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The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to
the first measurement of the size of a black-hole shadow. This observation offers a new and clean
gravitational test of the black-hole metric in the strong-field regime. We show analytically that
spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations
in the predicted black-hole shadows that are inconsistent with even the current EHT measurements.
We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common
characteristic among these different parametrizations that control the predicted shadow size. We
show that the shadow-size measurements place significant constraints on deviation parameters that
control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible
to weak-field tests. The new constraints are complementary to those imposed by observations of

gravitational waves from stellar-mass sources.

Tests of general relativity have traditionally involved
solar-system bodies [I] and neutron stars in binaries [2],
for which precise measurements can be interpreted with
minimal astrophysical complications. In recent years, ob-
servations at cosmological scales [3] and the detection of
gravitational waves [4] have also resulted in an array of
new gravitational tests.

The horizon-scale images of the black hole in the center
of the M87 galaxy obtained by the EHT [5] offer the most
recent addition to the set of observations that probe the
strong-field regime of gravity. As an interferometer, the
EHT measures the Fourier components of the brightness
distribution of the source on the sky at a small number of
distinct Fourier frequencies. The features of the under-
lying image are then reconstructed either using agnostic
imaging algorithms or by directly fitting model images
to the interferometric data. The central brightness de-
pression seen in the M&87 image has been interpreted as
the shadow cast by this supermassive black hole on the
emission from the surrounding plasma. The observabil-
ity of the shadow of the black hole in M87 and the one
the center of the Milky Way, Sgr A*, had been predicted
earlier based on the properties of the radiatively ineffi-
cient accretion flows around these objects and their large
mass-to-distance ratios [6].

The outline of a black-hole shadow is the locus of the
photon trajectories on the screen of a distant observer
that, when traced backwards, become tangent to the
surfaces of spherical photon orbits hovering just above
the black-hole horizons [7]. The Boyer-Lindquist radii of
these spherical photon orbits lie in the range (1—4)M, de-
pending on the black-hole spin and the orientation of the
angular momentum of the orbit [8] (here M is the mass
of the black hole and we have set G = ¢ = 1, where G
is the gravitational constant, and c is the speed of light).
It is the fact that the outlines of black-hole shadows en-
code in them the strong-field properties of the spacetimes
that led to the early suggestion that they can be used in
performing strong-field gravitational tests [9HI1].

Even though the radii of the photon orbits have a
strong dependence on spin, a fortuitous cancellation of
the effects of frame dragging and of the quadrupole struc-
ture in the Kerr metric causes the outline of the shadow,
as observed at infinity, to have a size and a shape that
depends very weakly on the spin of the black hole or the
orientation of the observer [I0]. This cancellation occurs
because, due to the no-hair theorem, the magnitude of
the quadrupole moment of the Kerr metric is not an in-
dependent quantity but is instead always equal to the
square of the black-hole spin. For all possible values of
spin and inclination, the size of the shadow is ~ 5M £4%
and its shape is nearly circular to within ~ 7%. For a
black hole of known mass-to-distance ratio, the constancy
of the shadow size allows for a null-hypothesis test of the
Kerr metric [I2]. At the same time, the nearly circular
shape of the shadow offers the possibility of testing the
gravitational no-hair theorem [10].

The first inference of the size of the black-hole shadow
in M87 used as a proxy the measurement of the size of
the bright ring of emission that surrounds the shadow
and calibrated the difference in size via large suites of
GRMHD simulations [5]. When this ring of emission is
narrow, as is the case for the 2017 EHT image of M87,
potential biases in the measurement are small. The in-
ferred size of the M87 black-hole shadow was found to be
consistent (to within ~ 17% at the 68-percentile level)
with the predicted size based on the Kerr metric and
the mass-to-distance ratio of the black hole derived us-
ing stellar dynamics [5, [13] (see, however, [I4] [I5] and
[16]). The agreement between the measured and pre-
dicted shadow size does constitute a null-hypothesis test
of the GR predictions: the data give us no reason to
question the validity of the assumptions that went into
this measurement, the Kerr metric being one of them.
However, using this measurement to place quantitative
constraints on any potential deviations from the Kerr
metric is less straightforward for two reasons.

First, the Kerr metric is the unique black-hole so-



lution to a large number of modified gravity theories
that are Lorentz symmetric and have field equations
with constant coupling coefficients between the various
gravitating fields [I7, [I8]. Only a limited number of
black-hole solutions are known for theories with dynami-
cal couplings [19] (e.g., dynamical Chern-Simons grav-
ity and Einstein-dilaton-Gauss-Bonnet gravity [20]) or
for Lorentz-violating theories [2I]. Despite substantial
progress in recent years, this line of work leads to lim-
ited theoretical guidance on the form and magnitude of
potential deviations from the Kerr metric.

Second, if we instead use an empirical parametric
framework to extend the Kerr metric, we would find
that most naive parametric extensions lead to patholo-
gies, such as non-Lorentzian signatures, singularities, and
closed timelike loops, which render it impossible to cal-
culate photon trajectories in the strong-field regime (see,
e.g., [22]). In recent years, this problem has been ad-
dressed with the development of a number of parametric
extensions of the Kerr metric that are free of patholo-
gies [23H29]. Resolving the pathologies, however, comes
at the cost of very large complexity. In principle, we can
use the EHT measurement with any of these parametric
extensions to place constraints on the specific parame-
ters of the metric we used [30]. However, understanding
the physical meaning of such constraints and comparing
them with the constraints imposed when other paramet-
ric extensions are used are not readily feasible. In addi-
tion, the complexity of the various parametric extensions
to the Kerr metric hinders the comparison of these grav-
itational tests with the results of other, e.g., weak-field
and cosmological ones and, therefore, the effort to place
complementary tests on the underlying gravity theory.

In this Letter, we use analytic arguments as well as
numerical calculations of shadows to set new constraints
on gravity using the 2017 EHT measurements, elucidate
their physical meaning, and compare them with ear-
lier weak-field tests. We find that the EHT measure-
ments place constraints primarily on the tt—element of
the black-hole spacetime (when the latter is expressed in
areal coordinates and in covariant form). This is anal-
ogous to the fact that solar-system tests that involve
gravitational lensing or Shapiro delay measurements con-
strain primarily one of the metric elements of the PPN
framework [I]. However, we show that the constraints
imposed by the EHT measurements are of (at least) the
second post-Newtonian order and are, therefore, beyond
the reach of weak-field experiments.

The size of the black-hole shadow both in the Kerr
metric and in other parametric extensions depends very
weakly on the black-hole spin [10, 81} 82]. For this reason,
we start by exploring analytically the shadow size for a
general static, spherically symmetric metric of the form

ds?® = gudt? + gpedr?® + r2dQ) . (1)

Note that the choice of coordinates we use here is differ-

TABLE I. PPN expansions of various parametric extensions
to the Kerr metric

Metric 8 -4 (IPN) ¢ (2PN)

Kerr 0 0

JP 0 13

MGBK —Y1,2/2 — ya,2 — 0 —v1,2 — 412 = 71,2

ent from the isotropic coordinates of the PPN framework.
We made this choice because, as we will show below, the
radius of the photon orbit and the size of the shadow
depend only on this element of the metric in these co-
ordinates (unlike, e.g., Eq. [101] of Ref. [33], which is
written in isotropic coordinates).

Without loss of generality, we consider photon trajec-
tories in the equatorial plane, i.e., set § = 7/2. Follow-
ing Ref. [34], we use two of the Killing vectors of the
spacetime to write the components of the momentum of
a photon traveling in this spacetime as

E E2 2 1/2
(ktvkrak97k¢): (a |:_ - l 2:| 707% )
it 9t Grr GrrT r

(2)
where E and [ are the conserved energy and angular mo-
mentum of the photon and we have used the null condi-
tion k- £k = 0 to calculate the radial component of the
momentum.

The location of the circular photon orbit is the solution
of the two conditions k" = 0 and dk"/dr = 0. Combining
them, we write the radius 7}, of the photon orbit as the
solution to the implicit equation

-1
) : (3)
Tph

Tph = V — ¢t (ddgtt
,
The radius rg, of the black-hole shadow as observed at
infinity is the gravitationally lensed image of the circu-
lar photon orbit. This effect was calculated in Ref. [34]
(Eq. [20]) and, when applied to the size of the photon
orbit, leads to

__Th (4)

Tsh =
’ —gtt(rph)

As advertised earlier, both the radius of the photon orbit
and the size of the black-hole shadow depend only on the
tt element of the metric ([1}) written in areal coordinates
and in covariant form.

In order to connect the strong-field constraints from
black-hole shadows to the weak-field tests, we expand
the tt element in powers of 7~ ! as

_gttzl_i”(ﬁ_”)_2(53)+0(7«—4) . (5)

r2

Hereafter, we set G = ¢ = M = 1, where G is the grav-
itational constant, c is the speed of light, and M is the
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FIG. 1. Bound on the deviation parameters (Left) a3 of the JP metric and (Right) 1,2 for the MGBK metric, as a function
of spin (J/M 2) and for different values of the other metric parameters, placed by the 2017 EHT observations of M87. The
shaded areas show the excluded regions of the parameter space. The dashed line shows the analytic result obtained for zero
spin. The EHT measurements place constraints predominantly on aq3 (for JP) and 71,2 (for MGBK), which control the 2PN

expansion of the corresponding metrics (see Table [I)).

black-hole mass. In this equation, we have employed
the usual PPN parameters 8 and 7 and added a 2PN
term parametrized by the quantity (. Weak-field tests
have placed strong constraints on the 1PN parameters
to be equal to unity to within a few parts in 10° [1].
Even though modified gravity theories may not satisfy
Birkhoff’s theorem and, therefore, the values of the 1PN
parameters may be different outside the Sun and out-
side a black hole, we make here the very conservative
assumption that the solar-system limits are applicable to
the external spacetimes of astrophysical black holes and
set 3 — 4 ~ 0. If the tt element of the black-hole met-
ric has indeed a vanishing 1PN term, as required by the
weak-field tests, and terminates at the 2PN term, the
radius of the circular photon orbit would be

5
ron =3+ 3¢ (6)
and the size of the black-hole shadow would be
1
Tsh = 3\/§ <1 + 94) . (7)

This is a quantitative demonstration of the fact that the
size of the black-hole shadow probes the behavior of the
spacetime at least at the 2PN order. Moreover, the size of
the black-hole shadow depends linearly on the magnitude
of the 2PN term.

To explore in detail the constraints imposed by the
EHT results, we will consider, as concrete examples of
regular, parametric extensions to the Kerr metric, the
metrics developed in Refs. [22 23] (hereafter the JP met-
ric) and in Refs. [24], 35] (hereafter the MGBK metric).
Table [I| shows the 1PN and 2PN parameters (see Eq.

for these metrics, when the spin parameter is set to zero
and only leading orders of the parameters are considered.
From the analytic argument above, we expect the shadow
sizes to be determined primarily by the parameters that
control the 2PN and higher-order terms for these met-
rics. Hereafter, we define the spin of a given metric as
the dimensionless ratio J/M? of the lowest-order current
moment, i.e, the angular momentum, to the square of
the lowest-order mass moment, i.e., the Keplerian mass,
of the spacetime.

The JP metric has four lowest-order parameters to de-
scribe possible deviations from Kerr [22]. The outlines
of black-hole shadows for this metric have been calcu-
lated in Refs. [31, B2] and were shown to depend very
weakly on the black-hole spin. Setting the spin to zero,
we use Eq. @D for the full metric to derive the shadow
size as a function of the deviation parameters. We find
that, in this limit, the shadow size depends entirely on
one of the deviation parameters, ay3, which is also the
one that controls the 2PN terms of the metric. The com-
plete expression is very complicated to display here but
a power-law expansion is

Tsn,gp = 3V3 |1+ 2%0!13 - 41%04%3 +0(ady)| . (8)
Note that the coefficient of the deviation parameter a3
is different from what we would have expected from
eq. because the JP metric does not terminate at the
2PN order. Requiring that the shadow size is consis-
tent to within 17% with the 2017 EHT measurement
for M87 places a bound on the deviation parameter
—3.6 < a13 < 5.9. The left panel of Fig. [I] shows the
corresponding limits on ay3 obtained numerically from



the full JP metric, when the black-hole spin is taken into
account and the second metric parameter that affects the
shadow size for a spinning black hole, i.e., a9, is var-
ied. As evident here, the constraints on «y3 change only
mildly when effects that introduce deviations from spher-
ical symmetry are included. Therefore, for the JP metric,
the EHT measurement constrains predominantly the de-
viation parameter a;3, which controls the 2PN terms.

The MGBK metric has four lowest-order parameters
to describe possible deviations from Kerr [35] without
requiring the 1PN deviation to vanish (see Table . The
outlines of black-hole shadows have been calculated in
Ref. [32] and their overall sizes were shown to depend
primarily on the parameters v 3, 1,2, and v4 2 (see Fig. 8
of [32]). In its original formulation, the parameter 73 3
describes frame dragging in a manner that remains finite
even for nonspinning black holes (see Eq. [17] of [35]).
Here, we scale this parameter with spin, i.e., write ’y§73 =
v3,3a to remove the divergent behavior of the shadow size
with @ — 0 found in Ref. [32]. We also set y42 = —71,2/2
for this metric to be consistent with Solar System tests at
the 1PN order. In this case, the magnitude of potential
2PN deviations becomes equal to (mGgBK = 71,2-

With these redefinitions, the size of the shadow for the
MGBK metric depends primarily on parameter y; o and
only weakly on spin. As before, we calculate analytically
the shadow size for this metric using Eq. having set
the spin equal to zero. We again display only an expan-
sion of the size in the deviation parameter 7 o:

1
Tsh,MGBK = 3vV3 |1+ ?771,2 + O(Viz) . 9)

Requiring that the shadow size is consistent to within
17% with the 2017 EHT measurement for M87 places a
bound on the deviation parameter —5.0 < ;2 < 4.9.
The right panel of Fig. [l shows the corresponding con-
straints obtained numerically from the full solution, when
the black-hole spin is taken into account and the other
deviation parameters are varied. Again, the constraints
on 71,2 change only mildly when effects that introduce
deviations from spherical symmetry are included.

Even though the complex functional forms of the var-
ious elements in the two metrics we considered here are
very different from each other, in both cases the predicted
size of the black-hole shadow depends almost exclusively
(and in a very similar manner) on the deviation param-
eter that controls the 2PN and higher-order terms for
each metric. This conclusion remains the same when we
use, e.g., the RZ metric [29], for which the deviations
from Kerr are introduced by a sequence of parameters,
with a; controlling primarily the ¢ + 1 PN order. For
this metric, ( = —4a; and requiring that the predicted
shadow size is consistent with the EHT measurements
leads to the constraint —1.2 < a3 < 1.3. This supports
our conclusion that an EHT measurement of the size of

a black hole leads to metric tests that are inaccessible to
weak-field tests.

In this Letter we have allowed for only one of the high-
order PN parameters of the g;; component of each metric
to deviate from its Kerr value in order to show that signif-
icant constraints can be obtained even with the current
EHT results. However, if more than one PN parameters
of the same metric component are included, then the size
measurement of the black-hole shadow will instead lead
to a constraint on a linear combination of these parame-
ters. Similar constraints will be possible in the very near
future with EHT observations of the black hole in the
center of the Milky Way, for which there is no ambiguity
in the inferred mass. In that case, monitoring of individ-
ual stellar orbits has provided very precise measurements
of its mass-to-distance ratio [36] leading to a prediction
of 47 — 53 pas for its shadow diameter, depending on the
black-hole spin.

Observations of double neutron stars [2] and of coa-
lescing black holes with LIGO/VIRGO [4] also probe the
strong-field properties of their gravitational fields and
lead to post-Newtonian constraints of similar magnitude
as the ones we obtain here. The mass and curvature
scale of the stellar-mass sources are eight orders of mag-
nitude different from those of the M87 black hole, thereby
probing a very different regime of gravitational parame-
ters [B [I1]. It is this combination of gravitational tests
across different scales that will provide complementary
and comprehensive constraints on possible modifications
of the fundamental gravitational theory.

The authors of the present paper thank the follow-
ing organizations and programs: the Academy of Fin-
land (projects 274477, 284495, 312496); the Advanced
European Network of E-infrastructures for Astronomy
with the SKA (AENEAS) project, supported by the
European Commission Framework Programme Horizon
2020 Research and Innovation action under grant agree-
ment 731016; the Alexander von Humboldt Stiftung;
the Black Hole Initiative at Harvard University, through
a grant (60477) from the John Templeton Founda-
tion; the China Scholarship Council; Comisién Na-
cional de Investigacién Cientifica y Tecnolégica (CON-
ICYT, Chile, via PIA ACT172033, Fondecyt projects
1171506 and 3190878, BASAL AFB-170002, ALMA-
conicyt 31140007); Consejo Nacional de Ciencia y Tec-
nologia (CONACYT, Mexico, projects 104497, 275201,
279006, 281692); the Delaney Family via the Delaney
Family John A. Wheeler Chair at Perimeter Institute;
Direccién General de Asuntos del Personal Académico-
—Universidad Nacional Auténoma de México (DGAPA-
—UNAM, project IN112417); the European Research
Council Synergy Grant ”BlackHoleCam: Imaging the
Event Horizon of Black Holes” (grant 610058); the Gener-
alitat Valenciana postdoctoral grant APOSTD/2018/177
and GenT Program (project CIDEGENT/2018/021); the



Gordon and Betty Moore Foundation (grants GBMEF-
3561, GBMF-5278); the Istituto Nazionale di Fisica Nu-
cleare (INFN) sezione di Napoli, iniziative specifiche
TEONGRAYV; the International Max Planck Research
School for Astronomy and Astrophysics at the Univer-
sities of Bonn and Cologne; the Jansky Fellowship pro-
gram of the National Radio Astronomy Observatory
(NRAO); the Japanese Government (Monbukagakusho:
MEXT) Scholarship; the Japan Society for the Pro-
motion of Science (JSPS) Grant-in-Aid for JSPS Re-
search Fellowship (JP17J08829); the Key Research Pro-
gram of Frontier Sciences, Chinese Academy of Sci-
ences (CAS, grants QYZDJ-SSW-SLH057, QYZDJSSW-
SYS008, ZDBS-LY-SLHO011); the Leverhulme Trust
Early Career Research Fellowship; the Max-Planck-
Gesellschaft (MPG); the Max Planck Partner Group
of the MPG and the CAS; the MEXT/JSPS KAK-
ENHI (grants 18KK0090, JP18K13594, JP18K03656,
JP18H03721, 18K03709, 18H01245, 25120007); the MIT
International Science and Technology Initiatives (MISTI)
Funds; the Ministry of Science and Technology (MOST)
of Taiwan (105- 2112-M-001-025-MY3, 106-2112-M-001-
011, 106-2119- M-001-027, 107-2119-M-001-017, 107-
2119-M-001-020, and 107-2119-M-110-005); the National
Aeronautics and Space Administration (NASA, Fermi
Guest Investigator grant 80NSSC17K0649 and Hubble
Fellowship grant HST-HF2-51431.001-A awarded by the
Space Telescope Science Institute, which is operated by
the Association of Universities for Research in Astron-
omy, Inc., for NASA, under contract NAS5-26555); the
National Institute of Natural Sciences (NINS) of Japan;
the National Key Research and Development Program
of China (grant 2016YFA0400704, 2016YFA0400702);
the National Science Foundation (NSF, grants AST-
0096454, AST-0352953, AST-0521233, AST-0705062,
AST- 0905844, AST-0922984, AST-1126433, AST-
1140030, DGE-1144085, AST-1207704, AST-1207730,

AST- 1207752, MRI-1228509, OPP-1248097, AST-
1310896, AST-1312651, AST-1337663, AST-1440254,
AST- 1555365, AST-1715061, AST-1615796, AST-

1716327, OISE-1743747, AST-1816420); the Natural Sci-
ence Foundation of China (grants 11573051, 11633006,
11650110427, 10625314, 11721303, 11725312, 11933007);
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC, including a Discovery Grant
and the NSERC Alexander Graham Bell Canada Gradu-
ate Scholarships-Doctoral Program); the National Youth
Thousand Talents Program of China; the National Re-
search Foundation of Korea (the Global PhD Fellow-
ship Grant: grants NRF-2015H1A2A1033752, 2015-
R1D1A1A01056807, the Korea Research Fellowship Pro-
gram: NRF-2015H1D3A1066561); the Netherlands Or-
ganization for Scientific Research (NWO) VICI award
(grant 639.043.513) and Spinoza Prize SPI 78-409; the
New Scientific Frontiers with Precision Radio Interfer-
ometry Fellowship awarded by the South African Ra-

dio Astronomy Observatory (SARAO), which is a fa-
cility of the National Research Foundation (NRF), an
agency of the Department of Science and Technology
(DST) of South Africa; the Onsala Space Observatory
(OSO) national infrastructure, for the provisioning of
its facilities/observational support (OSO receives funding
through the Swedish Research Council under grant 2017-
00648) the Perimeter Institute for Theoretical Physics
(research at Perimeter Institute is supported by the
Government of Canada through the Department of In-
novation, Science and Economic Development and by
the Province of Ontario through the Ministry of Re-
search, Innovation and Science); the Russian Science
Foundation (grant 17-12-01029); the Spanish Ministe-
rio de Economia y Competitividad (grants AYA2015-
63939-C2-1-P, AYA2016-80889-P, PID2019-108995GB-
C21); the State Agency for Research of the Span-
ish MCIU through the ”Center of Excellence Severo
Ochoa” award for the Instituto de Astrofisica de An-
dalucfa (SEV-2017- 0709); the Toray Science Foun-
dation; the Consejeria de Economia, Conocimiento,
Empresas y Universidad of the Junta de Andalucia
(grant P18-FR-1769), the Consejo Superior de Investi-
gaciones Cientificas (grant 2019AEP112); the US De-
partment of Energy (USDOE) through the Los Alamos
National Laboratory (operated by Triad National Secu-
rity, LLC, for the National Nuclear Security Adminis-
tration of the USDOE (Contract 89233218 CNA000001));
the Italian Ministero dell’Istruzione Universita e Ricerca
through the grant Progetti Premiali 2012-iALMA (CUP
(C52113000140001); the European Union’s Horizon 2020
research and innovation programme under grant agree-
ment No 730562 RadioNet; ALMA North America De-
velopment Fund; the Academia Sinica; Chandra TM6-
17006X; the GenT Program (Generalitat Valenciana)
Project CIDEGENT/2018/021. This work used the Ex-
treme Science and Engineering Discovery Environment
(XSEDE), supported by NSF grant ACI-1548562, and
CyVerse, supported by NSF grants DBI-0735191, DBI-
1265383, and DBI-1743442. We thank the staff at the
participating observatories, correlation centers, and insti-
tutions for their enthusiastic support. ALMA is a part-
nership of the European Southern Observatory (ESO;
Europe, representing its member states), NSF, and Na-
tional Institutes of Natural Sciences of Japan, together
with National Research Council (Canada), Ministry of
Science and Technology (MOST; Taiwan), Academia
Sinica Institute of Astronomy and Astrophysics (ASIAA;
Taiwan), and Korea Astronomy and Space Science In-
stitute (KASI; Republic of Korea), in cooperation with
the Republic of Chile. The Joint ALMA Observa-
tory is operated by ESO, Associated Universities, Inc.
(AUI)/NRAO, and the National Astronomical Observa-
tory of Japan (NAOJ). The NRAO is a facility of the NSF
operated under cooperative agreement by AUL. APEX is
a collaboration between the Max-Planck-Institut fur Ra-



dioastronomie (Germany), ESO, and the Onsala Space
Observatory (Sweden). The SMA is a joint project be-
tween the SAO and ASTAA and is funded by the Smith-
sonian Institution and the Academia Sinica. The JCMT
is operated by the East Asian Observatory on behalf of
the NAOJ, ASTAA, and KASI, as well as the Ministry
of Finance of China, Chinese Academy of Sciences, and
the National Key R&D Program (No. 2017YFA0402700)
of China. Additional funding support for the JCMT is
provided by the Science and Technologies Facility Coun-
cil (UK) and participating universities in the UK and
Canada. The LMT is a project operated by the Instituto
Nacional de Astrofisica, Optica, y Electronica (Mexico)
and the University of Massachusetts at Amherst (USA).
The TRAM 30-m telescope on Pico Veleta, Spain is op-
erated by IRAM and supported by CNRS (Centre Na-
tional de la Recherche Scientifique, France), MPG (Max-
Planck- Gesellschaft, Germany) and IGN (Instituto Ge-
ogréfico Nacional, Spain). The SMT is operated by the
Arizona Radio Observatory, a part of the Steward Obser-
vatory of the University of Arizona, with financial sup-
port of operations from the State of Arizona and financial
support for instrumentation development from the NSF.
The SPT is supported by the National Science Founda-
tion through grant PLR- 1248097. Partial support is also
provided by the NSF Physics Frontier Center grant PHY-
1125897 to the Kavli Institute of Cosmological Physics at
the University of Chicago, the Kavli Foundation and the
Gordon and Betty Moore Foundation grant GBMF 947.
The SPT hydrogen maser was provided on loan from the
GLT, courtesy of ASTAA. The EHTC has received gen-
erous donations of FPGA chips from Xilinx Inc., under
the Xilinx University Program. The EHTC has bene-
fited from technology shared under open-source license
by the Collaboration for Astronomy Signal Processing
and Electronics Research (CASPER). The EHT project
is grateful to T4Science and Microsemi for their assis-
tance with Hydrogen Masers. This research has made
use of NASA’s Astrophysics Data System. We gratefully
acknowledge the support provided by the extended staff
of the ALMA, both from the inception of the ALMA
Phasing Project through the observational campaigns of
2017 and 2018. We would like to thank A. Deller and W.
Brisken for EHT-specific support with the use of DiFX.
We acknowledge the significance that Maunakea, where
the SMA and JCMT EHT stations are located, has for
the indigenous Hawaiian people.

[1] C. M. Will, Living Reviews in Relativity 17, 4 (2014).

[2] N. Wex, arXiv e-prints , arXiv:1402.5594 (2014).

[3] P. G. Ferreira, Ann. Rev. Astron. Astrophys. 57, 335
(2019)!

[4] B. P. Abbott, et al, LIGO Scientific, and Virgo Collabo-
rations, Phys. Rev. Lett. 116, 221101 (2016); Phys. Rev.

D 100, 104036 (2019); M. Isi, M. Giesler, W. M. Farr,
M. A. Scheel, and S. A. Teukolsky, Phys. Rev. Lett. 123,
111102 (2019).

[5] Event Horizon Telescope Collaboration, Astrophys. J.

Lett. 875, L1 (2019); |Astrophys. J. Lett. 875, L2 (2019);

Astrophys. J. Lett. 875, L3 (2019); Astrophys. J. Lett.

875, L4 (2019); |Astrophys. J. Lett. 875, L5 (2019); As-

trophys. J. Lett. 875, L6 (2019).

H. Falcke, F. Melia, and E. Agol, |Astrophys. J. Lett.

528, L13 (2000); F. Ozel, D. Psaltis, and R. Narayan,

Astrophys. J. 541, 234 (2000); F. Ozel and T. Di Matteo,

Astrophys. J. 548, 213 (2001).

[7] J. M. Bardeen, in Black Holes (Les Astres Occlus),
edited by C. Dewitt and B. S. Dewitt (1973) pp. 215—
239; S. Chandrasekhar, The mathematical theory of black
holes (1983); E. Teo, GRG 35, 1909 (2003); R. Taka-
hashi, Astrophys. J. 611, 996 (2004).

[8] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astro-
phys. J. 178, 347 (1972)

[9] C. Bambi and K. Freese, |[Phys. Rev. D 79, 043002 (2009).

[10] T. Johannsen and D. Psaltis, |Astrophys. J. 718, 446
(2010).

[11] D. Psaltis, GRG 51, 137 (2019); P. V. P. Cunha and
C. A. R. Herdeiro, GRG 50, 42 (2018); T. Baker,
D. Psaltis, and C. Skordis, Astrophys. J. 802, 63 (2015).

[12] D. Psaltis, F. Ozel, C.-K. Chan, and D. P. Marrone, |As-
trophys. J. 814, 115 (2015).

[13] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. M.
Faber, K. Giiltekin, J. Murphy, and S. Tremaine, |Astro-
phys. J. 729, 119 (2011)!

[14] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi, |Astro-
phys. J. 770, 86 (2013)|

[15] J. Kormendy and L. C. Ho, Ann. Rev. Astron. Astrophys.
51, 511 (2013)!

[16] A second technique of measuring the mass of M87 based
on gas dynamics results in a mass that is smaller by a fac-
tor of 2. However, the accuracy of this technique has been
questioned as it often leads to underestimated black-hole
masses [15]. Moreover, choosing this mass instead would
lead us to the conclusion that the metric of the M87 black
hole deviates substantially from Kerr. We consider this
to be a rather unlikely possibility and, therefore, give a
negligible prior to the mass measurement from gas dy-
namics.

[17] D. Psaltis, D. Perrodin, K. R. Dienes, and I. Mocioiu,
Phys. Rev. Lett. 100, 091101 (2008).

[18] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108,
081103 (2012)k

[19] E. Berti and et al., CQG 32, 243001 (2015).

[20] N. Yunes and L. C. Stein, [Phys. Rev. D 83, 104002
(2011); K. Yagi, N. Yunes, and T. Tanaka, Phys. Rev.
D 86, 044037 (2012); D. Ayzenberg and N. Yunes, Phys.
Rev. D 90, 044066 (2014); R. McNees, L. C. Stein, and
N. Yunes, [Classical and Quantum Gravity 33, 235013
(2016); H. O. Silva, J. Sakstein, L. Gualtieri, T. P.
Sotiriou, and E. Berti, Phys. Rev. Lett. 120, 131104
(2018); D. D. Doneva and S. S. Yazadjiev, Phys. Rev.
Lett. 120, 131103 (2018).

[21] E. Barausse, T. Jacobson, and T. P. Sotiriou, Phys.
Rev. D 83, 124043 (2011); E. Barausse and T. P.
Sotiriou, Classical and Quantum Gravity 30, 244010
(2013); E. Barausse, T. P. Sotiriou, and I. Vega, Phys.
Rev. D 93, 044044 (2016); O. Ramos and E. Barausse,

6


https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1146/annurev-astro-091918-104423
https://doi.org/10.1146/annurev-astro-091918-104423
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevLett.123.111102
https://doi.org/10.1103/PhysRevLett.123.111102
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1086/312423
https://doi.org/10.1086/312423
https://doi.org/10.1086/309396
https://doi.org/10.1086/318658
https://doi.org/10.1023/A:1026286607562
https://doi.org/10.1086/422403
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1103/PhysRevD.79.043002
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1007/s10714-019-2611-5
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1088/0004-637X/802/1/63
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.1146/annurev-astro-082708-101811
https://doi.org/10.1146/annurev-astro-082708-101811
https://doi.org/10.1103/PhysRevLett.100.091101
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1103/PhysRevD.83.124043
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1103/PhysRevD.93.044044
https://doi.org/10.1103/PhysRevD.93.044044

Phys. Rev. D 99, 024034 (2019).

[22] T. Johannsen, Phys. Rev. D 87, 124017 (2013).

[23] T. Johannsen and D. Psaltis, Phys. Rev. D 83, 124015
(2011)!

[24] S. Vigeland, N. Yunes, and L. C. Stein, Phys. Rev. D 83,
104027 (2011)

[25] T. Johannsen, Phys. Rev. D 88, 044002 (2013).

[26] V. Cardoso, P. Pani, and J. Rico, Phys. Rev. D 89,
064007 (2014),

[27] L. Rezzolla and A. Zhidenko, Phys. Rev. D 90, 084009
(2014)]

[28] V. Cardoso and L. Queimada, GRG 47, 150 (2015).

[29] R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys. Rev.
D 93, 064015 (2016).

[30] T. Johannsen, A. E. Broderick, P. M. Plewa, S. Chat-

10

zopoulos, S. S. Doeleman, F. Eisenhauer, V. L. Fish,
R. Genzel, O. Gerhard, and M. D. Johnson, Phys. Rev.
Lett. 116, 031101 (2016).

[31] T. Johannsen, Astrophys. J. 777, 170 (2013).

[32] L. Medeiros, D. Psaltis, and F. Ozel, Astrophys. J. 896,
7 (2020), |arXiv:1907.12575 [astro-ph.HE].

[33] A. Sullivan, N. Yunes, and T. P. Sotiriou, Phys. Rev. D
101, 044024 (2020).

[34] D. Psaltis, [Phys. Rev. D 77, 064006 (2008).

[35] J. Gair and N. Yunes, Phys. Rev. D 84, 064016 (2011).

[36] Gravity Collaboration, Phys. Rev. Lett. 122, 101102
(2019); Astron. Astrophys. 636, L5 (2020); T. Do and
et al., Science 365, 664 (2019).


https://doi.org/10.1103/PhysRevD.99.024034
https://doi.org/10.1103/PhysRevD.87.124017
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1103/PhysRevD.83.104027
https://doi.org/10.1103/PhysRevD.83.104027
https://doi.org/10.1103/PhysRevD.88.044002
https://doi.org/10.1103/PhysRevD.89.064007
https://doi.org/10.1103/PhysRevD.89.064007
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1007/s10714-015-1990-5
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1088/0004-637X/777/2/170
https://doi.org/10.3847/1538-4357/ab8bd1
https://doi.org/10.3847/1538-4357/ab8bd1
https://arxiv.org/abs/1907.12575
https://doi.org/10.1103/PhysRevD.101.044024
https://doi.org/10.1103/PhysRevD.101.044024
https://doi.org/10.1103/PhysRevD.77.064006
https://doi.org/10.1103/PhysRevD.84.064016
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.1126/science.aav8137

	Gravitational Test Beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole
	Abstract
	 Acknowledgments
	 References


