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Abstract

Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the
supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure
of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization
structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large
Millimeter /submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in
the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we
attribute to Faraday rotation internal to the emission region. We estimate the average density n, ~ 10*7 cm ™2,
magnetic field strength B ~ 1-30 G, and electron temperature 7, ~ (1-12) x 10'° K of the radiating plasma in a
simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from
organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of
simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify
a subset of physical models that can explain critical features of the polarimetric EHT observations while producing
a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion
disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion
rate onto the black hole in M87 of (3—20) x 10~ * M. yr .

Unified Astronomy Thesaurus concepts: Accretion (14); Black holes (162); Event horizons (479); Jets (870); Kerr
black holes (886); Magnetic fields (994); Magnetohydrodynamics (1964); Plasma astrophysics (1261); Polarimetry

CrossMark

(1278); Radiative transfer (1335); Radio jets (1347); Relativistic jets (1390)

1. Introduction

The Event Horizon Telescope (EHT) Collaboration has
recently published total intensity images of event-horizon-scale
emission around the supermassive black hole in the core of the
MB87 galaxy (M87"; Event Horizon Telescope Collaboration et al.
2019a, 2019b, 2019c, 2019d, hereafter EHTC I, EHTC II,
EHTC III, EHTC IV). The data reveal a 42 + 3 pas diameter ring-
like structure that is broadly consistent with the shadow of a black
hole as predicted by Einstein’s Theory of General Relativity
(Event Horizon Telescope Collaboration et al. 2019e, 2019f;
hereafter EHTC V, EHTC VI). The brightness temperature of the
ring at 230 GHz (ZlOm K) is naturally explained by synchrotron
emission from relativistic electrons gyrating around magnetic field
lines. The ring brightness asymmetry results from light bending
and Doppler beaming due to relativistic rotation of the matter
around the black hole.

M87"is best known for launching a kpc-scale FR-I type
relativistic jet, whose kinetic power is estimated to be
~10***ergs! (e.g., Stawarz et al. 2006; de Gasperin et al.
2012). The structure of the relativistic jet has been resolved and
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studied at radio to X-ray wavelengths (e.g., Di Matteo et al.
2003; Harris et al. 2009; Kim et al. 2018; Walker et al. 2018).

The published EHT image of M87" together with multi-
wavelength observations are consistent with the picture that the
supermassive black hole in MS87 is surrounded by a
relativistically hot, magnetized plasma (Rees et al. 1982;
Narayan & Yi 1995; Narayan et al. 1995; Yuan &
Narayan 2014; Reynolds et al. 1996; Yuan et al. 2002; Di
Matteo et al. 2003). However, it is not clear whether the
compact ring emission is produced by plasma that is inflowing
(in a thick accretion flow), outflowing (at the jet base or in a
wind), or both. Furthermore, the total intensity EHT observa-
tions also could not constrain the structure of magnetic fields in
the observed emission region. In order to find out which
physical scenario is realized in M87*, additional information is
necessary.

Event Horizon Telescope Collaboration et al. (2021,
hereafter EHTC VII) reports new results from the polarimetric
EHT 2017 observations of M87*. The polarimetric images of
MS87" are reproduced in Figure 1. These images reveal that a
significant fraction of the ring emission is linearly polarized, as
expected for synchrotron radiation. The EHT polarimetric
measurements are consistent with unresolved observations of
the radio core at the same frequency with the Submillimeter
Array (SMA; Kuo et al. 2014) and the Atacama Large
Millimeter/submillimeter Array (ALMA; Goddi et al. 2021).
They also provide a detailed view of the polarized emission
region on event-horizon scales near the black hole. Polarized
synchrotron radiation traces the underlying magnetic field
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Figure 1. Top panel: 2017 April 11 fiducial polarimetric image of
M87* from EHTC VII. The gray scale encodes the total intensity, and ticks
illustrate the degree and direction of linear polarization. The tick color indicates
the amplitude of the fractional linear polarization, the tick length is proportional

to |P| = Q>+ U?, and the tick direction indicates the electric-vector
position angle (EVPA). Polarization ticks are displayed only in regions where
Z > 10% Zyax and |P| > 20%|P|max- Bottom row: polarimetric images of
MB87* taken on different days.

configuration and magnetized plasma properties along the line
of sight (Bromley et al. 2001; Broderick & Loeb 2009;
Moscibrodzka et al. 2017). These polarimetric measurements
allow us to carry out new quantitative tests of horizon-scale
scenarios for accretion and jet launching around the
M87*black hole. In this Letter we present our interpretation
of the EHTC VII resolved polarimetric images of the ring
in M87".

Our analysis is presented as follows. In Section 2 we report
polarimetric constraints from M87* EHT 2017 and supplemen-
tal observations, and argue that they can be used for scientific
interpretation, focusing on several key diagnostics of the degree
of order and spatial pattern of the polarization map. In
Section 3 we present one-zone estimates of the properties of
the synchrotron-emitting plasma. In the transrelativistic para-
meter regime relevant for the M87 core, a full calculation of
polarized radiative transfer using a realistic description of the
plasma properties is essential. To that end, in Section 4 we
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describe a set of numerical simulations of magnetized accretion
flows that we use to compare with our set of observables. In
Section 5 we show that only a small subset of the simulation
parameter space is consistent with the observables. The favored
simulations feature dynamically important magnetic fields. We
discuss limitations of our models in Section 6, and discuss how
future EHT observations can further constrain the magnetic
field structure and plasma properties near the supermassive
black hole’s event horizon in Section 7.

2. Polarimetric Observations and Their Interpretation
2.1. Conventions in Observations and Models

Throughout this Letter we use the following definitions and
conventions for polarimetric quantities, following the Interna-
tional Astronomical Union (IAU) definitions of the Stokes
parameters (Z, Q, U, V) (Hamaker & Bregman 1996;
Smirnov 2011). The complex linear polarization field P is

P=09+ il (1)
Then, the electric-vector position angle (EVPA) is defined as

EVPA = %arg(P). (2)

The EVPA is measured east of north on the sky. Therefore,
positive Q is aligned with the north—south direction and
negative Q with the east-west direction. Positive U is at
a+ 45 deg angle with respect to the positive Q axis (in the
northeast—southwest direction). Positive Stokes V indicates
right-handed circular polarization, meaning in our convention
that the electric field vector of the incoming electromagnetic
wave is rotating counter-clockwise as seen by the observer. In
the synchrotron radiation models that we consider, a positive
value of emitted Stokes ) is associated with an angle 63
between the wavevector k* and magnetic field b* as measured
in the frame of the emitting plasma in the range 65 € [0, 0.57].
Negative V corresponds to 0 € [0.57, 7).

The linear and circular polarization fractions at a point in the
image are defined as

[Pl

ml = 21, 3)
v = % @

We also define the rotation measure between two wavelengths
)\1 and )\2

_ EVPA(\) — EVPA())

RM
A=A

()

Unresolved observations measure the net (image-integrated)
polarization fractions

\/(Zigi)z + (Ziui)z
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Table 1
ALMA-only Measurements of M87"’s Unresolved Polarization Properties at
v =221 GHz (Goddi et al. 2021)

Day F |1 net [V]net RM

ay %) @ (10°radm )
April 5 1.28 +£0.13 242+ .03 <0.2 0.6 +0.3)
April 6 1.31 £0.13 2.16 +.03 <0.3 (1.5+0.3)
April 10 1.33 £ 0.13 2.73 +.03 <0.3 (-0.2+£0.2)
April 11 1.34 +0.13 2.71 +.03 <04 (-0.4+£0.2)

where the sums are over all pixels i in the resolved image. In
addition to the signed circular polarization fraction v, we also
frequently consider the absolute value |vne|, as circular
polarization measurements of the M87" core at 230 GHz do
not constrain its sign (Goddi et al. 2021).

In describing the resolved linear polarization in EHT images,
we define the image-average linear polarization fraction,
weighted by the total intensity of each image pixel, as

NG+ Ul
= ST )
Note that (|m|) depends on the imaging resolution (beam size),

while |m|,e is the usual unresolved linear polarization fraction
and does not depend on resolution.

(Iml) ®)

2.2. Unresolved Polarization and Rotation Measure
Measurements toward M87’s Core from ALMA

As part of the EHT 2017 observation campaign, we obtained
ALMA array measurements of the unresolved, net, near
230 GHz, polarimetric properties of M87’s core and jet on
2017 April 5, 6, 10, and 11 (hereafter these observations are
referred to as ALMA-only observations). ALMA-only mea-
surements are given at v=221 GHz, a central frequency of
ALMA Band 6, which has four spectral windows, each
centered at 213, 215, 227, and 229 GHz. These results, along
with details on the observations and data calibration, are
presented in Goddi et al. (2021); we summarize them here in
Table 1. From the ALMA-only data, the net linear polarization
fraction (Equation (6)) of the core is |m|no ~2.7%. The data
also provide an upper limit on the net circular polarization
fraction (Equation (7)) of the core of |v|,e <0.3%, with a
magnitude and sign that vary over the four observed epochs.
Goddi et al. (2021) also measured an EVPA that varies with
wavelength across the ALMA band; the slope of EVPA with
wavelength is consistent with EVPA oc X%, as expected for
Faraday rotation. The inferred rotation measure (Equation (5),
for frequencies/wavelengths in ALMA Band 6) is also time
variable and changes sign between 2017 April 5 and 11, with a
maximum magnitude [RM| =~ 1.5 x 10° rad m™ 2.

The ALMA-only measurements include extended ~arcse-
cond scale structures that are entirely resolved out of the EHT
maps of M87’s core region. As a result, the total 221 GHz flux
density of M87* measured by ALMA alone is a factor of ~2
larger than that captured by the resolved EHT images (see
also EHTC 1V). For that reason, we adopt a more conservative
upper limit of |v|,e < 0.8%, which would account for the case
where the large-scale emission is not circularly polarized.
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2.3. Spatially Resolved Linear Polarization of M87’s Core in
EHT 2017 Data

The resolved polarimetric images of the M87 core reported
in EHTC VII display robust features between different image-
reconstruction algorithms and across four days of observations
(2017 April 5, 6, 10, and 11). At 20 pas resolution, those
images consistently show a region of the highest linear
polarized intensity in the southwest portion of the ring, with
a fractional linear polarization |m| < 30% at its maximum. The
image-average linear polarization fraction takes on values
5.7% < {|m|) <10.7% across the different observation days
and image-reconstruction techniques. The range of the image-
integrated net polarization fraction is 1.0% < |m|pe < 3.7%
(see EHTC VII, their Table2). Because polarized emission
outside the EHT field of view but inside the ALMA-only core
is unconstrained, we adopt the EHT |ml,, range when
evaluating models.

The EHT images on all four observing days reveal a
characteristic azimuthal pattern of the EVPA angle around the
emission ring. To quantify this pattern across the image, we
use a decomposition of the complex linear polarization
P = Q + il into azimuthal modes with complex coefficients
B, (Palumbo et al. 2020, hereafter PWP). For a polarization
field in the image plane given in polar coordinates (p, ¢), the
0, coefficients are

1 Prax 27 .
Bm = j; Plp, p) e pdedp, )

Iann Prin

where I, is the Stokes 7 flux density contained inside the
annulus set by the limiting radii p,;, and p,,,. We take
Pmin = 0 and p,,. to be large enough to include the entire EHT
image.

Within the library of polarized images from general
relativistic magnetohydrodynamic (GRMHD) simulations pre-
sented in EHTC V, PWP found that the m = 2 coefficient, 3,,
was the most discriminating in identifying the underlying
magnetized accretion model. The phase of (3, maps well onto
the qualitative behavior expected of polarization maps with
idealized magnetic field configurations. In our convention,
radial EVPA patterns have positive real 3, (£3,=0deg),
azimuthal EVPA patterns have negative real (3, (£3,=
180 deg), and left- (right-) handed spiral patterns have positive
(negative) pure imaginary [, (£3,=90deg and —90 deg,
respectively). These idealized EVPA pattern configurations and
their corresponding (3, coefficients are summarized in
Appendix A and Figure 1 of PWP. The measured range of
the complex [, coefficient across the different image-
reconstruction methods and observing days reported in EHTC
VII, their Table 2, is 0.04 < |3,| < 0.07 for the amplitude and
—163 deg < arg[B,] < —129 deg for the phase.

Appendix A demonstrates that the information in the [,
coefficient can be obtained in the visibility domain using
measurements of the linear polarization E — (gradient) and
B — (curl) modes of the polarization field (e.g., Kamionkowski
& Kovetz 2016). Trends in (3, metric computed across the
GRMHD image library (Section 4) can be obtained in the
visibility domain using only E-and B-mode measurements
taken on EHT 2017 baselines, as long as the visibilities are
accurately phase calibrated. Because accurate phase calibration
of EHT data is non-trivial and requires fully modeling the
polarized source structure, we use image-domain comparisons
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Table 2
Parameter Ranges for the Quantities Used in Scoring Theoretical Models in this
Letter

Parameter Min Max

[ net 1.0% 3.7%
[Vlnet 0 0.8%
(Im]) 5.7% 10.7%
|32 0.04 0.07
YA —163 deg —129 deg

Note. The ranges for |m|ne. (|m]), and 3, were taken from EHTC VII Table 2.
These ranges represent the minimum —1o error bound and maximum + lo
error bound across five different image-reconstruction methods, and incorpo-
rate both statistical uncertainty in the polarimetric image reconstruction and
systematic uncertainty in the assumptions made by different reconstruction
algorithms. The upper limit on |v],e Was taken as ~2x the maximum value
found by Goddi et al. (2021).

to the reconstructions presented in EHTC VII for the
constraints in this Letter.

As in total intensity, both the unresolved and resolved
polarimetric properties of the 230 GHz M87" image changed
over the week between 2017 April 5 and April 11. Notably, the
integrated EVPA in the EHT image changes by ~30-40 deg
(while the ALMA-only EVPA changes by <10deg). We will
not interpret this variability further in this work; however,
Section 6 discusses expectations for time variability from
viable simulation models. The observational ranges of the key
parameters that we use in comparing theoretical models to data
in Section 5—namely |7|ner [V|nes {|m]), and 3, amplitude and
phase—are summarized in Table 2.

2.4. External and Internal Faraday Rotation

Faraday rotation in a uniform plasma with rotation measure
(RM) rotates the EVPA away from its intrinsic value EVPA,
according to Equation (5). The change in EVPA from its
intrinsic value at 230 GHz (A ~ 1.3 mm) is

RM
—— | deg. 10
10° rad m—2 ) & (10)

AEVPA ~ 9.7(
Polarized light rays passing through a uniform medium are
subject to the same RM. The net source polarization angle is
then coherently rotated away from its intrinsic value without
any depolarization. This scenario of “external” Faraday rotation
has been used to infer the mass accretion rate for sources where
an RM is measured or constrained (e.g., Bower et al. 2003;
Marrone et al. 2006, 2007; Kuo et al. 2014), by assuming that
the observed radiation passes through the bulk of the accretion
flow. Because relativistic electrons suppress the Faraday
rotation coefficient as oc 1/ Tf (e.g., Jones & Hardee 1979),
these models assume that the RM is produced outside the
emission region at the radius where ©, = kT, / myc =1, usually
r~100r, (where r, = GM/ ¢? is the gravitational radius).
However, in accreting systems like M87", it is unclear
whether this external Faraday rotation model is a good
approximation. As we estimate below, one-zone emission
models of M87" predict substantial RM within the emission
region itself at radii r < 5 r,. Atits low viewing inclination, the
observed polarized radiation emitted near the horizon may not
pass through the bulk of the high-density, infalling gas.
Therefore, “internal” Faraday rotation, which can depolarize
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the emission as well as rotate the EVPA (Burn 1966), is also an
important effect to consider.

The observed ~10% linear polarization of the ring at the EHT
scale of ~20 pas is much lower than the intrinsic synchrotron
polarization fraction 270% expected locally. This could result from
synchrotron self-absorption of the emitted radiation, but one-zone
estimates and theoretical models (e.g., EHTC V, and references
therein) suggest that the 230 GHz emission is mostly optically thin.
It is more likely that the observed depolarization of the resolved
emission could be the result of polarization structure that is
scrambled at resolutions finer than the EHT beam. Turbulent
magnetic fields and Faraday rotation internal to the emission region
could produce this scrambling. In Section 4.3 we show that
turbulence in GRMHD models alone is insufficient to produce this
level of depolarization. Significant internal Faraday rotation of
polarization vectors on different rays by different amounts can
produce a sufficiently scrambled image that is depolarized when
spatially averaged over a telescope resolution element (beam,e.g.,
Burn 1966; Agol 2000; Quataert & Gruzinov 2000; Beckert &
Falcke 2002; Ruszkowski & Begelman 2002; Ballantyne et al.
2007).

From the simultaneous ALMA-only M87" observations, the
RM implied by changes in the EVPA across the ALMA band is
IRM| < 1.5 x 10° rad m 2. These values are consistent with,
but much more constraining than, the range determined from
past SMA observations (—3.4-7 x 10° rad mfz, Kuo et al.
2014). The ALMA-only EVPA difference varies by order unity
in magnitude and sign over the observing campaign, and
includes a large flux contribution from extended emission not
captured by EHT 2017 imaging (EHTC IV). Using a two-
component model, Goddi et al. (2021) show that the RM
toward the core emission in the EHT field of view could exceed
the RM computed from the ALMA-only data, with allowed
values as large as |RM|<10°radm 2 Because of this
uncertainty, we do not use the observed RM as an observa-
tional constraint in our analysis. We account for uncertainty
related to the observed time variability by using reconstructed
polarized EHT images from both 2017 April 5 and 11 to define
the acceptable ranges (see Table 2) of the observational
parameters used to score theoretical models in Section 5.

3. Estimates and Phenomenological Models

In this Section, we take a first look at the importance of
internal Faraday rotation and magnetic field structure in
determining the characteristics of the 230 GHz EHT image. In
Section 3.1 we obtain order-of-magnitude estimates of the
plasma properties in MS87* by interpreting the observed
depolarization as entirely due to the effect of internal Faraday
rotation on small scales. In Section 3.2 we explore the effects of
different idealized magnetic field configurations on the
observed polarization pattern from plasma orbiting a black
hole in the absence of Faraday effects.

3.1. Parameter Estimates from One-zone Models

Based on a one-zone isothermal sphere model, EHTC V
derived order-of-magnitude estimates of the plasma number
density n, and magnetic field strength B in the emitting region
around M87" as constrained by the Stokes Z image’s bright-
ness, size, and total flux density:

ne =~ 2.9 x 104 cm ™3, (11)
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Figure 2. Allowed parameter space in number density and dimensionless electron temperature (n,, ©,) (red region) for the one-zone model described in Section 3.1 for
three constant values of (3, = 87n,m.c0, / B2. We require that the optical depth 7, < 1 (green region), the Faraday optical depth Ty, > 27 (blue region), and the total
flux density 0.2 < F,, < 1.2 Jy (black region). Contours of constant magnetic field strength are denoted by labeled dashed lines.

B~49G. (12)

In this model, the emission radius was assumed to be r = 5r,,
and the electron temperature was assumed to be T.=
6.25 x 10'° K, based on the observed brightness temperature
of the EHT image. This temperature corresponds to ©,=
kTg/meczz 10.5, so the emitting electrons have moderately
relativistic mean Lorentz factors § ~ 30, ~ 30. The angle
between the magnetic field and line of sight is set at § = 7/3.
This model ignores several physical effects that are included in
more sophisticated models and simulations and which are
necessary to fully describe the emission from M87". The
plasma is considered to be at rest and so there is no Doppler
(de)boosting of the emitted intensity from relativistic flow
velocities. Redshift from the gravitational potential of the black
hole is also not included.

Given n., B, and T,, we can estimate the strength of the
Faraday rotation effect at 230 GHz quantified by the optical
depth to Faraday rotation 7, :

Toy R T X py 52 [é] (13)
8

where py is the Faraday rotation coefficient (e.g., Jones &
Hardee 1979). For emission entirely behind an external
Faraday screen, Tpy is related to the rotation measure RM via

7,, = 2RMX, which follows from the radiative transfer
equations for spherical Stokes parameters in the absence of
other effects (see e.g., Appendix A of MoScibrodzka et al.
2017) and the fact that py o< A\°.

Our estimated 7,, indicates that Faraday rotation internal to
the emission region is an important effect and could thus
explain the depolarization observed in M87". Faraday effects
are even more important for the case of polarized light emitted
by relativistic electrons that travel through a dense, colder
accretion flow (e.g., Moscibrodzka et al. 2017; Ricarte et al.
2020). In addition, for the same parameters, Faraday conver-
sion of linear to circular polarization may also be important
(TpQ ~ (.5), while self-absorption is weak (7; 2 0.05). Requir-
ing an internal Faraday optical depth 7,, > 2 (large enough to
produce significant depolarization) provides an additional

constraint on one-zone models independent of those used
in EHTC V, which fixed the electron temperature at an
assumed value. Assuming 7, > 27 allows us to break the
degeneracy between magnetic field strength, electron temper-
ature, and plasma number density.

Hence, we consider the same model as in EHTC V at several
different values of (,=8mnkT,/B? constrained by the
requirement that the Faraday optical depth 7, > 27. To be
consistent with the 230 GHz EHT data, we also require that the
observed image have a total flux F, between 0.2 and 1.2 Jy, and
that the model has a maximum total intensity optical depth
77 < 1. Figure 2 shows what constraints these requirements put
on the electron number density n, and the dimensionless
electron temperature O, at three different values of (3,. For
values of 0.01 < 3, < 100, in this simple model the electron
temperature is constrained to lie in a mildly relativistic regime
2<0,<20(10" < T, < 1.2 x 10" K), and the magnetic field
strength is 1 < B <30 G. The number density of the emitting
electrons depends more sensitively on the assumed value of [3,,
taking on values between 10*cm > and 107 cm .

The one-zone model estimates suggest that both the total
intensity and polarized emission can be produced in a mildly
relativistic plasma in a magnetic field of relatively low strength
B <30 G. For higher values of B, the electron temperature
would be too small to exglain the observed maximum
brightness temperature (~10'" K) in the M87* EHT image
(EHTC 1V). Very high values of B are independently
disfavored by the small degree of circular polarization
Vet S 1% seen in M87". For B~ 100 G, the ratio of the
Stokes V emissivity to the Stokes Z emissivity jy/j; >~ 1%. For
B~10° G, jv/ji~ 10%, for all temperatures >10"" K. We also
note that magnetic fields of B 2 5 G are sufficient to produce jet
powers of Pje, 2 10*? erg s ! (e.g., EHTC V) via the Blandford
& Znajek (1977) process.

3.2. EVPA Pattern and Field Geometry

To demonstrate how the intrinsic magnetic field structure in
the emission region influences the observed polarization
pattern, in this section we present the polarization configura-
tions from three idealized magnetic field geometries around a
black hole—a purely toroidal field, a purely radial field, and a
purely vertical field— as seen by a distant observer. In Figure 3
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Figure 3. (a) Numerical calculations of the polarization configuration generated by an orbiting emission region in the shape of a torus at 8r, in three imposed magnetic
field geometries and viewed at i = 163 deg (with material orbiting clockwise on the sky). The orbital angular momentum vector is pointing away from the observer
and to the east (to the left). Total intensity is shown in the background with higher brightness temperature regions shown as being lighter in color. In the foreground,
the observed EVPA direction is shown with white ticks, with the tick length proportional to the polarized flux. (b) Analytic calculations of the polarization
configuration from a thin ring of magnetized fluid at 8r, inclined by 163 deg to the observer in the same magnetic field geometries as in (a). While the distribution of
emitting material is different in the two models, both the sense of asymmetry in the brightness distributions and the polarization patterns match those from the
numerical calculations. (c) Schematic cartoons showing the emitting frame wavevector k, magnetic field direction B, and polarization vector P = k x B for each case.
In the bottom-right panel, ' denotes the approximate light bending contribution to the wavevector.

we show polarimetric images from these simple field configura-
tions computed with two methods: a numerical model of an
optically thin emission region around the black hole (top row of
Figure 3), and an analytic treatment of the parallel transport of the
polarization vector that is originally perpendicular to the magnetic
field (R. Narayan et al. 2021, in preparation, middle row of

Figure 3). We show the polarization maps from both methods for
the three idealized magnetic field configurations viewed at an
inclination angle of i=163 deg. Both the analytical and
numerical calculations assume a zero-spin black hole (Schwarzs-
child metric), though we have found that the main features of
these polarization patterns are insensitive to spin.
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In the top row of Figure 3 we show the result of numerical
calculations performed with the general relativistic ray tracing
code grtrans (Dexter & Agol 2009; Dexter 2016) of
polarized emission from an optically and Faraday-thin compact
emission region, or “hotspot”, in Keplerian orbit around a black
hole in the equatorial plane. The hotspot has a radial extent of
3r, and moves in an imposed and idealized magnetic field
geometry in a circular orbit at a radius of 8r, (following
Gravity Collaboration et al. 2018, 2020). We construct a
phenomenological model of a torus of emitting, rotating plasma
by studying the time-averaged polarized emission images from
one revolution of this hotspot around the black hole. We have
verified that a semi-analytic implementation (Broderick &
Loeb 2006) of a hot accretion flow model (Yuan et al. 2003)
produces consistent polarization patterns when using the same
field geometry.

In the second row of Figure 3, we compare these numerical
results to results from an analytic calculation of the observed
polarization pattern generated by the emission of polarized
light on a thin ring of radius 8r, in the equatorial plane. In this
model (R. Narayan et al. 2021, in preparation) the polarization
vectors are emitted perpendicular to the imposed magnetic field
geometry in the fluid rest frame; they are transformed on their
way to the observer using an approximate, analytic treatment of
the effects of light bending, parallel transport, and Doppler
beaming. This calculation includes radial inflow as well as
rotation in the velocity field; the models shown use purely
toroidal motion (clockwise on the sky) with the same idealized
magnetic field geometries as in the numerical case. The models
match the asymmetric brightness distributions and polarization
patterns of the numerical calculations. In particular, both
models produce consistent helical EVPA pattern in the case of
a vertical magnetic field.

The linear polarization direction P of synchrotron radiation
in the emitted frame is perpendicular to the wavevector k and
the magnetic field vector B. We define the toroidal magnetic
field as consisting only of magnetic field components in the
azimuthal direction, while the poloidal magnetic field consists
of the remainder, including both radial and vertical compo-
nents. In a purely toroidal field case, the EVPA shows a radial
pattern (left column in Figure 3). Purely radial magnetic fields
(middle column) give a complementary result; the polarization
has a toroidal configuration, similar to a 90 deg rotation of the
linear polarization ticks from the toroidal case.

In a vertical magnetic field (right column in Figure 3), we
might expect that P should be vertical (north—south) every-
where since a vertical B is tilted east—west for this viewing
geometry. We might also expect that P ~ 0 when the black
hole is viewed face on, because l€||E. Instead, the linearly
polarized emission from a purely vertical field shows a twisting
pattern that wraps around the black hole. The twist results from
a combination of light bending and relativistic aberration. Light
bending in the emitting region near the black hole contributes a
radial component k' to the emitted wavevector k that initially
points away from the black hole (see the schematic cartoon in
the bottom-right panel of Figure 3). As a result, close to the
black hole, the total wavevector kemii = kK + k' and the
magnetic field B are no longer parallel, the polarization is
non-zero, and the resulting EVPA pattern is north—south
symmetric. Relativistic motion of the emitting material
(aberration) breaks the symmetry and gives the twisting pattern
a handedness corresponding to the orbital direction. For the
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pure vertical field considered here, the handedness depends on
the rotation direction and the observed pattern is consistent
with clockwise rotation. The dependence on direction of
motion and magnetic field configuration are discussed in more
detail in a forthcoming paper (R. Narayan et al. 2021, in
preparation). The EVPA patterns in these images do not show a
strong dependence on the black hole spin.

In a rotating flow, weak magnetic fields are sheared into a
predominantly toroidal configuration (e.g., Hirose et al. 2004).
In the absence of other effects (e.g., external Faraday rotation),
the observed azimuthal EVPA pattern suggests the presence of
dynamically important magnetic fields in the emission region,
which can retain a significant poloidal component in the
presence of rotation. In the next sections, we compare
numerical simulations of the accretion flow and jet-launching
region in M87" with different field configurations to the
EHT2017 data to better constrain the magnetic field structure.

4. M87* Model Images from GRMHD Simulations

The low resolved fractional linear polarization observed by
the EHT contradicts the results from an idealized magnetic field
structure with no disorder. For typical parameters of the
230 GHz emission region, Faraday rotation and conversion are
expected to be important. Magnetic field structure, plasma
dynamics and turbulence, and radiative transfer effects
including Faraday rotation can be realized in images from
three-dimensional general relativistic magnetohydrodynamic
(3D GRMHD) simulations of magnetized accretion flows. We
use 3D GRMHD simulations (described in Section 4.1) in
combination with polarized general relativistic radiative
transfer (GRRT) models (described in Section 4.2) to model
polarized images of M87". In Section 4.3, we describe trends of
the key observables (|M|nets |VInew (Jm|), and () in our
GRMHD polarimetric image library.

4.1. GRMHD Model Description

The simulation library generated for the analysis of the
EHT 2017 total intensity data in EHTC V consists of a set of
3D GRMHD simulations that were postprocessed to generate
simulated black hole images via GRRT. For simulations using
black holes with non-zero angular momentum, we only
considered accretion flows in which the angular momentum
of the flow and the hole were aligned (parallel or anti-parallel).
Because the equations of non-radiating'>’ GRMHD are scale
invariant, each fluid simulation was thus fully parameterized by
two values describing the angular momentum of the black hole
and the relative importance of the magnetic flux near the
horizon of the accretion system. A comparison of several
contemporary GRMHD codes, including those used to generate
the simulation library, can be found in Porth et al. (2019) and in
H. Olivares et al. (2021, in preparation).

The black hole angular momentum J is expressed in terms of
the dimensionless black hole spin parameter a, =Jc/ GM?. In
this Letter, we consider simulations run with the 1harm code
(Gammie et al. 2003; Noble et al. 2006) with a, = —0.94,
—0.5, 0, 0.5, and 0.94, where positive (negative) spin implies
alignment (anti-alignment) between the accretion disk and the
black hole angular momentum. Several studies of “tilted” disks

129 We assume that M87" can be described by models in which radiative

cooling is negligible so that it does not affect the dynamics of the plasma and
images can be generated in postprocessing.
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have been conducted (e.g., Fragile et al. 2007; McKinney et al.
2013; Morales Teixeira et al. 2014; Liska et al. 2018; White
et al. 2019; Chatterjee et al. 2020). As there does not yet exist a
full library of tilted disk simulations spanning a range of spins,
we limit our analysis to the aligned and anti-aligned
simulations considered in EHTC V.

The strength of the magnetic flux near the horizon
qualitatively divides accretion flow solutions into two cate-
gories: the Magnetically Arrested Disk (MAD) state (e.g.,
Bisnovatyi-Kogan & Ruzmaikin 1974; Igumenshchev et al.
2003; Narayan et al. 2003) in which the magnetic flux near the
horizon saturates and significantly affects the dynamics of the
flow, and the contrasting Standard and Normal Evolution
(SANE) state (e.g., De Villiers et al. 2003; Gammie et al. 2003;
Narayan et al. 2012). The relative importance of magnetic flux
in a simulation is quantitatively described by the dimensionless
quantity

¢ = Ppu(Mric) '/, (14)

where ®gy is the magnitude of the magnetic flux crossing one
hemisphere of the event horizon (see Tchekhovskoy et al.
2011; Porth et al. 2019) and M is the mass accretion rate
through the event horizon. The flux saturates at values of
¢ 2 50, and the flow becomes MAD. The SANE simulations
that we consider have lower values of ¢~ 5. Accreted
material supplied at large scales could, in principle, supply any
value of net vertical flux. Here, we do not explore cases with
small or zero net vertical flux ¢ < 1. We also do not consider
values in the relatively narrow intermediate range 5 < ¢ < 50.
The SANE simulations considered here used a grid
resolution of 288 x 128 x 128, a fluid adiabatic index v= 4/
3, and an outer simulation domain of 74y = 50 r,. The MAD
simulations used a grid resolution of 384 x 192 x 192, an
ad1abatlc index v=13/9, and an outer simulation domain of
Four = 10° re. The simulations were carried out in modified
spherical polar Kerr—Schild coordinates, where grid resolution
is concentrated toward the midplane to help resolve the
magnetorotational 1nstab111ty All models in the EHT library are
evolved for at least £ = 10%r /¢ and their accretion flows reach
steady state within r = 10— 20 Tg.

4.2. Ray-traced Polarimetric Images from GRMHD
Simulations

Unlike the equations of GRMHD, the equations of radiative
transfer are not scale invariant, and so we must introduce two
scales to the simulation when we ray-trace images from the
numerical fluid data. The length (and time) scale is set by the
mass of the black hole, assumed to be Mgy = 6.2 X 109M@ in
accordance with the value used to generate the EHTC V
simulation library. For our models, we also adopt the D = 16.9
Mpc distance to M87* used in EHTC V. The density scale of
the accreting plasma (equal to the scale of the magnetic
pressure) is chosen so that on average the simulated images
reproduce the observed 230GHz compact flux density,

F,~05Jy.

Images were generated from the set of simulations for

several values of the polar inclination angle i chosen to be

139 Note that the MAD threshold </> 250 is given in Gaussian units where

[®] = G cm? If the field strength is given_in the Lorentz—Heaviside units
typically used in simulations (Bry = Bg/+/47), the MAD threshold on the
dimensionless flux is ¢ ~ 15.
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broadly consistent with observational estimates of the inclina-
tion angle of the M87 jet (e.g., Walker et al. 2018). The
position angle on the sky can be changed after image
generation by rotating both the image and the Stokes Q and
U components appropriately. Each image has a 320 x 320
pixel resolution over a 160 pas field of view, where each pixel
contains full Stokes Z, O, U, V intensities.

In GRMHD simulations, we make the approximation that the
plasma is thermal, i.e., that the electrons and ions are described
by a Maxwell-Jiittner distribution function (Jiittner 1911).
However, the plasma around M87" and in other hot accretion
flows is most likely collisionless, with electrons and protons
that are unable to equilibrate their temperatures (e.g., Shapiro
et al. 1976; Ichimaru 1977). We mimic collisionless plasma
properties in producing images from the GRMHD simulations
by allowing the electron temperature 7, to deviate from the
proton temperature 7;. The simulations used in this work only
track the total internal energy density u,,, not the distinct
electron and ion temperatures. We set 7, after running the
simulation according to local plasma parameters following the
parameterization introduced by MoScibrodzka et al. (2016; see
also Moscibrodzka et al. 2017 and EHTC V). The ratio
between the ion and electron temperatures R is determined by
the local plasma B = Pgas/Pmag» Where pgas = (7 — Ditgys, and
Pmag =B 2 /8. The temperature ratio is then taken to be

T; B 1
R = Fe = Rhign m + Riow m,
where Ryign (Riow) are the free parameters of the model and give
the approximately constant temperature ratio at high (low) .
This approach allows us to associate the electron heating with
magnetic properties of the plasma.

In calculating the electron temperature, we further assume
that the plasma is purely ionized hydrogen and that ions are
nonrelativistic with an adiabatic index -, =15/3 and electrons
are relativistic with 7, =4/3. Then, given ug,s from the
simulation and R from Equation (15), (EHTC V):

5)

T = M. (16)
‘" 3pk2 +R)

We note that this procedure is not entirely self-consistent, as the ~y
of the combined electron-ion fluid will change depending on the
relative pressure contributions of electrons and protons while we
assume it is fixed throughout the simulation domain. See
Sadowski et al. (2017) for an alternative, self-consistent approach.

In this Letter, we consider a library of 72,000 simulated
images composed of sets of 200 realizations of the same
accretion system described by a fixed set of heating and
observation parameters. Each set of 200 images is drawn from
output files spaced by 25-50 r,/c from the set of 10 GRMHD
simulations spanning five spin values in both MAD and SANE
field configurations. The inclination angle for each image is set
to one of either i =12, 17, 22 deg (retrograde models, a, < 0)
or i = 158, 163, 168 deg (prograde models, a, > 0), according
to which parity is required to orient the brightest portion of the
ring in the southern part of the image while ensuring the
orientation of the approaching jet is consistent with large-scale
observations.

We use electron heating parameters Ry, =1, 10 and
Ruyign =1, 10, 20, 40, 80, or 160 in Equation (15). EHTC V
only considered models with Ry, = 1. Larger values of R
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correspond to lower electron-to-proton temperature ratios in the
low [ regions (e.g., the jet funnel). This choice is physically
motivated for M87", where radiative cooling of the electrons
may keep T, < T; even in magnetized regions where electron
heating is efficient (e.g., MoScibrodzka et al. 2011; Ryan et al.
2018; Chael et al. 2019). Lower electron temperatures in
Riow = 10 models increase the Faraday rotation depth and can
result in increased depolarization in parts of the image.

GRMHD simulations produce a highly magnetized jet funnel
above the black hole’s poles, away from the accretion disk. In
the funnel, where the plasma magnetization parameter
O’EB2/47TpC2 > 1, our numerical methods typically fail to
accurately evolve the plasma internal energy. In the image
library, we cut off all emission in regions where ¢ > 1 to ensure
that we limit the emitting region to plasma whose internal
energy is safely evolved without numerical artifacts (as
in EHTC V). We tested the importance of a ¢ > 1 electron
population by generating a supplementary set of images from
all models with a cut at ¢ = 10 and found that it did not change
the overall distribution of the derived metrics we use for model
scoring in Section 5.

Each set of 200 model images with the same parameters in
the image library requires a unique density scaling factor that is
determined by matching the average flux density from the
model to the observed compact flux density of M87* measured
by the EHT. Hence, the mass accretion rates, radiative
efficiencies, and jet powers will differ between two models
even if they are derived from the same underlying simulation
(e.g., if Ryjgh, Riow, Or i are changed). The additional models
discussed in Section 6, which explore the effects of different o
cutoff values and the inclusion nonthermal electrons, also
require unique mass-scaling factors.

All of the polarimetric images from GRMHD simulations
that we analyze in this Letter were generated using the ipole
code (MoScibrodzka & Gammie 2018), which has been tested
against analytic solutions and numerical ones produced by
other numerical GRRT codes (Dexter 2016; MoScibrodzka
2020). A more comprehensive comparison of various GRRT
codes that perform total intensity transport and fully polarized
GRRT can be found in Gold et al. (2020) and B. Prather et al.
(2021, in preparation), respectively. Preliminary results from B.
Prather et al. (2021, in preparation) show that the tested codes
are consistent at the fraction of 1% in all Stokes parameters. All
calculated images in this work ignore light travel time delays
through the emission region (the so-called “fast light”
approach), and are calculated at a single frequency of
v =230 GHz, neglecting the finite observing bandwidth of
the EHT. We confirm that neither of those effects are important
for models of interest for M87".

4.3. Sample GRMHD Model Images and Polarization Maps

In Figures 4 and 5 we show images and polarization maps
for a subset of library models. In general, because the horizon-
scale magnetic fields in MAD models are strong enough not to
be advected with the accretion flow, they are more likely to
have a significant poloidal component and produce azimuthal
EVPA patterns (Figure 3). In contrast, SANE models tend to
show more radial EVPA patterns. Some MAD a, =0.94 and
SANE a, =0 images are notable exceptions to this trend.
These trends are also apparent in the distributions of the (3,
phase across the full image library that we consider later in
Figure 9.
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The GRMHD models at their native resolution include
notable disorder in the EVPA structure, resulting from both
magnetic turbulence and Faraday rotation. Models with larger
Ruign have lower electron temperatures and higher Faraday
rotation depths, resulting in the most disordered polarization
maps. Many of the EVPA patterns seen in the images blurred
with a 20 pas Gaussian kernel to simulate the limited EHT
resolution resemble those from the idealized magnetic field
models in Figure 3, indicating that the net EVPA pattern after
blurring may trace the intrinsic magnetic field structure.

In Figure 6 we show a sample polarization map at full
resolution compared to the same map blurred with circular
Gaussian kernels of 10 pas and 20 pas FWHM. From tests with
synthetic data, blurring (convolving with a circular Gaussian
kernel) provides a reasonable approximation to image recon-
struction from the EHT data at a comparable resolution (EHTC
VII). The resolved average fractional polarization in the blurred
images (|m|) traces the degree of order in the intrinsic
polarization map. In the blurred images, disordered polarized
structure on small scales produces beam depolarization. The
degree of depolarization decreases with increasing spatial
resolution (decreasing beam size).

The bottom row of Figure 6 shows the same unblurred and
blurred polarization maps, but calculated without the effect of
Faraday rotation (py = 0). Those images show more coherent
EVPA structure, with much larger |m|,, and, particularly when
blurred, much larger (|m|). Evidently, for this particular model,
the depolarization visible in the corresponding top panels is due
to Faraday rotation internal to the emission region. In addition,
the net EVPA pattern shifts by a significant amount. The
change in 3, bsy ~8( deg would correspond to an apparent RM
of ~—4 x 10°radm 2. Our GRRT calculations include all
Faraday rotation occurring inside the GRMHD simulation
domain (ro, = 50-1007r,), both external and internal to the
230 GHz emission region. The observables considered here, for
the low viewing inclination of M87%, do not depend strongly on
that outer radius, as long as it is at r = 40 1. We cannot rule out
the presence of additional Faraday rotating material at larger
radii 2100 r,, and its effects are not included in our models.
Appendix B discusses the origin of the RM in our models in
more detail.

4.4. GRMHD Model Theory Metrics

We compute the polarimetric observables (|mi]ne, [VInet
(|m|), B>) described in Section 2.3 from model images blurred
with a circular Gaussian kernel with a FWHM of 20 pas in
order to compare them to the ranges measured from EHT and
ALMA-only data. Both (|m|) and 3, depend on the resolution
and hence the size of the Gaussian blurring kernel. The value of
(> also depends on the choice of the image center. We do not
shift the library images before computing 3, coefficients for
comparison with the range inferred from the EHT image
reconstructions, which have been centered by aligning them to
the centered, fiducial total intensity images in EHTC IV. As
discussed in Palumbo et al. (2020), a centering offset u
expressed as a fraction of the diameter of a PWP m =2 ring
causes a quadratic falloff in 3, power as 60,/ |3,| ~ 4u’. Effects
on the 3, phase enter at similar order. In the case of the EHT
image, u is likely less than one-fifth, meaning that centering
errors in 3, will be sub-dominant to other uncertainties, such as
the choice of the blurring kernel or the variation across methods
and days.
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Figure 4. Sample snapshot false-color images and polarization maps for a subset of the models in the EHT M87" simulation image library at their native resolution
(top three rows) and blurred with a 20 pas circular Gaussian beam (bottom three rows). The inclination angle for all images is either 17 deg (for negative a, models) or
163 deg (for positive a,. model), with the black hole spin vector pointing to the left and away from the observer. The tick length is proportional to the polarized flux,
saturated at 0.5 of the maximum value in each panel. Here models with Ry, = 1 are shown. In general, the EVPA pattern is predominantly azimuthal for MAD

models (e.g., MAD a, = 0 Ryign = 1) and radial for SANE models (e.g., SANE a, = 0.94 Ry;

= 1), although the SANE a, = 0 models in particular are exceptions

to this trend. All models show scrambling in the polarization structure on small scales from internal Faraday rotation, with more pronounced scrambling in models

with cooler electrons (larger Ry, parameter).

Figure 7 (right panel) shows the resolved average polariza-
tion fraction (|m|) as a function of their image-averaged
Faraday rotation depth, (7, ). At small (7, ), the average
polarization fraction is (Jm|) >~ 20%-50%. Intrinsic disorder in
the magnetic field structure due to turbulence is generally
insufficient to produce the low observed image-average
polarization fraction in EHT 2017 M87" data (5.7% <(|m|) <
10.7%). This is especially evident for the SANE models with

prograde black hole spin, which have the highest resolved
polarization fractions. At large (7, ), strong scrambling from
internal Faraday rotation typically results in small predicted
polarization fractions of <5% at the scale of the EHT beam.
The clear exceptions to this trend are some SANE retrograde
models (ay = —0.9375 for large Rpien), Which show (|m]) ~
10%-20% despite their large (7, ) 2 10°. In these models,
most of the observed polarized flux originates in the forward
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Figure 5. Same as in Figure 4 but for R}, = 10. We find similar trends, but with more scrambling from larger Faraday depths due to lower electron temperatures.

jet, while most of the computed Faraday depth is accumulated
near the midplane. Photons that travel from the forward jet to
the observer do not encounter the large Faraday depth. For
similar reasons, the inferred RM can be much lower than
implied by their large values of integrated 7, .

Distributions of all observables are shown in Figure 7 ({|m|),
left panel), Figure 8 (|m|ne and |v]ne), and Figure 9 (|3,| and
ZB3,). SANE models tend to have a lower integrated
polarization fraction and larger circular polarization fraction
than M87" at 230 GHz. In many cases this is a result of very
large Faraday rotation internal to the emission region. MAD
models tend to have larger net linear polarization fraction than

11

observed in M87". The resolved average fractional polarization
produces similar trends. Most SANE models with prograde
spin are too scrambled and most MAD models are too ordered
compared to the reconstructed polarization maps of M87*. Full
distributions for all models, including their Rpjgn, Riow, and a,
dependence, are further discussed in Appendix C.

5. Model Evaluation
5.1. Model Constraints from Polarimetry

To evaluate whether a given GRMHD model is consistent
with the EHT observations reported in EHTC VII, we require
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Figure 6. Top-left panel: a sample image library polarization map at original resolution, taken from the MAD a,, = 0.5 (Rjow = 10, Ryjgn = 80) model. Top-middle
and top-right panels: the same map but convolved with a 10 pas and 20 pas FWHM circular Gaussian beam, respectively. The position angle (PA) of the black hole
spin in all frames is PA = +90 deg and the inclination angle is i = 158 deg, meaning that the black hole spin points left and away from the observer. The bottom row
shows the same model but calculated with py = 0 (no Faraday rotation). When Faraday rotation is excluded, the EVPA pattern is more coherent, resulting in much
larger values of |m|,e and (|m|). There is also a net rotation of the EVPA pattern between the two cases, by ~80 deg in the phase of [3,.
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Figure 7. Left panel: distribution of image-averaged fractional polarization (|m|) over the M87" library images blurred with a 20 pas beam. The measured range from
reconstructed polarimetric images of M87" is shown in dashed lines. Right panel: (|m|) as a function of the intensity-weighted Faraday depth across each image for
library images blurred with the same 20 pas circular Gaussian beam. The Faraday depth is calculated as the intensity-weighted sum of |py| integrated along each ray.
For clarity, we show the median (points) and standard deviations (error bars) of the full distributions. The Faraday depth increases monotonically with increasing Rp;gp,
for fixed values of the other parameters. A large Faraday depth corresponds to scrambling of the polarization map, which decreases the coherence length of the EVPA
(Jiménez-Rosales & Dexter 2018). Increased scrambling results in stronger depolarization at the scale of the EHT beam and lower values of (|m]).

images from the model to satisfy constraints on the four parameters
derived from the reconstructed EHT images and ALMA-only
measurements presented in Table 2 and summarized again here.

2. The image-integrated net circular polarization |v|, satisfies
an upper limit from ALMA-only measurements reported in
Goddi et al. (2021): [V]per < 0.8%.

1. The image-integrated net linear polarization |m|,e is in 3. The image-averaged linear polarization (|m|) is in the
the measured range from the EHT image reconstructions: measured range from the EHT image reconstructions at
1% < |m|net < 3.7%. 20 pas scale resolution: 5.7% < |m|nee < 10.7%.

12
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Figure 8. Distributions of image-integrated net linear (left panel) and circular (right panel) polarization fractions for all EHT M87" library images. The dashed lines
show the allowed range inferred from EHT image reconstructions (for |m|,e) and ALMA-only data (for |v|se)-
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Figure 9. Distributions of 3, amplitude (left panel) and phase (right panel) for EHT M87" library images blurred with a 20 pas beam. The measured ranges from

reconstructed images of M87" are shown as dashed lines.

4. The amplitude and phase of the complex (3, coefficient
quantifying coherent azimuthal structure are in the
measured range: 0.04 <[5,/ <0.07 and —163 deg <
arg[3,] < —129 deg.

We use 72,000 library images (from Section 4) with 200
time snapshots per model at three inclination angles, six values
of Ryigh =1, 10, 20, 40, 80, 160, two values of Ry, =1, 10,
five values of a, =-—0.9375, —0.5, 0, +0.5, +0.9375, and
realized with both MAD and SANE magnetic field
configurations.

In comparing models to observables, the (3, metric is the
most constraining. Only 790 snapshot images out of the 72,000
considered fall in the range of those reconstructed in both 3,
amplitude and phase, compared to 11,526 snapshots for both
|| net and |v|ner and 7,727 for the resolved image-average linear
polarization fraction (|m]).

Below we explore two quantitative methods for scoring
models, either by requiring that at least one single snapshot
image from a model simultaneously passes all constraints
(“simultaneous scoring;” see Section 5.2) or that each
observational constraint is satisfied by at least one snapshot
image from a given model (“joint scoring;” see Section 5.3).
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5.2. Simultaneous Snapshot Model Scoring

In the simultaneous scoring procedure, we rule out models
where none of the 600 snapshot images (200 time samples at
three inclination angles) can simultaneously satisfy the
constraints on all of the polarimetric observables. Only 73
out of 72,000 snapshot images across 15 of 120 models
simultaneously pass all of the constraints. Of those, all but two
viable snapshot images come from a MAD model. The only
models with more than five passing images are MAD a, =0
Rlow =1 Rhigh =160 and MAD ay = —-0.5 Rlow =1 Rhigh =
80, 160.

Figure 10 shows three viable snapshot images from both
SANE and MAD models as well as three snapshot images from
models ruled out by simultaneous scoring (i.e., with no
snapshots in the entire sample from the model simultaneously
satisfying all constraints). These images are representative of
the snapshots that simultaneously satisfy all constraints on the
image-integrated metrics; they have not been selected based on
detailed matching of the resolved polarization structure to the
EHT images. Nonetheless, the top row of images show good
qualitative agreement with the primary features of the EHT
image in Figure 1. In contrast, the snapshots from the ruled-out
models tend to be too polarized, too depolarized, or too radial
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Figure 10. Sample 230 GHz image library polarization maps shown in the same style as the EHT image in Figure 1. All maps are blurred with a 20 pas circular
Gaussian beam. In all images, the inclination angle is either 17 deg (for negative a, models) or 163 deg (for positive a, model), with the black hole spin vector
pointing to the left and away from the observer. The top row displays SANE (ay = 0, Rpjgn, = 80) and two MAD snapshots (both a, = —0.5 and Ry;zn, = 160) from
left to right. All of the top row images satisfy simultaneous constraints on image-integrated metrics (|1|ners [Vines (|}, | 32|, £82) derived from the EHT2017 results.
The bottom row displays snapshots from models that fail to produce any images that simultaneously satisfy the observational constraints. These snapshots are from
two SANE (ay = 0.5 and Ry;gn = 1 and 160) and one MAD (ay = 0.94, Ryign, = 160) model, from left to right. The failing images are either more polarized than the
data (left and right panels) or too depolarized (middle panel). They also fail to match the observed EVPA pattern (3, phase).

in their EVPA pattern. Figure 11 shows the distributions of | 3|
for all 600 snapshots from these three passing and three failing
models. Although variability is present, the systematic
differences over the five observables considered allow us to
constrain the models. The left panel of Figure 12 shows the
total number of images that pass simultaneous scoring as a
function of model, summing over the six Ry;gp, values.

5.3. Joint Distribution Model Scoring

In the joint scoring procedure, we use the measured
distributions of the data metrics to ask whether the observed
value of each metric for M87" is consistent with being drawn
from the distribution seen in the GRMHD simulations.
To do this, we measure x> values for the five metrics
%) € {[mluet Whoets {Iml). 182l Z B} for all snapshots k from
a given model as

e =)
Xj,k - 2 £
g

A7)

where x; are the values of a scoring metric x; for each of the
600 snapshots k from a given model, X; is the mean of those
values for the model, and o; is taken as one half of the observed
data range from Table 2. Note that the scoring results of this
method do not depend on the choice of o;. We then calculate an

analogous X? data vValue for the midpoint of the measured range

from Table 2. A likelihood value £; of the data being drawn
from the model distribution is defined as the fraction of images

14

i daa- THE joint likelihood of each model is the
product £ = II;£; of those for the five metrics x;.

To produce a non-zero likelihood £ in this method, at least
one snapshot from a model must lie further from its mean than
the data value does. That can be a different snapshot for each
metric, which makes this method more lenient than the
simultaneous scoring method. We also note that snapshots
are allowed to have the wrong sign of the difference with their
mean, due to the definition of x> and our use of the mean of the
model snapshots themselves. In practice, this makes little
difference in the results.

In this method, we consider models viable whose joint
likelihood is >1% of the maximum found from any model. The
right panel of Figure 12 shows the resulting joint likelihoods
summed over Rpigh.

with X?,k > x

5.4. Comparison of Scoring Results

The results of both scoring procedures are summarized in
Figure 12, summed over Ry;gn. Both scoring methods prefer
MAD models to SANE models, with most of the passing
models coming from the MAD a,=0 and a,=%£05
simulations.

The main difference between the two scoring procedures is
that joint scoring prefers Rjoy, = 10 models, while Ry, =1 is
preferred by simultaneous scoring. SANE models with
ayx =094, Roy=1, 10, and Ryep =10 are ruled out by
simultaneous scoring, but score fairly well in joint scoring. For
the favored MAD models, when Ry, =1, there are more
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Figure 12. Results of the simultaneous (left panel) and joint (right panel) scoring methods for comparing GRMHD models to M87" observables. The simultaneous
scoring method shows the total number of viable images for each image library model after summing over Ry;gh. Out of a total of 73 passing images, only two are from

a SANE model. The right panel shows the joint likelihood of each library model after summing over Ry;gh. In this method, Ry,

SANE ay = +0.94 Ryign, = 10 models are also allowed.

images that simultaneously satisfy all constraints, but when
Riow =10, the distributions generally stay closer to the
observed data ranges and are thus favored by the joint scoring
method. Due to differences between simultaneous and joint
scoring results, as well as other methods we have tried, we
consider the inferred parameters of Riow, Rpigh, and ay from
passing models to be less robust than the overall trend that
MAD models are favored.

The simultaneous scoring method has the advantage of
conceptual simplicity, and of applying each constraint
simultaneously per image (thus accounting for correlations
between the scoring metrics). Simultaneous scoring is more
strict and rules out more models than joint scoring, but it may
be more limited by the finite number of images generated per
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10 MAD models are preferred and

model. The joint scoring procedure has the advantage of being
more conservative in disfavoring models, but assumes the
observational constraints are independent in calculating a joint
likelihood. Instead, they are correlated (in particular |m|ge
{|m]). and | 33).

The number of images in each model that pass each
constraint individually (used in joint scoring) and that
simultaneously pass all constraints (used in simultaneous
scoring) are presented in Appendix D.

5.5. Combined EHTCV and Current Polarimetric Constraints

EHTC V presented constraints on the GRMHD simulation
models based on fits to the EHT total intensity data, model
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self-consistency (requiring a radiative efficiency less than that
of a thin accretion disk at the same black hole spin), and M87’s
measured jet power (requiring a simulation to produce a jet
power consistent with a conservative lower limit of that from
M87*, >10*ergs™'). Those constraints ruled out MAD
ay =—0.94 models (from failing to satisfy the EHT image
morphology), SANE models with a, = —0.5, and all models
with a, =0 (from failing to produce enough jet power). Here
we retain only the jet power lower limit, which is the most
constraining and straightforward to apply to the expanded
image library considered in this work.

Relativistic jets launched in GRMHD simulations (defined
here as in EHTC V, with a cutoff of 8y > 1) are fully consistent
with being produced via the Blandford—Znajek process (e.g.,
McKinney & Gammie 2004; McKinney 2006). As a result,
ay =0 models have small or zero jet power, Pj, and are
rejected by this constraint. These models can still produce
significant total outflow powers (P, in EHTC V) in a mildly
relativistic jet or wind. Many other models with low values of
Rhign or moderate black hole spin, including those of SANEs
with a, =4 0.94, which are allowed by the joint scoring
procedure, are also ruled out by the jet power constraint (see
Table 3 in Appendix D and EHTC V). Combining the
simultaneous scoring polarimetric constraints with the jet
power constraint results in 15 remaining viable models: all
MADs, and spanning the full range of non-zero a, explored.
This conclusion does not depend on the choice of the
simultaneous or joint model-scoring procedure.

6. Discussion

The resolved EHT 2017 linear polarization map of
M87" shows a predominantly azimuthal linear polarization
(EVPA) pattern, and relatively low fractional polarization of
<20% on 20 pas scales. We interpret the low fractional
polarization as the result of Faraday rotation internal to the
emission region, which acts to rotate, scramble, and depolarize
the resolved polarized emission. Adopting this constraint in a
one-zone model, we estimate typical values of particle density
n., magnetic field strength B, and electron temperature 7. In
semi-analytic emission models with externally imposed,
idealized magnetic field configurations, azimuthally dominated
EVPA patterns are produced by poloidal (radial and/or
vertical) magnetic field components. To fully capture the
complicated combined effects from magnetic field structure,
turbulence, relativity, and Faraday rotation on polarimetric
images of M87%, we turn to radiative transfer calculations from
GRMHD simulations.

We compared a large image library of emission models from
GRMHD simulations with metrics designed to capture these
salient features of the data. The combined constraints of a
predominantly azimuthal EVPA pattern and a low but non-zero
fractional polarization are inconsistent with most SANE
GRMHD models with weaker horizon-scale magnetic fields.
Some MAD models with relatively cold electrons, realized in
our library by larger values of Ry, and/or Ry, remain
consistent with the data. Here we discuss the implications of
our results, and limitations in our set of theoretical models that
may impact our interpretation.
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6.1. Near-horizon Plasma and Magnetic Field Properties in
Passing Models

Both our one-zone and GRMHD models find similar plasma
conditions in the 230 GHz emission region, driven by the
requirements of weak 230 GHz absorption and strong 230 GHz
Faraday rotation. In viable GRMHD models, we find average,
intensity-weighted plasma properties in the emission region of
N, ~ 10" em ™3, B~7-30 G, and 0, ~8-60. These are in
good agreement with our one-zone estimates (Section 3.1). We
have also calculated the intensity-weighted values of the
absorption and Faraday optical depth, 7; and 7, , over
snapshots that simultaneously satisfy all our observational
constraints. The median values are 7,2~ 0.1 and 7,, >~ 50. All
of our viable images have Tpy > 27, while 2 out of 73 have
772 1, consistent with our assumptions in Section 3.1 that the
plasma Faraday depth is large while the Stokes Z optical depth
is small.

By quantitatively evaluating a large library of images based
on GRMHD models (Section 5), we identify 25 out of 120
models that remain viable after applying constraints based only
on EHT and ALMA-only polarimetric observations. Addition-
ally applying a cut on jet power of Pje; > 10%ergs™' (EHTC V)
rules out the five viable SANE models and all a, =0 models.
The precise number and identity of the viable models depends
mildly on the chosen scoring procedure and on the Gaussian
blurring kernel size applied to the EHT image reconstructions
and library simulated images. The overall preference for MAD
over SANE models is found from both the simultaneous and
joint scoring procedures, as well as other variants. After applying
the jet power constraint, no viable SANE models remain for any
of the scoring methods that we explored.

MAD models are associated with dynamically important
magnetic fields. The significant poloidal components of those
fields can produce a predominantly azimuthal polarization
pattern (Figure 4), similar to those seen in idealized models
with prescribed poloidal magnetic fields (Figure 3). Strong
Faraday effects complicate a direct interpretation of the
observed EHT polarization map in terms of those idealized
models. Still, our more detailed comparison favoring MADs
suggests the presence of dynamically important magnetic fields
in the emission region on event-horizon scales.

In Figure 13 we present mass accretion rate and jet power
distributions both for the viable models identified in EHTC V
and when adopting the new constraints from polarimetry.'?’
Polarimetric constraints break degeneracies present in the
single epoch total intensity data, allowing us to estimate a mass
accretion rate onto the black hole of M =~ (3-20) x
10~*M,, yr~'. This corresponds to 7t = M/Mggq =~ (2-15) x
1075, where Mgy is the Eddington accretion rate.'*? The
measured radiative efficiency ¢ = L/Mc? (where L is the
bolometric luminosity) of the passing models is relatively high
for a hot accretion flow model: € < 1%. These models have jet
powers of Pje > 102 ergs™.

The mass accretion rate found here is much lower than
the Bondi rate calculated from Chandra observations

131 Note differences in some M and Pje, values compared to EHTC V. We

have corrected minor tabulation errors from that work, and have used a slightly
different time range for averaging the MAD a, = —0.94 simulation.

132 The Eddington rate is defined as Mgyq = Lgaa/€paac?, where
Liga = 47GMmy,c /o7 is the Eddington luminosity and we adopt an efficiency
factor egqq = 0.1. Note that this assumed efficiency factor egqq is distinct from
the reported radiative efficiency ¢ = L/Mc? measured from the simulations.
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Figure 13. Average mass accretion rate (left panel) and jet power (right panel) for viable GRMHD models of M87* identified by selecting on total intensity data and
jet power (blue, EHTC V), and when including polarimetric constraints (red). We estimate a mass accretion rate of M ~ (3 -20) x 10~* M, yr~!, resulting in a

radiative efficiency e < 1% (see EHTC V). The jet powers produced by our models are ~10*> —10** erg s

accretion rate is better constrained when including polarimetric information.

(Di Matteo et al. 2003; see also Russell et al. 2015), and higher
than that found from hybrid disk+jet models of the
M87* spectral energy distribution (SED; Prieto et al. 2016).
Our inferred jet powers of <10* erg s~ are toward the lower
end of the observed range. In particular, the jet power measured
at the location of Hubble Space Telescope (HST)-1 is
~10%*ergs™! (Stawarz et al. 2006), and Low-Frequency
Array (LOFAR) observations suggest that a jet power of ~10**
erg s~ was necessary within the last ~million years to inflate
the observed radio lobes on scales of ~80kpc (de Gasperin
et al. 2012).

Measurements of the accretion rate and the radiative efficiency
can begin to constrain the microphysical plasma processes that
heat electrons in M87", for example by inferring the fraction of
the dissipated energy in the system that heats electrons, &.. In
axisymmetric, self-similar, hot accretion flow models, a system
with M ~ 107> Mgyq and a radiative efficiency e < 1% has a
value of &, in the range 0.1-0.5 (see Figure2 of Yuan &
Narayan 2014). This range is consistent with that produced by
simulations of turbulence and reconnection in the 3~ 1 regime
(e.g., Rowan et al. 2017; Werner et al. 2018; Kawazura et al.
2019). Future studies using simulations with self-consistent
electron heating and radiative cooling (Section 6.3) can better
constrain ¢, and its dependence on local plasma parameters
throughout the accretion flow and jet-launching region.

We have assumed that all effects responsible for the
appearance of the EHT polarized image of M87" are captured
within the relatively small GRMHD simulation spatial domain,
<10* re. Goddi et al. (2021) developed a two-component
model for the ALMA and image-integrated EHT data where
each component is Faraday rotated by a different screen. The
model demonstrates that the rotation measure of the compact
component is unconstrained by the ALMA measurements
alone, as the ALMA measurements are also sensitive to the
Faraday rotation properties of the larger-scale component. In
addition, the observed time variability in ALMA data (e.g., the
RM sign change) can be explained by the observed EVPA
variation of the compact core seen by the EHT. To produce the
observed variability requires an RM of ~—6 x 10° rad m >
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", and the jet efficiencies are ~5%—80%. The mass

The ALMA data do not constrain the location or nature of this
Faraday screen, exce?t that it must be relatively close to the
compact core, r S 107 7.

For our favored plasma parameters for M87", we expect
substantial Faraday RM internal to the emission region itself,
), 2 27, consistent with that measured from viable GRMHD
images. In a model of uniform, external Faraday rotation this
Faraday depth at 230 GHz would correspond to an RM of
§106 radm 2. Figure 14 shows that the apparent RMs
measured from our GRMHD images span a wide range,
often comparable to or larger than that inferred from the Goddi
et al. (2021) two-component model (5106 rad m2). For the
low inclination angle of M87", the apparent RM measured from
GRMHD images is not a good tracer of the mass accretion rate
(Moscibrodzka et al. 2017), and originates close to the
emission region and well within the simulation domain (Ricarte
et al. 2020, and Appendix B). The RM inferred from low-
inclination GRMHD models of M87" can also vary rapidly and
change signs (Ricarte et al. 2020), as seen in the ALMA-only
data. As a result, the RM inferred from the two-component
model in Goddi et al. (2021) is apparently consistent with the
intrinsic properties of the GRMHD models studied here,
without invoking an additional, external Faraday screen. At the
same time, we cannot rule out that such an external screen
could be present. Future EHT observations with wider
frequency spacing can directly measure the resolved RM of
the core and address this uncertainty.

6.2. Electron Acceleration

Magnetic reconnection, magnetohydrodynamic (MHD) tur-
bulence and collective plasma modes in collisionless hot
accretion flows likely result in nonthermal particle acceleration.
While pioneering attempts have been made (e.g., Ball et al.
2016; Chael et al. 2017; Davelaar et al. 2019), it is not yet
known how to properly incorporate electron acceleration in
global GRMHD simulations of hot accretion flows.

We adopt an empirical approach to investigate the impact of
nonthermal (accelerated) electrons on 230 GHz polarimetric
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Figure 14. Absolute value of RM vs. net linear polarization ||, for a subset of our EHT GRMHD library models explored in more detail in Ricarte et al. (2020).
Closed symbols represent positive RM while open symbols represent negative RM, revealing significant time variability across the 2500 r,/c spanned by these
snapshots. In gray, we plot our allowed region of |m|, and bracket the range of core RM inferred from contemporaneous ALMA-only observations,
2-100 x 10* rad m2 (Goddi et al. 2021). The dashed horizontal line demarcates the RM at which an EVPA rotation by 7 radians would have been observed between
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exhibit RMs consistent with simultaneous ALMA-only constraints. RM and |m|,e are anti-correlated, as larger Faraday depths lead to greater scrambling of the

intrinsic polarization.

images of M87"to quantify whether and how neglecting
particle acceleration in our models affects our conclusions. We
use a specific, but widely explored (e.g., Ozel et al. 2000;
Markoff et al. 2001; Yuan et al. 2003), description for electron
acceleration, namely that accelerated electrons add a power-law
tail to the thermal distribution function. The power-law tail is
described by the fraction of the thermal energy density in the
power-law tail, 7, the power-law slope, p, and the maximum
Lorentz factor of the accelerated electrons, +, ... The minimum
Lorentz factor, v, , is calculated self-consistently by assuming
a continuous transition between the thermal and power-law
distribution functions (e.g., Yuan et al. 2003). In this model, the
parameters p, 7, and v, are constant across the accretion flow.
We assume that v, — oo and we explore values of p=3.5,
4.5 and n=0.01, 0.1.

In Figure 15 we present linear polarization maps from two
MAD models and one SANE model comparing purely thermal
and hybrid electron distributions. Using a hybrid distribution
function does not affect the structure of the EVPA map (5,
phase), but it changes the image-integrated and resolved linear
polarization fractions. For example, in the MAD a, = —0.5
(MAD a, =0.5) model, with the selected hybrid parameters,
the |mner Vaer and (|m|) ranges are 4.3%-4.6% (2.5%-3.8%),
0.25%—0.37% ((—0.5) to (—0.12)%), and 10.6%—11.5% (12%—
14%), respectively. Slightly larger deviations from the thermal
model are measured in the SANE a, = —0.94 scenario, where
the |m|nes Vner and {|m|) ranges are 2.2%—4.1%, —0.004% to
0.31%, and 14%-20%, respectively.

However, fixing the accretion rate to that used in the thermal
model results in an increased total intensity flux density when
we add high-energy nonthermal electrons to our models. If
instead we compare the models at fixed flux density, we need to
reduce the mass accretion rate of the hybrid model. Therefore,
generalizing the distribution function introduces order unity
uncertainties in the inferred mass accretion rate, radiative
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efficiency, and jet power. The changes in the polarimetric
observables in a given snapshot are also larger at fixed flux
density. For example, in the MAD a, = —0.5 model, the |m|,e
increases from 4.7% to 6% when adding nonthermal electrons.
As a result, in principle, polarimetric observables constrain the
distribution function as well.

Such constraints presumably depend on the details of the
assumed particle acceleration scenario. Viable scenarios
include hybrid electron distribution functions, or models where
particle acceleration is a function of local gas conditions or
magnetic energy density rather than fixed throughout the flow
(e.g., Ball et al. 2016; Davelaar et al. 2019). More realistic
particle acceleration scenarios could be considered using
resistive GRMHD simulations (e.g., Ripperda et al. 2020).

6.3. Coherently Polarized Forward Jet Emission

As discussed above, some SANE retrograde model images in
the library show coherently polarized features even when the
Faraday depth through the entire emission region is large. The
observed polarized flux in those cases originates on the near
side of the midplane and is not scrambled from Faraday
rotation along the line of sight. A similar effect might be
possible if nonthermal electrons could be accelerated efficiently
in the low-density, strongly magnetized funnel region in front
of the black hole.

It is beyond the scope of this Letter to evaluate whether or
how such a model might be realized physically, e.g., whether
any process could fill the funnel with high-energy electrons
efficiently enough to produce the observed 230 GHz luminosity
from the funnel alone. Instead we carry out one sample
calculation of polarized emission from the funnel of a prograde
ay, =0.94 SANE library snapshot. We assign a nonthermal
energy density ung, = Qitmag Wherever the magnetization o > 1,
with a = 0.02 the fraction of the magnetic energy density uy,g
that is put into nonthermal particles. We calculate synchrotron
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Figure 15. Sample polarization maps with varying electron distribution function. Columns display single snapshots from three selected models. Row 1 shows images
with a thermal electron distribution function, as assumed in the standard EHT image library. Rows 2 through 5 are the same models but with emission from a hybrid
distribution of electrons. Row 6 shows a hybrid model but the mass accretion rate of the model is adjusted to reproduce the same total intensity flux as the purely
thermal snapshot. All maps are blurred with a 20 pas circular Gaussian. In all images, i = 17 deg (for negative a, models) or i = 163 deg (for positive a, model),
with the black hole spin vector pointing to the left and away from the observer.
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Figure 16. Sample library SANE a,, = 0.94 Ry, = 160 snapshot (left panel) and with power-law emission from nonthermal electrons added in o > 1 regions (in the
funnel near the pole, middle panel) and in the funnel only outside of a radius r., = 6 r, (right panel). The library model is heavily depolarized due to Faraday rotation.
Nonthermal radiation from the forward jet is coherently polarized; these images look qualitatively similar to polarimetric images of the forward-jet dominated semi-
analytic models of Broderick & Loeb (2009). Even a small total flux contribution can increase the net and image-averaged linear polarization fractions to lie within the
observed range. However, in this example the EVPA patterns (3, phase) of the TH4PL images remain inconsistent with M87" data.

radiation from a pure power-law distribution of electrons with
Ymin = 100 and p = 3.

Figure 16 compares the original thermal snapshot with two
realizations of this hybrid thermal+nonthermal funnel emission
models. In the purely thermal case, Faraday rotation depo-
larizes the emission at the EHT beam scale, producing low
fractional polarization across the image that is inconsistent with
EHT observations of M87*. Adding power-law electrons in the
funnel produces coherent linearly polarized emission. When we
aSSUME Uk OC Umag (middle panel), the power-law emission is
concentrated close to the black hole and lensed into a ring
(Dexter et al. 2012). The weak forward jet component is
strongly polarized but lies inside the observed ring, and is thus
potentially inconsistent with the EHT total intensity and
polarimetric image. In the right panel, we exclude nonthermal
emission from inside a radius r.,, = 67,. Both nonthermal maps
are consistent with our cuts on net and image-average linear
polarization fraction, |m|, and (|m|). However, both are
inconsistent with the observed EVPA pattern of M87” (i.e., the
(> phase).

For this example, we assume a plasma of protons and
electrons rather than e /e™ pairs. The latter are presumably
more likely to form in the funnel (Moscibrodzka et al. 2011;
Chen et al. 2018; Levinson & Cerutti 2018; Anantua et al.
2020; Crinquand et al. 2020; Wong et al. 2021), and have
different circular polarization properties. Future observations
that constrain the resolved circular polarization structure could
potentially discriminate between pair and electron-ion plasmas
in the emitting region. At longer wavelengths and larger scales,
the limb-brightened jet structure of M87 (e.g., Walker et al.
2018) also suggests that the radiating electrons are not
concentrated inside the funnel as modeled here.

6.4. Radiative Models

Our GRMHD images use the parameterization of
Moscibrodzka et al. (2016) to model the electron and ion
temperatures given the total gas temperature from a simulation.
In this prescription, the electron-to-ion temperature ratio is a
function entirely of the local plasma (. This functional form
(Equation (15)) captures the general behavior seen in many
simulations of electron heating in turbulent or reconnecting
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collisonless plasmas; namely, the electron heating is more
efficient (and thus the temperature ratio is closer to unity) when
B8<1 (e.g., Howes 2010; Rowan et al. 2017). However, the
actual distribution of 7, in a hot accretion flow reflects the
balance of heating, cooling, and advection of hot electrons
throughout the system. Furthermore, the GRMHD simulations
in the library considered here do not include radiative cooling.
Our passing models for M87" favor a radiative efficiency of
€ ~ 1% (Section 6.1), however, and we may begin to worry if
cooling is dynamically important in M87".

To assess these uncertainties, it will be useful to compare the
results in this work with results from simulations performed
with radiative GRMHD codes. These codes typically use either
the M1 closure method (e.g., Sadowski et al. 2013; McKinney
et al. 2014; Sadowski et al. 2017) or a Monte Carlo approach
(e.g., Ryan et al. 2015) to track radiation and its interactions
with the plasma near the black hole. In addition to the effects of
cooling on the gas temperature, these codes can also evolve the
separate electron and ion temperatures under the influence of
cooling and different subgrid prescriptions for the electron
heating efficiency (e.g Ressler et al. 2015, 2017; Chael et al.
2018, 2019; Ryan et al. 2018; Dexter et al. 2020).

In Figure 17, we show a comparison of the temperature ratio
T;/T, obtained directly from the two MAD radiative simula-
tions of M87"in Chael et al. (2019; right column), with the
temperature ratio obtained from the same simulations using
Equation (15) with Ry, = 1, Rpignh = 20 (left column). The two
rows show simulations using different underlying models for
electron heating: the top row (H10) uses the turbulent heating
prescription of Howes (2010), and the bottom row (R17) uses
the reconnection heating prescription of Rowan et al. (2017).
The simulation data in both rows is averaged in time and
azimuth.

Figure 17 shows that the temperature ratios obtained from
the electron-ion evolution and from the postprocessing
prescription both transition from smaller to larger values when
moving from the jet/funnel region (low () to the disk (high ().
In simulation H10 (top row), T;/T,= 1 in the funnel, which
well matches the result from Equation (15) with Ry, = 1;in
simulation R17, electrons are cooler in the funnel (T;/T, =~ 5),
and even colder in the disk-jet interface directly outside the
o =1 contour (7;/T, ~ 15). The cooler electrons in the funnel
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Figure 17. Comparison of the temperature ratio obtained directly from two
radiative GRMHD simulations with the values obtained from the postproces-
sing model used in this work. The top and bottom rows show, respectively,
time- and azimuth-averaged data from the two radiative MAD simulations of
MB87* presented in Chael et al. (2019). The top row shows data from simulation
H10, where electrons are heated by the turbulent heating prescription of Howes
(2010), and the bottom row shows the R17 simulation, where electrons are
heated by the magnetic reconnection prescription of Rowan et al. (2017). The
left column shows the spatial distribution of the ion-to-electron temperature
ratio obtained from these simulations by applying our [-dependent post-
processing equation to the total gas temperature (Equation (15) with Ry, = 1,
Rhigh = 20). The right column shows the temperature ratio obtained directly
from the independently evolved electron and ion species in the radiative
simulations. The white contour shows the o = 1 surface.

regions of R17 reflect the decreased efficiency of low-{3
electron heating in the Rowan et al. (2019) model than in
Howes (2010). In Section 5.4, we note that the results of joint
scoring (but not simultaneous scoring) favor Ry,,, = 10 models
over Ry, = 1 models. Model R17 shows that some radiative
models can naturally produce T;/T,>1 in low-( regions.
However, the funnel value of T;/T,~ 5 in this simulation is in
between the two cases Rjow = 1, Rjow = 10 that we considered
in the image library.

While the disk electrons are cooler than the jet electrons in
both radiative simulations shown in Figure 17, T;/T, in the disk
of model H10 increases at small radii. In contrast, model R17
better matches the postprocessing model prediction of a
roughly constant disk temperature ratio. (Note that the
230 GHz emission is entirely produced at radii » < 107,.)

In addition to the MAD simulations from Chael et al. (2019)
in Figure 17, we have also checked the temperature ratios in the
radiative SANE simulations of Ryan et al. (2018). In these
simulations, the average temperature ratio in the EHT 230 GHz
emission region can also be roughly approximated by the
MosScibrodzka et al. (2016) prescription, with Rj, =1 and
Rhign in the range Ry;gn ~ 10-20.

Our preliminary results indicate that while some important
features of the temperature-ratio distributions produced in

21

EHT Collaboration et al.

radiative simulations can be described by the Roy, Rpignh model
(Equation (15)), the current postprocessing model cannot
capture all of the behavior produced in radiative simulations.
A more detailed comparison is left for future work.

7. Predictions

We have identified a subset of a large parameter space of
GRMHD models that is consistent with constraints derived
from current EHT total intensity and polarimetric observations
of M87*. The models that pass our constraints on the
polarimetric structure and jet power from MS87"are all
magnetically arrested (MAD) accretion flows. Here we make
predictions for testing our interpretation with future
observations.

7.1. Repeated Observations

Repeated EHT observations of M87" at 230 GHz (both in
total intensity, e.g., Wielgus et al. 2020, and in linear
polarization) will continue to constrain the model parameter
space. Figure 18 shows the time evolution of 3, amplitude and
phase for 200 snapshots of three viable library models: MAD
ay = —0.5, Rlow = 10, Rhigh = 20, MAD ay = +05, Rlow = 10,
Rhigh = 80, and MAD ay = +094, Rlow = 10, Rhigh = 80. The
observer inclination was 17 deg and 163 deg for the retrograde
and prograde models, respectively.

Both quantities show variations on timescales from days to
months. The phase and amplitude of (3, should change over the
course of a week of observations. In EHTC VII, we observe
changes in the the (3, amplitude and phase over the week of
observations in 2017, and use the results from two epochs to
define our acceptable parameter ranges. Figure 18 suggests that
occasionally the observed changes in 3, on ~week timescales
can be much more dramatic than we observe in 2017, with
variations in 3, phase of 90 deg for some models on short
timescales.

The scatter in both quantities on longer ~month timescales is
much larger than the uncertainty range derived from the EHT
2017 measurements. If our passing GRMHD models accurately
describe the 230 GHz emitting region in M87", future EHT
observations should detect variability in the polarization
structure. According to current models, the time-averaged (3,
amplitude and (|m|) should remain similar to the current values
for prograde spin models, and tend toward larger values for
retrograde spin models. For high-prograde spin (or many
SANE models), the 3, phase should on average be closer to
zero than we observe in 2017.

7.2. Future Observations at 260 and 345 GHz

In selecting models, we have focused on metrics corresp-
onding to salient features of the data. We have not attempted to
compare models in detail to specific features of the recon-
structed polarimetric images, most notably the apparently
depolarized bright patch in the eastern part of the image
(Figure 1). We do note that such depolarized features occur in
many of our library images, particularly in MAD models with
Riow = 10. If the eastern patch in the 2017 image is depolarized
due to Faraday rotation, it may be possible to tell with future
higher-frequency observations. Figure 19 shows images of two
of the favored MAD models at the current observing frequency
of 230 GHz and at two additional frequencies planned for the
future EHT observing campaigns. In addition to internal
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Figure 18. Amplitude (left panel) and phase (right panel) of 3, as a function of time for three viable GRMHD library models identified here (points, all with
Riow = 10) compared to ranges measured from EHT 2017 M87" data (gray shaded region). The dashed lines show the median values for each model. The retrograde
spin model predicts higher 3, amplitude in future observations. In the high-prograde spin model, the median (3, phase is closer to zero than the observed range in 2017.
Changes in both quantities occur on timescales of weeks to months, and should be apparent in future EHT data sets.
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Figure 19. Random snapshot of MAD models with a,, = —0.5 (top row) and with a, = 0.5 (bottom row) at the current EHT frequency of 230 GHz and two higher
frequencies of 260 and 345 GHz, which are planned for the future EHT observations. All images are convolved with a 20 pias Gaussian. In all images the black hole
spin vector is pointing to the left and away from the observer. In all cases, the ring fractional polarization increases slightly with frequency. The EVPA pattern, as

measured by the (3,, is similar at all three frequencies.

Faraday rotation, the sense of the EVPA pattern may also be
subject to a net, coherent rotation due to external Faraday
rotation. At higher frequency, Faraday rotation is suppressed
and EHT observations will see the intrinsic magnetic field
pattern more clearly.

For a snapshot from the MAD a, = —0.5 (Rpjgn = 160 and
Riow = 1) model, Figure 19 shows that the |m|, and (|m|)
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values are predicted to increase with frequency. The 230, 260,
and 345GHz net EVPAs are —77, —70, and —82deg,
respectively, corresponding to an (apparent) rotation measure
RM ~ 1 x 10°rad m > between 230 and 345 GHz. The net
circular polarization |v|, remains small and nearly constant
with frequency; it is 0.42%, 0.35%, 0.32% for 230, 260, and
345 GHz, respectively. A similar trend is observed in a MAD
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ay =0.5 (Rpigh =80 and Ry, = 10) model. The image |m|ne
and average polarization (|m|) are again expected to increase
with frequency. The corresponding net EVPAs are —38, —40,
and —30 deg, corresponding to an apparent rotation measure of
RM ~ —1 x 10° rad m 2. The net circular polarization fraction
[V|net remains roughly constant and close to zero, 0.33, 0.06,
and 0.2% from low to high frequency.

Both of these models display similar EVPA structure at all
three frequencies, indicating that in this example the net EVPA
pattern is due to magnetic field structure rather than coherent
Faraday rotation. Future multi-frequency observations will be
able to infer the core RM and intrinsic EVPA pattern set by the
near-horizon magnetic fields.

8. Conclusions

The EHT has produced resolved polarized intensity maps in
the near-horizon region around the supermassive black hole in
MS87. Taken together with image-integrated data from simulta-
neous observations with ALMA, these images constrain the
space of accretion flow and jet models used to interpret the
EHT total intensity image with broad implications for jet
launching near a black hole event horizon. Here we summarize
the main results of that analysis.

1. We interpret the depolarization seen in EHT images as
the result of beam depolarization due to Faraday rotation
internal to the emission region. In the context of one-zone
models and combined with the size and brightness
temperature of the total intensity image, we estimate an
average emission region plasma density of n,~
1097 cm™3, magnetic field strength of B ~ (1-30) G, and
T,= (1-12) x 10'° K.

2. The net EVPA pattern of the M87” polarization maps is
predominantly azimuthal. In the context of semi-analytic
models with imposed, idealized magnetic field geometry,
such a pattern can be reproduced using a significant
component of poloidal (radial and/or vertical) magnetic
field. The presence of such magnetic fields in a rotating
fluid would imply that the magnetic fields are dynami-
cally important. However, significant Faraday rotation
may be present and it is not clear whether the observed
EVPA pattern can be interpreted in terms of magnetic
field structure alone.

3. To capture the effects of realistic magnetic field structure,
plasma conditions, and Faraday rotation and conversion,
we have compared salient observables to a large library of
images from the GRMHD simulation library of EHTC V.
The observables are the net circular polarization fraction
constrained by ALMA (|v|,), the net and image-
averaged linear polarization fraction measured by the
EHT (|m|nee and (|ml)), and the m =2 coefficient of a
Fourier expansion of the azimuthal EVPA pattern ((3;).
Of these, (3, is the most constraining metric.

4. The model-scoring procedures disfavor most models
from the GRMHD image library from polarimetric
observations alone. Many weakly magnetized (SANE)
models are too depolarized, or show an EVPA pattern
that is too radial. Many strongly magnetized (MAD)
models are too coherently polarized. The polarization
fraction is generally set by the Faraday rotation depth
close to the emission region. MAD models more
frequently produce azimuthal EVPA patterns, as expected
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for magnetic field structures that include a significant
poloidal field component. Combined with a conservative
lower limit on the jet power of M87, only strongly
magnetized (MAD) models remain viable. We use those
remaining models to estimate the mass accretion rate
onto the central supermassive black hole as M =
(3-20) x 107* M, yr—!. The average plasma parameters
found from GRMHD images are in good agreement with
those inferred from one-zone models.

5. The model space considered in this Letter is incomplete,
and systematic uncertainties remain a challenge. While
the radiative efficiency that we find is relatively high, we
consider only non-radiative GRMHD models. We do not
consider GRMHD models with misalignment between
the disk and the black hole angular momentum. We also
only consider one parameterization for determining the
electron distribution function from the simulation data. Of
these three major areas of uncertainty, we have explored a
small sample of alternative models for determining the
electron distribution function, including both alternative
prescriptions for electron heating in strongly magnetized
regions and including a nonthermal component. The
quantitative estimates of mass accretion rate and jet
power found here depend on the assumed -electron
distribution function and are uncertain at the order unity
level. The alternative electron distribution functions
considered here do not change the main finding that
MAD models with dynamically important near-horizon
magnetic fields appear more viable for explaining the first
polarimetric EHT observations of M87".

6. Our favored models show time variability in the
polarization metrics used here. The median values found
at several epochs should be sufficiently well measured to
distinguish between the current retrograde and prograde
spin models. At higher frequencies of 260 and 345 GHz,
weaker Faraday effects should result in an increased
degree of polarization. Measurements of the EVPA
pattern at higher frequencies can distinguish between
Faraday rotation along the line of sight and the imprint of
the underlying magnetic field structure. Continued
imaging with the EHT and advances in radiative and
nonthermal theoretical models will further constrain the
electron distribution and magnetic field structure in the
jet-launching region near the supermassive black hole
event horizon in M87.
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Appendix A
Relationship between 3, Coefficient and E- and B-modes

The (3, coefficients of the azimuthal decomposition of the
complex linear polarization P = Q + il{ used in Section 5 are
directly related to the decomposition of polarization fields into
E- and B-modes familiar from cosmology. In this Appendix,
we illustrate that relationship and demonstrate that the
information in the image-space decomposition of GRMHD
library images in Section 5 can also be accessed directly in
calibrated visibility domain data sampled on EHT 2017 base-
lines, provided the data are accurately phase calibrated.
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A.l. Definitions

In defining flat sky E- and B-modes, we follow the
conventions of Kamionkowski & Kovetz (2016), Section 4.1
(up to factors of J2 ). E- and B-modes are naturally defined in
the visibility space sampled by an interferometer. For a baseline
vector u with a magnitude u and PA 6, the £ and B visibilities
are related to the Stokes visibilities Q and ¥/ by a rotation of
260 in the Fourier plane

E, 0)) _ [ cos20 sin 29] Qu, ) (A1)
B(u, 0) —sin260 cos20 |\ Z1(u, 0))
In real space, the E- and B-mode fields are analogous to the
gradient and curl of the polarization tensor:

VZE = aaabpaba sz = facabacpabs (A2)

where €, is the 2D Levi-Cevita symbol and the polarimetric

tensor is
Q U
P, = . A3
b [L{ 0 (A3)
P transforms as a trace-free tensor under rotations; for a
rotation matrix R(c) that rotates the coordinate axes by an
angle o, P— R(a)PR"(a) (equivalently, the complex field
P — Pe?«), While the values of the Q and U images depend
on the choices of coordinate axes, the real space E- and B-mode
images are coordinate-independent scalars.

A.2. Relationship between (E, B) and 3, Coefficients

Consider a linearly polarized image P = Q + il in 2D
image-domain polar coordinates (p, ¢). We can expand the
image in a multipole series:

P, d) =1y > Bufy(pe™.

m=—0oQ

(A4)

In the decomposition of Equation (A4), I, is the total flux
density of the Stokes 7 image, the (3, coefficients are complex,
and the radial envelope function f,,(p) is normalized so that

2 [ fupdp=1. (AS)

Prmin

The (,, coefficients defined in this way then correspond to
those defined in Equation (9):

1 (Po (27 o
= — P(p, d)e ™mp dp dé. A6
& Iofpmm fo (0, p)e="%p dp do (A6)

In particular, G, is the image-integrated complex fractional
polarization, and (3, encodes the same information on the
gradient and curl of the polarization field that is available in the
E- and B-modes. Note that because P is a complex image, in
general (3, = 5%,,.

The Fourier transform of P(p, ¢) is

o0

P, 0) =2xly Y i "Bue™F,u),

m=—oQ

(AT)
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Figure 20. Schematic guide to EVPA patterns for ring images with power only in the 3, mode in an azimuthal decomposition, and the corresponding signs of the £

and B mode visibilities.
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Figure 21. Distributions of the amplitude (left panel) and phase (right panel, in degrees) of the complex quantity Bgp = —Er — iBg computed from simulated data on

EHT 2017 baselines for the full GRMHD image library considered in this work. The distributions are broadly consistent with the (3, results measured in the image
domain in Figure 9, illustrating the relationship between the 3, metric and average £ and B mode visibilities.

where F,(u) is the mth order Hankel transform of the radial
function f,,,(p):

Prmax
Fa) = [ £, (0)dnrpu)p dp. (A8)

pmin
The Fourier transforms of O and U (the linear Stokes
visibilities) are then

oo

Qu, ) =27l Y i~"Re[Bne™F, W,
Uu, 0) =27l i i Im [, ™ F, (u)], (A9)

and from the definition in Equation (A1) the E- and B-mode
visibilites are

[ee}

E(u,0)=2mly Y i " Re[Bne'™ E, ),
B(u, 0)=2rly > i Im[B,e'™ Y, w)].  (A10)

From Equation (A10), we can see immediately that an image
with real 3, and all other [(3,,., =0 is a pure E-mode; for
instance, if (3, =1 (radial polarization vectors), E < 0. If
(> = —1 (toroidal polarization vectors), E>0. Similarly, if an
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image has purely imaginary (3, (and all other §,,.., =0) it is a
pure B-mode; if e.g., 8, =i (right-handed helical polarization
vectors), then B <0, and if B>, =—i (left-handed helix),
B > 0. Figure 20 illustrates the values of the (3, and the
corresponding signs of the £ and B visibilities for these four
azimuthally symmetric cases.

A.3. E and B Distributions of GRMHD Library Images
Starting with Equation (A10), and integrating over the
baseline angle 6, only the 3, mode survives.

f " Eu, 0)d0 = 27l Re [ B> Fa()] (A11)
0

2
f B(u, 0)dd = —27ly Im[ 3, F; (u)). (A12)

0

Thus, if we have calibrated visibility measurements of O and
U (and thus E and B), we can measure the (3, mode by
averaging £ and B in visibility space.

To illustrate this connection between FE- and B-mode
visibilities and the (3, coefficient, we compute the following
averages on images in the GRMHD library

(Re [E] D)
< |i| >(u,v)

(Re [B] duw)

&R =
<|I|>(u,v)

; (A13)

b}
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where we take the average only over (u, v) points sampled by
the EHT in 2017, including conjugate baselines. As atmo-
spheric phase errors and D-term miscalibration will affect
the phase of the E and B visibility and thus the results for the
averages, we perform this test on synthetic data from the image
library using perfectly calibrated data with no noise.

Because we include conjugates in the average over all data
points, the average of the imaginary part is zero. We perform
the averaging only over a u, v range [1, 10]GA in order to
remove any effects from large-scale structure, which may have
a different net sense of polarization than the resolved
emission ring.

We finally combine £ and B in a complex quantity:

Pe = —Er — iBr, (Al4)

where the negative signs are chosen to match the angle
convention for (3, in Equation (9). In Figure 21 we show
histograms of the magnitude and angle of the [es for
comparison with the ([, histograms in Figure 9. The
distributions broken down by model type (MAD/SANE,
prograde /retrograde) reproduce the general behavior of (3,
amplitude and phase from the image-domain calculations in
Figure 9, although the normalization of the (3¢ amplitude is
different. Comparing Figure 9 with Figure 21, it is apparent that
all of the essential information on the EVPA structure used in
this Letter can, in principle, be extracted from EHT visibilities
without image reconstruction. However, because phase and
amplitude calibration of the EHT visibilities is necessary for
extracting the E- and B-modes from the visibilities, modeling
the source structure in the image domain would remain a
necessary part of the analysis even if we were to use &g and Bg
instead of [(,.

Appendix B
Faraday Rotation in GRMHD Models of M87*

As linear polarization travels through magnetized plasma,
Faraday rotation shifts its EVPA by 7, /2 radians. If 7, > 1,
as is the case for most of our models (see Figure 7), Faraday
rotation can, in principle, scramble otherwise observable
polarimetric signals. In this section, we explore in more detail
the sources of Faraday rotation in our models, and demonstrate
that observable linear polarization signals can, in fact, exist in
models with 7, >> 1. This is because Faraday rotation occurs
co-spatially with the emission and should not be conceived of
as a purely external screen.

Ricarte et al. (2020) studied the resolved Faraday rotation
properties of a subset of the same models used in this work.
Figure 14 shows their inferred |RM| versus |m|, for those
images. For each model, 11 snapshots spaced between 7500
and 10000 r,/c are included. Each of these models was found
to pass the constraints of EHTC V. Snapshots with positive
RMs are plotted with filled symbols, while those with negative
RMs are plotted with open symbols. In gray, we overplot the
allowed range of |m|,e, as well as the range of RM for the core
region inferred from simultaneous ALMA-only observations.

Despite the large Faraday depths of these models, many of
them are capable of producing RMs that are consistent with the
observed data. RM and |m)|,, are anti-correlated, as expected,
because a greater amount of Faraday rotation should both
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increase the RM and cause a greater amount of scrambling of
the polarized emission. Note that the RM varies by orders of
magnitude and even flips sign over time in these models. This
is due to the summation of time-variable regions with
significantly different and even oppositely signed Faraday
rotation depths, which also contributes to highly non-\*
evolution of the EVPA with wavelength.

One potential source of uncertainty is the limited volume of
our GRMHD simulations. In our image library, the radiative
transfer equation is solved within a radius of only 50 or 100 r,
depending on the model, while in principle significant Faraday
rotation may occur at much larger radius. Figure 22
demonstrates that for the gas distributions studied, most of
the Faraday rotation occurs at radii much smaller than the outer
domain. Five example models are visualized here: (a) MAD
ay. = +0.94 Ryion =20, (b) SANE a, =+40.5 Ryien=1, (¢)
MAD a, = —0.5 Rygnh =160, (d) SANE ay, =+40.5 Ryjgn =
160, and (e) SANE a, =0 Ry;zn = 80. The brightness of each
pixel scales with the total intensity (intentionally saturating
0.3% of the pixels), while the color of each pixel scales with
the intensity-weighted Faraday depth 7, ;, as shown in the
colorbar. 7, ; is distinct from 7, because it is intensity
weighted along each ray, such that in each pixel

1
Tpd = 7 f|pV|I(s)ds.

As also shown in Figure 7, these models span a wide range
of Faraday depths. Typically, SANE models and models with a
larger Ryign have larger Faraday depths than MAD models and
those with smaller Ryzn. SANE models require a larger
accretion rate to reproduce the total intensity of M87”, which
increases the amount of Faraday rotating material. Meanwhile,
increasing Ry;gn lowers the temperature of the midplane by
construction. This makes Faraday rotation more efficient, and
also requires a larger accretion rate to compensate for the lower
electron temperatures (see MoScibrodzka et al. 2017, for an
extended discussion).

In Figure 23, we confirm that the linear polarization parameters
used in this study are not strongly evolving at the outer simulation
domain. Here, we provide polarization maps and the linear
polarization parameters for these models blurred with a Gaussian
beam with a FWHM of 20 pas. The rows display models with
outer integration radii of 10, 20, 40, and 50 r,. For the three left-
most models, there is little difference between images constructed
with 7pax = 10 7, and those with 7. = 50 7,, echoing our
previous findings that there are small fractional differences in the
Faraday depth between these scales. Faraday rotation thick
models (d) and (e) show modest differences between images
calculated with outer boundaries of 10 r, and 50 r,. Those images
also appear to be converged by 40 r,.

Some of our models produce observable polarimetric
signatures despite 7,, being large enough to potentially
depolarize all of the emission. This apparent contradiction is
resolved by the fact that not all emission is Faraday rotated by
the same amount. Because Faraday rotation occurs co-spatially
with the emission, instead of as an external screen, there can
exist emission traveling on Faraday-thin paths to the camera
even in models where 7,, > 1 when integrated along the entire
geodesic. In Figure 24, we illustrate this phenomenon by
splitting these images into the emission originating in front of
or behind the midplane. Here, models are plotted as in
Figure 22 with #y,x = 50 7,. Emission originating from the

(BD)
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Figure 22. Intensity-weighted Faraday depths visualized with five example models: (a) MAD a,, = +0.94 Ry, = 20, (b) SANE a, = +0.5 Ryn = 1, (c) MAD
ay = —0.5 Rpjgn = 160, (d) SANE ay, = +0.5 Ry,jgn = 160, and (e) SANE a,, = 0 Ry;gn = 80. The brightness of each pixel scales with the total intensity (intentionally
saturating 0.3% of the pixels), while the color indicates the intensity-weighted Faraday depth, 7, ;. In the top row, the maximum integration radius is set to 20 r,

while in the bottom row, the maximum integration radius is set to 50 r,. We find very little difference, confirming that our results should be insensitive to the outer
radius of the simulation domain.

back half of the simulation domain exhibits larger values of
Tp,.I> @S it must travel through more Faraday rotating material. the photon ring has a much larger 7, ; than the rest of the

Notice the clearly Faraday-thin regions in panels (c) and (e), image because those geodesics pass through the midplane and
despite the enormous values of (7, ;) for the image overall. around the black hole through Faraday-thick material.

Emission from in front of the midplane that is observed within
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Figure 23. Polarimetric images of five example models: (a) MAD ay = +0.94 Ry;g, = 20, (b) SANE ay = +0.5 Ryigh = 1, (¢) MAD a, = —0.5 Ryjen = 160,
(d) SANE ay, = +0.5 Ryjgh = 160, and (e) SANE a,. = 0 Ry;gn = 80. The maximum integration radius is set to 10, 20, 40, and 50 r, in each row from top to bottom.
For models (a)—(c), there is little difference between images computed with riy4x = 20 r, and those computed with #nac = 50 7,. The significantly more Faraday-thick

models (d) and (e) appear to be converged by a radius of 40 r,
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Figure 24. Faraday depth visualizations as in Figure 22, but with emission origin split into the front and back halves of the simulation domain. 7,,x = 50 r, for all of
these images. Because the Faraday rotation occurs co-spatially with the emission, radiation originating from the front half of the simulation domain has smaller 7,,, s
than emission originating from the back half. In panels (c) and (e), notice the Faraday-thin (7,,,; < 1) regions (purple) in the front half images even though 7, ; > 1

for the model overall.

Appendix C
Distributions of Theory Metrics for Each Model

Figures 25-29 show distributions of the metrics used to
score models, split out for each model individually.

Prograde SANE models show rapidly decreasing |m|,e; with
increasing Rpion (Figure 25) and are significantly depolarized
when Ry > 10. This behavior was previously demonstrated
by Moscibrodzka et al. (2017). The accretion flow electron
temperature decreases with increasing Ry;gpn, increasing the
strength of Faraday rotation while also concentrating the
emission at high latitudes behind the black hole (see
also EHTC V). The emission is then depolarized when
traveling through the Faraday-thick midplane plasma.

Retrograde SANE models, however, show nearly the
opposite behavior, with depolarization maximized for
Ruign = 1. At larger values of Rygn, linearly polarized emission
appears on the near side of the midplane, producing coherent
linear polarization structure that is not Faraday depolarized.

MAD models at all spins show a mild degree of
depolarization with increasing Rygn. The accretion flow
electron temperature remains high even for large values of
Rhign, as much of the plasma has 3~ 1.

Similar qualitative behavior is seen in (|m|) (Figure 26) and
the amplitude of 3, (Figure 27). However, those quantities
show less time variability (narrower distributions) than is seen
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in |m|,e. As a result, observed ranges of those values are more
constraining. In particular, the MAD models show consistent
offsets where (|m|) and |B,| are lower for Ry, =10 than
Riow = 1 models. Some spin dependence is also apparent, with
high-prograde spin usually corresponding to the highest
degrees of ordered polarization.

When the 3, amplitude is not strongly suppressed (e.g., by
Faraday rotation), the (3, phase distributions are related to
intrinsic magnetic field structure (e.g., Figure 3 and PWP).
Prograde spin, Rpionh =1 SANE models and retrograde spin,
large Rpigh SANE models both show radial EVPA patterns,
resulting in 3, phase distributions near zero. MAD models
show spin-dependent (3, phase distributions for low values of
Ryigh, ranging from spiral patterns (£3,~ —90deg) for
retrograde spin to more radial patterns at high-prograde spin.
The patterns are relatively constant functions of Rpjen and Rioy,
although with some shift of MAD prograde distributions to
twistier EVPA patterns, particularly for Ry = 10.

Most models show distributions of v, centered on zero,
near the observed range (Figure 29). MAD models generally
show low circular polarization fractions, while heavily
depolarized SANE models (retrograde low Rygpn, prograde
large Ryign) tend to show larger |v,| than observed, which can
be explained by stronger Faraday conversion in the emission
region.
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Figure 25. Distributions of net polarization fraction |m|,e, for all models. MAD and SANE simulations are shown in the left and right panels. Black hole spin a,, varies
along the x axis, Rygn varies in each row, and the distributions at Ry, = 1 and 10 are shown in red and blue in each case.
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Appendix D
Detailed Model Scoring Results

In Table 3 we provide a summary of the number of images
for each model that fall within the observed range of each
individual theory metric (used in the joint scoring procedure)
and within the observed ranges of all metrics simultaneously
(used in the simultaneous scoring). Boldfaced type is used for
models that are deemed viable by one of the scoring systems.

35

For simultaneous scoring, a viable model contains at least one
image that simultaneously satisfies all constraints. For joint
scoring, a viable model has a joint likelihood >1% that of the
maximum found across all models. We also provide a summary
score—"“‘pass” indicates a model that satisfies the polarimetric
constraints according to either scoring procedure, as well as the
jet-power cut of Pje, > 10%ergs™" (EHTC V).
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Table 3
Scoring Results for the Models Used Here
Flux Gx Riow Ruigh M_3 Pjet.az Notner Niper Njm)) Nig| Narg 5 Nim Summary
SANE —0.94 1 1 3.79 1.19 7 578 0 0 126 0 fail
SANE —0.94 1 10 16.30 5.11 504 95 0 0 0 0 fail
SANE —0.94 1 20 19.04 6.00 482 24 0 0 0 0 fail
SANE —-0.94 1 40 22.88 7.26 460 27 0 0 0 0 fail
SANE —0.94 1 80 29.18 9.19 375 31 0 0 0 0 fail
SANE —0.94 1 160 39.32 12.40 301 41 0 0 0 0 fail
SANE —0.94 10 1 6.24 1.96 0 506 0 0 185 0 fail
SANE —0.94 10 10 48.18 15.16 263 26 28 12 0 0 fail
SANE —0.94 10 20 55.54 17.47 256 32 27 6 0 0 fail
SANE —0.94 10 40 66.19 20.82 256 36 34 7 0 0 fail
SANE —0.94 10 80 83.97 26.42 251 30 39 11 0 0 fail
SANE —0.94 10 160 115.94 36.47 232 27 49 15 0 0 fail
SANE —0.5 1 1 2.48 0.04 0 407 0 0 143 0 fail
SANE —0.5 1 10 18.36 0.30 51 0 10 15 0 0 fail
SANE —0.5 1 20 21.37 0.35 78 0 12 28 0 0 fail
SANE -0.5 1 40 24.80 0.41 61 2 10 16 0 0 fail
SANE —0.5 1 80 30.28 0.50 63 13 5 12 0 0 fail
SANE —0.5 1 160 39.73 0.66 80 37 5 7 0 0 fail
SANE —0.5 10 1 3.75 0.06 0 491 0 0 134 0 fail
SANE —0.5 10 10 64.76 1.06 9 3 0 0 13 0 fail
SANE —0.5 10 20 84.43 1.39 107 0 0 0 10 0 fail
SANE —0.5 10 40 92.84 1.53 95 0 0 0 13 0 fail
SANE —0.5 10 80 107.39 1.77 70 0 0 0 9 0 fail
SANE —0.5 10 160 134.03 2.20 48 0 0 0 11 0 fail
SANE 0.0 1 1 0.89 0.00 555 513 90 96 38 0 fail
SANE 0.0 1 10 17.40 0.00 78 174 12 29 11 0 fail
SANE 0.0 1 20 31.92 0.00 334 7 45 164 3 0 fail
SANE 0.0 1 40 36.44 0.00 356 7 46 159 1 0 fail
SANE 0.0 1 80 41.10 0.00 312 8 31 77 5 1 fail
SANE 0.0 1 160 4891 0.00 238 7 13 21 39 1 fail
SANE 0.0 10 1 1.26 0.00 28 419 0 0 42 0 fail
SANE 0.0 10 10 30.20 0.00 0 386 0 0 53 0 fail
SANE 0.0 10 20 134.87 0.00 28 153 0 0 262 0 fail
SANE 0.0 10 40 211.01 0.00 73 46 3 3 122 0 fail
SANE 0.0 10 80 223.92 0.00 60 56 4 3 98 0 fail
SANE 0.0 10 160 249.08 0.00 45 99 3 2 87 0 fail
SANE 0.5 1 1 0.28 0.01 74 584 0 0 0 0 fail
SANE 0.5 1 10 2.05 0.04 1 69 0 0 23 0 fail
SANE 0.5 1 20 4.38 0.08 0 114 0 0 96 0 fail
SANE 0.5 1 40 8.60 0.16 0 211 0 0 67 0 fail
SANE 0.5 1 80 13.63 0.25 0 245 0 0 53 0 fail
SANE 0.5 1 160 18.22 0.33 2 215 0 0 76 0 fail
SANE 0.5 10 1 0.45 0.01 203 557 198 189 3 0 fail
SANE 0.5 10 10 5.53 0.10 0 185 0 0 22 0 fail
SANE 0.5 10 20 17.96 0.33 0 58 0 0 39 0 fail
SANE 0.5 10 40 56.18 1.03 0 278 0 0 137 0 fail
SANE 0.5 10 80 110.23 2.02 2 204 0 0 125 0 fail
SANE 0.5 10 160 140.88 2.58 2 107 0 0 93 0 fail
SANE 0.94 1 1 0.05 0.02 165 59 0 0 0 0 fail
SANE 0.94 1 10 0.32 0.13 336 594 481 439 21 0 fail
SANE 0.94 1 20 0.73 0.30 61 521 0 0 12 0 fail
SANE 0.94 1 40 1.35 0.56 45 525 6 35 3 0 fail
SANE 0.94 1 80 2.00 0.83 122 420 14 121 1 0 fail
SANE 0.94 1 160 2.78 1.20 182 321 13 163 0 0 fail
SANE 0.94 10 1 0.07 0.03 181 33 0 0 0 0 fail
SANE 0.94 10 10 0.49 0.20 582 469 113 107 116 0 fail
SANE 0.94 10 20 1.57 0.65 0 427 0 0 137 0 fail
SANE 0.94 10 40 5.86 2.44 0 493 0 0 122 0 fail
SANE 0.94 10 80 12.76 5.31 0 272 0 0 178 0 fail
SANE 0.94 10 160 17.71 7.37 1 144 0 0 205 0 fail
MAD —0.94 1 1 0.13 1.74 118 23 2 41 109 0 fail
MAD —0.94 1 10 0.20 2.60 112 116 0 3 8 0 fail
MAD —0.94 1 20 0.24 3.15 94 199 0 0 0 0 fail
MAD —0.94 1 40 0.31 3.98 92 256 0 7 0 0 fail
MAD —0.94 1 80 0.41 5.31 134 261 4 51 1 0 fail

36



THE ASTROPHYSICAL JOURNAL LETTERS, 910:L13 (43pp), 2021 March 20

EHT Collaboration et al.

Table 3
(Continued)

Flux ax Riow Rhigh M. Piet2 Nope, Nones Ny Nyl Narg Noim Summary
MAD —0.94 1 160 0.58 7.57 160 253 59 134 1 0 fail
MAD —-0.94 10 1 0.29 3.75 117 239 15 134 48 0 fail
MAD —0.94 10 10 0.51 6.66 113 392 2 27 4 0 fail
MAD —-0.94 10 20 0.68 8.78 131 310 10 33 0 0 fail
MAD —0.94 10 40 0.93 12.12 157 166 43 68 0 0 fail
MAD —-0.94 10 30 1.37 17.76 180 105 105 134 0 0 fail
MAD —-0.94 10 160 2.12 27.45 226 118 247 304 20 0 pass
MAD —-0.5 1 1 0.12 0.53 148 27 0 4 585 0 fail
MAD -0.5 1 10 0.19 0.82 147 53 0 0 587 0 fail
MAD —-0.5 1 20 0.23 1.00 121 87 0 0 374 0 fail
MAD -0.5 1 40 0.29 1.25 126 157 1 11 139 0 fail
MAD -0.5 1 30 0.38 1.63 168 256 26 85 89 9 pass
MAD —-0.5 1 160 0.52 2.26 229 377 185 260 71 19 pass
MAD -0.5 10 1 0.27 1.15 128 213 0 40 529 1 pass
MAD -0.5 10 10 0.52 2.25 62 471 1 10 141 5 pass
MAD -0.5 10 20 0.71 3.08 71 447 21 64 53 1 pass
MAD -0.5 10 40 0.99 4.28 157 366 215 224 31 1 pass
MAD -0.5 10 80 1.40 6.06 270 368 475 454 35 0 pass
MAD -0.5 10 160 2.05 8.87 438 462 324 352 48 0 pass
MAD 0.0 1 1 0.10 0.00 140 7 0 0 20 0 fail
MAD 0.0 1 10 0.16 0.00 146 3 0 0 405 0 fail
MAD 0.0 1 20 0.20 0.00 149 2 0 0 596 0 fail
MAD 0.0 1 40 0.25 0.00 173 5 0 1 406 0 fail
MAD 0.0 1 80 0.32 0.00 297 11 58 35 310 5 fail
MAD 0.0 1 160 0.43 0.00 432 34 300 168 288 19 fail
MAD 0.0 10 1 0.19 0.00 147 46 3 7 303 0 fail
MAD 0.0 10 10 041 0.00 116 77 19 85 218 0 fail
MAD 0.0 10 20 0.59 0.00 145 135 169 299 276 0 fail
MAD 0.0 10 40 0.85 0.01 245 323 445 461 135 0 fail
MAD 0.0 10 30 1.23 0.01 410 542 456 422 64 1 fail
MAD 0.0 10 160 1.80 0.01 490 371 18 50 29 0 fail
MAD 0.5 1 1 0.07 0.70 198 367 0 0 0 0 fail
MAD 0.5 1 10 0.12 1.22 190 407 0 0 0 0 fail
MAD 0.5 1 20 0.15 1.55 163 371 0 0 0 0 fail
MAD 0.5 1 40 0.20 2.00 176 400 0 0 0 0 fail
MAD 0.5 1 30 0.26 2.63 197 548 33 10 0 0 fail
MAD 0.5 1 160 0.36 3.60 290 445 72 20 0 0 fail
MAD 0.5 10 1 0.13 1.33 162 320 0 0 10 0 fail
MAD 0.5 10 10 0.30 3.02 132 182 9 19 39 0 fail
MAD 0.5 10 20 0.45 4.49 152 287 138 148 48 0 pass
MAD 0.5 10 40 0.67 6.74 229 533 347 318 60 4 pass
MAD 0.5 10 80 1.02 10.20 303 221 556 479 125 4 pass
MAD 0.5 10 160 1.57 15.72 528 120 315 462 230 1 pass
MAD 0.94 1 1 0.04 1.96 199 401 0 0 0 0 fail
MAD 0.94 1 10 0.06 3.02 176 408 0 0 0 0 fail
MAD 0.94 1 20 0.08 3.72 157 375 0 0 0 0 fail
MAD 0.94 1 40 0.10 4.72 143 413 0 0 0 0 fail
MAD 0.94 1 80 0.13 6.24 142 432 0 0 0 0 fail
MAD 0.94 1 160 0.19 8.72 144 433 4 0 0 0 fail
MAD 0.94 10 1 0.08 3.75 235 575 0 0 0 0 fail
MAD 0.94 10 10 0.15 7.06 145 392 1 7 0 0 fail
MAD 0.94 10 20 0.21 9.74 132 381 33 57 1 0 fail
MAD 0.94 10 40 0.30 14.12 168 362 129 162 1 0 fail
MAD 0.94 10 80 0.45 21.18 298 325 344 283 8 1 pass
MAD 0.94 10 160 0.72 33.45 431 261 598 488 35 0 pass

Note. The number of images passing each polarimetric constraint are given along with the number Ny, simultaneously passing all of them. The accretion rate M_3 is
in units of 107> M, yr~!, and Pjei 42 is the jet power in units of 10*? erg s~'. Models that pass according to either the simultaneous or joint scoring method (boldface)
and have Pje 4> > 1 are given a summary score of pass.
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