
Online Optimal Release Time for Non-homogeneous Poisson

Process Software Reliability Growth Model

Vidhyashree Nagaraju, MS, University of Massachusetts Dartmouth, USA

Lance Fiondella, PhD, University of Massachusetts Dartmouth, USA

Key Words: Software reliability, online optimal release policy, non-homogeneous Poisson process, maximum likelihood

estimation

SUMMARY & CONCLUSIONS

A large number of software reliability growth models have

been proposed in the literature. Many of these models have also

been the subject of optimization problems, including the

optimal release problem in which a decision-maker seeks to

minimize cost by balancing the cost of testing with field

failures. However, the majority of these optimal release

formulations are either unused or untested. In many cases,

researchers derive expressions and apply them to the complete

set of failure data in order to identify the time at which cost was

minimized, but this is clearly unusable, since it is not possible

to go back in time to make a release decision. The only other

implicit strategy implied by these optimal release formulations

is to refit a model every time a failure occurs and to assess if the

optimal release time has past or if additional testing should be

performed.

To assess these limitations, which prevent the application

of software reliability growth models in practice, this paper

presents an online approach to software optimal release

planning. In this approach, the model is periodically refit and

optimal release time updated. We objectively compare the

quality of decisions by comparing the ratio of the cost achieved

by a release decision and the unknown true optimum, which

only becomes known after the complete data is observed. We

also consider a more conservative approach, where the release

recommendation must be satisfied for more than one

observation period. Our results indicate that the optimal release

strategy implied by past studies, which would release software

after a single observation can be suboptimal with respect to cost

attained and that a more conservative approach that defers

release until release is recommended in multiple successive

observation periods may be more appropriate. The approach

can thus complement decision-maker judgement.

1 INTRODUCTION

Software reliability growth modeling (SRGM) [1] is a

well-established methodology that enables multiple

quantitative inferences about software during the testing

process, including optimal release time [2], often to minimize

cost subject to a reliability constraint. While past studies have

derived "policies" to determine if the optimal release time has

passed or how much additional time is required, no previous

studies have described practical methods on how to apply these

policies during the testing process.

Goel and Okumoto [2] were the first to formulate and solve

the optimal release problem in the context of software

reliability, considering reliability and cost criteria. Koch and

Kubat [3] incorporated a penalty cost for the delay of software

release. Ross [4] discussed estimation of error rate and

developed a stopping rule to identify software release time

considering exponential failure rate. Yamada and Osaki [5-6]

modeled cost and reliability as multiple objectives. Leung [7]

presented a non-homogeneous Poisson process (NHPP) based

optimal release problem to minimize cost of testing and

debugging and maximize reliability. Kapur and Garg [8]

studied optimal release under a model with imperfect

debugging, while Pham [9] considered imperfect debugging

with random life cycle duration and penalty cost. The models

by Pham and Zhang [10-11] modeled fault removal times,

warranty cost, and risk of software failures. Huang and Lyu [12-

13] characterized testing efficiency with a generalized logistic

testing effort function. Lin et al. [14] derived optimal release

policies considering cost and reliability criteria for multiple

changepoint models, while Inoue et al. [15] derived optimal

release time expressions for single changepoint models

incorporating testing effort. Yang et al. [16] proposed a method

to manage the risk associated with uncertainty in the expected

cost. Xie [17] presented an optimal software release policy

under parametric uncertainty, enabling decisions according to a

user's risk tolerance.

This paper proposes an online method to guide release

decisions, which explicitly distinguishes the true cost and

optimal release time from predictions made by software

reliability growth models. Unlike past studies, the proposed

approach acknowledges that identifying a globally optimal

release time is not possible without knowledge of the full failure

data set. Instead, the approach aspires to come as close to the

true optimum as possible, which can only be assessed after

testing is complete. We apply the method with a model and

dataset from the literature. Our results indicate that robust

optimal release policies are needed to offer practical guidance

during testing as failure data becomes available.

The remainder of the paper is organized as follows: Section

2 briefly reviews software reliability growth models. Section 3

discusses parameter estimation methods, including update rules

of an Expectation Conditional Maximization algorithm as well

as expressions to obtain initial parameter estimates. Section 4

derives cost optimal release policies for NHPP SRGM and

proposes an iterative approach to guide optimal release

decisions as testing data becomes available. Section 5 illustrates

the approach through a series of examples, while Section 6

offers conclusions and directions for future research.

2 NON-HOMOGENEOUS POISSON PROCESS SOFTWARE

RELIABILITY GROWTH MODELS

This section provides a brief overview of NHPP software

reliability growth models and presents the SRGM to which the

proposed approach is applied.

2.1 NHPP SRGM

The non-homogeneous Poisson process is a stochastic

process [18] that counts the number of events observed as a

function of time. In the context of software reliability, the

NHPP counts the number of faults detected by time 𝑡. This

counting process is characterized by a mean value function

(MVF) 𝑚(𝑡), which can assume a variety of forms. Many MVF

can be written

𝑚(𝑡) = 𝑎 × 𝐹(𝑡) (1)

where 𝑎 is interpreted as the expected number of faults that

would be discovered if debugging was performed indefinitely

and 𝐹(𝑡) is the CDF of a continuous probability distribution

characterizing the software fault detection process.

The MVF of the Goel-Okumoto model (GO) [19] is

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) (2)

where 𝑎 is interpreted as the number of faults to be detected

with infinite testing and 𝑏 is the fault detection rate.

2.2 Parameter estimation

This section describes methods to estimate the parameters

of a software reliability model, including maximum likelihood

estimation and the expectation conditional maximization

algorithm as well as a method to estimate initial parameter

values.

2.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation maximizes the likelihood

function, also known as the joint distribution of the failure data.

Commonly, the logarithm of the likelihood function is

maximized because taking the logarithm of the likelihood

function enables simplification and the monotonicity of the

logarithm ensures that the maximum of the log-likelihood

function is equivalent to maximization of the likelihood

function.

Failure time data consists of a vector of individual failure

times 𝐓 = ⟨ 𝑡1, 𝑡2, … , 𝑡𝑛⟩ with density function 𝑓(𝑡𝑖; Θ). The

log-likelihood function of a failure times data set is

𝐿𝐿(𝑡𝑖; Θ) = −𝑚(𝑡𝑛) + ∑ log(𝜆(𝑡𝑖))

𝑛

𝑖=1

 (3)

where 𝜆(𝑡) =
𝑑𝑚(𝑡)

𝑑𝑡
 is the instantaneous failure rate.

2.2.2 Expectation Conditional Maximization (ECM)

Algorithm

We employ the Expectation Conditional Maximization

[20] algorithm to identify the maximum likelihood estimates of

the model considered in this study. The ECM algorithm [21]

simplifies computation by dividing a single M-step of the EM

algorithm [22] into 𝑝 conditional-maximization (CM) steps,

where 𝑝 denotes the number of model parameters. Unlike the

EM algorithm which solves a system of simultaneous equations

as a single 𝑝-dimensional M-step, the CM steps of the ECM

algorithm update only one parameter at a time holding all others

constant and thus reduces the maximum likelihood estimation

process to a sequence of 𝑝 one-dimensional problems.

The CM-steps of the GO model parameters are obtained by

first substituting the MVF of the GO model in Equation (2) into

the log-likelihood function given in Equation (3) and taking the

partial derivative with respect to 𝑎, the maximum likelihood

estimate of parameter 𝑎 is

𝑎̂ =
𝑛

1 − 𝑒−𝑏𝑡𝑛
 (4)

Substituting Equation (4) into Equation (3) produces the

reduced log-likelihood (RLL) function, with only one unknown

parameter 𝑏, which can be estimated with a single application

of a numerical root finding algorithm. Thus, in cases such as

this, where the RLL contains only one parameter, the ECM

algorithm reduces to a simple root finding problem, requiring

only a single iteration. Thus, in this case, the CM-step for

parameter 𝑏′′ obtained by differentiating the RLL with respect

to 𝑏 is identical to the traditional maximum likelihood estimate

𝑏′′ =
𝑛

∑ 𝑡𝑖
𝑛
𝑖=1 −

𝑛 𝑡𝑛

1 − 𝑒𝑏′′𝑡𝑛

 (5)

Parameter 𝑏′′ in Equation (5) must be solved numerically since

it does not possess closed form solution.

2.2.3 Initial Parameter Estimation

For a mean value function of the form 𝑚(𝑡) = 𝑎 × 𝐹(𝑡),

an initial estimate of the number of faults (𝑎) is simply the

observed number of faults (𝑛), while the remaining initial

parameter estimates can be determined by maximizing the log-

likelihood function of the probability density function 𝑓(⋅; Θ) =
0 and solving to obtain closed-form expressions for these

additional parameters.

By the first-order optimality condition, initial estimates of

parameter 𝑎 and the additional parameters of the probability

distribution function 𝑓(𝑡; Θ) are given by [23]

𝑎(0) = 𝑁 (6)

and

Θ(0) ∶= ∑
𝜕

𝜕Θ
log(𝑓(𝑡𝑖; Θ))

𝑁

𝑖=1

= 𝟎 (7)

In practice, 𝑁 is replaced with 𝑛 in Equation (6) when deriving

initial parameter estimates.

The initial estimate of the scale parameter of the GO

SRGM obtained from Equations (2) and (7) is

𝑏(0) =
𝑛

∑ 𝑡𝑖
𝑛
𝑖=1

 (8)

3 OPTIMAL RELEASE POLICY BASED ON COST

CRITERIA

During software testing, one challenge is to identify the

optimal time to release the software. However, there is

significant cost associated with development, testing, and

debugging to ensure the functionality is implemented and is

reliable. Optimal release planning provides a quantitative

strategy to assess the trade-offs between reliability, testing time,

and life cycle cost. This section presents a cost model and

derives the optimal release time. Several researchers have

proposed cost models in previous research [15, 24-25]. Let 𝑇 be

the length of the software lifecycle and 𝑡 the time of software

release, then the estimated cost to release the software under

model 𝑥 [26-27] is

𝑐𝑥(𝑡) = 𝑐1𝑚𝑥(𝑡) + 𝑐2(𝑚𝑥(𝑇) − 𝑚𝑥(𝑡)) + 𝑐3𝑡 (9)

where 𝑚𝑥(𝑡) is the MVF of model 𝑥, 𝑐1 is the cost of removing

a fault during testing, 𝑐2 is the cost of removing a fault after

release (𝑐2 > 𝑐1), and 𝑐3 is the cost of testing per unit time. The

ultimate goal is to identify 𝑡 < 𝑇 that minimizes the true cost

𝑐(𝑡) = 𝑐1𝑁(𝑡) + 𝑐2(𝑁(𝑇) − 𝑁(𝑡)) + 𝑐3𝑡 (10)

where 𝑁(𝑡) is the actual number of faults discovered by time 𝑡.

However, the true optimal release time must be based on

the estimate under model 𝑥, denoted 𝑡𝑥
∗, which is computed by

solving
𝜕𝑐𝑥(𝑡)

𝜕𝑡
= 0 (11)

The optimal release time of the GO NHPP SRGM is [2]

𝑡∗ =
1

𝑏
log (

𝑎𝑏(𝑐2 − 𝑐1)

𝑐3

) (12)

3.1 Online optimal release procedure

This section presents an online optimal approach to guide

the release decision process. Past studies [17] typically perform

the following three steps to estimate the optimal release time:

 (S.1) Fit a model to the complete failure data to obtain

parameter estimates.

 (S.2) Compute the optimal release time, 𝑡∗, by substituting

the MLEs obtained in step (S.1) into Equation (9).

 (S.3) Plot the cost in Equation (9) as a function of 𝑡

according to the MLEs obtained in step (S.1) to illustrate

the trend and identify the minimum.

The traditional approach has a major disadvantage because

many times the software release is recommended before the end

of testing, which is computed only after the complete data is

collected. In practical situations, it is not possible to go back in

time to release the software, which limits the usability of this

approach in practice. The only other alternative implied by the

literature Is to use Equation (12) and release the software after

the present time 𝑡 exceeds 𝑡∗.

The online optimal release procedure developed through

the illustrations addresses the limitation associated with the

traditional approaches by periodically estimating optimal

release as data becomes available. The enhanced approach

exhibits some error because it is impossible to precisely know

the future fault detection process.

4 ILLUSTRATIONS

This section demonstrates the need for a robust online

optimal release policy. The first example illustrates the

traditional method to estimate optimal release time from

complete data. The second example illustrates the online

optimal release procedure implied by past studies, while the

third example illustrates the potential for substantial

improvement over existing and implied methods. The examples

are provided in the context of the GO model applied to the

CSR1 dataset [28].

4.1 Optimal release time considering complete data

This section briefly reviews the most basic method

employed to identify the cost optimal release time when all

failure data is available. It then introduces the notion of true cost

as a method to assess the effectiveness of any retroactive or

online approach.

Figure 1 shows the estimated cost of release time

determined by the GO model when applied with the entire

CSR1 data set [28], with cost parameters 𝑐1 = $100, 𝑐2 =
$15,000, 𝑐3 = $20 and the software lifecycle, 𝑇 = 200,000

for the sake of illustration.

When the models are fit to the entire data set, the optimal

release time is 𝑡𝐺𝑂
∗ = 60,069 with a corresponding estimated

optimal cost denoted by the dot at the minimum in Figure 1 at

𝑐𝐺𝑂(𝑡𝐺𝑂
∗) = 1.71 million. However, there is no clear indication

how accurate this release time and cost actually are.

To connect theory with practice, Figure 2 plots the true cost

for the CSR1 data set [28], where Equation (10) has been

employed to apply an expense of 𝑐1 for each fault discovered

before release and a penalty of 𝑐2 for each fault not discovered

prior to the release time. Figure 2 exhibits a sharp drop at each

fault discovery time 𝑡𝑖 because this corresponds to one less post

release failure, which would incur a higher cost. Similarly,

periods of testing time with no faults exhibit a slow increase

corresponding to the cost of testing per unit time 𝑐3. The true

optimal release time denoted by the dot in Figure 2 and

Figure 1: Impact of release time on cost considering GO for CSR1

corresponding cost are 𝑡∗ = 79,397 and 𝑐 = 1.92 million,

whereas the cost incurred at the time recommended by the GO

model shown in Figure 1 incur cost of 1.986 million, which is

1.039 times higher than the true minimal cost. This observation

indicates that even if it were possible to utilize the entire failure

history and then go back in time to make a decision, the optimal

release time recommended by this model would exhibit

approximately four percent inefficiency relative to the true

optimum.

For the sake of concreteness, we have assumed that the

number of faults to be observed is the number of faults observed

by time 𝑡𝑛. The authors acknowledge that it is unlikely that only

the 𝑛 = 397 faults observed by the end of testing at time 𝑡𝑛

were present in the software. Complete data sets that contain all

failures throughout the operational lifetime 𝑇 can be used in

place of data sets from the research literature such as this one,

which lack a complete history. Thus, while this assumption may

not hold for the data considered here, it serves the purpose of

establishing a model independent approach to objectively

evaluate the effectiveness of alternative model predictions.

4.2 Online estimation of release time

In order to develop a practical online approach, Figure 3

shows the release time determined from the GO model

according to the failure data observed up until time 𝑡 as well as

the line of unit slope. Thus, Figure 3 compares the present time

(linearly increasing curve) to the release time estimated from

progressively larger prefixes of the CSR1 dataset fit to the GO

model, which is first applied when approximately 8% of the

total testing time has passed or 8,500 time units. The model is

applied updated each additional 500 time units and the optimal

release recomputed.

Therefore, release times above the line of unit slope indicate

that the release time recommended by the model is greater than

the present time and should therefore be subject to additional

testing, whereas times below this line suggest that the optimal

release time has already passed. Moreover, the farther a model's

recommended release time falls below the present time suggests

that the software could be released with greater confidence. As

time progresses, it can be seen that the release times of the GO

model in Equation (12) first cross below the line at 𝑡𝐺𝑂
∗ =

30,500 with corresponding true costs 𝑐(𝑡𝐺𝑂
∗) = $2.32 million

computed using Equation (10). The ratio between the true costs

achieved at the recommended time and the true minimum cost

is 1.208.

4.3 Sensitivity of cost ratio to model recommendation

A logical extension to the optimal release decision implied

by Equation (12) is to require that the model recommend release

for more than one successive time interval.

Figure 4 examines how this approach fares by plotting the

ratio of the actual and optimal cost (1.91 million), starting from

the first time (𝑡𝐺𝑂
∗ = 30,500) at which release was

recommended.

Figure 4 indicates that the cost ratio continues to decrease

below 1.208, which was recommended by Equation (12) at

𝑡𝐺𝑂
∗ = 30,500. Thus, if the software is not released the very first

time Equation (12) is satisfied, then the cost ratio is nearly

minimized at the 42𝑛𝑑 time step or 𝑡 = 51,000 time units, the

cost ratio decreases to 1.00269. Similarly, deferring release for

just 20 time steps reduces the cost ratio to approximately 1.05.

These results indicate that optimal release policies implied by

dozens of past studies are potentially far from optimal and that

more robust online release methods are needed to make this

application of software reliability growth models feasible in

practice.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a procedure for online estimation of

optimal release time. The examples illustrate the potential for

substantial improvement over approaches implied by past

research. The data set considered demonstrated that a method

utilizing the complete data is suboptimal as are methods that

release software the first time the optimal release expression is

satisfied. Examination of the ratio attained between actual and

optimal costs indicated that a robust online approach that defers

Figure 2: True cost assuming n faults

Figure 4: Sensitivity of cost ratio to model release recommendation

Figure 3: Estimated release time for GO model on CSR1 data

release may further reduce cost.

Future research requires developing a model selection

strategy based on goodness-of-fit measures, release

recommendations considering cost and reliability, and

accelerated algorithms to improve performance of the model

fitting while subsetting the data. However, more critical

reflection on the practical role of NHPP SRGM is needed to

determine if failure time event statistics is sufficient to

accurately predict future fault detection, software reliability

growth, and optimal release. Software engineering is a complex

process and the underlying activities are non-trivial. Greater

dialog among software engineers, testers, and modelers is likely

needed to address the optimal release problem in a truly

satisfactory manner.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant Number (#1749635). Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

REFERENCES

1. M. Lyu, Ed., Handbook of Software Reliability

Engineering. NY: McGraw-Hill, 1996.
2. K. Okumoto and A. Goel, “Optimum release time for

software systems based on reliability and cost criteria,”

Journal of Systems and Software, vol. 1, no. 4, pp. 315–

318, 1980.
3. H. Koch and P. Kubat, “Optimal release time of computer

software,” IEEE Transactions on Software Engineering,

no. 3, pp. 323–327, 1983.
4. S. Ross, “Software reliability: the stopping rule problem,”

IEEE Transactions on Software Engineering, no. 12, pp.

1472–1476, 1985.

5. S. Yamada and S. Osaki, “Optimal software release

policies with simultaneous cost and reliability

requirements,” European Journal of Operational

Research, vol. 31, no. 1, pp. 46–51, 1987.

6. S. Yamada and S. Osaki, “Cost-reliability optimal release

policies for software systems,” IEEE Transactions on

Reliability, vol. 34, no. 5, pp. 422–424, 1985.

7. Y. Leung, “Optimum software release time with a given

cost budget,” Journal of Systems and Software, vol. 17, no.

3, pp. 233–242, 1992.

8. P. Kapur and R. Garg, “Optimal software release policies

for software reliability growth models under imperfect

debugging,” RAIRO-Operations Research, vol. 24, no. 3,

pp. 295–305, 1990.

9. H. Pham, “A software cost model with imperfect

debugging, random life cycle and penalty cost,”

International Journal of Systems Science, vol. 27, no. 5, pp.

455–463, 1996.

10. H. Pham and X. Zhang, “A software cost model with

warranty and risk costs,” IEEE Transactions on

Computers, vol. 48, no. 1, pp. 71–75, 1999.

11. H. Pham, “Software reliability and cost models:

Perspectives, comparison, and practice,” European

Journal of Operational Research, vol. 149, no. 3, pp. 475–

489, 2003.

12. C. Huang, “Cost-reliability-optimal release policy for

software reliability models incorporating improvements in

testing efficiency,” Journal of Systems and Software, vol.

77, no. 2, pp. 139–155, 2005.

13. C. Huang and, M. Lyu, “Optimal release time for software

systems considering cost, testing-effort, and test

efficiency,” IEEE Transactions on Reliability, vol. 54, no.

4, pp. 583–591, 2005.

14. C. Lin, C. Huang, and J. Chang, “Integrating generalized

Weibull-type testing-effort function and multiple change-

points into software reliability growth models,” in IEEE

Asia-Pacific Software Engineering Conference, 2005.

15. S. Inoue, Y. Nakagawa, and S. Yamada, “Optimal software

shipping time estimation based on a change-point hazard

rate model,” International Journal of Reliability, Quality

and Safety Engineering, vol. 21, no. 2, 2014.

16. B. Yang, H. Hu, and L. Jia, “A study of uncertainty in

software cost and its impact on optimal software release

time,” IEEE Transactions on Software Engineering, vol.

34, no. 6, pp. 813–825, 2008.

17. M. Xie, X. Li, and S. Ng, “Risk-based software release

policy under parameter uncertainty,” Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of

Risk and Reliability, vol. 225, no. 1, pp. 42–49, 2011.

18. S. Ross, Introduction to Probability Models, 8th ed. New

York, NY: Academic Press, 2003.

19. A. Goel and K. Okumoto, “Time-dependent error-

detection rate model for software reliability and other

performance measures,” IEEE Transactions on Reliability,

vol. 28, no. 3, pp. 206–211, 1979.

20. V. Nagaraju, L. Fiondella, P. Zeephongsekul, C.

Jayasinghe, and T. Wandji, “Performance optimized

expectation conditional maximization algorithms for

nonhomogeneous Poisson process software reliability

models,” IEEE Transactions on Reliability, vol. 66, no. 3,

pp. 722–734, 2017.

21. D. Rubin and R. Little, “Statistical analysis with missing

data,” Hoboken, NJ: John Wiley & Sons, 2002.

22. A. Dempster, N. Laird, and D. Rubin, “Maximum

likelihood from incomplete data via the EM algorithm,”

Journal of the Royal Statistical Society: Series B, vol. 39,

no. 1, pp. 1–38, 1977.

23. H. Okamura, Y. Watanabe, and T. Dohi, “An iterative

scheme for maximum likelihood estimation in software

reliability modeling,” in International Symposium on

Software Reliability Engineering, nov 2003, pp. 246–256.

24. S. Inoue and S. Yamada, “Optimal software release policy

with change- point,” in IEEE International Conference on

Industrial Engineering and Engineering Management,

2008, pp. 531–535.

25. S. Chatterjee, S. Nigam, J. Singh, and L. Upadhyaya,

“Effect of change point and imperfect debugging in

software reliability and its optimal release policy,”

Mathematical and Computer Modelling of Dynamical

Systems, vol. 18, no. 5, pp. 539–551, 2012.

26. M. Zhao and M. Xie, “Robustness of optimum software

release policies,” in IEEE International Symposium on

Software Reliability Engineering, 1993, pp. 218–225.

27. X. Li, M. Xie, and S. Ng, “Sensitivity analysis of release

time of software reliability models incorporating testing

effort with multiple change-points,” Applied Mathematical

Modelling, vol. 34, no. 11, pp. 3560–3570, 2010.

28. M. Lyu, “Handbook of Software Reliability Engineering:

Data directory,” http://www.cse.cuhk.edu.hk/

lyu/book/reliability/, 2005, [Online; accessed 23-May-

2005].

BIOGRAPHIES

Vidhyashree Nagaraju

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: vnagaraju@umassd.edu

Vidhyashree Nagaraju is a PhD student in the Department of

Electrical and Computer Engineering at the University of

Massachusetts Dartmouth (UMassD), where she received her

MS (2015) in Computer Engineering. She received her BE

(2011) in Electronics and Communication Engineering from

Visvesvaraya Technological University in India.

Lance Fiondella, PhD

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: lfiondella@umassd.edu

Lance Fiondella is an assistant professor in the Department of

Electrical & Computer Engineering at UMassD. He received

his PhD (2012) in Computer Science & Engineering from the

University of Connecticut. Dr. Fiondella’s papers have been the

recipient of ten conference paper awards, including the 2015

R.A. Evans/P.K. McElroy Award from the Reliability and

Maintainability Symposium (RAMS). His research has been

funded by the Department of Homeland Security, National

Aeronautics and Space Administration, Army Research

Laboratory, Naval Air Warfare Center, and National Science

Foundation, including a CAREER Award.

