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SUMMARY & CONCLUSIONS

A large number of software reliability growth models have
been proposed in the literature. Many of these models have also
been the subject of optimization problems, including the
optimal release problem in which a decision-maker seeks to
minimize cost by balancing the cost of testing with field
failures. However, the majority of these optimal release
formulations are either unused or untested. In many cases,
researchers derive expressions and apply them to the complete
set of failure data in order to identify the time at which cost was
minimized, but this is clearly unusable, since it is not possible
to go back in time to make a release decision. The only other
implicit strategy implied by these optimal release formulations
is to refit a model every time a failure occurs and to assess if the
optimal release time has past or if additional testing should be
performed.

To assess these limitations, which prevent the application
of software reliability growth models in practice, this paper
presents an online approach to software optimal release
planning. In this approach, the model is periodically refit and
optimal release time updated. We objectively compare the
quality of decisions by comparing the ratio of the cost achieved
by a release decision and the unknown true optimum, which
only becomes known after the complete data is observed. We
also consider a more conservative approach, where the release
recommendation must be satisfied for more than one
observation period. Our results indicate that the optimal release
strategy implied by past studies, which would release software
after a single observation can be suboptimal with respect to cost
attained and that a more conservative approach that defers
release until release is recommended in multiple successive
observation periods may be more appropriate. The approach
can thus complement decision-maker judgement.

1 INTRODUCTION

Software reliability growth modeling (SRGM) [1] is a
well-established  methodology that enables multiple
quantitative inferences about software during the testing
process, including optimal release time [2], often to minimize
cost subject to a reliability constraint. While past studies have
derived "policies" to determine if the optimal release time has

passed or how much additional time is required, no previous
studies have described practical methods on how to apply these
policies during the testing process.

Goel and Okumoto [2] were the first to formulate and solve
the optimal release problem in the context of software
reliability, considering reliability and cost criteria. Koch and
Kubat [3] incorporated a penalty cost for the delay of software
release. Ross [4] discussed estimation of error rate and
developed a stopping rule to identify software release time
considering exponential failure rate. Yamada and Osaki [5-6]
modeled cost and reliability as multiple objectives. Leung [7]
presented a non-homogeneous Poisson process (NHPP) based
optimal release problem to minimize cost of testing and
debugging and maximize reliability. Kapur and Garg [8]
studied optimal release under a model with imperfect
debugging, while Pham [9] considered imperfect debugging
with random life cycle duration and penalty cost. The models
by Pham and Zhang [10-11] modeled fault removal times,
warranty cost, and risk of software failures. Huang and Lyu [12-
13] characterized testing efficiency with a generalized logistic
testing effort function. Lin et al. [14] derived optimal release
policies considering cost and reliability criteria for multiple
changepoint models, while Inoue et al. [15] derived optimal
release time expressions for single changepoint models
incorporating testing effort. Yang et al. [16] proposed a method
to manage the risk associated with uncertainty in the expected
cost. Xie [17] presented an optimal software release policy
under parametric uncertainty, enabling decisions according to a
user's risk tolerance.

This paper proposes an online method to guide release
decisions, which explicitly distinguishes the true cost and
optimal release time from predictions made by software
reliability growth models. Unlike past studies, the proposed
approach acknowledges that identifying a globally optimal
release time is not possible without knowledge of the full failure
data set. Instead, the approach aspires to come as close to the
true optimum as possible, which can only be assessed after
testing is complete. We apply the method with a model and
dataset from the literature. Our results indicate that robust
optimal release policies are needed to offer practical guidance
during testing as failure data becomes available.

The remainder of the paper is organized as follows: Section



2 briefly reviews software reliability growth models. Section 3
discusses parameter estimation methods, including update rules
of an Expectation Conditional Maximization algorithm as well
as expressions to obtain initial parameter estimates. Section 4
derives cost optimal release policies for NHPP SRGM and
proposes an iterative approach to guide optimal release
decisions as testing data becomes available. Section 5 illustrates
the approach through a series of examples, while Section 6
offers conclusions and directions for future research.

2 NON-HOMOGENEOQOUS POISSON PROCESS SOFTWARE
RELIABILITY GROWTH MODELS

This section provides a brief overview of NHPP software
reliability growth models and presents the SRGM to which the
proposed approach is applied.

2.1 NHPP SRGM

The non-homogeneous Poisson process is a stochastic
process [18] that counts the number of events observed as a
function of time. In the context of software reliability, the
NHPP counts the number of faults detected by time t. This
counting process is characterized by a mean value function
(MVF) m(t), which can assume a variety of forms. Many MVF
can be written

m(t) =axF(t) @)
where a is interpreted as the expected number of faults that
would be discovered if debugging was performed indefinitely
and F(t) is the CDF of a continuous probability distribution
characterizing the software fault detection process.

The MVF of the Goel-Okumoto model (GO) [19] is
m(t) = a(l —e™) )
where a is interpreted as the number of faults to be detected
with infinite testing and b is the fault detection rate.

2.2 Parameter estimation

This section describes methods to estimate the parameters
of a software reliability model, including maximum likelihood
estimation and the expectation conditional maximization
algorithm as well as a method to estimate initial parameter
values.

2.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation maximizes the likelihood
function, also known as the joint distribution of the failure data.
Commonly, the logarithm of the likelihood function is
maximized because taking the logarithm of the likelihood
function enables simplification and the monotonicity of the
logarithm ensures that the maximum of the log-likelihood
function is equivalent to maximization of the likelihood
function.

Failure time data consists of a vector of individual failure
times T = (ty,t,, ..., t,) with density function f(t;;®). The
log-likelihood function of a failure times data set is

LL(t;0) = —m(t,) + Z log(A(t))) 3)

d . . .
where A(t) = % is the instantaneous failure rate.

2.2.2 Expectation Conditional Maximization (ECM)
Algorithm

We employ the Expectation Conditional Maximization
[20] algorithm to identify the maximum likelihood estimates of
the model considered in this study. The ECM algorithm [21]
simplifies computation by dividing a single M-step of the EM
algorithm [22] into p conditional-maximization (CM) steps,
where p denotes the number of model parameters. Unlike the
EM algorithm which solves a system of simultaneous equations
as a single p-dimensional M-step, the CM steps of the ECM
algorithm update only one parameter at a time holding all others
constant and thus reduces the maximum likelihood estimation
process to a sequence of p one-dimensional problems.

The CM-steps of the GO model parameters are obtained by
first substituting the MVF of the GO model in Equation (2) into
the log-likelihood function given in Equation (3) and taking the
partial derivative with respect to a, the maximum likelihood

estimate of parameter a is
n

= 4
1—e bt

Substituting Equation (4) into Equation (3) produces the
reduced log-likelihood (RLL) function, with only one unknown
parameter b, which can be estimated with a single application
of a numerical root finding algorithm. Thus, in cases such as
this, where the RLL contains only one parameter, the ECM
algorithm reduces to a simple root finding problem, requiring
only a single iteration. Thus, in this case, the CM-step for
parameter b"’ obtained by differentiating the RLL with respect
to b is identical to the traditional maximum likelihood estimate

n
b’ = (5)

nt,
1—eb"tn
Parameter b" in Equation (5) must be solved numerically since
it does not possess closed form solution.

n .
i=1"%

2.2.3 Initial Parameter Estimation

For a mean value function of the form m(t) = a X F(t),
an initial estimate of the number of faults (a) is simply the
observed number of faults (n), while the remaining initial
parameter estimates can be determined by maximizing the log-
likelihood function of the probability density function f(-; ©) =
0 and solving to obtain closed-form expressions for these
additional parameters.

By the first-order optimality condition, initial estimates of
parameter a and the additional parameters of the probability
distribution function f(t; ©) are given by [23]

a® =N (6)

and
N

4]
0w = Z%Iog(f(ti; 0)) =0
i=
In practice, N is replaced with n in Equation (6) when deriving
initial parameter estimates.
The initial estimate of the scale parameter of the GO

(7



SRGM obtained from Equations (2) and (7) is
n
b© = ®)

i=1 t;
3 OPTIMAL RELEASE POLICY BASED ON COST
CRITERIA

During software testing, one challenge is to identify the
optimal time to release the software. However, there is
significant cost associated with development, testing, and
debugging to ensure the functionality is implemented and is
reliable. Optimal release planning provides a quantitative
strategy to assess the trade-offs between reliability, testing time,
and life cycle cost. This section presents a cost model and
derives the optimal release time. Several researchers have
proposed cost models in previous research [15, 24-25]. Let T be
the length of the software lifecycle and ¢t the time of software
release, then the estimated cost to release the software under
model x [26-27] is

Cx(t) = cxmy () + ¢5 (Mo (T) — Mo (8)) + c5t )

where m,, (t) is the MVF of model x, ¢, is the cost of removing
a fault during testing, c, is the cost of removing a fault after
release (¢, > ¢;), and c3 is the cost of testing per unit time. The
ultimate goal is to identify ¢t < T that minimizes the true cost

c(t) = N(t) + co(N(T) = N(t)) + cst (10)

where N (t) is the actual number of faults discovered by time ¢t.

However, the true optimal release time must be based on
the estimate under model x, denoted t, which is computed by
solving

dc,(t) _
— =0 (11)

The optimal release time of the GO NHPP SRGM is [2]

= 1l ab(c, —¢1)
b 8 C3

3.1 Online optimal release procedure

(12)

This section presents an online optimal approach to guide
the release decision process. Past studies [17] typically perform
the following three steps to estimate the optimal release time:

e (S.1) Fit a model to the complete failure data to obtain
parameter estimates.

e (S.2) Compute the optimal release time, t*, by substituting
the MLEs obtained in step (S.1) into Equation (9).

e (S.3) Plot the cost in Equation (9) as a function of t
according to the MLEs obtained in step (S.1) to illustrate
the trend and identify the minimum.

The traditional approach has a major disadvantage because

many times the software release is recommended before the end

of testing, which is computed only after the complete data is
collected. In practical situations, it is not possible to go back in
time to release the software, which limits the usability of this
approach in practice. The only other alternative implied by the
literature Is to use Equation (12) and release the software after
the present time t exceeds t*.

The online optimal release procedure developed through
the illustrations addresses the limitation associated with the
traditional approaches by periodically estimating optimal
release as data becomes available. The enhanced approach
exhibits some error because it is impossible to precisely know
the future fault detection process.

4 ILLUSTRATIONS

This section demonstrates the need for a robust online
optimal release policy. The first example illustrates the
traditional method to estimate optimal release time from
complete data. The second example illustrates the online
optimal release procedure implied by past studies, while the
third example illustrates the potential for substantial
improvement over existing and implied methods. The examples
are provided in the context of the GO model applied to the
CSRI1 dataset [28].

4.1 Optimal release time considering complete data

This section briefly reviews the most basic method
employed to identify the cost optimal release time when all
failure data is available. It then introduces the notion of true cost
as a method to assess the effectiveness of any retroactive or
online approach.

Figure 1 shows the estimated cost of release time
determined by the GO model when applied with the entire
CSRI1 data set [28], with cost parameters ¢; = $100, ¢, =
$15,000, ¢; = $20 and the software lifecycle, T = 200,000
for the sake of illustration.

Cost (c(t))

2 4 e '
Time (t) «10%

Figure 1: Impact of release time on cost considering GO for CSR1

When the models are fit to the entire data set, the optimal
release time is t;, = 60,069 with a corresponding estimated
optimal cost denoted by the dot at the minimum in Figure 1 at
co(téo) = 1.71 million. However, there is no clear indication
how accurate this release time and cost actually are.

To connect theory with practice, Figure 2 plots the true cost
for the CSRI1 data set [28], where Equation (10) has been
employed to apply an expense of ¢; for each fault discovered
before release and a penalty of ¢, for each fault not discovered
prior to the release time. Figure 2 exhibits a sharp drop at each
fault discovery time t; because this corresponds to one less post
release failure, which would incur a higher cost. Similarly,
periods of testing time with no faults exhibit a slow increase
corresponding to the cost of testing per unit time c3. The true
optimal release time denoted by the dot in Figure 2 and



corresponding cost are t* = 79,397 and ¢ = 1.92 million,
whereas the cost incurred at the time recommended by the GO
model shown in Figure 1 incur cost of 1.986 million, which is
1.039 times higher than the true minimal cost. This observation
indicates that even if it were possible to utilize the entire failure
history and then go back in time to make a decision, the optimal

0410
23
S22
k7 I
Q
o
32.1
L [
2
2 3 4 6 7 8 9 10 11
Time (t) «10%

Figure 2: True cost assuming n faults

release time recommended by this model would exhibit
approximately four percent inefficiency relative to the true
optimum.

For the sake of concreteness, we have assumed that the
number of faults to be observed is the number of faults observed
by time t,,. The authors acknowledge that it is unlikely that only
the n = 397 faults observed by the end of testing at time ¢,
were present in the software. Complete data sets that contain all
failures throughout the operational lifetime T can be used in
place of data sets from the research literature such as this one,
which lack a complete history. Thus, while this assumption may
not hold for the data considered here, it serves the purpose of
establishing a model independent approach to objectively
evaluate the effectiveness of alternative model predictions.

4.2 Online estimation of release time

In order to develop a practical online approach, Figure 3
shows the release time determined from the GO model
according to the failure data observed up until time ¢ as well as
the line of unit slope. Thus, Figure 3 compares the present time
(linearly increasing curve) to the release time estimated from
progressively larger prefixes of the CSR1 dataset fit to the GO
model, which is first applied when approximately 8% of the
total testing time has passed or 8,500 time units. The model is
applied updated each additional 500 time units and the optimal
release recomputed.

Therefore, release times above the line of unit slope indicate
that the release time recommended by the model is greater than
the present time and should therefore be subject to additional
testing, whereas times below this line suggest that the optimal
release time has already passed. Moreover, the farther a model's
recommended release time falls below the present time suggests
that the software could be released with greater confidence. As
time progresses, it can be seen that the release times of the GO
model in Equation (12) first cross below the line at t;, =
30,500 with corresponding true costs c(tfp) = $2.32 million
computed using Equation (10). The ratio between the true costs
achieved at the recommended time and the true minimum cost

Estimated release time (t*)
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Figure 3: Estimated release time for GO model on CSR1 data
is 1.208.
4.3 Sensitivity of cost ratio to model recommendation

A logical extension to the optimal release decision implied
by Equation (12) is to require that the model recommend release
for more than one successive time interval.

Figure 4 examines how this approach fares by plotting the
ratio of the actual and optimal cost (1.91 million), starting from
the first time (t;o = 30,500) at which release was
recommended.

1225
1.200
1175
1.150

=)

F1a25

Z1.100

5] |
1.075/
1.050
1.025

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Number of steps

Figure 4: Sensitivity of cost ratio to model release recommendation

Figure 4 indicates that the cost ratio continues to decrease
below 1.208, which was recommended by Equation (12) at
teo = 30,500. Thus, if the software is not released the very first
time Equation (12) is satisfied, then the cost ratio is nearly
minimized at the 42™% time step or t = 51,000 time units, the
cost ratio decreases to 1.00269. Similarly, deferring release for
just 20 time steps reduces the cost ratio to approximately 1.05.
These results indicate that optimal release policies implied by
dozens of past studies are potentially far from optimal and that
more robust online release methods are needed to make this
application of software reliability growth models feasible in
practice.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a procedure for online estimation of
optimal release time. The examples illustrate the potential for
substantial improvement over approaches implied by past
research. The data set considered demonstrated that a method
utilizing the complete data is suboptimal as are methods that
release software the first time the optimal release expression is
satisfied. Examination of the ratio attained between actual and
optimal costs indicated that a robust online approach that defers



release may further reduce cost.

Future research requires developing a model selection
strategy based on goodness-of-fit measures, release
recommendations considering cost and reliability, and
accelerated algorithms to improve performance of the model
fitting while subsetting the data. However, more critical
reflection on the practical role of NHPP SRGM is needed to
determine if failure time event statistics is sufficient to
accurately predict future fault detection, software reliability
growth, and optimal release. Software engineering is a complex
process and the underlying activities are non-trivial. Greater
dialog among software engineers, testers, and modelers is likely
needed to address the optimal release problem in a truly
satisfactory manner.
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