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SUMMARY & CONCLUSIONS

With the increased interest to incorporate machine learning
into software and systems, methods to characterize the impact
of the reliability of machine learning are needed to ensure the
reliability of the software and systems in which these
algorithms reside. Towards this end, we build upon the
architecture-based approach to software reliability modeling,
which represents application reliability in terms of the
component reliabilities and the probabilistic transitions
between the components. Traditional architecture-based
software reliability models consider all components to be
deterministic software. We therefore extend this modeling
approach to the case, where some components represent
learning enabled components. Here, the reliability of a machine
learning component is interpreted as the accuracy of its
decisions, which is a common measure of classification
algorithms. Moreover, we allow these machine learning
components to be fault-tolerant in the sense that multiple
diverse classifier algorithms are trained to guide decisions and
the majority decision taken. We demonstrate the utility of the
approach to assess the impact of machine learning on software
reliability as well as illustrate the concept of reliability growth
in machine learning. Finally, we validate past analytical results
for a fault tolerant system composed of correlated components
with real machine learning algorithms and data, demonstrating
the analytical expression’s ability to accurately estimate the
reliability of the fault tolerant machine learning component and
subsequently the architecture-based software within which it
resides.

1 INTRODUCTION

Recently, machine learning has enjoyed significant
attention as a potential enabler of autonomous systems and
society is eager for such capabilities. However, high profile
failures of these systems such as the death of a pedestrian by an
automated taxi creates a justifiable level of distrust in the
maturity of the underlying technology and subsequent concern
for autonomous system safety. The reliability engineering

community needs methods to quantitatively assess the impact
of learning-enabled components on the software and system
within which these components reside. In the absence of
objective methods to model the reliability of systems
incorporating machine learning and assess reliability growth,
decision-makers will struggle to deliver dependable and
trustworthy autonomous system.

To assess autonomous systems, one must recognize that
autonomous systems are software enabled and that learning-
enabled components reside within a software architecture. The
earliest architecture-based software reliability research was
performed by Cheung [1] who modeled the reliability of a
software application in terms of the component reliabilities and
the probabilistic transitions between the components with a
discrete time Markov chain. Gokhale and Trivedi [2] presented
a unification framework for architecture-based software
reliability and performance modeling methods, identifying gaps
where further contributions could be made. Additional
modeling studies have demonstrated the applicability of the
architecture-based approach to Service-Oriented Architectures
[3], extended the architecture-based approach to concurrent
applications [4], explicitly considered error propagation and
recovery [5] and proposed an efficient branch and bound
algorithm to characterize the impact of correlated component
failures on the reliability of architecture-based software [6].

In addition to modeling the reliability of architecture-based
software reliability, some researchers have proposed methods
to conduct sensitivity analysis and optimization. For example,
Fiondella and Gokhale [7] generalized the architecture-based
model solution method to the analytical case to obtain an
algebraic expression in terms of the component reliabilities and
transition parameters and presented a frequentist method to
quantify the uncertainty in these parameters. Doran et al. [8]
subsequently presented a Bayesian method to estimate the
component reliability and transition parameters of an
architecture-based software reliability model. Multi-objective
test resource allocation models for architecture-based software
considering reliability and cost [9, 10] have also been proposed
as well as multi-objective evolutionary algorithms to identify a



Pareto optimal set of solutions [11] for tradeoffs between
reliability and cost constraints.

This paper presents an approach to assess the reliability of
software based on its architecture, including fault tolerant
machine learning components that perform classification and
are also known as ensemble classifiers [12]. We apply an
analytical method to quantify the reliability of a fault tolerant
component to consider the case where multiple machine
learning algorithms are used to enable a single decision. This
method quantifies the reliability of fault tolerant machine
learning in terms of the accuracy of the individual machine
learning algorithms and the correlations between each pair of
algorithms. The reliability estimate of the fault tolerant machine
learning component is then combined with the architecture-
based approach to software reliability assessment in order to
estimate application reliability. The approach is demonstrated
through examples, including the impact of reliability growth in
fault tolerant machine learning on application reliability. The
predictive accuracy of the analytical approach is also assessed.

Section 11 summarizes the architecture-based approach to
software reliability modeling. Section III describes an
analytical method to estimate the reliability of a majority fault
tolerant system from the component reliabilities and
correlations between the components and Section IV discusses
fault-tolerant machine learning concept. Section V illustrates
the approach, while Section VI offers conclusions and
directions for future study.

2 ARCHITECTURE-BASED SOFTWARE RELIABILITY
MODELING AND ANALYSIS

This section summarizes the composite approach to
architecture-based reliability modeling and analysis [1].
Without loss of generality, consider an application composed of
n components, where the first and nth components respectively
denote the initial and final, where computation begin and end.
Such a terminating application operates on demand, and
distinguishes consecutive runs according to the inputs and
corresponding branching behavior exhibited. A probabilistic
control flow graph represents the application architecture,
which is characterized by a discrete time Markov chain
(DTMC) in order to conduct architecture-based analysis. There
is a one-to-one correspondence between the components of the
application and the states of the DTMC and the one-step
transition probability matrix P of the DTMC encodes the
application's architecture. Entry p,, , of P is set to 1.0 to denote
that the application terminates after component n completes
execution. Moreover, the vector Ry, denotes the reliabilities
of the components, where 7; € (0,1) is the reliability of
component i. The expected system reliability E[R] may be
obtained in the following steps:

(1) Setpp, =0

(2) Define Dy, to be the diagonal matrix with d;; = 7;
(3)LetQ=D-P

(4) Compute S = (1—-Q)~?!

(5) E[R] = 510 X1y

Sin in step (5) represents the probability that the final,
absorbing state will be reached from the state in which

computation commenced. This value times the reliability of the
component n, estimates the average application reliability. The
above model assumes that both component transitions and
component failures are independent. It also assumes that
component failure results in application failure. We note that
these assumptions are made in state of the art models [2] on
architecture-based analysis with the exception of [6], which
explicitly models correlation between the failures of the
components.

3 COMPONENT-LEVEL MAJORITY FAULT TOLERANCE
CONSIDERING CORRELATION

This section describes a method to model component-level
majority fault tolerance with a trivariate Bernoulli distribution
[13], which explicitly considers the negative impact of
correlated failures on reliability. This method can be applied to
traditional components within the architecture-based approach
as well as components representing fault tolerant machine
learning.

Let the vector 1y, = (rk,p The2s T‘k,3) represent the reliability
of three diverse but functionally redundant implementations of
component k and X their correlation matrix, with non-negative
entries p; ; denoting the correlation between components 7y ;

andry j,i,j € {1,2,3}and i # j. Define 5; ; = exp(ai‘j), where

(1-n,)(1 =)
Tk,iTk,j

a',-,j = log 1+ pi,j (1)

Given component reliabilities r, and correlations X, the
reliability expression for the two-out-of-three good system is

[13]
Hi3=1 pi [li<j By
R,z = R+ z pip; Bij — (T]}> (2)

where R; is the reliability expression for the three component
series system

i<j

_ Hi3:1 Pi Hi<j ﬂi,j
- [€))
lgi_j

The term Bl(}) is determined by computing «; ; and identifying

R, 3)

the corresponding case in Table 1.

Table 1: Feasible orderings of a; ;

Case Order k [i’g)
I A1y < a3 <0y3<a;<az; <033 3 | Bz
11 A <03 <a3<a<az; <033 3 | B2
11 a3 <Ay <ayz<ag; <ay;<az; 2 B3
v A3 <03 <1 <1 <Azp<A33 2 | Pis
Vv U3 <y <@3<ay1<dy;<az3 L | Ba3
VI A3 < Q13 <A1 <1y <Azp < A3z 1 B2

VII A <a3<a;;<ayz<az;<aszz 3 Bi2

VIII a13<a;<ap;<ay3<az;<az3 2 | B3




Moreover, the reliability estimate produced by Equation (2) is
valid only if the following condition is satisfied.

)

« [li<jBij

which may be violated when the correlation is close to the
maximum value feasible [14]

C)

)

4 FAULT-TOLERANT MACHINE LEARNING CLASSIFIER

In machine learning, classification algorithms predict the
category to which a new observation belongs based on training
data. Here, we consider three diverse classification techniques,
including the support vector machine [15], artificial neural
network [16], and the naive Bayes algorithm [17], which are
combined to form a majority fault tolerance component within
the application architecture. In cases where an autonomous
system performs an action based on a classification, incorrect
classifications may be interpreted as component unreliability.
Thus, a classifier is reliable if it correctly classifies an
observation and unreliable otherwise. A fault tolerant classifier
therefore is capable of masking a single incorrect classification.

Sources of error in classification include noise, bias, and
variance. Bootstrap sampling [18] is an iterative method to
improve classifier performance. Given a training dataset, the
Bootstrap selects a subset uniformly at random with
replacement and a similar procedure is followed to select a
subset of the dataset for testing. Each round of testing enables
the accuracy of each classifier to be assessed to avoid
overfitting.

5 ILLUSTRATIONS

This section first derives an analytical expression for the
reliability of the architecture of an autonomous system's
software. It then describes the data used to train and test the
fault tolerant machine learning component. We then examine
the impact of reliability growth in the fault tolerant machine
learning component on application reliability. Finally, we
assess the correlation between pairs of machine learning
methods and compare the empirical reliability and analytical
reliability prediction.

5.1 Architecture-based software reliability expression

Figure 1 shows the architecture of a component-based
autonomous application and the inter-component transitions.
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Figure 1 Autonomous system application architecture

Component one, two, and three respectively represent
perception, decision-making, and execution, while the fourth
component is the mission completion state. Thus, control cycles
through components one through three in the sense-act loop.
For the sake of illustration, it is assumed that the perception
underlying component one is machine learning enabled.

The application architecture shown in Figure 1 maps to the
following algebraic transition probability matrix [7].

0 pi2 0 0

P= 0 0 p3 O

P31 0 0 P34

0 0 0 0
where entry p, , has been set to zero according to step one of
the architecture-based analysis approach given in Section 3.

(6)

Step two defines the four by four diagonal matrix with d;; = 7;
such that D - P of step three produces
0 LV 2P 0 0
0 0 T 0
— 2D2,3 (7)
T3P3,1 0 0 T3P3,4
0 0 0 0

Step four computes the fundamental matrix S = (I —Q)72,
while step five multiplies entry s;, by 7, to provide the
algebraic expression of application reliability in terms of its
architecture and component reliabilities
D12D23"1 12137,

E[R] =
[R] 1 — P12P23P31 1171273

(8)

5.2 Data Description

Machine learning algorithms were applied to the NASA
Turbofan Engine Degradation Simulation Data Set [19],
available from their Prognostics Data Repository. Engines were
run to failure. Operation is characterized by sequence of
discrete cycles, consisting of 21 sensor readings as well as three
operational settings. Four sets of data are included. Each data
set contains separate training and testing data, but both possess
the same format. Thus, perception in Figure 1 corresponds to
the state of health of a vehicle’s critical subsystem, namely the
engine. However, the architecture can be applied to other
applications of machine learning to enable autonomy in the
perception, decision-making, and execution loop.

To illustrate reliability growth of the systems within which
the fault tolerant machine learning resides, between ten and
ninety percent of the training data was used to train a support
vector machine, an artificial neural network, and the naive
Bayes algorithm. Fifty percent of the test data was then used to
quantify each algorithms accuracy [20]. Both the training and
test data were selected using the Bootstrap sampling method. In
all cases, the algorithms were trained to recommend
maintenance when it was predicted that there were less than 70
cycles of remaining useful life (RUL). Therefore, if the RUL
remains above this value until engine failure, the system may
experience system failure.

5.3 Impact of fault-tolerant machine learning on reliability of
architecture-based software

For the sake of illustration, we assume component one



performs the perception function according to the fault-tolerant
machine learning classifier described above. The reliability of
components two through four are held constant at r, = 0.93,
r3 = 0.95, and 1, = 1.0 for the sake of exposition.

Figure 2 shows the reliability growth of the system given
in Figure 1 and Equation (8) as the training sample size
increases the reliability of r;. To ensure comparability, the
individual classifiers were trained and tested with the same
subset of the data. Four cases are shown, namely the three cases
where the reliability of component one is characterized by a
single classifier, including the support vector machine, artificial
neural network, or naive Bayes classifier as well as the case
where all three are combined in a majority voting scheme.
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Figure 2 Impact of classifier accuracy on architecture-based
software reliability

The system reliability attained by each approach is
E[R]|;,=sym = 73.95%, E[R]|,,=ann = 66.39%,

E[R]|;,=ng = 69.90%, and E[R]|,1=RZ‘3 = 68.48%. Thus, the
support vector machine attained the highest reliability, followed
by majority voting because the ANN performs erratically and
exhibits correlation failure (inaccurate classification) with
SVM and NB, which we examine in greater detail in the next
example. While a fault-tolerant classifier that is more reliable
than the individual classifiers is desirable, the focus is assess
the accuracy of the analytical method described in Section 3.

5.4 Assessment of correlation between classifiers

Figure 3 shows the Pearson correlation coefficient between
the classifications of the SVM and NB classifiers throughout
the training process as well as the upper bound (pgyy np)
determined from Equation (5).
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Figure 3 Correlation between pair of classifiers and upper bound

Figure 3 shows that the correlation is positive, which is

expected because the classifiers are not totally random and
make correct predictions more often than not, so correct
predictions lead to positive correlation. Thus, as training
progresses and accuracy increases, so does correlation.
Moreover, the correlation is less than the upper bound,
indicating that application of the analytical expressions in
Section 3 are more likely to succeed. A similar analysis of the
correlations between the other two pairs of classifiers identified
similar trends and determined that the corresponding upper
bounds were also satisfied.

5.5 Comparison of analytical and empirical methods

To assess the accuracy of the analytical method presented
in Section 3, the empirical reliability (accuracy) and correlation
between each pair of machine learning methods as the amount
of sample data increased. Equation (2) was then applied to these
intermediate estimates of the component reliabilities and
correlations. Figure 4 shows the reliability estimate produced
by the analytical method and the empirical values produced by
the testing procedure described in Section 5.2.
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Figure 4 Analytical and empirical reliability assessments of fault
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tolerant machine learning component

The range of error between these methods was (—0.09,0.11),
which is not trivial. However, this error decreases as sample
size increases. The large variations in the reliability of the
neural network may also have contributed to this error. The
method described in Section 3 failed for 18 of 200 points,
primarily in the latter half of the training process between 0.5
and 0.9. Thus, in Figure 4 above and Figures 5 below, the trends
are drawn by simply connecting the point values before and
after these unsuccessful applications of the analytical method.
To further assess the error between the analytical and
empirical assessments in Figure 4, Figure 5 shows the minimum
and maximum error of estimates at each point during training.
For example, Figure 5 shows that after twenty percent of the
training had been conducted, the worst overestimate for any
value of sample size between 0.2 and 0.9 was slightly greater
than 0.1, whereas the worst overestimate was slightly less than
-0.09. However as sampling continued, to 0.5 the worst case
over and underestimates by the analytical method decreases to
below 0.1 and about -0.05 respectively. While the bounds on
the trend were not monotonic, both over and underestimates
decreased substantially as the sample size approached ninety
percent. These trends are promising, considering that only 200
samples were taken. Thus, after 180 samples, the estimate was



slightly below the horizontal line denoting zero error, indicating
that error remained, but was substantially reduced.
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Figure 5 Maximum and minimum error bounds

To further study the difference between the analytical and
empirical assessments, Figure 6 shows a histogram of the error
between the two methods as well as multiple fits of a normal
distribution to data to assess for convergence.
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Figure 6 Distribution of error between analytical and empirical
reliability assessments

The upper normal distribution was fit to all of the data,
including estimates made when between ten and ninety percent
of the data was used, whereas reduced sets omit a prefix. Thus,
subsets of errors observed from thirty, fifty, and seventy to
ninety were also use to fit normal distributions, which exhibit
decreasing variance. Figure 6 suggests that the errors were
approximately normally distributed, but that the errors are more
heavily concentrated about zero, which is desirable.

To complement graphical analysis, formal hypothesis tests
were applied. In each case, the null hypothesis H, is that the
errors between the analytical and empirical reliability estimates
are normally distributed, while the alternative H, is that the
errors are not normally distributed. Table 2 states the names,
test corresponding test statistics, and p-values.

Table 2: Hypothesis tests for normality

Test Name Test Statistic | p-value
D’Agostino and Pearson Test 6.87 | 0.0322
Jarque-Bera Test 11.20 | 0.0037
Anderson-Darling Test 1.78 | 0.0004
Kolmogorov-Smirnov Test 1.16 | 0.1354
K-S Marsaglia Method 1.16 | 0.1277
Shapiro-Wilk Test 0.97 | 0.0017

Table 2 indicates that the D’ Agostino and Person, Jarque-
Bera, Anderson-Darling, and Shapiro-Wilk tests reject the null
hypothesis at the 95% level of significance, whereas the
Kolmogorov-Smirnov and K-S Marsaglia tests do not reject the

null hypothesis at the 95% level of significance. While several
tests reject the null hypothesis, this is likely due to the heavy
concentration of errors around zero observed in Figure 6.

6 CONCLUSIONS AND FUTURE WORK

This paper presented an architecture-based software
reliability model where one or more components can be
characterized by fault tolerant machine learning. Moreover, an
analytical method to estimate the reliability of a majority
system with explicit correlation parameters was applied to the
accuracy and correlation data of three machine learning
algorithms and the predictions compared to empirical results.
The observed prediction errors of the analytical method ranged
between -0.09 and 0.11, but these errors decreased as the
amount of training data employed increased. We also examined
the distribution of the errors and found it was well characterized
by a normal distribution, but that the errors were heavily
centered around zero, suggesting that the analytical method
may be approximately asymptotically unbiased. Thus, the
analytical method can be used to complement empirical
reliability assessments during architecture design to identify
reliability requirements and corresponding training data
requirements.

Future research will seek to further develop the modeling
methods for application to autonomous system architectures as
well as analyze the statistical properties of the analytical
method more formally.
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