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Abstract 

Antiferromagnetic spintronics is a promising emerging paradigm to develop high-performance 

computing and communications devices. Antiferromagnetic materials are more abundant than 

ferromagnets hence, from a theoretical point of view, it is important to implement simulation tools 

that can support a data-driven development of materials having specific properties for applications. 

Here, we present a study focusing on the fundamental properties of antiferromagnetic materials 

having an easy-plane anisotropy and interfacial Dzyaloshinskii-Moriya interaction (IDMI). An 

analytical theory is developed and benchmarked against full numerical micromagnetic simulations, 

describing the main properties of the ground state in antiferromagnets and how it is possible to 

estimate the IDMI from experimental measurements. The effect of the IDMI on the electrical 

switching dynamics of the antiferromagnetic element is also analyzed. Our theoretical results have 

implication in the design of multi-terminal heavy metal/antiferromagnet memory devices.   
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I. INTRODUCTION 

Antiferromagnets (AFMs) are attracting a growing and renewed interest because of the demonstration 

of their electrical manipulation by spin-orbit torque (SOT), and unique characteristics such as, 

ultrahigh velocity of domain walls1–3 and skyrmions4–9, zero net magnetization10,11, as well as 

picosecond switching12,13 and terahertz dynamics14,15. These features pave the way for a number of 

potential applications in spintronics, ranging from memory and neuromorphic computing devices, to 

terahertz oscillators14,15 and detectors16,17. 

Experimental imaging of the antiferromagnetic order, such as X-ray dichroism, has pointed out the 

existence of very complex domain patterns18–21, including vortex and antivortex configurations22,23. 

An extended explanation for the pattern structure is attributed to the magnetoelastic energy 

originating from the substrate that can be strongly spatially non-uniform. However, a tilt of the 

antiferromagnetic order can be induced by the Dzyaloshinskii-Moriya interaction (DMI) also in ideal 

systems24–26 and in the absence of magnetoelastic contributions. The most common devices have an 

adjacent heavy metal (HM) with large spin orbit coupling, such as Platinum (Pt) interfaced directly 

with the AFM. In this configuration, we expect the interfacial DMI (IDMI) to play a significant role. 

Specifically, a systematic study to understand the effect of IDMI on the ground state and dynamics 

of an AFM has remained elusive to date. Previous results24 showed that a particular class of materials  

(hematite -Fe2O3, iron borate FeBO3, and orthoferrites) characterized by easy-plane anisotropy 

(EPA) and IDMI exhibit a small net magnetization, due to a small tilting of the spin sublattice due to 

the IDMI. Therefore, the corresponding non-zero dipolar field favors the formation of vortices24. 

In this work, we perform micromagnetic simulations showing how the IDMI affects the equilibrium 

configuration of the Néel vector in collinear (no net magnetization) AFM materials having easy-plane 

anisotropy. The main result is that the energy contribution linked to a large enough IDMI promotes a 

non-collinear magnetization orientation27, thus inducing a ground state characterized by deformed 

cycloids28 that we identify as periodic structure of up and down domains separated by chiral Néel 

domain walls (NDWs). More interestingly, the periodicity of the domains is strictly connected to the 

IDMI parameter and can be potentially used for its quantification in AFMs. To this aim, we have 

derived a simple analytical formula which shows a good agreement with the numerical results 

achieved within a full micromagnetic framework. Our approach extends to AFMs a method 

previously developed for ferromagnets to estimate the IDMI constant, which is based on the domain 

wall size estimation29. Our results can be crucial for developing an approach to estimate the IDMI in 

AFMs, also because other standard procedures developed for ferromagnets, such as Brillouin light 

scattering (BLS)30–33 and asymmetric expansion of a bubble domain29,34, cannot be directly applied 

to AFMs. We further show the implications of the presence of the periodic domain structures in the 
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design of multi-terminal antiferromagnetic memory devices. The paper is organized as follows. 

Section II describes the device geometry and parameters as well as the micromagnetic model. Section 

III deals with the development of the analytical theory to estimate the NDW periodicity. Section IV 

shows the results regarding the ground state of the magnetizations together with a comparison 

between the analytical theory and micromagnetic model periodicities. Section V presents the 

dynamics of both NDWs and uniform state driven by an in-plane electrical current, which can be used 

to design antiferromagnetic memory devices and Section VI summarizes the conclusions. 

 

II. DEVICE AND MICROMAGNETIC MODEL 

We investigate a circular AFM pillar built on top of a HM underlayer (Pt), in a 4-terminal device, as 

shown in Figure 1. The AFM has a 400 nm diameter and a 6 nm thickness. In Fig. 1(a), a Cartesian 

coordinate system is also introduced, with the z-axis being the out-of-plane direction, and the x and 

y-axes the in-plane directions. Figure 1(b) shows the spatial distribution of the current density flowing 

in the Pt HM and the AFM (inset), as computed by finite element simulations35 when the current is 

applied between the A-A’ terminals. We observe that the AFM diameter has to be smaller than half 

of the HM width in order to obtain a uniform current distribution in the AFM (see green circle and 

corresponding current distribution). If we consider a HM width of 1000 nm, we can fix the AFM 

diameter at 400 nm in this study.  

 
Figure 1: (a) Sketch of the 4-terminal device structure under investigation along with the Cartesian 

coordinate system. (b) Spatial distribution of the electrical current density through the Pt heavy metal 

and the AFM (inset). The green circle represents the circular AFM under investigation (400 nm in 

diameter), where the current distribution is uniform, while the blue circle represents a larger AFM, 

where the current distribution is non-uniform. The colors are linked to the amplitude of the x-

component of the current density, as indicated in the bar, while the arrows indicate its in-plane 

component.  

 

The micromagnetic calculations are based on a continuous model which describes the 

antiferromagnetic order by considering two sublattices characterized by a normalized magnetization 

vectors 11 / sM=m M  and 22 / sM=m M , respectively ( sM  is the saturation magnetization of the two 
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sublattices 1 2s s sM M M= = ). The AFM static properties are studied numerically by solving two 

coupled Landau-Lifshitz-Gilbert (LLG) equations3,15  
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where 0  is the gyromagnetic ratio,   is the Gilbert damping parameter, and eff ,1H  and  eff ,2H  are 

the effective fields for the first and second sublattice, respectively. Both effective fields include the 

exchange, EPA, as well as the IDMI contributions. The total energy density can be written as 

tot exch ani IDMI   = + +        ,                                                (2) 
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being zu  the unit vector along the out-of-plane direction. From Eq. (3), one can derive each term of 

the two effective fields. In particular, the exchange fields include three contributions: 
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where 0  is the vacuum permeability, and a  is the lattice constant. In Eqs. (3) and (4), 11 0A   is 

the inhomogeneous intra-lattice contribution, 12 0A   is the inhomogeneous inter-sublattice 

contribution, and 0 0A  , is the homogeneous inter-sublattice contribution to the exchange energy.  

The expressions for the IDMI fields are 
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where D is the IDMI parameter, and 1,zm  and 2,zm  are the out-of-plane components of the 

magnetization of the first and second sublattice, respectively. Additionally, the IDMI also affects the 

boundary conditions by imposing a field ( )( )IDMI,iS

0 S

zi

D

M
= H m n u  at the lateral edges (x and y 
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axes) of the sample, where 1,2i = and n  is a vector normal to the edge. Therefore, the boundary 

conditions for the i-th sublattice are modified3 as 

 

 ( ) ( )11 122 i j i zn i iA A D     + + =n m m nm um m 0 ,  (6) 

 

where 1,2;j j i=  . The anisotropy fields are 
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with uK  being the anisotropy constant. For an easy-plane AFM, as the one considered here, 0uK  . 

From Eq. (7), the maximum amplitude of the anisotropy field is 
0

2 u
A

S

K
H

M
= . We used a 4 x 4 x 6 

nm3 discretization cell, and fixed sM = 400 kA/m, and 0A = -5 pJ/m. The static results do not change 

in the range 300 < sM < 500 kA/m and -20 < 0A < -5 pJ/m (see Note 1 in the Supplemental Material) 

36.  

III. ANALYTICAL THEORY 

The following analytical framework extends the model developed for ferromagnets in Ref. [28]. In 

particular, this model is valid both for easy-axis and easy-plane anisotropies with the proper definition 

of the initial phase of the cycloid state. Therefore, it can be extended to our easy-plane AFM by using 

the correspondences shown in Table I. Specifically, the effective exchange 11 122A A−  plays the role 

of the exchange constant in the ferromagnet, while 0A  exists only for the AFM and does not play a 

role for the equilibrium configuration.  
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A11 (inhomogeneous exchange constant intra-lattice) 

 A12(inhomogeneous exchange constant inter-lattice) 
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A0 (homogeneous exchange constant inter-lattice) 

Anisotropy Uniaxial anisotropy, out-

of-plane easy axis 

Easy-plane anisotropy 

TABLE I. A comparison of the model developed for ferromagnets in Ref. [28] and here for 

antiferromagnets. 

 

The generalization starts from the Euler-Lagrange equations for a point inside the sample, considering 

the energy given in Eq. (3), which are  
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By considering the following hypotheses: (i) the modulus of the sublattice magnetizations is constant, 

| | 1i =m , (ii) the two sublattice magnetizations are perfectly aligned antiparallel to each other at 

equilibrium, i.e. 
2 2

1 2 1 2m m m m→ = −= − ,  and (iii) the rotation of the magnetization takes place in 

a fixed plane, we can write for each sublattice that 
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where i  is the angle of rotation with respect to an arbitrary axis lying in the plane, and i  is the 

angle of rotation with respect to the plane, which is assumed to be constant and equal to zero 

(assumption (iii)). Since the same equation is valid for both sublattices, we will omit subindices 

without losing generality. Notice that Eq. (9) is formally the same as in the case of ferromagnets28, 

where the exchange parameter A  has been replaced by the effective exchange 11 122A A− , so we can 

straightforwardly apply the same procedure already developed for ferromagnets.  

First, we consider the special case of isotropic media, that is 0uK = . Therefore, Eq. (9) becomes 
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, where 0  is a constant of integration in units of meter, giving the 

periodicity. Inserting this condition in the energy density of Eq. (3) and minimizing the energy with 

respect to 0  we obtain the periodicity  
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which is a function of the ratio between the IDMI and the (inhomogeneous) exchange. In the case 

0uK  , Eq. (9) leads to  
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where C  is an integration constant and ( ) ( )11 122 / 2 uAA K −=  is the static domain wall width 

for AFM3. Integrating over a quarter of a period, it gives a periodicity   
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which depends on the first-kind elliptic integral. In order to determine the integration constant C , we 

minimize the energy density with respect to the periodicity   
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where ( )11 12

2
2 2c uD A A K


= − is the minimum IDMI needed to get the cycloid state, and the right-

hand term is the second-kind elliptic integral. 

 

 

IV. RESULTS 

A. Statics 

Figure 2 summarizes the snapshots of the ground states of the circular AFM as a function of the EPA 

constant (Ku) and the IDMI parameter (D) - the colormap codes the out-of-plane component of the 

sublattice 1, which also coincides with the one of the Néel vector. The values of the IDMI parameter 

used here are consistent with the ones reported in literature37–39, however the IDMI must be large 

enough to promote the phase changes described below.  

The ground state at low IDMI corresponds to the uniform configuration of the Néel vector, while a 

larger IDMI energy fosters the formation of out-of-plane domains separated by NDWs (the in-plane 

component of the magnetization within the domain wall is perpendicular to the direction of the 

domain wall), which, in absence of IDMI, can be oriented in each direction inside the x-y plane due 

to the EPA. We can consider two scenarios characterized by zero and non-zero EPA, respectively. In 
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the former, the out-of-plane domains result from the competition between only the exchange and 

IDMI energies. The reason is that, while the exchange promotes the parallel alignment of the 

magnetization, the IDMI promotes a misalignment, which gradually tilts the local spins in the same 

direction of rotation, i.e. the IDMI creates a chiral effect. This rotation takes place in the plane formed 

by the vector perpendicular to the interface, and the vector linking both spatial positions. 

Consequently, out-of-plane domains separated by NDWs are created, and the DW periodicity is 

obtained as the ratio between the exchange and the IDMI energies, which determines the deviation 

angle. A more complex situation occurs when the space is not isotropic, which corresponds to the 

non-zero EPA case. In that case, a deviation from the circular path towards an ellipse takes place 

because the rotation of the spin is slower (or even null) when the anisotropy stabilizes the orientation 

(aphelion) and faster when it destabilizes the orientation (perihelion). We also notice the stabilization 

of merons or half skyrmions40 at the edge of the sample which can become stable if the sample is 

small enough and the IDMI is properly tuned.  

A systematic study based on micromagnetic simulations confirms that sM  and 0A  do not affect the 

results, while 
11A  (see Note 1 in the Supplemental Material)36 and 

12A  change the periodicity, as 

shown in the next paragraph.  
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Figure 2: Snapshots of the ground states of the magnetization of sublattice 1 for different 

combinations of the IDMI and EPA parameters. 

 

 

B. A comparison between numerical and analytical calculations 

Figure 3 displays a comparison between the micromagnetic and analytical periodicity for different 

values of the IDMI parameter and EPA constant. In the micromagnetic simulations, the periodicity is 

computed as the distance between two consecutive identical magnetization values (see inset of Fig. 

3(a)), while it is analytically calculated by using Eq. (10) for zero EPA and Eqs (12) and (13) for 

finite EPA values. We wish to highlight that to calculate numerically the periodicity at low Ku with a 

better resolution, we have simulated larger cross sections (not shown). Figure 3(a) shows the 

periodicity dependence on IDMI constant at zero Ku as a function of the inhomogeneous inter-

sublattice exchange constant A12. For each value of A12, the analytical period decreases with 

increasing D, confirming that the IDMI promotes the proliferation of NDWs, as also obtained by 

micromagnetic simulations (see also Fig. 2). On the other hand, for a fixed D value, the period is 

larger as the magnitude of A12 increases. This feature points out that in the continuous model of AFMs, 

as the micromagnetic one used in this work, the role of the inhomogeneous inter-sublattice exchange 
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term is non-negligible and should be considered for the correct understanding of the AFM ground 

state. Figure 3(a) also shows an excellent agreement between the micromagnetic and analytical 

results.  

Figure 3(b) displays the periodicity dependence on A12 for three values of D and for a non-zero Ku=-

0.10 x 105 J/m3. Similar conclusions can be drawn, i.e. the periodicity increases with A12 and decreases 

with D. Again, the analytical outcomes fit well with the micromagnetic ones. However, we wish to 

underline that for the point D = 0.40 mJ/m2, A12= 8 pJ/m, vortex cores are stabilized (see snapshot in 

the Supplementary Note 2)36. This means that our analytical theory does not apply for that point, 

despite the good match.  

 

Figure 3: A comparison of the micromagnetic (symbols) and analytical (dashed lines) domains 

periodicity (a) as a function of the IDMI, for different values of 12A  at zero uK , and (b) as a function 

of 12A  for three values of D and for uK  = -0.10 x 105 J/m3. The analytical results are calculated using 

(a) Eq. (10) and (b) Eqs. (12) and (13). The inset in (a) shows a magnification of a snapshot where 

the micromagnetic period is indicated. The colors represent the z-component of the magnetization of 

the sublattice 1, as indicated in the color bar. 

 

C. IDMI parameter estimation 

Our model extends the method previously developed for IDMI estimation in ferromagnets, based on 

the domain size calculation29, and represents a possible tool to estimate the IDMI and exchange 
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parameters from experimental images of NDW patterns in easy-plane AFMs. This is important since 

other methods for IDMI measurement, such as spin wave nonreciprocity measurement via Brillouin 

light scattering (BLS)30–33, and asymmetric expansion of a bubble domain29,34, both of which are used 

in ferromagnets, cannot be similarly used in AFM materials. 

Our approach can be applied through the following steps. From the experimental measurements, we 

can estimate the value of uK (see our proposal in APPENDIX A), and the NDW periodicity  , 

while the NDW width can be analytically calculated 11 122

2 u

A

K

A−
 =  (for our parameters of Fig. 3(b), 

22 nm <   < 39 nm). Indeed,   could be approximately obtained from the experimental 

measurements by fitting the out-of-plane component of the Néel vector with the Walker ansatz3, as 

also proposed in Ref. [41]. Knowing  , and  , we can calculate the value of the elliptic integral of 

the first kind (Eq. (12)), and so the value of the argument of this function. Therefore, the combination 

of Eq. (12) and Eq. (13) give us the value of the IDMI constant 
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V. APPLICATION AS AN ANTIFERROMAGNETIC MEMORY DEVICE 

A. Background 

The AFM order can be manipulated by using exchange bias42–44,  strain45,46, femtosecond lasers47 and 

electrical currents. As well-established for ferromagnets48–52, the current-induced manipulation of 

AFMs is very promising because it allows spintronic memories to be implemented alongside 

transistors in electronic circuits53, with electrical read and write operations. From a fundamental point 

of view, the electrical switching of AFM relies on the local transfer of spin-angular momentum to the 

alternating spins, which then promotes a rigid rotation of the whole lattice in a different direction. In 

a continuous formulation of this phenomenon, the Néel vector switches from one direction to the 

other one depending on the spin-polarization of the applied electric current. The Néel vector can be 

read out via the anisotropic and spin-Hall magnetoresistance effects, and, depending on its 

orientation, it can be used as a binary memory (coding the bits '0' and '1'), or a memristive system 

(analog memory coding multiple states) when the ground state can have multiple domains. A typical 

geometry designed for AFM switching is a multi-terminal device, which enables the writing operation 

through current pulses applied along different device terminals, and the readout via either the 
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transversal resistivity (anomalous Hall, anisotropic, spin-Hall resistance) or the longitudinal one 

(planar Hall effect). Wadley et al.18 and Bodnar et al.54 observed AFM switching in CuMnAs and 

Mn2Au, respectively, by applying a number of consecutive current pulses and using the AMR as a 

readout mechanism. The switching process occurred via domain wall reorientation. Similar results 

were achieved by Grzybowski et al.19 but they observed local switching in regions of 100-200 nm in 

size, hence they ascribed this to the magnetoelastic deformation. A different system has been 

proposed by Moriyama et al.20, who designed a Pt/NiO/Pt 4-terminal device and electrically detected 

the two AFM order states by spin-Hall magnetoresistance. However, these previous works relied on 

materials which are hard to be integrated in conventional semiconductor memory manufacturing 

technology11,18,19,53,55,56. Recently, Shi et al.57 demonstrated switching dynamics in PtMn in contact 

with a Pt or Ta HM, which are standard materials used in existing magnetic tunnel junctions, and 

therefore easily integrable with state-of-the-art silicon technology58,59. For this reason, our theoretical 

study is based on PtMn magnetic material parameters.  

 

B. Micromagnetic model 

In order to study the AFM order dynamics, we add the following SHE torque57 to Eq. (1): 
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where Jd  is a torque coefficient given by 
22

B
J

S

g
d

eM


= , where g is the Landè factor, B  is the Bohr 

magneton, and e is the electron charge. The first term of both Eqs. (15) represents the sum of the 

interfacial-damping-like torque (IDLT)2 and bulk-damping-like torque (BDLT)1. The coefficient 

i DLT −  takes into account the efficiency of the charge/spin current conversion of the current HMJ  

flowing in the HM due to mechanisms like spin-Hall and spin-galvanic effects. As the thickness of 

the AFM, AFMt , increases, this effect proportionally reduces. On the other hand, b DLT −  describes the 

efficiency of the relativistic spin–orbit coupling in generating spin-current from the charge current 

AFMJ  flowing through the metallic AFM. This latter mechanism, originating directly in the bulk, does 

not depend on the AFMt . The vector p is the direction of the spin-polarization (y-direction for a voltage 

applied across A-A', see Fig. 1(a)), and 0.05 =  in agreement with Ref. [60]. Indeed, we also 

performed  simulations as a function of   in the range 0.003 – 0.0561–63 (see Supplementary Note 
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3)36 for different current density values, finding a smaller switching time as   decreases. Notice that 

a very small damping value can be a key ingredient for achieving switching dynamics below the ns. 

 

C. Results  

In the following, we compute the switching time - current relations for 4 values of the IDMI 

parameter, when the EPA constant is fixed to -0.10 x 105 J/m3 and the electrical current is applied 

along the x-direction (terminals A-A’). We define the switching time as the time interval until the y-

component of the Néel vector reaches the 95% of its final value. For D=0.00 and 0.20 mJ/m2, the 

ground state is uniform in the x-direction, while for D=0.60 and 0.80 mJ/m2, we obtain out-of-plane 

domains (as previously shown in Fig. 2). For the latter cases, we first applied a sufficiently large 

current density > 10 MA/cm2 in order to orient all the random initial NDWs along the x-direction. 

Analogous results are achieved if the electrical current is applied along the y-direction (terminals B-

B’) and the initial in-plane Néel vector is aligned along the y-direction. 

 

  

Figure 4: (a) Switching time as a function of the current density for different values of the IDMI 

parameter, therefore of the AFM ground state (Uniform or NDW), and for Ku=-0.10 x 105 J/m3. (b)-

(e) Spatial distribution of the 1st-sublattice magnetization corresponding to the initial (state ‘0’) and 

final (state ‘1’) configurations when D=0.20 mJ/m2 ((b) and (c)) and D=0.60 mJ/m2 ((d) and (e)). 

 

We plot, in Fig. 4(a), the switching results where we only report switching time smaller than 20 ns. 

Regardless of the ground state, the switching mechanism is characterized by a 90° rotation of the in-

plane component of the Néel vector towards the direction of the spin-polarization. In particular, for 

small current densities < 7.0 MA/cm2, the NDWs switch faster than the uniform state, whereas for 

JHM > 7 MA/cm2, the switching time is nearly the same for all the cases. As the IDMI increases, there 

is a qualitative change in the switching mechanism. At low IDMI, there is a uniform domain rotation 

while, as the ground state becomes non-uniform, the switching is due to a domain rearrangement. As 
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expected for an easy-plane AFM, the domain rotation is mainly driven by the IDLT and BDLT, which 

act as an effective out-of-plane field ( ),DLT i H iMJH m p  , thus reorienting the in-plane Néel vector 

along the y-axis (see Supplemental Material MOVIE 1 for D=0.20 mJ/m2, JHM=10 MA/cm2 and 

yp u )36. In the case of domain rearrangement, the switching is dominated by their motion and the 

final alignment of the DW along the direction of the spin-polarization (as in the case of uniform 

rotation) to minimize the energy. In detail, the initial NDWs are shifted perpendicularly to the spin-

polarization direction, as it occurs for the 1D SHE-driven NDW motion1–3, and, subsequently, more 

NDWs are nucleated from the sample edges. The switching finishes once all the initial perpendicular-

to-the-spin-polarization NDWs are expelled from the system and replaced by horizontal NDWs 

parallel to the spin-polarization direction (see Supplemental Material MOVIE 2 for D=0.60 mJ/m2, 

JHM=10 MA/cm2 and 
xp u )36. We also studied the effect of the field-like torque due to the SHE up 

to the 60% of the DLT, observing no changes in the switching time. We wish to highlight one more 

time that, at low current, the domain rearrangement is faster than the uniform rotation because of the 

large velocity of the DW motion1,3 induced by the SOT as compared to the uniform rotation driven 

by the change in the field gradient originated by the SOT. We also checked the effect of thermal 

fluctuations at T=300 K (see Supplementary Note 4)36 observing that the in-plane component of the 

Néel vector has an equal probability to be oriented along the ± x-axis ( ± y-axis ) if the elecrical 

current is applied along the y-direction (x-direction) and, consequently, if the spin-polarization is 

along the the x-direction (y-direction).  

The above described SHE-switching dynamics at the ns scale can be exploited in the four-terminal 

device depicted in Fig. 1(a) to design AFM memories. The information is coded in the direction of 

the in-plane Néel vector which rotates 90° during the switching process (see Fig. 5(a)). We define the 

digital bits ‘0’ and ‘1’ as being represented by the Néel vector along the x- and y-direction, 

respectively. The writing protocol starts with the application of a sufficiently large initialization 

current between the terminals B-B’, in order to orient the initial random NDWs in the same direction 

(x-direction, bit ‘0’). If the other digital bit needs to be written, the current is applied between the 

terminals A-A’. The reading process occurs via the same terminals, e.g. B-B’, where the signal 

derived from the in-plane component of the Néel vector is detected. It is noteworthy that in this device 

concept, a single-domain AFM is not required in order to allow the device to work as a memory 

device with electrical readout. This is because the presence of NDWs due to the IDMI ensures that 

the in-plane component of the Néel vector is fully aligned along either the x or y axis in all of the 

domain walls in the ‘0’ and ‘1’ states, thus allowing for distinction between the two states when 

reading out using an electrical readout method such as AMR.  
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It can be noticed that the switching times lie in the ns scale, while one would expect to achieve ps 

dynamics (THz dynamics). This can be ascribed to two main reasons: the use of a high damping 

=0.05 (see Supplementary Note 3 for the switching times at smaller damping61–63)36, and that the 

THz dynamics is related to the misalignment between the magnetizations of the two sublattices from 

the antiferromagnetic configuration. In particular, to access  the THz dynamics via a dc driven force, 

the applied current density 
HMJ  should be larger than a critical value 

CJ  given by 
2

A AFM
C

J SHS

H t
J

M d




=

14,15. In fact, above 
CJ , the switching dynamics of the easy-plane AFM studied in this work changes 

qualitatively, and therefore a different procedure should be followed to achieve a 90° switching: 

1. Application of a sufficiently large initialization current between the terminals B-B’, in order to 

orient the initial random NDWs in the same direction (x-direction, bit ‘0’). 

2. Application of two equals currents 
'AAJ between the terminals A-A’ and 

'BBJ between the terminals 

B-B’,  both of them larger than Jc in order to achieve a 45° spin-polarization (see Fig. 5(b), left panel) 

and Néel vector self-oscillations; 

3. Switch off 
'AAJ  (

'BBJ ) to re-orient the Néel vector along the y (x)-direction (see Fig. 5(b), right 

panel).  

While the writing protocol depicted in Fig. 5(a) leads to a re-orientation of the Néel vector in a ns 

scale, as shown in the time evolution of the normalized magnetization components in Fig. 5(c), the 

procedure described when HM CJ J (Fig. 5(b)) allows for a switching in less than 200 ps. In fact, as 

shown in Fig. 5(d), the application of a spin current with a 45° polarization direction (step 2) excites 

self-oscillations of the Néel vector in the plane perpendicular to the polarization direction, and then, 

when the 'BBJ  is switched off, the electrical current 'AAJ , having a spin-polarization along the y-axis, 

reorients the Néel vector along the y-direction (step 3) and vice-versa in the scenario when 'BBJ  

remains on and 'AAJ  is switched off (Fig. 5(e)). Also, it is worth to observe that there is still room to 

reduce the switching time below 100 ps. We wish to highlight that the 90° switching is not achievable 

in materials with uniaxial anisotropy. For simplicity, we have shown the time traces only for the 

uniform state and for D=0.0 mJ/m2, however, similar conclusions can be obtained in presence of 

NDWs. 
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Figure 5: (a) and (b) sketch of the two switching mechanisms occurring for current smaller and larger 

than the critical one, respectively. Time trace of the normalized magnetization components of the 1st 

sublattice for D=0.0 mJ/m2 and (c) JAA’=7.0 MA/cm2, (d) and (e) total J=0.5 GA/cm2 with a 45° spin-

polarization direction for the first 133 ps, then (d) JAA’=0.25 GA/cm2 polarized along the y-direction 

and JBB’=0 for the next 50 ps, and (e) JAA’=0.0 and JBB’=0.25 GA/cm2 polarized along the x-direction 

for the next 50 ps, and, for the final 125 ps, no current is applied in both (d) and (e). 

 

VI. SUMMARY AND CONCLUSIONS 

In summary, we have micromagnetically shown that a sufficiently large IDMI promotes the formation 

of periodic domain patterns in an AFM characterized by an EPA. The periodicity of those domain 

patterns can be calculated by an analytical model. This allows us to extend to AFMs the well-known 

approach used in ferromagnets for estimation of the DMI value. The analytical periodicity is useful 

to estimate the IDMI parameter in AFMs, once the anisotropy constant is known. We further showed 

that a spin-polarized current can orient both the uniform and NDW states along the direction of the 

spin-polarization. Such switching dynamics can be exploited in a four-terminal device to implement 

AFM memories based on a 90° reorientation of the Néel vector, independently of the equilibrium 

configuration. Our results might be useful also for AFM device for unconventional applications64.  
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APPENDIX A: APPROACH TO ESTIMATE THE ANISOTROPY CONSTANT Ku 

To the best of our knowledge, there is no efficient and reliable way to measure the anisotropy of 

antiferromagnets and this is a challenge several groups are focusing on. In literature, for the estimation 

of the AFM anisotropy, it has been proposed to use direct imaging procedure65 in antiferromagnetic 

semiconductors, and currently there is an attempt to extract this information from electrical 

measurements66.  

Here, we propose an indirect way to extract the AFM anisotropy from the antiferromagnetic 

resonance frequency 
AFMf  as a function of the external field EXTH . The 

AFMf  in the case of easy-axis 

AFM67, can be computed as 0 2
2

AFM E A EXTf H H H



=  , while, for the case of easy-plane AFM68, is 

given by: 

2

0 0

2
2 1 2

2 24

EXT
AFM E A E A

E

H
f H H H H

H

 

 
+

+

 
= −  

 
                                    (A1) 

for the optical mode ( 0  is the gyromagnetic ratio), where the exchange field 0

2

0

4
E

sa

A
H

M
=  ( 0  is 

the vacuum permeability, and a  is the lattice constant, sM  is the saturation magnetization and 0A  is 

the homogeneous interlattice constant), the anisotropy field 
0

2 u
A

S

K
H

M
=  ( uK  is the anisotropy 

constant), and EXTH + is the in-plane applied field for the optical mode68. Please notice that both EH  

and AH are negative values. 

One can apply an in-plane dc magnetic field IPH  and measure the magnetization due to the sublattices 

magnetization canting IPM . The equilibrium state under the application of the magnetic field verifies 

that the effective field (for each sublattice) and the sublattice magnetization orientation are parallel. 

For an applied field along the y direction, 

 
,1 , ,1

,1 , ,1

y eff y

x eff x

m H

m H
=    (A2) 



18 

 

which leads to the following relation for the angle   with respect the x direction 

 
2

sin IP

E

H

H


−
=   (A3) 

while the magnetization canting is 

 2 sin IP
IP S S

E

M
H

M
H

M 
−

==   (A4) 

The resulting small magnetization canting has to be sufficiently large to be measured with state-of-

the-art SQUID magnetometry. 

A similar procedure can be followed in the out-of-plane case by applying an out-of-plane field OOPH

, where the induced magnetization OOPM   now depends on the anisotropy. The relations now read  

 
, ,1,1

,1 , ,1

; cos
2

eff xx OOP

z eff z EA

Hm

m

H

H HH


−
==

+
  (A5) 

and the induced magnetization is in this case 

 

 2 cosOOP SM M =   (A6) 

By combining Eqs. (A4), (A5) and (A6), we can write 

 

 1
2

OOP

OO

IP

IPE P

A
HH M

H M H
= −   (A7) 

Finally, from (A1) and (A7) one can derive the expression of the exchange field 

 

 
2

2

22

0

4
1

AFM EXT

OOP

OOP

P

I

E

P

I

f H
H

HM

M H





+ += +
 

− 
 

                                              (A8) 

and therefore AH  from Eq. (A7). Please notice that we are considering an easy plane material, thus, 

the in-plane induced magnetization will always be larger than the out-of-plane induced magnetization 

for a given magnetic field, and the square root will be always real. In summary, we propose to perform 

three measurements: (i) the antiferromagnetic resonance frequency, where an in-plane external field 

EXTH +  is applied; (ii) in-plane canting of the magnetizations, where an in-plane IPH is applied ( IPH  

can be different from EXTH + ), and (iii) out-of-plane canting of the magnetizations, where an out-of-

plane OOPH is applied. 

 

 

APPENDIX B: EFFECT OF THE ZHANG-LI SPIN-TRANSFER TORQUE 

By performing finite element computations35 of the Pt/PtMn bilayer under investigation, we observed 

that Pt and PtMn have very similar conductivities 5 MS/m . Therefore, we can add to our 

micromagnetic model (Eq. (15)) the Zhang-Li spin-transfer torque (STT)69: 
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( )

( )

1 1 1 1 1 1

2 2 2 2 2 2

i DLT HM
J b DLT AFM J AFM J AFM

AFM

i DLT HM
J b DLT AFM J AFM J AFM

AFM

J
d J d PJ d PJ

t

J
d J d PJ d PJ

t


 


 

−
−

−
−

  
= +   +  −   

  


 
= +   +  −  

 

Τ m m p m m m

Τ m m p m m m

   (B1) 

 

The latter two terms of Eqs. (B1) represent the STT69 originating from the antiferromagnetic textures, 

composed of adiabatic and non-adiabatic contributions directly proportional to the current AFMJ

flowing in the AFM. P=0.7 is a phenomenological parameter70, and 0.05 =  is the non-adiabatic 

term. Indeed, we also performed simulations as a function of   in the range 0.05 – 0.5 and as a 

function of P in the range 0.0 – 0.7, for different current density values, finding a negligible effect 

when either  or P changes.  

The STT has no effect on the uniform ground state ( 1 2 0 = =m m ), while it promotes a NDWs 

translation along the electrical current direction57. However, for the range of currents considered here 

and despite a large P, these shifting dynamics are negligible compared to the 90° rotation induced by 

the IDLT and BDLT linked to the SHE. 
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