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SUMMARY & CONCLUSIONS 

With the increased interest to incorporate machine learning 

into software and systems, methods to characterize the impact 

of the reliability of machine learning are needed to ensure the 

reliability of the software and systems in which these 

algorithms reside. Towards this end, we build upon the 

architecture-based approach to software reliability modeling, 

which represents application reliability in terms of the 

component reliabilities and the probabilistic transitions 

between the components. Traditional architecture-based 

software reliability models consider all components to be 

deterministic software. We therefore extend this modeling 

approach to the case, where some components represent 

learning enabled components. Here, the reliability of a machine 

learning component is interpreted as the accuracy of its 

decisions, which is a common measure of classification 

algorithms. Moreover, we allow these machine learning 

components to be fault-tolerant in the sense that multiple 

diverse classifier algorithms are trained to guide decisions and 

the majority decision taken. We demonstrate the utility of the 

approach to assess the impact of machine learning on software 

reliability as well as illustrate the concept of reliability growth 

in machine learning. Finally, we validate past analytical results 

for a fault tolerant system composed of correlated components 

with real machine learning algorithms and data, demonstrating 

the analytical expression’s ability to accurately estimate the 

reliability of the fault tolerant machine learning component and 

subsequently the architecture-based software within which it 

resides. 

1 INTRODUCTION 

Recently, machine learning has enjoyed significant 

attention as a potential enabler of autonomous systems and 

society is eager for such capabilities. However, high profile 

failures of these systems such as the death of a pedestrian by an 

automated taxi creates a justifiable level of distrust in the 

maturity of the underlying technology and subsequent concern 

for autonomous system safety. The reliability engineering 

community needs methods to quantitatively assess the impact 

of learning-enabled components on the software and system 

within which these components reside. In the absence of 

objective methods to model the reliability of systems 

incorporating machine learning and assess reliability growth, 

decision-makers will struggle to deliver dependable and 

trustworthy autonomous system. 

To assess autonomous systems, one must recognize that 

autonomous systems are software enabled and that learning-

enabled components reside within a software architecture. The 

earliest architecture-based software reliability research was 

performed by Cheung [1] who modeled the reliability of a 

software application in terms of the component reliabilities and 

the probabilistic transitions between the components with a 

discrete time Markov chain. Gokhale and Trivedi [2] presented 

a unification framework for architecture-based software 

reliability and performance modeling methods, identifying gaps 

where further contributions could be made. Additional 

modeling studies have demonstrated the applicability of the 

architecture-based approach to Service-Oriented Architectures 

[3], extended the architecture-based approach to concurrent 

applications [4], explicitly considered error propagation and 

recovery [5] and proposed an efficient branch and bound 

algorithm to characterize the impact of correlated component 

failures on the reliability of architecture-based software [6].  

In addition to modeling the reliability of architecture-based 

software reliability, some researchers have proposed methods 

to conduct sensitivity analysis and optimization. For example, 

Fiondella and Gokhale [7] generalized the architecture-based 

model solution method to the analytical case to obtain an 

algebraic expression in terms of the component reliabilities and 

transition parameters and presented a frequentist method to 

quantify the uncertainty in these parameters. Doran et al. [8] 

subsequently presented a Bayesian method to estimate the 

component reliability and transition parameters of an 

architecture-based software reliability model. Multi-objective 

test resource allocation models for architecture-based software 

considering reliability and cost [9, 10] have also been proposed 

as well as multi-objective evolutionary algorithms to identify a 



Pareto optimal set of solutions [11] for tradeoffs between 

reliability and cost constraints. 

This paper presents an approach to assess the reliability of 

software based on its architecture, including fault tolerant 

machine learning components that perform classification and 

are also known as ensemble classifiers [12]. We apply an 

analytical method to quantify the reliability of a fault tolerant 

component to consider the case where multiple machine 

learning algorithms are used to enable a single decision. This 

method quantifies the reliability of fault tolerant machine 

learning in terms of the accuracy of the individual machine 

learning algorithms and the correlations between each pair of 

algorithms. The reliability estimate of the fault tolerant machine 

learning component is then combined with the architecture-

based approach to software reliability assessment in order to 

estimate application reliability. The approach is demonstrated 

through examples, including the impact of reliability growth in 

fault tolerant machine learning on application reliability. The 

predictive accuracy of the analytical approach is also assessed. 

Section II summarizes the architecture-based approach to 

software reliability modeling. Section III describes an 

analytical method to estimate the reliability of a majority fault 

tolerant system from the component reliabilities and 

correlations between the components and Section IV discusses 

fault-tolerant machine learning concept. Section V illustrates 

the approach, while Section VI offers conclusions and 

directions for future study. 

2 ARCHITECTURE-BASED SOFTWARE RELIABILITY 

MODELING AND ANALYSIS 

This section summarizes the composite approach to 

architecture-based reliability modeling and analysis [1]. 

Without loss of generality, consider an application composed of 

𝑛 components, where the first and 𝑛th components respectively 

denote the initial and final, where computation begin and end. 

Such a terminating application operates on demand, and 

distinguishes consecutive runs according to the inputs and 

corresponding branching behavior exhibited. A probabilistic 

control flow graph represents the application architecture, 

which is characterized by a discrete time Markov chain 

(DTMC) in order to conduct architecture-based analysis. There 

is a one-to-one correspondence between the components of the 

application and the states of the DTMC and the one-step 

transition probability matrix P of the DTMC encodes the 

application's architecture. Entry 𝑝𝑛,𝑛 of P is set to 1.0 to denote 

that the application terminates after component 𝑛 completes 

execution. Moreover, the vector 𝐑1×n  denotes the reliabilities 

of the components, where 𝑟𝑖 ∈ (0,1) is the reliability of 

component i. The expected system reliability 𝐸[𝐑] may be 

obtained in the following steps:  

(1) Set 𝑝𝑛,𝑛 = 0 

(2) Define 𝐃n×n  to be the diagonal matrix with 𝑑𝑖,𝑖 = 𝑟𝑖  

(3) Let 𝐐 = 𝐃 · 𝐏  

(4) Compute 𝐒 = (𝐈 − 𝐐)−𝟏 

(5) 𝐸[𝐑] = 𝑠1,𝑛 × 𝑟𝑛 

𝑠1,𝑛 in step (5) represents the probability that the final, 

absorbing state will be reached from the state in which 

computation commenced. This value times the reliability of the 

component 𝑛, estimates the average application reliability. The 

above model assumes that both component transitions and 

component failures are independent. It also assumes that 

component failure results in application failure. We note that 

these assumptions are made in state of the art models [2] on 

architecture-based analysis with the exception of [6], which 

explicitly models correlation between the failures of the 

components. 

3 COMPONENT-LEVEL MAJORITY FAULT TOLERANCE 

CONSIDERING CORRELATION 

This section describes a method to model component-level 

majority fault tolerance with a trivariate Bernoulli distribution 

[13], which explicitly considers the negative impact of 

correlated failures on reliability. This method can be applied to 

traditional components within the architecture-based approach 

as well as components representing fault tolerant machine 

learning. 

Let the vector 𝐫𝑘 = (𝑟𝑘,1, 𝑟𝑘,2, 𝑟𝑘,3) represent the reliability 

of three diverse but functionally redundant implementations of 

component 𝑘 and 𝚺 their correlation matrix, with non-negative 

entries 𝜌𝑖,𝑗 denoting the correlation between components 𝑟𝑘,𝑖 

and 𝑟𝑘,𝑗, 𝑖, 𝑗 ∈ {1,2,3} and 𝑖 ≠ 𝑗. Define 𝛽𝑖,𝑗 = exp(𝛼𝑖,𝑗), where 

𝛼𝑖,𝑗 = log (1 +  𝜌𝑖,𝑗√
(1 − 𝑟𝑘,𝑖)(1 − 𝑟𝑘,𝑗)

𝑟𝑘,𝑖𝑟𝑘,𝑗

)            (1) 

Given component reliabilities 𝐫𝑘 and correlations 𝚺, the 

reliability expression for the two-out-of-three good system is 

[13] 

𝑅2,3 =  𝑅𝑠 + ∑ 𝑝𝑖𝑝𝑗

𝑖<𝑗

𝛽𝑖,𝑗 − (
∏ 𝑝𝑖 ∏ 𝛽𝑖,𝑗𝑖<𝑗

3
𝑖=1

𝛽𝑖,𝑗

(1)
 

)        (2) 

where 𝑅𝑠 is the reliability expression for the three component 

series system 

𝑅𝑠 =
∏ 𝑝𝑖 ∏ 𝛽𝑖,𝑗𝑖<𝑗

3
𝑖=1

𝛽𝑖,𝑗
(1)

                              (3) 

The term 𝛽𝑖,𝑗
(1)

 is determined by computing 𝛼𝑖,𝑗 and identifying 

the corresponding case in Table 1. 

Table 1: Feasible orderings of 𝛼𝑖,𝑗 

Case Order 𝒌 𝜷𝒊,𝒋
(𝟏)

 

I 𝛼1,2 < 𝛼1,3 < 𝛼2,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2 

II 𝛼1,2 < 𝛼2,3 < 𝛼1,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2 

III 𝛼1,3 < 𝛼1,2 < 𝛼2,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3 

IV 𝛼1,3 < 𝛼2,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3 

V 𝛼2,3 < 𝛼1,2 < 𝛼1,3 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 1 𝛽2,3 

VI 𝛼2,3 < 𝛼1,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,2 < 𝛼3,3 1 𝛽2,3 

VII 𝛼1,2 < 𝛼1,3 < 𝛼1,1 < 𝛼2,3 < 𝛼2,2 < 𝛼3,3 3 𝛽1,2 

VIII 𝛼1,3 < 𝛼1,2 < 𝛼1,1 < 𝛼2,3 < 𝛼2,2 < 𝛼3,3 2 𝛽1,3 



Moreover, the reliability estimate produced by Equation (2) is 

valid only if the following condition is satisfied. 

𝑝𝑘 <
(𝛽𝑖,𝑗

(1)
)

2

∏ 𝛽𝑖,𝑗𝑖<𝑗

                                   (4) 

which may be violated when the correlation is close to the 

maximum value feasible [14] 

                          𝜌𝑖,𝑗
+ = min (√

𝑟𝑘,𝑖𝑟𝑘,𝑗

𝑟𝑘,𝑖𝑟𝑘,𝑗

, √
𝑟𝑘,𝑖𝑟𝑘,𝑗

𝑟𝑘,𝑖𝑟𝑘,𝑗

)                    (5) 

4  FAULT-TOLERANT MACHINE LEARNING CLASSIFIER 

In machine learning, classification algorithms predict the 

category to which a new observation belongs based on training 

data. Here, we consider three diverse classification techniques, 

including the support vector machine [15], artificial neural 

network [16], and the naïve Bayes algorithm [17], which are 

combined to form a majority fault tolerance component within 

the application architecture. In cases where an autonomous 

system performs an action based on a classification, incorrect 

classifications may be interpreted as component unreliability. 

Thus, a classifier is reliable if it correctly classifies an 

observation and unreliable otherwise. A fault tolerant classifier 

therefore is capable of masking a single incorrect classification.  

Sources of error in classification include noise, bias, and 

variance. Bootstrap sampling [18] is an iterative method to 

improve classifier performance. Given a training dataset, the 

Bootstrap selects a subset uniformly at random with 

replacement and a similar procedure is followed to select a 

subset of the dataset for testing. Each round of testing enables 

the accuracy of each classifier to be assessed to avoid 

overfitting. 

5 ILLUSTRATIONS 

This section first derives an analytical expression for the 

reliability of the architecture of an autonomous system's 

software. It then describes the data used to train and test the 

fault tolerant machine learning component. We then examine 

the impact of reliability growth in the fault tolerant machine 

learning component on application reliability. Finally, we 

assess the correlation between pairs of machine learning 

methods and compare the empirical reliability and analytical 

reliability prediction. 

5.1 Architecture-based software reliability expression 

Figure 1 shows the architecture of a component-based 

autonomous application and the inter-component transitions. 

 

 
Figure 1 Autonomous system application architecture  

Component one, two, and three respectively represent 

perception, decision-making, and execution, while the fourth 

component is the mission completion state. Thus, control cycles 

through components one through three in the sense-act loop. 

For the sake of illustration, it is assumed that the perception 

underlying component one is machine learning enabled. 

The application architecture shown in Figure 1 maps to the 

following algebraic transition probability matrix [7]. 

𝐏 = [

0 𝑝1,2  0 0

0 0 𝑝2,3 0

𝑝3,1 0 0 𝑝3,4

0 0 0 0

]                             (6) 

where entry 𝑝4,4 has been set to zero according to step one of 

the architecture-based analysis approach given in Section 3. 

Step two defines the four by four diagonal matrix with 𝑑𝑖,𝑖 = 𝑟𝑖  

such that 𝐃 ⋅ 𝐏 of step three produces 

𝑄 = [

0 𝑟1𝑝1,2  0 0

0 0 𝑟2𝑝2,3 0

𝑟3𝑝3,1 0 0 𝑟3𝑝3,4

0 0 0 0

]                 (7) 

Step four computes the fundamental matrix 𝐒 = (𝐈 − 𝐐)−1, 

while step five multiplies entry 𝑠1,4 by 𝑟4 to provide the 

algebraic expression of application reliability in terms of its 

architecture and component reliabilities 

                                𝐸[𝑹] =
𝑝12𝑝23𝑟1𝑟2𝑟3𝑟4

1 − 𝑝12𝑝23𝑝31𝑟1𝑟2𝑟3

                     (8) 

5.2 Data Description 

Machine learning algorithms were applied to the NASA 

Turbofan Engine Degradation Simulation Data Set [19], 

available from their Prognostics Data Repository. Engines were 

run to failure. Operation is characterized by sequence of 

discrete cycles, consisting of 21 sensor readings as well as three 

operational settings. Four sets of data are included. Each data 

set contains separate training and testing data, but both possess 

the same format. Thus, perception in Figure 1 corresponds to 

the state of health of a vehicle’s critical subsystem, namely the 

engine. However, the architecture can be applied to other 

applications of machine learning to enable autonomy in the 

perception, decision-making, and execution loop.  

To illustrate reliability growth of the systems within which 

the fault tolerant machine learning resides, between ten and 

ninety percent of the training data was used to train a support 

vector machine, an artificial neural network, and the naïve 

Bayes algorithm. Fifty percent of the test data was then used to 

quantify each algorithms accuracy [20]. Both the training and 

test data were selected using the Bootstrap sampling method. In 

all cases, the algorithms were trained to recommend 

maintenance when it was predicted that there were less than 70 

cycles of remaining useful life (RUL). Therefore, if the RUL 

remains above this value until engine failure, the system may 

experience system failure. 

5.3 Impact of fault-tolerant machine learning on reliability of 

architecture-based software 

For the sake of illustration, we assume component one 



performs the perception function according to the fault-tolerant 

machine learning classifier described above. The reliability of 

components two through four are held constant at 𝑟2 = 0.93, 

𝑟3 = 0.95, and 𝑟4 = 1.0 for the sake of exposition. 

Figure 2 shows the reliability growth of the system given 

in Figure 1 and Equation (8) as the training sample size 

increases the reliability of 𝑟1. To ensure comparability, the 

individual classifiers were trained and tested with the same 

subset of the data. Four cases are shown, namely the three cases 

where the reliability of component one is characterized by a 

single classifier, including the support vector machine, artificial 

neural network, or naïve Bayes classifier as well as the case 

where all three are combined in a majority voting scheme.  

 

Figure 2 Impact of classifier accuracy on architecture-based 

software reliability 

The system reliability attained by each approach is 

𝐸[𝑹]|𝑟1=𝑆𝑉𝑀 = 73.95%, 𝐸[𝑹]|𝑟1=𝐴𝑁𝑁 = 66.39%, 

𝐸[𝑹]|𝑟1=𝑁𝐵 = 69.90%, and 𝐸[𝑹]|𝑟1=𝑅2,3
= 68.48%. Thus, the 

support vector machine attained the highest reliability, followed 

by majority voting because the ANN performs erratically and 

exhibits correlation failure (inaccurate classification) with 

SVM and NB, which we examine in greater detail in the next 

example. While a fault-tolerant classifier that is more reliable 

than the individual classifiers is desirable, the focus is assess 

the accuracy of the analytical method described in Section 3. 

5.4 Assessment of correlation between classifiers 

Figure 3 shows the Pearson correlation coefficient between 

the classifications of the SVM and NB classifiers throughout 

the training process as well as the upper bound (𝜌𝑆𝑉𝑀,𝑁𝐵
+ )   

determined from Equation (5).  

 
Figure 3 Correlation between pair of classifiers and upper bound 

Figure 3 shows that the correlation is positive, which is 

expected because the classifiers are not totally random and 

make correct predictions more often than not, so correct 

predictions lead to positive correlation. Thus, as training 

progresses and accuracy increases, so does correlation. 

Moreover, the correlation is less than the upper bound, 

indicating that application of the analytical expressions in 

Section 3 are more likely to succeed. A similar analysis of the 

correlations between the other two pairs of classifiers identified 

similar trends and determined that the corresponding upper 

bounds were also satisfied. 

5.5 Comparison of analytical and empirical methods 

To assess the accuracy of the analytical method presented 

in Section 3, the empirical reliability (accuracy) and correlation 

between each pair of machine learning methods as the amount 

of sample data increased. Equation (2) was then applied to these 

intermediate estimates of the component reliabilities and 

correlations. Figure 4 shows the reliability estimate produced 

by the analytical method and the empirical values produced by 

the testing procedure described in Section 5.2. 

 
Figure 4 Analytical and empirical reliability assessments of fault 

tolerant machine learning component 

The range of error between these methods was (−0.09, 0.11), 

which is not trivial. However, this error decreases as sample 

size increases. The large variations in the reliability of the 

neural network may also have contributed to this error. The 

method described in Section 3 failed for 18 of 200 points, 

primarily in the latter half of the training process between 0.5 

and 0.9. Thus, in Figure 4 above and Figures 5 below, the trends 

are drawn by simply connecting the point values before and 

after these unsuccessful applications of the analytical method. 

To further assess the error between the analytical and 

empirical assessments in Figure 4, Figure 5 shows the minimum 

and maximum error of estimates at each point during training. 

For example, Figure 5 shows that after twenty percent of the 

training had been conducted, the worst overestimate for any 

value of sample size between 0.2 and 0.9 was slightly greater 

than 0.1, whereas the worst overestimate was slightly less than 

-0.09. However as sampling continued, to 0.5 the worst case 

over and underestimates by the analytical method decreases to 

below 0.1 and about -0.05 respectively. While the bounds on 

the trend were not monotonic, both over and underestimates 

decreased substantially as the sample size approached ninety 

percent. These trends are promising, considering that only 200 

samples were taken. Thus, after 180 samples, the estimate was 



slightly below the horizontal line denoting zero error, indicating 

that error remained, but was substantially reduced. 

 
Figure 5 Maximum and minimum error bounds 

To further study the difference between the analytical and 

empirical assessments, Figure 6 shows a histogram of the error 

between the two methods as well as multiple fits of a normal 

distribution to data to assess for convergence. 

 
Figure 6 Distribution of error between analytical and empirical 

reliability assessments 

The upper normal distribution was fit to all of the data, 

including estimates made when between ten and ninety percent 

of the data was used, whereas reduced sets omit a prefix. Thus, 

subsets of errors observed from thirty, fifty, and seventy to 

ninety were also use to fit normal distributions, which exhibit 

decreasing variance. Figure 6 suggests that the errors were 

approximately normally distributed, but that the errors are more 

heavily concentrated about zero, which is desirable.  

To complement graphical analysis, formal hypothesis tests 

were applied. In each case, the null hypothesis 𝐻0 is that the 

errors between the analytical and empirical reliability estimates 

are normally distributed, while the alternative 𝐻𝑎 is that the 

errors are not normally distributed. Table 2 states the names, 

test corresponding test statistics, and p-values. 

Table 2: Hypothesis tests for normality 

Test Name Test Statistic  p-value 

D’Agostino and Pearson Test 6.87 0.0322 

Jarque-Bera Test 11.20 0.0037 

Anderson-Darling Test 1.78 0.0004 

Kolmogorov-Smirnov Test 1.16 0.1354 

K-S Marsaglia Method 1.16 0.1277 

Shapiro-Wilk Test 0.97 0.0017 

Table 2 indicates that the D’Agostino and Person, Jarque-

Bera, Anderson-Darling, and Shapiro-Wilk tests reject the null 

hypothesis at the 95% level of significance, whereas the 

Kolmogorov-Smirnov and K-S Marsaglia tests do not reject the 

null hypothesis at the 95% level of significance. While several 

tests reject the null hypothesis, this is likely due to the heavy 

concentration of errors around zero observed in Figure 6. 

6 CONCLUSIONS AND FUTURE WORK 

 This paper presented an architecture-based software 

reliability model where one or more components can be 

characterized by fault tolerant machine learning. Moreover, an 

analytical method to estimate the reliability of a majority 

system with explicit correlation parameters was applied to the 

accuracy and correlation data of three machine learning 

algorithms and the predictions compared to empirical results. 

The observed prediction errors of the analytical method ranged 

between -0.09 and 0.11, but these errors decreased as the 

amount of training data employed increased. We also examined 

the distribution of the errors and found it was well characterized 

by a normal distribution, but that the errors were heavily 

centered around zero, suggesting that the analytical method 

may be approximately asymptotically unbiased. Thus, the 

analytical method can be used to complement empirical 

reliability assessments during architecture design to identify 

reliability requirements and corresponding training data 

requirements. 

Future research will seek to further develop the modeling 

methods for application to autonomous system architectures as 

well as analyze the statistical properties of the analytical 

method more formally. 
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