accuracy for the
phthalate esters, the pp-LFER models (eqn (9) and (10))
perform better than the QSAR models (eqn (11) and (12)),
since the average prediction errors for phthalate esters with
the pp-LFER models [0.62 (gaseous phase) and 0.47 (aqueous
phase)] are less than those with the QSAR models [1.12
(gaseous phase) and 0.78 (aqueous phase)]. We also applied
these two QSAR models for predicting the logK values for
fluorene (Table S3†). These results showed that the predicted
logK values for fluorene with the pp-LFER models (eqn (9)
and (10)) are closer to those from DFT calculations than
those predicted with the QSAR models (eqn (11) and (12)).

Besides, based on the standardized residuals (δ*) and
leverage values (h) for the compounds in the training set, we
characterized the application domains (ADs) as illustrated in
Fig. S2.† With the |δ*| values less than three, all the
compounds are located in the ADs. Note that the h value for
4-ethylphenol (1.0) is larger than the warning leverage value
(h* = 0.625) while its |δ*| value is smaller than 3 (Fig. S2b†),
indicating that its structure is very different from the other
compounds in the training set and it is influential on the
prediction model for the aqueous phase. It is known that the
application domain for a prediction model depends on the
compounds utilized when this model is developed. The
established QSAR models (eqn (11) and (12)) with the Dragon
descriptors have the same ADs with those for the pp-LFERs

Fig. 3 The QSAR predicted logK values with Dragon descriptors (logK_pre) versus those calculated by the DFT method (logK_cal).
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(eqn (9) and (10)), covering diverse organic compounds.
Moreover, the two models (eqn (11) and (12)) can be applied
for obtaining logK values of more emerging pollutants
lacking pp-LFER descriptor values.

3.4. Adsorption mechanisms

pp-LFER models. As shown in the developed pp-LFER
models (eqn (9) and (10)), for both gaseous and aqueous
systems, the five sets of parameters, namely eE, vV/lL, aA, bB
and sS, are used, but they have different values, which
indicate that the molecular interactions they are describing
play different roles in the adsorption (Fig. 4).

In terms of the adsorption in the gaseous environment, the
term lL plays a dominant role as its relative contribution to the
adsorption ranges from 53% to 68%. lL in eqn (8) represents
dispersion interactions. Therefore, the dispersion interactions
are key driving forces for adsorption on the BN nanosheet in
the gaseous phase. The relative contribution to the adsorption
for sS is in the range of 12–25%, which is second only to that
for lL. The term sS describes the interactions related to the
polarity and polarizability of the adsorbates. Note that the
fitting coefficient s is negative, implying that the compound
having a high value of S is not liable to be adsorbed onto boron
nitride nanosheets. As shown in eqn (9) and Fig. 4, the
H-bonding interactions between the H-donating adsorbate and
H-accepting adsorbent, characterized by the term aA, do
positively contribute (ca. 0–6%) to the adsorption. Meanwhile
for the H-bonding interactions between the H-accepting
adsorbate and H-donating adsorbent, being denoted by the
term bB, its contribution to the adsorption ranges from 2% to
10% negatively. The reason may be that the nitrogen atoms on
the boron nitride nanosheet are rich in electrons, which can
accept hydrogen atoms from the compounds lacking electrons,
thereby increasing the interactions between the compounds
and the nanosheet. In addition, the term eE representing the
interactions related to the π or n-electron pair has a negative

contribution (ranging from 4% to 13%) to the adsorption. It
implies that the compound possessing fewer π or n electrons
tends to be adsorbed by boron nitride nanomaterials for
accepting the electrons.

For the adsorption in the aqueous environment, the term
vV representing the dispersion and hydrophobic interactions
has the most significant influence on the logK values with
relative contributions ranging from 41% to 59%, which
indicates that the dispersion and hydrophobic interactions
play vital roles in the adsorption of organic compounds onto
the boron nitride nanosheet. The term eE, denoting the
interactions related to the π or n-electron pair, has a positive
contribution to the adsorption with the relative contribution
in the range of 8–26%. Note that its contribution in the
aqueous phase is positive, which is contrary to that in the
gaseous phase, most likely the π or n electrons from the
compound can interact with one hydrogen atom in water
molecules, and the other hydrogen atom in water molecules
can interact with the nitrogen atoms of the boron nitride
surface, thereby assisting the adsorption of the compound
towards boron nitride nanosheets. Therefore, it seems that
the compound having more π or n electrons becomes liable
to be adsorbed towards the boron nitride nanosheet in the
aqueous phase. sS represents the interactions related to the
polarity and polarizability of the compounds, and has a
negative contribution (ranging from 5–15%) to the
adsorption. Besides, hydrogen bonding interactions also play
roles in the adsorption. The term aA describing the
H-bonding interactions between the H-donating adsorbate
and H-accepting system (including the adsorbent and water)
contributes positively to the adsorption (ranging from 0–2%),
while the term bB representing the H-bonding interactions
between the H-accepting adsorbate and H-donating system
contributes negatively to the adsorption (in the range of 1–
5%). The roles for hydrogen donating/accepting abilities in
the adsorption on boron nitride nanosheets in the aqueous
phase are similar to those in the gaseous phase.

Fig. 4 Box and whisker plots for the values of different terms in pp-LFER models. The lines below and above the rectangles in the plot denote the
minimum and maximum values for each term; the lines within the rectangles mean the 50th percentiles; the bottom and the top for the rectangles
represent the 25th and 75th percentiles.
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QSAR models with Dragon descriptors. Table 3 lists the
predictive variables and their standardized coefficients, t, p
values, and variable inflation factor (VIF) for the QSAR
models with Dragon descriptors (eqn (11) and (12)). Note that
the predictive variables used for the gaseous and aqueous
phases are different, which implies that the adsorption
mechanisms in the gaseous phase are different from those in
the aqueous phase.

For the adsorption in the gaseous phase, as shown in eqn
(11), the descriptors Sv, nArOH, B05[C–O] and F05[C–C] are
combined to predict the logK values. Sv, the sum of atomic
van der Waals volumes (scaled on the carbon atom),56 has
the highest standardized coefficient among these four
descriptors (Table 3), indicating that it is the most influential
predictive variable for the adsorption onto the boron nitride
nanosheet in the gaseous environment. It also indicates that
van der Waals interactions play an important role in the
adsorption, which is in good agreement with the pp-LFER
model in the gaseous phase. Besides, the descriptor nArOH is
the number of aromatic hydroxyls,57 and its coefficient is
positive, which suggests that the compound having a large
nArOH value tends to be adsorbed onto the boron nitride
nanosheet, because the hydrogen atom from the aromatic
hydroxyls lacking electrons can be liable to interact with the
nitrogen atom possessing rich electrons from the boron
nitride surface. The descriptors B05[C–O]58 and F05[C–C]59

denote different atom pairs, and both of them have negative
coefficients. These two descriptors, to some extent, reflect the
spatial structure of the compound. There exists steric
hindrance during the adsorption for the compound having
large values for B05[C–O] or F05[C–C].

When the adsorption in the aqueous phase is concerned, as
illustrated in eqn (12), the descriptors, namely nC, NRS,
nArNO2 and H-051, contribute differently to the logK values.
The standardized coefficients in Table 3 show that the
descriptor nC (the number of carbon atoms)60 is the most
influential variable in predicting the logK values. The positive
coefficient of nC indicates that the compound with more
carbon atoms tends to be adsorbed on the boron nitride

nanosheet. The descriptor nArNO2 (ref. 61) denoting the
number of nitro groups (aromatic) has a positive coefficient,
which indicates that when interacting with the boron nitride
nanosheet, a compound with more nitro groups (aromatic) will
have stronger interactions compared with a compound with
fewer nitro groups (aromatic). This phenomenon can be
understood by the electrophilic property of the nitro groups,
which tend to withdraw the electrons from the surface of boron
nitride, thereby increasing the interactions between the
compounds and the boron nitride nanosheet. The descriptor
H-051 is an atom-centered fragment, describing the existence
of hydrogen attached to alpha-C.62 NRS characterizes the
number of ring systems.63 The coefficients for H-051 and NRS
are both negative, implying that the compound with a lower
H-051 or NRS value will be adsorbed by the boron nitride
nanomaterial more easily.

Furthermore, taking benzene as an example, we computed
its adsorption energy onto the boron nitride nanosheet
without vdW correction, and found that the absolute values
for the obtained adsorption energies without vdW corrections
(7.2 kcal mol−1 in the gaseous phase and 6.3 kcal mol−1 in
the aqueous phase) are ca. 10 kcal mol−1 less than those (17.1
kcal mol−1 in the gaseous phase and 15.9 kcal mol−1 in the
aqueous phase) calculated with the PBE + D2 method. It
implies that the noncovalent interactions (van der Waals in
particular) play significant roles in the adsorption, which is
also supported by the non-covalent interaction analysis of the
simplified model system (Fig. S3†).64

To summarize, the adsorption mechanisms of organic
pollutants onto boron nitride nanosheets in the gaseous
environment are different from those in the aqueous
environment. The van der Waals interactions prevail in gaseous
adsorption, while for aqueous adsorption, the main driving
forces are van der Waals and hydrophobic interactions.

4. Conclusions

In this study, DFT computations were successfully utilized to
probe the atomic-level details for adsorption of 28 diverse

Table 3 Description for the predictive variables and their standardized coefficients, t, p values and variable inflation factor (VIF)

Gaseous phase

Descriptors Description Standardized coefficients ta pa VIF

Sv Sum of atomic van der Waals volumes (scaled on the carbon atom) 1.403 7.275 <0.001 7.724
nArOH Number of aromatic hydroxyls 0.161 2.194 <0.05 1.115
B05[C–O] Presence/absence of C–O at topological distance 5 −0.377 −4.413 <0.001 1.513
F05[C–C] Frequency of C–C at topological distance 5 −0.523 −2.634 <0.02 8.189

Aqueous phase

Descriptors Description Standardized coefficients ta pa VIF

nC Number of carbon atoms 1.011 14.572 <0.001 1.222
NRS Number of ring systems −0.138 −2.114 <0.05 1.080
nArNO2 Number of nitro groups (aromatic) 0.222 3.296 <0.01 1.149
H-051 H attached to alpha-C −0.189 −2.987 <0.01 1.016

a t denotes the statistic from the t-test; p is the significance level of the t-test.
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organic compounds onto the boron nitride nanosheet in both
gaseous and aqueous environments. Adsorption energies
implied that the boron nitride nanosheet has stronger
adsorption capability than graphene. Four QSAR models for
predicting logK values were further established, which can
serve as efficient tools for high-throughput screening of
effective sorbents. In particular, when the pp-LFER
descriptors of organic compounds are not available, the
adsorption behavior can still be well predicted by the QSAR
models with only theoretical molecular descriptors.
Moreover, the developed QSAR models can provide us with
insights into the mechanisms involved in the adsorption
onto boron nitride nanomaterials. These in silico techniques,
i.e., DFT computations and QSAR modeling, make it possible
for us to obtain the adsorption data on boron nitride
nanosheets only via clicking a mouse, and such techniques
can be extended to many other sorbent systems.
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