
Online Optimal Release Time for Non-homogeneous Poisson 

Process Software Reliability Growth Model 

Vidhyashree Nagaraju, MS, University of Massachusetts Dartmouth, USA 

Lance Fiondella, PhD, University of Massachusetts Dartmouth, USA 

Key Words: Software reliability, online optimal release policy, non-homogeneous Poisson process, maximum likelihood 

estimation 

SUMMARY & CONCLUSIONS 

A large number of software reliability growth models have 

been proposed in the literature. Many of these models have also 

been the subject of optimization problems, including the 

optimal release problem in which a decision-maker seeks to 

minimize cost by balancing the cost of testing with field 

failures. However, the majority of these optimal release 

formulations are either unused or untested. In many cases, 

researchers derive expressions and apply them to the complete 

set of failure data in order to identify the time at which cost was 

minimized, but this is clearly unusable, since it is not possible 

to go back in time to make a release decision. The only other 

implicit strategy implied by these optimal release formulations 

is to refit a model every time a failure occurs and to assess if the 

optimal release time has past or if additional testing should be 

performed. 

To assess these limitations, which prevent the application 

of software reliability growth models in practice, this paper 

presents an online approach to software optimal release 

planning. In this approach, the model is periodically refit and 

optimal release time updated. We objectively compare the 

quality of decisions by comparing the ratio of the cost achieved 

by a release decision and the unknown true optimum, which 

only becomes known after the complete data is observed. We 

also consider a more conservative approach, where the release 

recommendation must be satisfied for more than one 

observation period. Our results indicate that the optimal release 

strategy implied by past studies, which would release software 

after a single observation can be suboptimal with respect to cost 

attained and that a more conservative approach that defers 

release until release is recommended in multiple successive 

observation periods may be more appropriate. The approach 

can thus complement decision-maker judgement.                                                   

1 INTRODUCTION 

Software reliability growth modeling (SRGM) [1] is a 

well-established methodology that enables multiple 

quantitative inferences about software during the testing 

process, including optimal release time [2], often to minimize 

cost subject to a reliability constraint. While past studies have 

derived "policies" to determine if the optimal release time has 

passed or how much additional time is required, no previous 

studies have described practical methods on how to apply these 

policies during the testing process.  

Goel and Okumoto [2] were the first to formulate and solve 

the optimal release problem in the context of software 

reliability, considering reliability and cost criteria. Koch and 

Kubat [3] incorporated a penalty cost for the delay of software 

release. Ross [4] discussed estimation of error rate and 

developed a stopping rule to identify software release time 

considering exponential failure rate. Yamada and Osaki [5-6] 

modeled cost and reliability as multiple objectives. Leung [7] 

presented a non-homogeneous Poisson process (NHPP) based 

optimal release problem to minimize cost of testing and 

debugging and maximize reliability. Kapur and Garg [8] 

studied optimal release under a model with imperfect 

debugging, while Pham [9] considered imperfect debugging 

with random life cycle duration and penalty cost. The models 

by Pham and Zhang [10-11] modeled fault removal times, 

warranty cost, and risk of software failures. Huang and Lyu [12-

13] characterized testing efficiency with a generalized logistic 

testing effort function. Lin et al. [14] derived optimal release 

policies considering cost and reliability criteria for multiple 

changepoint models, while Inoue et al. [15] derived optimal 

release time expressions for single changepoint models 

incorporating testing effort. Yang et al. [16] proposed a method 

to manage the risk associated with uncertainty in the expected 

cost. Xie [17] presented an optimal software release policy 

under parametric uncertainty, enabling decisions according to a 

user's risk tolerance. 

This paper proposes an online method to guide release 

decisions, which explicitly distinguishes the true cost and 

optimal release time from predictions made by software 

reliability growth models. Unlike past studies, the proposed 

approach acknowledges that identifying a globally optimal 

release time is not possible without knowledge of the full failure 

data set. Instead, the approach aspires to come as close to the 

true optimum as possible, which can only be assessed after 

testing is complete. We apply the method with a model and 

dataset from the literature. Our results indicate that robust 

optimal release policies are needed to offer practical guidance 

during testing as failure data becomes available. 

The remainder of the paper is organized as follows: Section 



2 briefly reviews software reliability growth models. Section 3 

discusses parameter estimation methods, including update rules 

of an Expectation Conditional Maximization algorithm as well 

as expressions to obtain initial parameter estimates. Section 4 

derives cost optimal release policies for NHPP SRGM and 

proposes an iterative approach to guide optimal release 

decisions as testing data becomes available. Section 5 illustrates 

the approach through a series of examples, while Section 6 

offers conclusions and directions for future research. 

2 NON-HOMOGENEOUS POISSON PROCESS SOFTWARE 

RELIABILITY GROWTH MODELS 

This section provides a brief overview of NHPP software 

reliability growth models and presents the SRGM to which the 

proposed approach is applied. 

2.1 NHPP SRGM 

The non-homogeneous Poisson process is a stochastic 

process [18] that counts the number of events observed as a 

function of time. In the context of software reliability, the 

NHPP counts the number of faults detected by time 𝑡. This 

counting process is characterized by a mean value function 

(MVF) 𝑚(𝑡), which can assume a variety of forms. Many MVF 

can be written 

𝑚(𝑡) = 𝑎 × 𝐹(𝑡)                                   (1) 

where 𝑎 is interpreted as the expected number of faults that 

would be discovered if debugging was performed indefinitely 

and 𝐹(𝑡) is the CDF of a continuous probability distribution 

characterizing the software fault detection process. 

The MVF of the Goel-Okumoto model (GO) [19] is  

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡)                              (2) 

where 𝑎 is interpreted as the number of faults to be detected 

with infinite testing and 𝑏 is the fault detection rate. 

2.2 Parameter estimation  

This section describes methods to estimate the parameters 

of a software reliability model, including maximum likelihood 

estimation and the expectation conditional maximization 

algorithm as well as a method to estimate initial parameter 

values. 

2.2.1 Maximum Likelihood Estimation 

Maximum likelihood estimation maximizes the likelihood 

function, also known as the joint distribution of the failure data. 

Commonly, the logarithm of the likelihood function is 

maximized because taking the logarithm of the likelihood 

function enables simplification and the monotonicity of the 

logarithm ensures that the maximum of the log-likelihood 

function is equivalent to maximization of the likelihood 

function. 

Failure time data consists of a vector of individual failure 

times 𝐓 = ⟨ 𝑡1, 𝑡2, … , 𝑡𝑛⟩ with density function 𝑓(𝑡𝑖; Θ). The 

log-likelihood function of a failure times data set is 

𝐿𝐿(𝑡𝑖; Θ) = −𝑚(𝑡𝑛) + ∑ log(𝜆(𝑡𝑖))

𝑛

𝑖=1

                  (3) 

where 𝜆(𝑡) =
𝑑𝑚(𝑡)

𝑑𝑡
 is the instantaneous failure rate. 

2.2.2 Expectation Conditional Maximization (ECM) 

Algorithm  

We employ the Expectation Conditional Maximization 

[20] algorithm to identify the maximum likelihood estimates of 

the model considered in this study. The ECM algorithm [21] 

simplifies computation by dividing a single M-step of the EM 

algorithm [22] into 𝑝 conditional-maximization (CM) steps, 

where 𝑝 denotes the number of model parameters. Unlike the 

EM algorithm which solves a system of simultaneous equations 

as a single 𝑝-dimensional M-step, the CM steps of the ECM 

algorithm update only one parameter at a time holding all others 

constant and thus reduces the maximum likelihood estimation 

process to a sequence of 𝑝 one-dimensional problems. 

The CM-steps of the GO model parameters are obtained by 

first substituting the MVF of the GO model in Equation (2) into 

the log-likelihood function given in Equation (3) and taking the 

partial derivative with respect to 𝑎, the maximum likelihood 

estimate of parameter 𝑎 is 

𝑎̂ =
𝑛

1 − 𝑒−𝑏𝑡𝑛
                                   (4) 

Substituting Equation (4) into Equation (3) produces the 

reduced log-likelihood (RLL) function, with only one unknown 

parameter 𝑏, which can be estimated with a single application 

of a numerical root finding algorithm. Thus, in cases such as 

this, where the RLL contains only one parameter, the ECM 

algorithm reduces to a simple root finding problem, requiring 

only a single iteration. Thus, in this case, the CM-step for 

parameter 𝑏′′ obtained by differentiating the RLL with respect 

to 𝑏 is identical to the traditional maximum likelihood estimate 

𝑏′′ =
𝑛

∑ 𝑡𝑖
𝑛
𝑖=1 −

𝑛 𝑡𝑛

1 − 𝑒𝑏′′𝑡𝑛

                          (5) 

Parameter 𝑏′′ in Equation (5) must be solved numerically since 

it does not possess closed form solution. 

2.2.3 Initial Parameter Estimation 

For a mean value function of the form 𝑚(𝑡) = 𝑎 × 𝐹(𝑡), 

an initial estimate of the number of faults (𝑎) is simply the 

observed number of faults (𝑛), while the remaining initial 

parameter estimates can be determined by maximizing the log-

likelihood function of the probability density function 𝑓(⋅; Θ) =
0 and solving to obtain closed-form expressions for these 

additional parameters. 

By the first-order optimality condition, initial estimates of 

parameter 𝑎 and the additional parameters of the probability 

distribution function 𝑓(𝑡; Θ) are given by [23] 

𝑎(0) =  𝑁                                              (6) 

and 

Θ(0) ∶= ∑
𝜕

𝜕Θ
log(𝑓(𝑡𝑖; Θ))

𝑁

𝑖=1

= 𝟎                      (7) 

In practice, 𝑁 is replaced with 𝑛 in Equation (6) when deriving 

initial parameter estimates. 

The initial estimate of the scale parameter of the GO 



SRGM obtained from Equations (2) and (7) is 

𝑏(0) =
𝑛

∑ 𝑡𝑖
𝑛
𝑖=1

                                         (8) 

3 OPTIMAL RELEASE POLICY BASED ON COST 

CRITERIA 

During software testing, one challenge is to identify the 

optimal time to release the software. However, there is 

significant cost associated with development, testing, and 

debugging to ensure the functionality is implemented and is 

reliable. Optimal release planning provides a quantitative 

strategy to assess the trade-offs between reliability, testing time, 

and life cycle cost. This section presents a cost model and 

derives the optimal release time. Several researchers have 

proposed cost models in previous research [15, 24-25]. Let 𝑇 be 

the length of the software lifecycle and 𝑡 the time of software 

release, then the estimated cost to release the software under 

model 𝑥 [26-27] is 

𝑐𝑥(𝑡) = 𝑐1𝑚𝑥(𝑡) + 𝑐2(𝑚𝑥(𝑇) − 𝑚𝑥(𝑡)) + 𝑐3𝑡            (9) 

where 𝑚𝑥(𝑡) is the MVF of model 𝑥, 𝑐1 is the cost of removing 

a fault during testing, 𝑐2 is the cost of removing a fault after 

release (𝑐2 > 𝑐1), and 𝑐3 is the cost of testing per unit time. The 

ultimate goal is to identify 𝑡 < 𝑇 that minimizes the true cost  

𝑐(𝑡) = 𝑐1𝑁(𝑡) + 𝑐2(𝑁(𝑇) − 𝑁(𝑡)) + 𝑐3𝑡              (10) 

where 𝑁(𝑡) is the actual number of faults discovered by time 𝑡. 

However, the true optimal release time must be based on 

the estimate under model 𝑥, denoted 𝑡𝑥
∗, which is computed by 

solving  
𝜕𝑐𝑥(𝑡)

𝜕𝑡
= 0                                          (11) 

The optimal release time of the GO NHPP SRGM is [2] 

𝑡∗ =
1

𝑏
log (

𝑎𝑏(𝑐2 − 𝑐1)

𝑐3

)                           (12) 

3.1 Online optimal release procedure 

This section presents an online optimal approach to guide 

the release decision process. Past studies [17] typically perform 

the following three steps to estimate the optimal release time: 

 (S.1) Fit a model to the complete failure data to obtain 

parameter estimates. 

 (S.2) Compute the optimal release time, 𝑡∗, by substituting 

the MLEs obtained in step (S.1) into Equation (9). 

 (S.3) Plot the cost in Equation (9) as a function of 𝑡 

according to the MLEs obtained in step (S.1) to illustrate 

the trend and identify the minimum. 

The traditional approach has a major disadvantage because 

many times the software release is recommended before the end 

of testing, which is computed only after the complete data is 

collected. In practical situations, it is not possible to go back in 

time to release the software, which limits the usability of this 

approach in practice. The only other alternative implied by the 

literature Is to use Equation (12) and release the software after 

the present time 𝑡 exceeds 𝑡∗. 

The online optimal release procedure developed through 

the illustrations addresses the limitation associated with the 

traditional approaches by periodically estimating optimal 

release as data becomes available. The enhanced approach 

exhibits some error because it is impossible to precisely know 

the future fault detection process. 

4 ILLUSTRATIONS 

This section demonstrates the need for a robust online 

optimal release policy. The first example illustrates the 

traditional method to estimate optimal release time from 

complete data. The second example illustrates the online 

optimal release procedure implied by past studies, while the 

third example illustrates the potential for substantial 

improvement over existing and implied methods. The examples 

are provided in the context of the GO model applied to the 

CSR1 dataset [28]. 

4.1  Optimal release time considering complete data 

This section briefly reviews the most basic method 

employed to identify the cost optimal release time when all 

failure data is available. It then introduces the notion of true cost 

as a method to assess the effectiveness of any retroactive or 

online approach. 

Figure 1 shows the estimated cost of release time 

determined by the GO model when applied with the entire 

CSR1 data set [28], with cost parameters 𝑐1 = $100, 𝑐2 =
$15,000, 𝑐3 = $20 and the software lifecycle, 𝑇 = 200,000 

for the sake of illustration. 

When the models are fit to the entire data set, the optimal 

release time is 𝑡𝐺𝑂
∗ = 60,069 with a corresponding estimated 

optimal cost denoted by the dot at the minimum in Figure 1 at 

𝑐𝐺𝑂(𝑡𝐺𝑂
∗ ) = 1.71 million. However, there is no clear indication 

how accurate this release time and cost actually are. 

To connect theory with practice, Figure 2 plots the true cost 

for the CSR1 data set [28], where Equation (10) has been 

employed to apply an expense of 𝑐1 for each fault discovered 

before release and a penalty of 𝑐2 for each fault not discovered 

prior to the release time. Figure 2 exhibits a sharp drop at each 

fault discovery time 𝑡𝑖 because this corresponds to one less post 

release failure, which would incur a higher cost. Similarly, 

periods of testing time with no faults exhibit a slow increase 

corresponding to the cost of testing per unit time 𝑐3. The true 

optimal release time denoted by the dot in Figure 2 and 

Figure 1: Impact of release time on cost considering GO for CSR1   



corresponding cost are 𝑡∗ = 79,397 and 𝑐 = 1.92 million, 

whereas the cost incurred at the time recommended by the GO 

model shown in Figure 1 incur cost of 1.986 million, which is 

1.039 times higher than the true minimal cost. This observation 

indicates that even if it were possible to utilize the entire failure 

history and then go back in time to make a decision, the optimal 

release time recommended by this model would exhibit 

approximately four percent inefficiency relative to the true 

optimum. 

For the sake of concreteness, we have assumed that the 

number of faults to be observed is the number of faults observed 

by time 𝑡𝑛. The authors acknowledge that it is unlikely that only 

the 𝑛 = 397 faults observed by the end of testing at time 𝑡𝑛 

were present in the software. Complete data sets that contain all 

failures throughout the operational lifetime 𝑇 can be used in 

place of data sets from the research literature such as this one, 

which lack a complete history. Thus, while this assumption may 

not hold for the data considered here, it serves the purpose of 

establishing a model independent approach to objectively 

evaluate the effectiveness of alternative model predictions. 

4.2 Online estimation of release time 

In order to develop a practical online approach, Figure 3 

shows the release time determined from the GO model 

according to the failure data observed up until time 𝑡 as well as 

the line of unit slope. Thus, Figure 3 compares the present time 

(linearly increasing curve) to the release time estimated from 

progressively larger prefixes of the CSR1 dataset fit to the GO 

model, which is first applied when approximately 8% of the 

total testing time has passed or 8,500 time units. The model is 

applied updated each additional 500 time units and the optimal 

release recomputed.  

Therefore, release times above the line of unit slope indicate 

that the release time recommended by the model is greater than 

the present time and should therefore be subject to additional 

testing, whereas times below this line suggest that the optimal 

release time has already passed. Moreover, the farther a model's 

recommended release time falls below the present time suggests 

that the software could be released with greater confidence. As 

time progresses, it can be seen that the release times of the GO 

model in Equation (12) first cross below the line at 𝑡𝐺𝑂
∗ =

30,500 with corresponding true costs 𝑐(𝑡𝐺𝑂
∗ ) = $2.32 million 

computed using Equation (10). The ratio between the true costs 

achieved at the recommended time and the true minimum cost 

is 1.208. 

4.3 Sensitivity of cost ratio to model recommendation 

A logical extension to the optimal release decision implied 

by Equation (12) is to require that the model recommend release 

for more than one successive time interval. 

Figure 4 examines how this approach fares by plotting the 

ratio of the actual and optimal cost (1.91 million), starting from 

the first time (𝑡𝐺𝑂
∗ = 30,500) at which release was 

recommended. 

Figure 4 indicates that the cost ratio continues to decrease 

below 1.208, which was recommended by Equation (12) at 

𝑡𝐺𝑂
∗ = 30,500. Thus, if the software is not released the very first 

time Equation (12) is satisfied, then the cost ratio is nearly 

minimized at the 42𝑛𝑑 time step or 𝑡 = 51,000 time units, the 

cost ratio decreases to 1.00269. Similarly, deferring release for 

just 20 time steps reduces the cost ratio to approximately 1.05. 

These results indicate that optimal release policies implied by 

dozens of past studies are potentially far from optimal and that 

more robust online release methods are needed to make this 

application of software reliability growth models feasible in 

practice. 

5 CONCLUSIONS AND FUTURE WORK 

This paper presents a procedure for online estimation of 

optimal release time. The examples illustrate the potential for 

substantial improvement over approaches implied by past 

research. The data set considered demonstrated that a method 

utilizing the complete data is suboptimal as are methods that 

release software the first time the optimal release expression is 

satisfied. Examination of the ratio attained between actual and 

optimal costs indicated that a robust online approach that defers 

Figure 2: True cost assuming n faults  

Figure 4: Sensitivity of cost ratio to model release recommendation 

Figure 3: Estimated release time for GO model on CSR1 data   



release may further reduce cost. 

Future research requires developing a model selection 

strategy based on goodness-of-fit measures, release 

recommendations considering cost and reliability, and 

accelerated algorithms to improve performance of the model 

fitting while subsetting the data. However, more critical 

reflection on the practical role of NHPP SRGM is needed to 

determine if failure time event statistics is sufficient to 

accurately predict future fault detection, software reliability 

growth, and optimal release. Software engineering is a complex 

process and the underlying activities are non-trivial. Greater 

dialog among software engineers, testers, and modelers is likely 

needed to address the optimal release problem in a truly 

satisfactory manner. 
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