
Architecture-based Software Reliability incorporating Fault

Tolerant Machine Learning

Maskura Nafreen, BS, University of Massachusetts Dartmouth, USA

Saikath Bhattacharya, MS, University of Massachusetts Dartmouth, USA

Lance Fiondella, PhD, University of Massachusetts Dartmouth, USA

Key Words: Architecture-based software, software reliability, machine learning, fault-tolerance, correlation

SUMMARY & CONCLUSIONS

With the increased interest to incorporate machine learning

into software and systems, methods to characterize the impact

of the reliability of machine learning are needed to ensure the

reliability of the software and systems in which these

algorithms reside. Towards this end, we build upon the

architecture-based approach to software reliability modeling,

which represents application reliability in terms of the

component reliabilities and the probabilistic transitions

between the components. Traditional architecture-based

software reliability models consider all components to be

deterministic software. We therefore extend this modeling

approach to the case, where some components represent

learning enabled components. Here, the reliability of a machine

learning component is interpreted as the accuracy of its

decisions, which is a common measure of classification

algorithms. Moreover, we allow these machine learning

components to be fault-tolerant in the sense that multiple

diverse classifier algorithms are trained to guide decisions and

the majority decision taken. We demonstrate the utility of the

approach to assess the impact of machine learning on software

reliability as well as illustrate the concept of reliability growth

in machine learning. Finally, we validate past analytical results

for a fault tolerant system composed of correlated components

with real machine learning algorithms and data, demonstrating

the analytical expression’s ability to accurately estimate the

reliability of the fault tolerant machine learning component and

subsequently the architecture-based software within which it

resides.

1 INTRODUCTION

Recently, machine learning has enjoyed significant

attention as a potential enabler of autonomous systems and

society is eager for such capabilities. However, high profile

failures of these systems such as the death of a pedestrian by an

automated taxi creates a justifiable level of distrust in the

maturity of the underlying technology and subsequent concern

for autonomous system safety. The reliability engineering

community needs methods to quantitatively assess the impact

of learning-enabled components on the software and system

within which these components reside. In the absence of

objective methods to model the reliability of systems

incorporating machine learning and assess reliability growth,

decision-makers will struggle to deliver dependable and

trustworthy autonomous system.

To assess autonomous systems, one must recognize that

autonomous systems are software enabled and that learning-

enabled components reside within a software architecture. The

earliest architecture-based software reliability research was

performed by Cheung [1] who modeled the reliability of a

software application in terms of the component reliabilities and

the probabilistic transitions between the components with a

discrete time Markov chain. Gokhale and Trivedi [2] presented

a unification framework for architecture-based software

reliability and performance modeling methods, identifying gaps

where further contributions could be made. Additional

modeling studies have demonstrated the applicability of the

architecture-based approach to Service-Oriented Architectures

[3], extended the architecture-based approach to concurrent

applications [4], explicitly considered error propagation and

recovery [5] and proposed an efficient branch and bound

algorithm to characterize the impact of correlated component

failures on the reliability of architecture-based software [6].

In addition to modeling the reliability of architecture-based

software reliability, some researchers have proposed methods

to conduct sensitivity analysis and optimization. For example,

Fiondella and Gokhale [7] generalized the architecture-based

model solution method to the analytical case to obtain an

algebraic expression in terms of the component reliabilities and

transition parameters and presented a frequentist method to

quantify the uncertainty in these parameters. Doran et al. [8]

subsequently presented a Bayesian method to estimate the

component reliability and transition parameters of an

architecture-based software reliability model. Multi-objective

test resource allocation models for architecture-based software

considering reliability and cost [9, 10] have also been proposed

as well as multi-objective evolutionary algorithms to identify a

Pareto optimal set of solutions [11] for tradeoffs between

reliability and cost constraints.

This paper presents an approach to assess the reliability of

software based on its architecture, including fault tolerant

machine learning components that perform classification and

are also known as ensemble classifiers [12]. We apply an

analytical method to quantify the reliability of a fault tolerant

component to consider the case where multiple machine

learning algorithms are used to enable a single decision. This

method quantifies the reliability of fault tolerant machine

learning in terms of the accuracy of the individual machine

learning algorithms and the correlations between each pair of

algorithms. The reliability estimate of the fault tolerant machine

learning component is then combined with the architecture-

based approach to software reliability assessment in order to

estimate application reliability. The approach is demonstrated

through examples, including the impact of reliability growth in

fault tolerant machine learning on application reliability. The

predictive accuracy of the analytical approach is also assessed.

Section II summarizes the architecture-based approach to

software reliability modeling. Section III describes an

analytical method to estimate the reliability of a majority fault

tolerant system from the component reliabilities and

correlations between the components and Section IV discusses

fault-tolerant machine learning concept. Section V illustrates

the approach, while Section VI offers conclusions and

directions for future study.

2 ARCHITECTURE-BASED SOFTWARE RELIABILITY

MODELING AND ANALYSIS

This section summarizes the composite approach to

architecture-based reliability modeling and analysis [1].

Without loss of generality, consider an application composed of

𝑛 components, where the first and 𝑛th components respectively

denote the initial and final, where computation begin and end.

Such a terminating application operates on demand, and

distinguishes consecutive runs according to the inputs and

corresponding branching behavior exhibited. A probabilistic

control flow graph represents the application architecture,

which is characterized by a discrete time Markov chain

(DTMC) in order to conduct architecture-based analysis. There

is a one-to-one correspondence between the components of the

application and the states of the DTMC and the one-step

transition probability matrix P of the DTMC encodes the

application's architecture. Entry 𝑝𝑛,𝑛 of P is set to 1.0 to denote

that the application terminates after component 𝑛 completes

execution. Moreover, the vector 𝐑1×n denotes the reliabilities

of the components, where 𝑟𝑖 ∈ (0,1) is the reliability of

component i. The expected system reliability 𝐸[𝐑] may be

obtained in the following steps:

(1) Set 𝑝𝑛,𝑛 = 0

(2) Define 𝐃n×n to be the diagonal matrix with 𝑑𝑖,𝑖 = 𝑟𝑖

(3) Let 𝐐 = 𝐃 · 𝐏

(4) Compute 𝐒 = (𝐈 − 𝐐)−𝟏

(5) 𝐸[𝐑] = 𝑠1,𝑛 × 𝑟𝑛

𝑠1,𝑛 in step (5) represents the probability that the final,

absorbing state will be reached from the state in which

computation commenced. This value times the reliability of the

component 𝑛, estimates the average application reliability. The

above model assumes that both component transitions and

component failures are independent. It also assumes that

component failure results in application failure. We note that

these assumptions are made in state of the art models [2] on

architecture-based analysis with the exception of [6], which

explicitly models correlation between the failures of the

components.

3 COMPONENT-LEVEL MAJORITY FAULT TOLERANCE

CONSIDERING CORRELATION

This section describes a method to model component-level

majority fault tolerance with a trivariate Bernoulli distribution

[13], which explicitly considers the negative impact of

correlated failures on reliability. This method can be applied to

traditional components within the architecture-based approach

as well as components representing fault tolerant machine

learning.

Let the vector 𝐫𝑘 = (𝑟𝑘,1, 𝑟𝑘,2, 𝑟𝑘,3) represent the reliability

of three diverse but functionally redundant implementations of

component 𝑘 and 𝚺 their correlation matrix, with non-negative

entries 𝜌𝑖,𝑗 denoting the correlation between components 𝑟𝑘,𝑖

and 𝑟𝑘,𝑗, 𝑖, 𝑗 ∈ {1,2,3} and 𝑖 ≠ 𝑗. Define 𝛽𝑖,𝑗 = exp(𝛼𝑖,𝑗), where

𝛼𝑖,𝑗 = log (1 + 𝜌𝑖,𝑗√
(1 − 𝑟𝑘,𝑖)(1 − 𝑟𝑘,𝑗)

𝑟𝑘,𝑖𝑟𝑘,𝑗

) (1)

Given component reliabilities 𝐫𝑘 and correlations 𝚺, the

reliability expression for the two-out-of-three good system is

[13]

𝑅2,3 = 𝑅𝑠 + ∑ 𝑝𝑖𝑝𝑗

𝑖<𝑗

𝛽𝑖,𝑗 − (
∏ 𝑝𝑖 ∏ 𝛽𝑖,𝑗𝑖<𝑗

3
𝑖=1

𝛽𝑖,𝑗

(1)

) (2)

where 𝑅𝑠 is the reliability expression for the three component

series system

𝑅𝑠 =
∏ 𝑝𝑖 ∏ 𝛽𝑖,𝑗𝑖<𝑗

3
𝑖=1

𝛽𝑖,𝑗
(1)

 (3)

The term 𝛽𝑖,𝑗
(1)

 is determined by computing 𝛼𝑖,𝑗 and identifying

the corresponding case in Table 1.

Table 1: Feasible orderings of 𝛼𝑖,𝑗

Case Order 𝒌 𝜷𝒊,𝒋
(𝟏)

I 𝛼1,2 < 𝛼1,3 < 𝛼2,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2

II 𝛼1,2 < 𝛼2,3 < 𝛼1,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2

III 𝛼1,3 < 𝛼1,2 < 𝛼2,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3

IV 𝛼1,3 < 𝛼2,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3

V 𝛼2,3 < 𝛼1,2 < 𝛼1,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 1 𝛽2,3

VI 𝛼2,3 < 𝛼1,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 1 𝛽2,3

VII 𝛼1,2 < 𝛼1,3 < 𝛼1,1 < 𝛼2,3 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2

VIII 𝛼1,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,3 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3

Moreover, the reliability estimate produced by Equation (2) is

valid only if the following condition is satisfied.

𝑝𝑘 <
(𝛽𝑖,𝑗

(1)
)

2

∏ 𝛽𝑖,𝑗𝑖<𝑗

 (4)

which may be violated when the correlation is close to the

maximum value feasible [14]

 𝜌𝑖,𝑗
+ = min (√

𝑟𝑘,𝑖𝑟𝑘,𝑗

𝑟𝑘,𝑖𝑟𝑘,𝑗

, √
𝑟𝑘,𝑖𝑟𝑘,𝑗

𝑟𝑘,𝑖𝑟𝑘,𝑗

) (5)

4 FAULT-TOLERANT MACHINE LEARNING CLASSIFIER

In machine learning, classification algorithms predict the

category to which a new observation belongs based on training

data. Here, we consider three diverse classification techniques,

including the support vector machine [15], artificial neural

network [16], and the naïve Bayes algorithm [17], which are

combined to form a majority fault tolerance component within

the application architecture. In cases where an autonomous

system performs an action based on a classification, incorrect

classifications may be interpreted as component unreliability.

Thus, a classifier is reliable if it correctly classifies an

observation and unreliable otherwise. A fault tolerant classifier

therefore is capable of masking a single incorrect classification.

Sources of error in classification include noise, bias, and

variance. Bootstrap sampling [18] is an iterative method to

improve classifier performance. Given a training dataset, the

Bootstrap selects a subset uniformly at random with

replacement and a similar procedure is followed to select a

subset of the dataset for testing. Each round of testing enables

the accuracy of each classifier to be assessed to avoid

overfitting.

5 ILLUSTRATIONS

This section first derives an analytical expression for the

reliability of the architecture of an autonomous system's

software. It then describes the data used to train and test the

fault tolerant machine learning component. We then examine

the impact of reliability growth in the fault tolerant machine

learning component on application reliability. Finally, we

assess the correlation between pairs of machine learning

methods and compare the empirical reliability and analytical

reliability prediction.

5.1 Architecture-based software reliability expression

Figure 1 shows the architecture of a component-based

autonomous application and the inter-component transitions.

Figure 1 Autonomous system application architecture

Component one, two, and three respectively represent

perception, decision-making, and execution, while the fourth

component is the mission completion state. Thus, control cycles

through components one through three in the sense-act loop.

For the sake of illustration, it is assumed that the perception

underlying component one is machine learning enabled.

The application architecture shown in Figure 1 maps to the

following algebraic transition probability matrix [7].

𝐏 = [

0 𝑝1,2 0 0

0 0 𝑝2,3 0

𝑝3,1 0 0 𝑝3,4

0 0 0 0

] (6)

where entry 𝑝4,4 has been set to zero according to step one of

the architecture-based analysis approach given in Section 3.

Step two defines the four by four diagonal matrix with 𝑑𝑖,𝑖 = 𝑟𝑖

such that 𝐃 ⋅ 𝐏 of step three produces

𝑄 = [

0 𝑟1𝑝1,2 0 0

0 0 𝑟2𝑝2,3 0

𝑟3𝑝3,1 0 0 𝑟3𝑝3,4

0 0 0 0

] (7)

Step four computes the fundamental matrix 𝐒 = (𝐈 − 𝐐)−1,

while step five multiplies entry 𝑠1,4 by 𝑟4 to provide the

algebraic expression of application reliability in terms of its

architecture and component reliabilities

 𝐸[𝑹] =
𝑝12𝑝23𝑟1𝑟2𝑟3𝑟4

1 − 𝑝12𝑝23𝑝31𝑟1𝑟2𝑟3

 (8)

5.2 Data Description

Machine learning algorithms were applied to the NASA

Turbofan Engine Degradation Simulation Data Set [19],

available from their Prognostics Data Repository. Engines were

run to failure. Operation is characterized by sequence of

discrete cycles, consisting of 21 sensor readings as well as three

operational settings. Four sets of data are included. Each data

set contains separate training and testing data, but both possess

the same format. Thus, perception in Figure 1 corresponds to

the state of health of a vehicle’s critical subsystem, namely the

engine. However, the architecture can be applied to other

applications of machine learning to enable autonomy in the

perception, decision-making, and execution loop.

To illustrate reliability growth of the systems within which

the fault tolerant machine learning resides, between ten and

ninety percent of the training data was used to train a support

vector machine, an artificial neural network, and the naïve

Bayes algorithm. Fifty percent of the test data was then used to

quantify each algorithms accuracy [20]. Both the training and

test data were selected using the Bootstrap sampling method. In

all cases, the algorithms were trained to recommend

maintenance when it was predicted that there were less than 70

cycles of remaining useful life (RUL). Therefore, if the RUL

remains above this value until engine failure, the system may

experience system failure.

5.3 Impact of fault-tolerant machine learning on reliability of

architecture-based software

For the sake of illustration, we assume component one

performs the perception function according to the fault-tolerant

machine learning classifier described above. The reliability of

components two through four are held constant at 𝑟2 = 0.93,

𝑟3 = 0.95, and 𝑟4 = 1.0 for the sake of exposition.

Figure 2 shows the reliability growth of the system given

in Figure 1 and Equation (8) as the training sample size

increases the reliability of 𝑟1. To ensure comparability, the

individual classifiers were trained and tested with the same

subset of the data. Four cases are shown, namely the three cases

where the reliability of component one is characterized by a

single classifier, including the support vector machine, artificial

neural network, or naïve Bayes classifier as well as the case

where all three are combined in a majority voting scheme.

Figure 2 Impact of classifier accuracy on architecture-based

software reliability

The system reliability attained by each approach is

𝐸[𝑹]|𝑟1=𝑆𝑉𝑀 = 73.95%, 𝐸[𝑹]|𝑟1=𝐴𝑁𝑁 = 66.39%,

𝐸[𝑹]|𝑟1=𝑁𝐵 = 69.90%, and 𝐸[𝑹]|𝑟1=𝑅2,3
= 68.48%. Thus, the

support vector machine attained the highest reliability, followed

by majority voting because the ANN performs erratically and

exhibits correlation failure (inaccurate classification) with

SVM and NB, which we examine in greater detail in the next

example. While a fault-tolerant classifier that is more reliable

than the individual classifiers is desirable, the focus is assess

the accuracy of the analytical method described in Section 3.

5.4 Assessment of correlation between classifiers

Figure 3 shows the Pearson correlation coefficient between

the classifications of the SVM and NB classifiers throughout

the training process as well as the upper bound (𝜌𝑆𝑉𝑀,𝑁𝐵
+)

determined from Equation (5).

Figure 3 Correlation between pair of classifiers and upper bound

Figure 3 shows that the correlation is positive, which is

expected because the classifiers are not totally random and

make correct predictions more often than not, so correct

predictions lead to positive correlation. Thus, as training

progresses and accuracy increases, so does correlation.

Moreover, the correlation is less than the upper bound,

indicating that application of the analytical expressions in

Section 3 are more likely to succeed. A similar analysis of the

correlations between the other two pairs of classifiers identified

similar trends and determined that the corresponding upper

bounds were also satisfied.

5.5 Comparison of analytical and empirical methods

To assess the accuracy of the analytical method presented

in Section 3, the empirical reliability (accuracy) and correlation

between each pair of machine learning methods as the amount

of sample data increased. Equation (2) was then applied to these

intermediate estimates of the component reliabilities and

correlations. Figure 4 shows the reliability estimate produced

by the analytical method and the empirical values produced by

the testing procedure described in Section 5.2.

Figure 4 Analytical and empirical reliability assessments of fault

tolerant machine learning component

The range of error between these methods was (−0.09, 0.11),

which is not trivial. However, this error decreases as sample

size increases. The large variations in the reliability of the

neural network may also have contributed to this error. The

method described in Section 3 failed for 18 of 200 points,

primarily in the latter half of the training process between 0.5

and 0.9. Thus, in Figure 4 above and Figures 5 below, the trends

are drawn by simply connecting the point values before and

after these unsuccessful applications of the analytical method.

To further assess the error between the analytical and

empirical assessments in Figure 4, Figure 5 shows the minimum

and maximum error of estimates at each point during training.

For example, Figure 5 shows that after twenty percent of the

training had been conducted, the worst overestimate for any

value of sample size between 0.2 and 0.9 was slightly greater

than 0.1, whereas the worst overestimate was slightly less than

-0.09. However as sampling continued, to 0.5 the worst case

over and underestimates by the analytical method decreases to

below 0.1 and about -0.05 respectively. While the bounds on

the trend were not monotonic, both over and underestimates

decreased substantially as the sample size approached ninety

percent. These trends are promising, considering that only 200

samples were taken. Thus, after 180 samples, the estimate was

slightly below the horizontal line denoting zero error, indicating

that error remained, but was substantially reduced.

Figure 5 Maximum and minimum error bounds

To further study the difference between the analytical and

empirical assessments, Figure 6 shows a histogram of the error

between the two methods as well as multiple fits of a normal

distribution to data to assess for convergence.

Figure 6 Distribution of error between analytical and empirical

reliability assessments

The upper normal distribution was fit to all of the data,

including estimates made when between ten and ninety percent

of the data was used, whereas reduced sets omit a prefix. Thus,

subsets of errors observed from thirty, fifty, and seventy to

ninety were also use to fit normal distributions, which exhibit

decreasing variance. Figure 6 suggests that the errors were

approximately normally distributed, but that the errors are more

heavily concentrated about zero, which is desirable.

To complement graphical analysis, formal hypothesis tests

were applied. In each case, the null hypothesis 𝐻0 is that the

errors between the analytical and empirical reliability estimates

are normally distributed, while the alternative 𝐻𝑎 is that the

errors are not normally distributed. Table 2 states the names,

test corresponding test statistics, and p-values.

Table 2: Hypothesis tests for normality

Test Name Test Statistic p-value

D’Agostino and Pearson Test 6.87 0.0322

Jarque-Bera Test 11.20 0.0037

Anderson-Darling Test 1.78 0.0004

Kolmogorov-Smirnov Test 1.16 0.1354

K-S Marsaglia Method 1.16 0.1277

Shapiro-Wilk Test 0.97 0.0017

Table 2 indicates that the D’Agostino and Person, Jarque-

Bera, Anderson-Darling, and Shapiro-Wilk tests reject the null

hypothesis at the 95% level of significance, whereas the

Kolmogorov-Smirnov and K-S Marsaglia tests do not reject the

null hypothesis at the 95% level of significance. While several

tests reject the null hypothesis, this is likely due to the heavy

concentration of errors around zero observed in Figure 6.

6 CONCLUSIONS AND FUTURE WORK

 This paper presented an architecture-based software

reliability model where one or more components can be

characterized by fault tolerant machine learning. Moreover, an

analytical method to estimate the reliability of a majority

system with explicit correlation parameters was applied to the

accuracy and correlation data of three machine learning

algorithms and the predictions compared to empirical results.

The observed prediction errors of the analytical method ranged

between -0.09 and 0.11, but these errors decreased as the

amount of training data employed increased. We also examined

the distribution of the errors and found it was well characterized

by a normal distribution, but that the errors were heavily

centered around zero, suggesting that the analytical method

may be approximately asymptotically unbiased. Thus, the

analytical method can be used to complement empirical

reliability assessments during architecture design to identify

reliability requirements and corresponding training data

requirements.

Future research will seek to further develop the modeling

methods for application to autonomous system architectures as

well as analyze the statistical properties of the analytical

method more formally.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant Number (#1749635). Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

REFERENCES

1. R. Cheung, "A User-Oriented Software Reliability Model,"

IEEE Transactions on Software Engineering, vol. 6, no. 2,

pp. 118-125, 1980.

2. S. Gokhale and K. Trivedi, "Analytical Models for

Architecture-Based Software Reliability Prediction: A

Unification Framework," IEEE Transactions on

Reliability, vol. 55, no. 4, pp. 578-590, 2006.

3. V. Cortellessa and V. Grassi, "Reliability Modeling and

Analysis of Service-Oriented Architectures," Test and

Analysis of Web Services, Springer: Berlin, pp. 339-362,

2007.

4. R. Kharboutly, S. Gokhale, and R. Ammar, "Architecture-

based Software Reliability Analysis incorporating

Concurrency," International Journal of Reliability, Quality

and Safety Engineering , vol. 14, no. 5, pp. 479-499, 2007.

5. L. Fiondella and S. Gokhale, "Architecture-based software

reliability with error propagation and recovery," In Proc.

International Symposium on Performance Evaluation of

Computer and Telecommunication Systems, Toronto,

Canada, pp. 38-45, 2013.

6. L. Fiondella, S. Rajasekaran, and S. Gokhale, "Efficient

Software Reliability Analysis with Correlated Component

Failures," IEEE Transactions on Reliability, vol. 62, no. 1,

pp. 244-255, 2013.

7. L. Fiondella and S. Gokhale, "Importance Measures for

Modular Software with Uncertain Parameters," Software

testing, Verification and Reliability, vol. 20, no. 1, pp. 63–

85, 2010.

8. D. Doran, M. Tran, L. Fiondella, and S. Gokhale,

"Architecture-based Reliability Analysis With Uncertain

Parameters," In Proc. International Conference on

Software Engineering and Knowledge Engineering,

Miami, FL, pp. 629-634, 2011.

9. L. Fiondella and S. Gokhale, "Optimal Allocation of

Testing Effort Considering Software Architecture," IEEE

Transactions on Reliability, vol. 61, no. 2, pp. 580-589,

2012.

10. H. Okamura and T. Dohi, "Optimizing Testing-Resource

Allocation Using Architecture-Based Software Reliability

Model," Journal of Optimization, 2018.

11. B. Yang, Y. Hu and C. Huang, "An Architecture-Based

Multi-Objective Optimization Approach to Testing

Resource Allocation," IEEE Transactions on Reliability,

vol. 64, no. 1, pp. 497-515, 2015.

12. L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and R.P.W.

Duin, "Limits on the majority vote accuracy in classifier

fusion," Pattern Analysis & Applications, vol. 6, no. 1, p.

22–31, 2003.

13. L. Fiondella and P. Zeephongsekul, "Trivariate Bernoulli

Distribution with Application to Software Fault

Tolerance," Annals of Operations Research, vol. 244, no.

1, pp. 241–255, 2016.

14. R. Prentice, "Binary Regression using an Extended Beta-

binomial Distribution, with Discussion of Correlation

induced by Covariate Measurement Errors.," Journal of the

American Statistical Association, vol. 81, no. 394, p. 321–

327, 1986.

15. J. Suykens and J. Vandewalle, "Least Squares Support

Vector Machine Classifiers," Neural Processing Letters,

vol. 9, no. 3, pp. 293-300, 1999.

16. G. P. Zhang, "Neural networks for classification: a survey,"

IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 30, no. 4, pp. 451-

462, 2000.

17. I. Rish, "An empirical study of the naive Bayes classifier,"

In Proc. International Joint Conferences on Artificial

Intelligence: Workshop on Empirical Methods in Artificial

Intelligence, Seattle, WA, vol. 3, no. 22, pp. 41-46, 2001.

18. T. Dietterich, "Ensemble Methods in Machine Learning."

In: Multiple Classifier Systems. Lecture Notes in

Computer Science," Springer, vol. 1857, pp. 1-15, 2000.

19. A. Saxena and K. Goebel, "Phm08 challenge data set,"

2008.

20. T. Wang, Jianbo Yu, D. Siegel and J. Lee, "A similarity-

based prognostics approach for Remaining Useful Life

estimation of engineered systems," In Proc. International

Conference on Prognostics and Health Management,

Denver, CO, pp. 1-6, 2008.

BIOGRAPHIES

Maskura Nafreen

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: mnafreen@umassd.edu

Maskura Nafreen is a PhD student in the Department of

Electrical and Computer Engineering at the University of

Massachusetts Dartmouth (UMassD). She received her BS.c.

(2018) in Electrical and Electronics Engineering from

Ahsanullah University of Science and Technology in

Bangladesh.

Saikath Bhattacharya

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: sbhattacharya@umassd.edu

Saikath Bhattacharya is a PhD student in Computer

Engineering at UMassD. His research interests include

prognostics and health management and tradespace exploration

incorporating reliability, availability, maintainability,

affordability. He has published over ten peer-reviewed papers

on these topics.

Lance Fiondella, PhD

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: lfiondella@umassd.edu

Lance Fiondella is an assistant professor in the Department of

Electrical & Computer Engineering at UMassD. He received

his PhD (2012) in Computer Science & Engineering from the

University of Connecticut. Dr. Fiondella’s papers have been the

recipient of ten conference paper awards, including the 2015

R.A. Evans/P.K. McElroy Award from the Reliability and

Maintainability Symposium (RAMS). His research has been

funded by the Department of Homeland Security, National

Aeronautics and Space Administration, Army Research

Laboratory, Naval Air Warfare Center, and National Science

Foundation, including a CAREER Award.

