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Abstract—In this paper, we consider a class of workspace
partitioning problems that arise in the context of area coverage
for spatially distributed heterogeneous multi-agent networks. It
is assumed that each agent has certain directions of motion
or directions for sensing that are preferable to others. These
preferences are measured by means of convex and anisotropic
(direction-dependent) quadratic proximity metrics which can be
different for each agent. These proximity metrics induce Voronoi-
like partitions of the network’s workspace whose cells may not
always be convex (or even connected) sets but are necessarily
contained in a priori known ellipsoids. The main contributions
of this work are 1) a distributed algorithm for the computation
of a Voronoi-like partition of the workspace of a heterogeneous
multi-agent network and 2) a systematic process to discover the
network topology induced by the latter partition. The distributed
implementation of the proposed algorithms is enabled by the
utilization of a hypothetical agent which determines when the
performance of each agent is acceptable. Numerical simulations
that illustrate the efficacy of the proposed algorithms are also
presented.

I. INTRODUCTION

Area coverage and spatial load balancing correspond to two
fundamental classes of problems for spatially distributed multi-
agent networks. Such problems are typically addressed by
means of distributed control algorithms that rely on the use of
Voronoi or Voronoi-like (also known as generalized Voronoi)
partitions of the workspace of the multi-agent network. For the
distributed implementation of these algorithms, each agent has
to rely on information encoded in its own cell from the spatial
partition and perhaps the cells of its neighbors. However,
unless the Voronoi-like partitions are computed by means of
distributed partitioning algorithms, the induced control algo-
rithms are not truly distributed. Therefore, the development
of distributed partitioning algorithms constitutes an integral
component of any Voronoi-distributed control architecture
for a multi-agent network. A partitioning algorithm can be
characterized as distributed when each agent can compute its
own cell independently from its teammates without utilizing
a global reference frame while relying on exchange of infor-
mation with only a subset of them (e.g., those that lie within
its communication or sensing range). Ideally, an agent can
compute its own cell if it can exchange information with the
agents that correspond to its neighbors in the topology of the
Voronoi-like partition; these neighboring relations, however,
are unknown before the computation of the Voronoi-partition
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itself. We will refer to the problem of characterizing the set
of neighbors (or more realistically, a superset of the latter set)
in the topology induced by the Voronoi-like partition as the
“network topology discovery problem.”

In this work, we propose distributed algorithms that 1)
compute Voronoi-like partitions of the workspace of spatially
distributed heterogeneous multi-agent networks and 2) dis-
cover the network topology induced by the latter partitions.
In our approach, the agents are allowed to have different
preferences (hence the qualifier “heterogeneous”) which are
measured in terms of relevant proximity (generalized) metrics
such as the sensing cost that an agent will incur to obtain
measurements from an arbitrary point in its spatial domain or
the transition cost (e.g., fuel or battery / energy consumption)
that will have to incur to reach it. In our approach, we assume
that the proximity metric associated with an agent can be
expressed as the sum of a convex quadratic form associated
with a positive definite matrix, which we refer to as distance
operator [1], and a constant term, which we refer to as additive
gain. The distance operators are not necessarily the same
for all the agents given that their workspace may exhibit
anisotropic features (e.g., certain directions of motion or direc-
tions for sensing are preferable to others). Some characteristic
examples of anisotropic workspaces are oceanic environments,
atmospheric domains and hilly terrains in which anisotropic
features are induced by ocean currents, winds and elevation
variance, respectively. Typically, such anisotropic features are
spatially varying and thus it is natural to associate each agent
with a different distance operator. We will refer to the Voronoi-
like partition of the workspace of a multi-agent network
whose agents utilize proximity metrics with different distance
operators as the Heterogeneous Quadratic Voronoi Partition
(HQVP). In the formulation of the partitioning problem, a
point is assigned to the cell of a particular agent if and only if
it is closer to the latter agent than to 1) any of its teammates
(under the assumption that each agent employs its own metric
to measure its closeness from the point of interest), and 2)
a hypothetical agent (the 0-th agent) which determines the
minimum acceptable level of performance (measured in terms
of a relevant sensing or transition cost) for each agent in
the network. The utilization of the hypothetical agent will
enable the computation of the HQVP by means of distributed
algorithms. In general, the cells that comprise the HQVP
may not be convex, or even connected, sets. Consequently,
the computation of HQVP and the discovery of the induced
network topology is not a straightforward task in sharp contrast
with standard Voronoi partitions or other classes of well
studied Voronoi-like partitions (e.g., power diagrams).



Literature review: Area coverage and spatial load balancing
problems for multi-agent networks have received significant
attention in the relevant literature. A well received approach
which leverages the so-called Lloyd’s algorithm [2] together
with sequences of standard Voronoi partitions can be found
in [3]. Several extensions of [3] have appeared in the relevant
literature (see, for instance, [4]-[15]). The aforementioned
papers deal with multi-agent networks that are homogeneous
in the sense that all of their agents employ the same proximity
metric modulo, perhaps, a different constant term (additive
gain). In this work, a multi-agent network will not be classified
as heterogeneous unless at least two of its agents have different
distance operators and regardless if their additive gains are the
same or not. Coverage problems for heterogeneous networks
with different distance operators are considered in [16] based
on, however, centralized techniques. Finally, the problem of
discovering the neighbors of an agent in the topology induced
by a standard Voronoi partition has been studied in [17],
[18]. The applicability of the methods proposed in these
references is limited to standard Voronoi partitions and cannot
be extended to the class of spatial partitions considered in this
paper.

In our previous work, we have addressed workspace par-
titioning problems for area coverage by homogeneous multi-
agent networks based on proximity (generalized) metrics cor-
responding to the optimal cost-to-go functions of relevant
optimal control problems [19]-[21]. In the special case of
linear quadratic optimal control problems, the latter metrics
correspond to convex quadratic functions whose associated
distance operators are, however, the same for all the agents.
Under this strong assumption, the induced Voronoi-like parti-
tions admit a special structure that renders them amenable to
computation by means of simple decentralized or distributed
algorithms [22], [23]. The problem of inferring the neighbors
of an agent in the topology induced by this class of spatial
partitions is also studied in [22], [23].

Statement of contributions: The main contribution of this
work is two-fold. First, we show that under some mild
technical assumptions, each cell of the proposed Voronoi-like
partition is necessarily contained inside an ellipsoid that is
known a priori to its corresponding agent. Next, we present
an algorithm which, by leveraging the latter key geometric
property, allows each agent to independently compute its own
cell from the HQVP. The proposed partitioning algorithm
executes a certain number of line searches that seek for the
boundary points of the cell of an agent. In contrast with the
algorithms proposed in our previous work [22], [23], whose
applicability is limited to partitions comprised of convex or
star convex cells, the algorithms proposed herein can suc-
cessfully characterize the cells of a HQVP despite the fact
that the latter may be non-convex or even disconnected sets.
The proposed algorithms rely on relative position measure-
ments only and thus, neither a global reference frame nor
a common grid are required, which is in contrast with most
computational geometric techniques for non-standard Voronoi-
like partitions [24]. The proposed partitioning algorithm can be
executed in a distributed way when combined with a network
topology discovery algorithm. The main idea of the latter
algorithm is to have each agent adjust its communication
range so that it can communicate directly (point-to-point

communication) with a group of agents from the same network
which is a superset of its set of neighbors in the topology of
the HQVP without having computed the latter partition.

Structure of the paper: The problem formulation and corre-
sponding preliminaries are presented in Section II. In Sec-
tion III, we analyze the partitioning problem and present
certain key properties enjoyed by its solution. The distributed
partitioning algorithm is presented in Section IV whereas the
network topology discovery problem is analyzed and solved
in Section V. Section VI presents numerical simulations, and
finally, Section VII concludes the paper with a summary of
remarks together with directions for future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

We denote by R™ the set of n-dimensional real vectors and
by R the set of non-negative real numbers. We write Z
to denote the set of integers. Given 7y, 72 € Z with 73 <
T9, we define the discrete interval from 7 to 75 as follows:
[11,T2]z = [11,72] N Z. We write |«| to denote the 2-norm
of a vector « € R™. Moreover, we write A = 0 to denote
that a symmetric matrix A = AT is positive definite. Given
A = AT, B = BT, we write A = B if and only if A —
B > 0. Furthermore, given a symmetric matrix P = PT, we
denote by Apin(P) and Apax (P) its minimum and maximum
(real) eigenvalues, respectively. Given = € R", 3 > 0, and
v > 0, we write &,(z;X7!) to denote the ellipsoid {z €
R™ : (2 — 2)"8(z — 2) < ~}. We denote by B,(z.) the
closed ball of radius p > 0 centered at x., that is, B,(z.) :=
{z € R" : |z — x| < p}. Furthermore, bd(A) and rbd(A)
denote the boundary and the relative boundary of a set A4,
whereas int(.A) and rint(.A) denote its interior and relative
interior. The powerset of a set A is denoted as p(.A). Given
A, B CR", we denote by A @ B their Minkowski sum, that
is, AeB:={r=y+z:y € Aand z € B}, and by
A © B their Minkowski difference, that is, A & B := {x :
{z} ® B C A}. Given «, 8 € R", we denote by [«, §] the
line segment connecting them (including the two endpoints),
that is, [o, ] ;= {z € R": z =ta+(1—-t)F, t €[0,1]}. In
addition, we denote by ]«, 8] and [a, B[ the sets [a, B]\{a}
and [«, B]\{B}, respectively.

B. The Partitioning Problem for a Heterogeneous Multi-Agent
Network

In this section, we formulate the partitioning problem for
a multi-agent network comprised of n agents distributed over
a spatial domain S, which is assumed to be a convex and
compact set. To the latter network we attach an additional
agent, which we refer to as the 0-th agent of the network. The
latter agent may correspond, for instance, to a vehicle station
from which vehicles are dispatched in response to requests
issued in the vicinity of the station or a “mother vehicle” that
can deploy n mobile sensors to collect measurements from
various nearby locations. We will refer to the network that
includes the 0-th agent as the extended network. It is assumed
that the agents are located at n + 1 distinct locations in S,
which form the point-set X := {x; € S: i € [0,n]z}.



Our first objective is to subdivide & into n 4+ 1 non-
overlapping subsets that will be associated with the n + 1
agents of the extended network in an one-to-one way. We
will refer to these subsets of S as regions of influence
(ROI) or simply cells that comprise a spatial partition of
the network’s workspace. In particular, the interior of each
cell will exclusively consist of points in S that are “closer”
to its corresponding agent than to any other agent of the
extended network. The closeness between the i-th agent and
an arbitrary point x € S will be measured in terms of an
appropriate convex quadratic proximity (generalized) metric
5(,561) S — RZO with

bi(w; i) = (x — 2:) " Pilw — i) + pi, ey
where p; > 0 and P; > 0 for all i € [0,n]z. We will refer
to pu; and P; as the ¢-th additive gain and distance operator,
respectively. The proximity metric §;(x;z;) corresponds, for
instance, to the cost that the i-th agent will incur for its
transition from point x; to point z. Alternatively, it may reflect
the sensing cost that the i-th agent, which is located at z;,
will incur in order to obtain measurements from point x. In
particular, let us consider the bivariate Gaussian distribution
with mean m; € R? and covariance X; = 0 whose probability
density function is given by

pi(x) == (QW\/det(Ei))_lexp( —i@z—m)"= =z —my))
and let us define the sensing cost as follows [25]:

ci(x) := —log(pi(z))

= log (2m+/det(%;)) + 3(z — mi) T8 (@ —my).

Therefore, by taking P; := 3X;', z; = m; and p; :=
log(2m+/det(X;), we have d;(x; x;) = ¢;(x) provided p; > 0.

It is worth noting that the ¢-th additive gain u; corresponds
to the minimum value of §;(x; x; ), which is attained at x = z;,
that is, p; = minges d;i(z;x;) = ;(x;;2;). In addition,
the i-th distance operator P; determines which directions, if
any, are preferable to others for the i-th agent. In particular,
if P, = M\I, where \; > 0, then the level sets of the
quadratic form (x — x;)TP;(z — x;) are circles and thus there
are no preferred directions; otherwise, the latter level sets
become ellipses whose major axes determine the preferable
directions. In the first case, P; is an isotropic distance operator
(i.e., direction independent), whereas in the second, and more
interesting case, is an anisotropic (i.e., direction-dependent)
distance operator. It is worth noting that requiring the existence
of a matrix P > 0 such that P; = P for all i € [0, n]z can be
a very restrictive assumption in practice. In this work, we will
consider the more general case in which there always exists
(i,7) with 4 # j such that P; # P, and we will refer to the
multi-agent network as “heterogeneous.”

Next, we provide a number of technical, yet practically intu-
itive, assumptions that will help us streamline the subsequent
discussion and analysis.

Assumption 1: For any i € [0,n]z, we have that
0i(xi;z5) < 05(xs;x5) or, equivalently,

(x5 — i) Py(a; — @) + pj > pi, )
for all j # 4, provided that x; # ;.

The previous assumption implies that the distance of the j-th

agent from the location z; of the ¢-th agent, which is equal to
d;j(x;;x;), has to be greater than the distance of the i-th agent
from itself, which is equal to J;(x;;x;) = p;. For instance,
in the case of a sensor network, condition (2) implies that no
sensor different from the ¢-th sensor can obtain more accurate
measurements from the location x; of the i-th agent.

Remark 1 Although Assumption 1 is quite intuitive, there
exist applications in which it will not hold (for instance, when
the sensing capabilities of one or more agents are significantly
superior to the other agents of the network). It should also be
mentioned here that the partitioning algorithm that will be
presented herein can be applied even when Assumption 1 is
removed, after the necessary modifications have been carried
out (we will comment on some of these modifications later on).
Assumption 1 will allow us to streamline the presentation and
avoid discussing special cases of low interest.

Assumption 2: We assume that

P, - Py~ 0, Wi = o = 0, Vi € [1,71]2. 3)

The following proposition will allow us to better understand
the implications of Assumption 2.

Proposition 1: Let v > maX;g1 n), 4; and let x € S. In
addition, let D?(x) and D! (x) denote the ~- sublevel-sets of,
respectively, do(+; zo) and &;(-; ;) when x; = xo = x for all
i € [1,n]z, that is, D(x) := {z € § : do(x;x) < v} and
Di(x) :={x € S: di(x;x) <~}, for i € [1,n]z. Then, the
following set inclusion holds:

D!(x) € DY(x), Vi€ [l,n]z. 4)

Proof: In view of (1), DJ(x) and D’ (x) can be expressed
as follows:
’Dg(x) ={z€S8: (z—x)"Po(z —x) <7 — o},
i () — . T
Di(x)={re€S: (z—x) Pi(r —x) <v—pu}.
By hypothesis v > p; > o > 0, and thus
’Dg(x) D{zeS: (x—x)"Po(z —x) <v— i}
2{zreS: (z—x"Pi(z —x) <y — i}

= ’Di (x),
where the second set inclusion follows from the fact that P; >
Py > 0. Thus, the set inclusion (4) holds true. [ |

Remark 2 It is worth noting that DY (x) = £, (x; P, NS
and D! (x) = &y, (x; P; 1)NS. Proposition 1 implies that the
footprint of the set of points that are within distance  from
the O-th agent (distance measured in terms of Jy) is greater
than the footprint of the set of points that are within distance
~ from the i-th agent (distance measured now in terms of d;)
when both of the agents are placed at an arbitrary common
point x € S.

C. Formulation of the Workspace Partitioning Problem

We can now give the precise definitions of the Voronoi-like
partition of S generated by the extended multi-agent network
based on the quadratic proximity metrics defined in (1).

Definition 1: Suppose that S € R? is a compact and convex
set and let X C S be a set comprised of n + 1 distinct points



(locations of the agents). Then, we say that the collection of
sets V(X;S) :={V" € p(S) : i€ [0,n]z} where

Vi={zeS: §ix;2;) < m;ndj(x;xj)}, (5)
VE]

forms a Heterogeneous Quadratic Voronoi Partition (HQVP)
of S that is generated by X. In particular, i) S = Uie[o_’n]zvi
and ii) int(V*) Nint(V?) = @, for i # j. We will refer to the
set V' as the i-th cell or region-of-influence (ROI).

The following proposition highlights some fundamental prop-
erties of the HQVP.

Proposition 2: Let V' € V(X;S). Then, §;(x;z;) <
min;; 0;(x; x;) for all x € V* and in particular,

1) 6i(2;x5) < minjy; 65 (s x5), Vo eint(V')
2) bi(z;2;) = minjy, 0j(x;25), Yo € bd(V')\bd(S),
that is, there exists j = j, such that 0;(z;x;) =

It is worth considering what would happen if we dropped
Assumption 2 and assumed instead that y; = &t and P; = AL
for all i € [0, n]z, where i > 0 and A > 0. In this special case,
each agent employs the same proximity metric; in particular,
§i(z; ;) = Mo — z4)* + [, for all i € [0,n]z. In this case,

Vi={reS: Nr—z)> <\ min |z—z;*}
JEOn]z
freS: lo—wl< min o)

which is precisely the definition of the ¢-th cell of the standard
Voronoi partition [26]. Consequently, in this special case, the
HQVP reduces to the standard Voronoi partition which has
combinatorial complexity in O(n) and computational com-
plexity in O(nlog(n)). Another special case while keeping
Assumption 2 inactive, is when there is a pair (i,7), with
i # j, such that y; # p; and P; = P, for all i € [0,n]z,
where P > 0. As we have shown in [21], the HQVP in
the latter case reduces to an affine diagram, which has com-
binatorial complexity in ©(n) and computational complexity
in ©(nlogn + n) [27] (note that the latter complexities are
modest and close to those of the standard Voronoi partition).
In this work, in view of Assumption 2, there always exists
a pair (i,7), with ¢ # j, such that P; # P, (one can
take j = 0 and any i € [1,n]z). According to [28], the
HQVP has combinatorial complexity ©(n?) and computa-
tional complexity in O(n3 + nlog(n)); these complexities
are significantly higher than those of the standard and the
affine Voronoi partitions. One important fact is that the cells
of HQVP are not necessarily convex sets (they may even
be disconnected sets), which makes their computation by
means of distributed algorithms quite challenging. By virtue
of the previous discussion, it should become clear that the
partitioning algorithms proposed in our previous work [22],
[23], which can only compute affine partitions or partitions
comprised of star convex cells for homogeneous multi-agent
networks, are not applicable to the partitioning problem for
heterogeneous networks which is considered herein. The latter
problem requires the development of new and more powerful
tools which are applicable to partitions comprised of cells
which can be non-convex or even disconnected sets.

Next, we formulate the uncoupled partitioning problem in
which the i-th agent of the network is required to compute its

own cell in HQVP independently from its teammates.

Problem 1: Uncoupled Partitioning Problem over S: Let
V(X;8) = {V; € p(S) : i € [0,n]z} be the HQVP of S
generated by the point-set X := {z; € §: i € [0,n]z}.
For a given i € [l,n]z, compute the cell V' € V(X;S),
independently from the other cells of the same partition.

Remark 3 It is worth noting that the computation of the cell
V0 which is assigned to the 0-th agent of the extended network
is not included in the formulation of Problem 1. The latter
set (or more precisely, its interior) corresponds to the part
of the spatial domain S that is not claimed by any agent of
the actual network, that is, int(V°) = int(S)\ U, V'. We
will say that the open set int(V?) corresponds to the coverage
hole of the actual network. Intuitively, at any point in int(V?),
the ground station or mother vehicle (the latter correspond to
interpretations of the hypothetical 0-th agent) can rely to their
own sensing capabilities and therefore, they do not have to
dispatch any mobile sensors from the actual network to take
in-situ measurements there. Note that the non-emptiness of the
coverage hole VY is a direct consequence of Assumption 2.

D. Formulation of the Network Topology Discovery Problem

In a nutshell, the goal of the network topology discovery
problem is to find a systematic way that will allow the i-th
agent of the network to determine its neighbors in the topology
induced by the HQVP.

Definition 2: The i-th agent and the j-th agent, which are
located at x; € X and z; € X, respectively, are neighbors in
the topology of V(X;S), if the boundaries of their cells have
a non-empty intersection, that is, bd(V¢) N bd(V7) # @.

Now, let us denote by A; the index set of the neighbors of
the i-th agent. In view of Definition 2,

Ni = {l € [0,n]z\{i} : bdV)) N bd(V) £ @}.  (6)

Proposition 3: The index-set of the neighbors of the i-th
agent, \j, consists of all £ € [0, n]z\ {4} such that d,(x; () =
di(x; x;) for some x € bd(V*).

Proof: The proof follows readily from Proposition 2 and
Definitions 1 and 2. [ ]

The network topology discovery problem seeks for a lower
bound on the communication range 7; of the i-th agent such
that its communication region B,,(z;) contains all of its
neighbors in the topology of HQVP.

Problem 2: Network Topology Discovery Problem: Find a
lower bound 7; > 0 on the communication range 7; of the
i-th agent, for i € [1,n]z, such that its communication region,
B, (z;), contains all of its neighbors, that is,

By, (z:) 2 {zx € X : ke Ny}, Vo >n @
III. ANALYSIS AND SOLUTION OF THE UNCOUPLED
PARTITIONING PROBLEM
A. Analysis of the Uncoupled Partitioning Problem

In this section, we will present some useful properties
enjoyed by the cells comprising the HQVP which we will



subsequently leverage to develop distributed algorithms for the
computation of the solution to Problem 1. The first step of our
analysis will be the characterization of the bisector, B; ;, that
corresponds to the loci of all points in S that are equidistant
from the i-th and the j-th agents with 7 # j, that is,

%i,j = {,T €S: 51(1',1'1) = 6j($;$j)}. (8)
The equation §;(x; x;) = d,(x; x;) is equivalent to
(& = 2i)"Pi(e —23) + i = (x — 23) Py — a5) + p
which can be written more compactly as follows

xTPi)jx — 2){{7]»:6 + 05 =0, 9)
where
P;,; =P, - Py, (10a)
Xij = Pix; — Pjxj, (10b)
01 = P wi? + i — P ay)? — . (10c)

If P; ; = 0O, that is, P; = P;, then equation (9) describes a
straight line. In the more interesting case when P; ; # 0, (9)
corresponds to a quadratic vector equation that determines a
conic section.

Next, we will leverage Assumption 2 to show that the cell
V*, for i € [1,n]z, enjoys an important property that will prove
very useful in our subsequent analysis. To this aim, we first
note that, in view of Assumption 2, P; > Py or equivalently
P,y > 0. Next, by completing the square in (9) and then
setting 7 = 0, we get

0=2z"P; 0x—2x10P 1/2P1/2x+x10P10X10
- Xi,OPi,o Xi,0 + 040
from which it follows that
[P’ (@ = Pigxio)* = (n
Therefore, the bisector B; o consists of all points z € S that
satisfy Eq. (11), which is the equation of an ellipse provided

that the right hand side of the latter equation is a strictly
positive number.

|P 1/2X1 O| — 04,0

Proposition 4: Let i € [1,n]z and let
= [P *xiol? (12)

where P; o, Xi0 and 0,0 are as defined in (10a)-(10c) for
7 = 0. Then, ¢; o > 0 and the bisector B, ¢ satisfies

B0 =bd(E;) NS,
where E; := 521»,0(1:’;0196130; Pjol)
Proof: In view of (10a)-(10b) for 7 = 0, we have
P, 1/2Xi,0|2 P, 1/2(Pi$i — Poxo)[?
= foiP;(}Pixi + 25 PoP;  Pozo

— 2.CC;FPZP;01P0£C0
~PP, Po] [z
PP, Py | 7o)

T PP, P;
v ~PoP, P;
In addition, from (10c) for 7 = 0, we get
g0 = PPl + i — [Py xof* — o
= 2} Pix; — 25 Poxo + i — po

P; 0
;ra xg] |:0 —P0:| |: :| +,U“L Ho-

— 04,0,

13)

:[x

=[x

Therefore, we have that

—1/2
lio=1P;, / Xiol> = oio

 [PiPaP;, =P,  —PP Py | [z
= [z;, 2] > o1 .
—P0Pi70 P; POPi,O Py + Pyl (%0
+ po — Hi- (14)
Now, in view of (2) for 5 = 0, we have that
po — pi > —(z0 — 3;) "Po(x0 — 24)
-P P T;
_ 1,7 T 0 0 i
= [z, 0] [ P, —Po} [xo] . (15)
Therefore, in view of (14), (15) gives
T T; ¥ Py
N
where W1, W,, U3 € R?*? are defined as follows:
‘1’11 = PlP:(}Pl — Pl — PQ, (173)
¥y, = —P;P; Py + Py, (17b)
‘1’22 = PoP-ﬁlpo (170)

Note that W = PP, 1Po > 0. Next, we show that the
Schur complement of the block Wy of the block matrix W,
which is denoted as (¥/®3;) and defined as (¥/ W) :=
U, W, W, WY, is positive definite, that is, (¥ /Wqy) > 0.
Indeed, in view of (17a)-(17¢c)

(¥/¥y) = PP, P; — P, (18)

where P; o = P; — Py. Furthermore, in light of (3), we have
that 0 < P; o = P;—P(y < P; which implies that 0 < PZ-_1
P;& and thus

I< PP P} (19)
After pre- and post-multiply (19) with Pg / %, we take
PP P; - P,. (20)

In view of (20), (18) implies that (¥ /Wqs) > 0. The fact that
(¥/®y) > 0 and ¥yy - 0 imply that & > 0. Consequently,
by virtue of (16), we take ¢; o > 0, for all ¢ € [1,n]z. Then,
all points « € S that satisfy (11) belong to the boundary of the
ellipsoid E;, and thus B; ¢ C bd(E;) N'S. The set inclusion
B;.0 2 bd(E;)NS can be shown similarly and thus, equation
(13) follows readily. The proof is now complete. [ ]

Proposmon 5: Let i € [l,n]z and let E; :=
Ep, (P 10X107P o). Then, the cell V' € V(X;S) satisfies
the following set 1nclu310n

VICE;NS. 21

Proof: Let us consider the two disjoint sets S; o := {x €
S : di(w;2i) < do(w;w0)} and SF = {z € S : di(w; ;) >
do(x;20)} where SF( = S\Si 0. By definition,

Sio 2{z € S:di(x;m;) < .n[%in] Si(zyz)} =V, (22)
JEOn|z

where the last set equality follows from (5). Next, we show
that S; 0 = E; N'S. Indeed, let x € E; N S. Then, in view of
(11) and (12), we have that

P (z — Prixio)l? < o, (23)

which implies, after following backwards the derivation from



(8)—(10c) for 5 = 0, that

(x —2:) Py — @) + pi < (x — 20) " Pj(x — x0) + pro
which proves that z € S; ¢ and thus S; 0 C E; N'S. The set
inclusion E; NS C S; o can be proven similarly. Therefore,

Sio = E; NS and thus, in view of (22), we conclude that
V* C E; NS which completes the proof. ]

Remark 4 Proposition 5 implies that the ¢-th agent can
determine the compact and convex set F; N S that will
necessarily contain its cell V¢ provided that the quantities Py,
1o, and xg, which are associated with the O-th agent of the
extended network, are known to it. All of these quantities
can be determined by the agents of the actual network by
means of distributed algorithms. For instance, xy can be
taken to be the average position of the agents of the actual
network and thus can be computed by means of standard
average consensus algorithms [29], [30]. In addition, we can
set po := min{y; € R>o : 4 € [1,n]z}, which is in
accordance with Assumption 2 and can be computed by means
of, for instance, the flooding algorithm which is one of the
simplest distributed algorithms [31]. Furthermore, we can take
Po = Ao, where 0 < Mg < min{)\min(Pi) S [1,n]z} SO
that Assumption 2 is respected; again, one can compute Ao by
means of a flooding-type distributed algorithm.

Proposition 5 also allows the complete characterization of
the coverage hole int(V°) of the actual network without
requiring (prior) knowledge or computation of any other cells
of the HQVP V(X;S), which is a significant improvement
over its a posteriori characterization by the equation int(V°) =
int(S)\ U™_; V%, which was given in Remark 3.

Proposition 6: Let VO € V(X;S) be the cell associated
with the O-th agent and let E; := 521»,0(1);,01)(1',0; P;,Jl) Then,
int(VY) = int(S)\ U, E;. (24)

Proof: By definition, int(V’) = {z € int(S)
50(1‘;1‘0) < 5i($;$i), Vi € [1,n]z}. Now let 81')0 =
{z € 8§ : 6i(x;1;) < So(z;20)}. It follows that int(V°) =
int(S)\ U, Si0. In addition, in the proof of Proposition 5,
we have shown that E; NS = &;o, which implies that
int(V%) = int(S)\ U, (B; NS) = int(S)\ UL, E; and
the proof is complete. ]

B. The i-th lower envelope A;
Let us consider the i-th lower envelope function A;(-; X) :
S — R with
Ai(x; X) = Igiﬂ b¢(w; 20) — (w3 24).
Proposition 7: Let i € [l,n]z and let E;

gei,o(P;,olXi,o; P;,Jl) Then, x € V* if and only if A;(z; X) >
0, that is,

Vi={zeENS:Aiz;X)>0}. (26)

Moreover,
Ai(z; X) >0, Vo eint(VY), (27a)
Ai(z; X) =0, V€ bd(V)\bd(S). (27b)

Proof: Equation (26) follows from Definition 1 and

Proposition 5. In addition, (27a)-(27b) follows from Propo-
sition 2 and 5. [ |

Besides the i-th lower envelope, we can also define the
global lower envelope function A(+; X) : S — R with

Alz; X) == , (28)

%172]%52(17,17@)-
In view of the definition of the V' given in (5), it follows
immediately that a point € V' if and only if &;(z;2;) =
A(x; X). In this work, we will use the i-th lower envelope
A;(z; X) because we are interested in solving the decoupled
partitioning problem (the global lower envelope is relevant to
the centralized computation of V(X;S)). Figure 1 illustrates
the concepts of both the i-th lower envelope A; and the global
lower envelope A for a scenario with three agents. To make the
illustrations more transparent, we consider an one-dimensional
scenario in which the domain S is the line segment [0, 1]
and the set of generators X is the point-set {xg, 1, x2} with
0 < 29 < 1 < 292 < 1 which are denoted as black
crosses in the z-axis. In addition, &;(z; X) = ¢+ a;(z — 2;)?,
for i € {0,1,2}, with 0 < ap < a1 < ag and ¢ > 0
(which is in accordance with Assumption 1). The graphs of
the (generalized) proximity metrics §; and the cells V¢, for
i € {0,1,2} are illustrated with different colors for each
agent. The three cells correspond to line segments in S whose
boundaries are denoted as black squares. We note that V1
consists of two disconnected components. The global lower
envelope A is illustrated as a dashed curve which corresponds
to what an observer sees while looking at the graphs of dg,
01, and &5 from below (from the z-axis in Fig. 1). Note that
the projection on S of the part of the graph of A over which
the latter overlaps with the graph of the ¢-th proximity metric
§; corresponds to the cell Vi. The 1st lower envelope A;
(associated with agent ¢ = 1) is illustrated as a grey dashed-
dotted curve. In agreement with Proposition 7, A; > 0 over
the two disconnected line segments of S that comprise V! and
A1 < 0 elsewhere.

s Tl T2

Vo Vi V2 Vi

0 0.2 04 0.6 08 1

Fig. 1. Illustration of the global lower envelope function A(x; X') for
a network of three agents located in the interval S := [0, 1] together
with the lower envelope function Aj(z;X) associated with agent
i =1

It is worth noting that for the computation of A;(z;X),
the i-th agent doesn’t need to know either = or the set X
but instead the relative position x — x; and the positions of
the other agents relative to itself (no global reference frame is
required).



Proposition 8: Let i € [0,n]z. There exists a function ¢; :
S ©{z;} — R such that

Aj(z;X) = ¢i(z —zi; X © {x;}), Yz €S. (29

Proof: Indeed, for any ¢ € [0,n]z\{¢}, we have that
Se(z;m0) = (x — 20) Py — 0) + o
=(x—x; +a; —x0)"Polx — x5 + 25 — x0) + 12
= (x —2)TPy(x — 2;) + (z; — 20)"Po(; — x)
+2(x — xi)TPg(xi —xy) + e
Therefore,
Ai(x; X) = rﬁ? (2 — 2;) " Py(z — ;)

+ (w0 — 2:)"Po(xp — )
—2(z — 2;) "Po(ze — 23) + e
—(z —x)"Pi(x — @) — )

+ (w0 — 2:)"Po(xp — 1)
—2(x — ;) "Po(we — i) + pe — i)

Therefore, A;(x; X)) depends on the relative positions = — x;
and x; — x¢, for £ # i. The result follows readily. [ |

Remark 5 In light of Proposition 8, the computation of the
i-th lower envelope A; does not require a global reference
frame but it does require, in principle, that all the agents
communicate with each other in order to compute the quantity
mingx; 6¢(x; x¢) in a centralized way (all-to-all communi-
cation). Later on, however, we will see that the i-th agent
can characterize A; by communicating with only a subset
of its teammates (the ¢-th agent will find the latter agents
by discovering the network topology induced by the HQVP;
the latter problem is addressed in Section V), and thus, the
computation of A; can take place in a distributed way.

C. Parametrization of V' and bd(V?)

Next, we will show that the cell V! € V(X;S) and
its boundary bd(V?), for i € [l,n]z, admit convenient
parametrizations. These parametrizations will allow us to pro-
pose a systematic way to compute proxies of V' and bd(V*?)
in a finite number of steps. Before we proceed any further, we
introduce some useful notation. In particular, for a given ¢ €
[1,n]z and 6 € [0, 27], we will denote by I'g the ray that starts
from z; and is parallel to the unit vector ey = [cosf, sinf]T,
that is, g := {x € R? : = = x; + pey, p > 0}. In addition,
we denote as Ty the point of intersection of 'y with bd(E;NS)
where F; := Egi’o(P;()lXi70; P:&)

In view of Proposition 7, to characterize bd(V?) one has to
find the roots of A; = 0 in E; NS and also check if bd(V?)
contains boundary points of S. What we propose to do is to
find the roots of A; = 0 incrementally by searching along the
ray I'g, or more precisely, the line segment T'y N (E; N S) =
[, Tg], for a different 6 € [0, 27| at each time. For a given
6 € [0,27], we will denote as P} the point-set comprised of
the roots of the equation A; = 0 in [z;, Tg[, that is,

P} = {z € [z, To[: Ai(2;X) =0} (30)

If P} # @, then let M := card(P}) and let us consider the
ordered point-set

Bh = {pm € [vi, To]: m € [0, M + 1]z},
which is comprised of the same points as the set PiU{z;,Zp}
with the latter points be arranged as follows:

po =i, |z —p1| < - <[z —puml, Prs1:=To. (1)
The points of B determine a partition {I™ : m € [1,M +
1]z}, where I"™ := [p;—1, Pm], of the line segment [x;, Tg].
Next, we provide one of the main results of this section
regarding the characterization of the intersection of the cell
V" and its boundary bd(V*) with the ray T'y.

Proposition 9: Let @ € [1,n|z and 6 € [0,27]. Let also
{I™ = [pm-1, pm] : m € [1,M + 1]z} be the partition
of [z;, Tp] that is induced by the ordered point-set B
whose points are arranged according to (31). In addition,
let p,, denote the midpoint of the line segment I and let
A" := A;(pm; X). Further, let us consider the index-sets

MY i={me[l,M+1]z: A" >0}
M~ i={me[l,M+1)z: A" <0}.
Then,

VINTy =fo(z:), bA(V')NTy =go(z:),  (32)
where the set-valued maps fo(-) : X = p([z;, Tp]) and go(-) :
X = p([x:, Tp)) are defined as follows:

i) If P} = @, then

fo(w:) == [4, Tp],
i) If Pi # o, then

)= U ™ o) = {pm s m € Mg},
meM;

where M; = M* and M, := M} UM . In particular, the
index-set M| is comprised of all m € M¥N[1, M]z such that
m+1¢€ M~ plus the index M +1 if M +1 € M™. Finally,

the index-set M is comprised of all m € M~ N [1, M]z
such that m +1 € M™.

Proof: First, we consider the case when Pg = @&, that is,
A; has no roots in [z;, Tg[. In view of Assumption 1, we have

gg(l‘i) = {f@}

Aj(zi; X) = 1?;1_15@(171-;:170 — ;> 0.

By continuity, we conclude that in this case A;(x; X) > 0, for
all x € [x;,Tg|, which implies that fo(x;) = V' NTy = [z;, Tp]
and gg(z;) =bd(V)NTy = {Tp}.

Next, we consider the case when P, # &. By definition,
A;” > 0 for all m € M™. By continuity of A;, we have
that A;(x; X) > 0 for all © € I, = [pm—1, Pm] and for
all m € M. Therefore, in view of equation (27a), we have
Uneat, Im = V' N Ty = fo(z;) with M; = M*. Now, a
point p,, with m € [1, M]z belongs to bd(V') NTy = go(x;)
if and only if as one transverses I'y (with direction from z;
towards Zy), one of the following two events takes place: 1)
A;, which is negative “before” p,,, becomes positive “after”
P (in which case m € M;) or 2) A;, which is positive
“before” p,,,, becomes negative “after” p,,, (in which case m €
My). Finally, if Ai(prry1;X) > 0, then ppriq € go(x;) and
M+1¢ ./\/l;r. This completes the proof. [ ]



Example: To better understand the implications of Proposi-
tion 9 as well as the meaning of each index-set introduced
therein, let us consider the example illustrated in Figure 2.
We have that B5 = {p,,, : m € [0,5]z} where py = z; and
ps = Tp and its induced partition is {1, = [Pm—1,Pm]: M €
[1,5]z}. The sign of A; at the mid-points of the segments
I, I, 14, Is, which are enclosed by dashed blue ellipses in the
figure, is positive and thus M+ = M; = {1,2,4,5} whereas
M~ = {3}. We conclude that fo(z;) = [zi,p2] U [p3, To).
Furthermore, as one transverses I'g (from x; towards Ty) A;
changes sign from positive to negative at ps and in addition,
A; > 0 at the mid-point of I5; thus, M = {2,5}. Also,
A; changes sign from negative to positive at ps, and thus
Mg = {3}. Hence, My, = M7 UMy = {2,3,5}. We
conclude that go(z;) = {pg,pg,pg,} The pomts from B} that
form gy (x;) are encircled by blue circles in Figure 2.

Remark 6 A careful interpretation of the results presented in
Proposition 9 reveals that under some mild and intuitive mod-
ifications, one can characterize the cell V* and its boundary
bd(V?) even for the more general case when Assumption 1
may not hold true. For instance, in the previous example, the
sign of A; in the segment |x;,p;1[ will not necessarily be
positive (it is always positive if Assumption 1 holds true) and,
instead, it will be equal to the sign of A; at any interior point in
that segment. For the sake of the argument, let us take the latter
sign to be negative. Then, assuming that the signs of A; in
all the other segments remain the same as in Fig. 2, it follows

that 99(:171) = {p17p27p37p5} and M+ = Mf = {27475}

Proposition 10: Let us consider a family of rays {T'y : 6 €
[0, 27]}, where the ray 'y emanates from x; and is parallel to

the unit vector e := [cosf, sind]T. Then,
U Fe(@), bdv)= U eo(x:), (33)
0e(0,2m] 0€(0,27]

where the set-valued maps fo(-) and go(-) are defined as in
Proposition 9 for each 6 € [0, 27].

Proof: We have that

U fe@o= UJ v'(Te) =

0€(0,2m] 0€(0,27]

VI(IC U ey =

0€[0,27]

where in the first equality, we used (32) and in the last one,
we used that Uy (g 0. T = R?. Thus, we have proved that
the first equation in (33) holds true. The proof for the second
one follows similarly. ]

Fig. 2. Illustrative example on the characterization of V' N I'y and
bd(V") N T based on Proposition 9.

IV. A SYSTEMATIC APPROACH FOR THE COMPUTATION OF
A FINITE APPROXIMATION OF bd(V*) AND V*

A. Efficient computation of the roots of the equation A; = 0

In this section, we will leverage Propositions 9 and 10 to
develop a systematic procedure to characterize the boundary
points of V* that lie on a given ray 'y after a finite number
of steps. To this aim, let py > 0 denote the length of [z;, Ty],
that is, py := [Ty — x;|. Recall that Ty corresponds to the
intersection of I'y with bd(E; N S). In addition, let

Ry = {p 0, Pyl: 8i(wi + peg; i) =
0j(zi + pee; ;) }, (34

for j € [0,n]z\{¢}. Equivalently, Rg’j consists of all p €
[0, Dg] that satisfy the following equation:

ap® + Bp+v=0, 35)
where
a = [} %eq)? — |1} e ?, (36a)
B = 2(z; — x;) ey, (36b)
= T2 (@ — )P + i — (36¢)

Note that if p € R, then the point p := x; + pey will
belong to 'y N B; ;. Let Pyl = {p € [z, Tp[: p = +
peg, p € ROJ} Note that there is an (obvious) one-to-one
correspondence between the point-sets P;7 and Rj’, which
may both be empty for some j # i. Now, let

Ry = U;uRy’,  Pai= Ui Py 37)
Note that a point p € Pj\{z;, Ty} is necessarily equidistant
from the ¢-th agent and at least a different agent from the same

extended network. This naturally leads us to the following
proposition.

Proposition 11: Let P} be the point-set which is defined as
in (30). Then, P} O P} and thus,

Pi={rxePj:Ai(r;X)=0}. (38)

Proof: The proof follows readily from the definitions of

Pg and Pj. ]

Proposition 11 implies that for the characterization of the

set Pg that consists of all the roots of A; = 0 in [x;,Tg],

one has to evaluate the function A; at the points of the finite

point-set Pj, which is a superset of the unknown set P;. In

particular, P} is comprised of all those points of P} at which

A; vanishes and only them.

B. Line search algorithm for the computation of fo(x;) and
9o(;)

Next, we present an algorithm that computes fg(z;) and
go(x;) for a given 0 € [0, 27| based on the previous discussion
and analysis. The main steps of the proposed algorithmic
process can be found in Algorithm 1. In particular, the first
step is to compute the point-set P; (line 5). If P} = &,
then we set fo(z;) and go(z;) to be equal to, respectively,
[zi, %] and {Tp} and the process is complete (lines 6-7).
If P} # @, we characterize all of the points in P} that
correspond to the roots of the equation A; = 0 in [x;, Tg[ to



form the point-set P} in accordance with Proposition 11 (line
8). Next, we apply a permutation to the point-set PjU{x;,Tp}
to obtain the point-set Py = {p,, : m € [1,M + 1]z}
whose points are ordered in increasing distance from x; as
in (31) (lines 9-10). Then, we start an iterative process for
the characterization of the index sets M; and M,, with
M;j = M* and My = M§ UM, (lines 11-25), where
the index sets M, ./\/l; and M are defined as in Propo-
sition 9. Finally, we set fo(2i) = Umem;[Pm—1,pm] and
go(xi) == {pm € P, : m € Mgy} (lines 26-27).

Note that after the computation of gg(z;), then, in view of
Proposition 9, one can compute an approximation of bd(V?)
by computing gg(z;) for all § € O, where O is a finite point-
set whose points define a partition of [0, 27].

Algorithm 1 Computation of point-sets fo(z;) = V*N Ty and
gg(Il) = bd(Vl) N Fg
1: procedure CELL COMPUTATION
Input data: X, {(Pg,pe) : £ € [0,n]z}
Input variables: i, 0
Output variables: fo(x;), go(;)
Find P}
if P) = @ then
fo (Il) — [Ii,fg], gg(xz) — {Tg} return
Extract point-set P; from P} based on Proposition 11
i — PiU{;,To}.
10: Re-arrange points in B = {p,,, : m € [0, M + 1]z}
based on increasing distance from x; according to (31)
11: M~ @, Mf @, M « @
12: for m=1:M+1do

B A i

13: & 4= 5(Pm—1 +Pm) > 4: midpoint of ™
14: A Al(j?,X)

15: if A >0 then M; < M;U {m}

16: if m < M + 1 then

17: &’ < 4(pm + Pm+1) > 2": midpoint of 7™+
18: A — A(i; X)

19: if A>0and A’ <0 then

20: ME = MFu{m}

21: if A<0Oand A’ >0 then

22: Mg — Mg u{m}

23: if A>0andm=M +1 then

24: MG = MFu{m}

250 My MFfUuM;

26 folzs) ¢ {Pm-1.Bm] : m € My}

27: go(wi) « {pm: m € My}

V. DISCOVERY OF NETWORK TOPOLOGY INDUCED BY
HQVP

In order to solve Problem 1 in a distributed way, it is
necessary that the i-th agent can discover a superset of its
neighbors in the topology of HQVP before even computing
its own cell. Next, we characterize an upper bound on the
distance of the i-th agent, measured in terms of d;, from the
points in its own cell.

Proposition 12: Let E; := 5&;,0(13;(})(1‘,0; P;&) Then,

5i($; xi) < gi, Ve Vi, (39)

where 0; := max{d;(x;z;) : * € bd(E; NS)}.

Proof: Because 0;(x;x;) is a convex quadratic function,
we conclude that its restriction over the convex and compact
set B/; NS attains its maximum value in the latter set and in
addition, at least one of its maximizers belongs to the boundary
bd(E; N'S) of the same set. Consequently,

0; = max{8;(z;z;): v € E;NS}
= max{d;(z;2;): x €bd(E;NS)}.
Inequality (39) follows from the set inclusion (21). [ |

Proposition 13: Let us consider the index-set /\N/'Z which is
defined as follows:
N :={0€10,n)z\{i} : 6¢(z;m¢) < &;, Yo € bd(E; NS)},
where 0; := max{6;(z;z;) : x € bd(E; NS)}. Then, the set
inclusion NV; D A; holds true.

Proof: In view of Proposition 2, all points in
bd(V¥)\bd(S) are equidistant from at least one different
agent from the same network, that is, for any point x €
bd(V*)\bd(S), there exists j, € [0,n]z\{i} (the index j,
depends on ) such that §;(x; ;) = J;, (x; z;, ). Thus, in view
of Definition 2, j, € N;. Now let £ # i and let us assume
that £ € Nf, where Nf := {€ € [0,n]z\{i} : £ ¢ N;}. Then,
Se(x;20) > 64 Vo € bd(E; N'S). But, in view of Proposi-
tion 12, &;(z;2;) < &;, Vo € V' D bd(V?); consequently,
there is no point z € bd(V?) such that §;(z; x;) = d¢(x;2¢).
Thus, £ € N where N := {£ € [0,n]z\{i} : £ ¢ N;}, which
implies that Nf C N¢. We conclude that A; O N; and the
proof is complete. [ ]

Next, we will leverage Proposition 13 to show that the ¢-
th agent can find a subset of the spatial domain S that will
necessarily contain its neighbors without having computed }*.

Proposition 14: Let i € [l,n|z and let A; denote the
compact set enclosed by the closed curve C; : [0,27] — R?
with

Ci(8) =P xi0+ fi,oP;Ol/Qeqs
+(Vr/ PG PP e )P P e, (40)
where ey = [cos @, sing]T. Then, all the neighbors of the
i-th agent lie necessarily in A; (or A; N S), that is,

e A NX, Ve N;.

Proof: Let w €  bd(E;), where E; :=
5@,0(P;01Xi,0;P;3), and let us consider a point z such
that the intersection of the ellipsoid &,,(z;Py"), where

r; = 0; — po (note that r; > 0 in view of Assumption 2),
with E; corresponds to the singleton {w}, that is,

{w} =E;NE,(zPyt) =bd(E;) Nbd(&,, (z; Py ).
Because w € bd(E;) Nbd(E,,(z Py t)),
0= [P (w — Prixao)ll = Vo = [P5*(w = 2)|| - v,
which implies that there exist ¢, ¢ € [0, 27[ such that
w="P;lxio+ VloP o Pes = 2+ Py ey,

where e, 1= [cos ¢, sing]T and e, := [cos¢p, sin¢]T. Thus,

2= Pidxio + VioPig fes — Vi Ve,

(41)



The normal vectors of the ellipsoids E; and &,,(z;Py!) at
point w (contact point) are anti-parallel, that is, there exists
A > 0 such that

Z((x - P;)QIXZ',O)TPLO(I - P;olXi,O) —lio)|,_,
= —)\6% ((z —2)"Po(z —2) — TZ)‘

from which it can be shown (see, for instance, Lemma 5 in
[32]) that

—1/21/2 —1/21/2
ep = —(1/[Py °Pl i es| )Py PP ey

and thus, we conclude that z = C;(¢) where C;(¢) is defined
in (40).

Now, let A; be the compact set enclosed by the closed curve
C;. We will show that all the neighbors of the i-th agent are
located in A;, that is, A; 2 {zr € X : k € N;}. In view
of Proposition 1, the set inclusion &,,(z;Py') 2 &, (z; P, ")
holds true for all z € C; and for all ¢ # i. Now, for a given
z € C;, we have that

So(x;2) = (x — 2)"Po(z — 2) + po = 9,
for all z € bd(&,,(z;Py')) whereas
Se(y;2) = (y —2)"Puly — 2) + pe = 6 + e — pro,

for all y € bd(&,,(z; P, ')). Because, 1 — po > 0, we con-
clude that max{d,(y;2) : y € &-.(z; P, 1)} > max{do(z;2) :
r € &.,(zPy')} which together with the set Zinclusion
&,z Py") 2 &.(z P, ") imply that &,(y;z) > &; for all
y € E; O E;NS D V' (the last set inclusion follows from
Proposition 5). Therefore,

Se(x;2) > 6; > max{de(y; ;) : y €V}, VeeV. 42)
Hence, there is no point z € bd(V*) such that &,(z;z) =

d¢(x; ;) for any z € C;. Thus, in view of Proposition 2, it
follows that £ ¢ N; and the proof is complete. ]

z=w’

Proposition 14 implies that the neighbors of the i-th agent
are necessarily confined in A; N S which is known to this
agent before computing its cell V*. In practice, the i-th agent
can communicate and exchange information directly with its
neighbors (e.g., by means of point-to-point communication)
provided that its communication radius 7; > 0 is sufficiently
large such that its communication region By, (z;) 2 A; 2
A;NS.

Proposition 15: The neighbors of the ¢-th agent are neces-
sarily located in the communication region B, (x;) of the i-th
agent, that is,

By (zi) 2{zr e X: keNi}, Vmi>n  (43)
where 7); := maxye(o,2x] [|Ci(¢) — x|, with C;(¢) defined as
in (40).

Proof: By the definition of 7;, we have that

By, (z:) 2{Ci(¢) : ¢ € [0,27]} = bd(As),
and thus By, (z;) 2 Aj;, for all n; > 7;. Because A; contains
all the neighbors of the ¢-th agent in view of Proposition 14,
then so does the closed ball B,), (z;), for any 7; > 7;. Thus,

the set inclusion (43) holds true. |

Proposition 16: Let T C N; C N, C [0, 1)z, where the in-
dex sets \V; and \; are defined as in (6) and Proposition 13, re-
spectively, and let A7 () := mingeq g5y 0o (2; 2¢) — 6i (25 24).
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Then
AF(z;2;) = Aj(z;2:) =0, Vo € bd(V)\bd(S),
where A;(x; x;) is defined as in (25).

Proof: By definition, AZ(z) > A;(z; X), for all z € S,
given that the min operator in the definition of A7 is applied
over an index set which is a subset of the one that appears in
the definition of A; in (25). In addition, in view of Prop. 7,
Ai(x; X) = 0 for all bd(V")\bd(S), which implies that
AZ(z) > 0 for all z € bd(V?)\bd(S). Next, we show
that the previous non-strict inequality can only hold as an
equality. Let us assume that there exists z € bd(V?)\bd(S)
such that AZ(z) > 0. However, since A;(z;X) = 0, there
is j» ¢ T such that §(z;z;) = d(z;x;,), which implies that
the agent j. is a neighbor of the i-th agent, or equivalently,
j. € N;. However, j. ¢ T and we know that, by hypothesis,
Z C N;; thus, we have reached a contradiction and the proof
is complete. [ ]

(44)

Remark 7 Proposition 16 implies that the Voronoi cell V!
and its boundary bd(V?), which are fully characterized in
Proposition 9, can be computed in a distributed way that relies
on the exchange of information of the i-th agent with only the
set of agents whose index belongs to A; D N (the latter set
of agents contains necessarily the set of neighbors of the -
th agent in view of Proposition 13). In other words, the cell
V' and its boundary bd()?) can be computed in a distributed
way, which is a key result of this work.

Remark 8 Let us assume that the i-th agent can communicate
with all of its teammates in order to compute the point-set
P}, which according to Proposition 8 plays a key role in the
complete characterization of V' and bd(V?). For a given 6 €
[0, 27[, the point-set P} will consist of M points, which means
that the i-th agent will have to exchange at least M messages
with the other agents from the same network (assuming the
exchange of one message for each point in P}). For each j # i,
there are at most two corresponding points in P (the quadratic
equation (35) has at most 2 solutions whose corresponding
points lie in S). Thus, in the worst case M = 2n. The most
expensive part of the proposed partitioning algorithm is the
ordering of the points in P} (equivalent to sorting a list) in
accordance with (31) to construct the (ordered) point-set B3,
which has worst-case time complexity in O(nlog(n)). Let n;
denote the number of the agents which are located in A; NS,
which is a compact subset of S that contains all the neighbors
of the ¢-th agent in view of Prop. 14. Then, the worst-time
complexity for ordering the points of P} that lie in A; NS is
in O(n; log(n;)). We conclude that the smaller the ratio n;/n
is, the more substantial the advantages of using the proposed
distributed approach over a centralized approach are expected
to be. It is actually possible to obtain an a priori estimate
of the ratio n;/n if we assume that, for instance, the agents’
locations are drawn from a uniform distribution over S. In
this case, the latter estimate can be taken to be the ratio of the
area of A; NS over the area of S (note that the set A; can
be completely characterized without having computed the cell
V% or any other cell of V(X;S)).



VI. NUMERICAL SIMULATIONS

We consider a heterogeneous multi-agent network of
n = 24 agents (plus the O-th agent) with different distance
operators. For our simulations, we consider the spatial domain
S = [-4,4] x [-4,4] and we take P; = U,DU], with
D = [gg} and U; = [zfggz _C:;“q;f’], where ¢; = 2mi/n,
for i € [1,n|z, and u; = 0 for all ¢ € [1,n]z. Clearly,
Amin(P;) = 3 and A\pax(P;) = 8 for all i € [1,n]z and
thus, the ratio Amax(P;i)/Amin(P;) = 8/3, which indicates
the presence of strong anisotropic features. Furthermore, we
take zo = (1/n)z; (average position of the agents of the
actual network), Py = \I with \g € {1.7,2.9} and g =0
(note that 0 < Ag < Apin(P;) for all ¢ € [1,n]z). With
this particular selection of parameters, both Assumptions 1
and 2 are clearly satisfied. The HQVPs generated by the
positions of the extended network are illustrated in Fig. 3(a)
for A\ = 1.7 and in Fig. 3(b) for A\g = 2.9. The partitions
in Figure 3 have been computed by means of exhaustive
numerical techniques and the obtained results are included
here mainly for verification purposes. In the same figure, we
have included contours (level sets) of the proximity metric
of each agent restricted on their own cells to illustrate the
anisotropic features in this partitioning problem. The cell V°
corresponds to the red cell which is placed near the center
of the spatial domain S. We observe that V° is smaller when
Ao = 2.9 than when )y = 1.7. Note that by letting \g get
closer (from below) to A\pnin(P;) = 3, the matrix Py gets
“closer” to violating Assumption 2 whereas the coverage hole
V0 becomes smaller. Thus, selection of Ao has to strike a
balance between well-posedness of the proposed partitioning
algorithm and smallness of the coverage hole V°. Another
interesting observation is that the cell V1° in both partitions is
comprised of two disconnected components (only one of them
contains in its interior the corresponding generator z;5).

Figure 4 illustrates the cells V% and V?? of the HQVP
computed by means of the proposed distributed algorithm for
Ao = 1.7 (Figs. 4(a)-4(b)) and Ao = 2.9 (Figs. 4(c)-4(d)).
For these simulations, we have used a uniform grid of [0, 27]
comprised of 360 nodes for the parameter (angle) 6. The cross
markers denote the generators x14 and x23 whereas the small
red circles and red disks correspond to the positions of the
rest of the agents of the extended network. In particular, the
red (filled) disks in Fig. 4 correspond to the neighbors of the
i-th agent in the topology of the HQVP, for 7 = 14 and ¢ =
23, respectively. The red dashed-dotted curves in the same
figures indicate the boundaries of the ellipsoids E14 and FEa3
(recall that the latter ellipsoids contain the cells V4 and V2?3 in
view of Proposition 4) whereas the blue dashed curves denote
the boundaries of the sets A4 and A3 which contain the
neighbors of the i-th agent for, respectively, i = 14 and ¢ =
23 in view of Proposition 14. We observe that the cells V4
and V* in Fig. 4 match with their corresponding cells in
Fig. 3(a). In addition, the results illustrated in Fig. 4(a) —4(d)
are in agreement with Propositions 5 and 14. In particular, the
ellipsoids E14 and E»3 contain, respectively, the cells V4 and
V23, Furthermore, the sets A;4 and A3 contain the neighbors
of the i-th agent for, respectively, ¢ = 14 and ¢ = 23, which
are denoted as filled red disks.

We observe that the sets Fi4, FEa3, A4 and Asz in
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Fig. 3. The HQVP generated by a heterogeneous network of n = 24
agents (plus the O-th agent).

Figs. 4(a)-4(b) (corresponding to A\g = 1.7) are significantly
smaller than their counterparts in Figs. 4(c)-4(d) (correspond-
ing to A\g = 2.9). We conclude that although the decrease of
the value of the parameter Ao may increase the size of the
coverage hole (cell YY), it may, on the other hand, render
the problem of discovering the network topology induced by
HQVP more meaningful in the sense that by solving the
latter problem each agent will be able to identify a rather
small subset of the spatial domain that necessarily contains
its neighbors. In this way, each agent will be able to avoid
communicating with non-neighboring agents which cannot
contribute to the process of computing its own cells. In our
simulations, we observe that while the cells V4 for A\g = 1.7
and \g = 2.9 are identical and their agents have the exact
same sets of neighbors in both cases, the agent ¢ = 14 has to
communicate with more agents (the ones that lie within the
set A4 in view of Prop. 14) and also search for the boundary
points of its own cell over a larger set (in view of the Prop. 5,
V14 is a subset of F14) when \g = 2.9 than when )\ = 1.7.
The situation is similar for V23 although the changes on the
sets Fo3 and A3 have a less substantial effect mainly because
the agent ¢ = 23 is isolated from the majority of its teammates
and is located close to the boundary of the spatial domain S.

VII. CONCLUSION

In this work, we have presented distributed algorithms for
workspace partitioning and network topology discovery prob-
lems for heterogeneous multi-agent networks whose agents
employ different quadratic proximity metrics. The proposed
algorithms leverage the underlying structure of the solutions
to the problems considered. In our future work, we will
explore how the proposed algorithms can be integrated in
solution techniques for distributed optimization and estimation
problems for heterogeneous networks operating in anisotropic
environments.

REFERENCES

[1] F. Labelle and J. R. Shewchuk, “Anisotropic Voronoi diagrams and
guaranteed quality anisotropic mesh generation,” in SCG’ 03, pp. 191-
200, 2003.

[2] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.

[3] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243-255, 2004.



~ -
- . ) o —— /o/
..,\AN\ ° o ~Ne——"%
AN o i ° °
Eis s N o o o o
N N\ o >0 ° o
\ ° °
° “ \ o
o My o ° ! 0o % o ° °
\ A
\ Vg : o
AV II o
~. / N
\\ ~. /I ° o o ° o
-4
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
T T

(@i=14 (N =17 (b) i =23 (Ao =17

~; 4

N \‘ ° ‘\ "\, + V23 =y
\ ° ° st N\ Fog @ o« 7 7
L\ \ M Rl
\ Aig Y o
Eia \ 2 N S s
14\ ° Az~ _ _%

AN 0 o _——F
o . =] 1 o o
\ \ o o o o
\ A\ o >0 ° o
\ O\ o o
o . o
N B o 4 g o © o
Ao
AN N
X o
DA . o
, M\ v o L ° o
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
T

(© i=14 (A =2.9) d)i=23 (=29

Fig. 4. The cells V** and V** of the HQVP computed independently
by means of the proposed partitioning algorithm together with their
corresponding sets F14, A14 and Fo3, Ags for Ao = 1.7 and Ao =
2.9. The boundaries of the ellipsoidal sets F14 and E23 (which are a
priori known bounds of V** and V23, respectively) are denoted as red
dash-dotted curves whereas the boundaries of the sets A4 and Ass,
which necessarily include the neighbors (red filled disks) of agents
i = 14 and ¢ = 23, are denoted as blue dashed curves.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage op-
timization and control with limited-range interactions,” ESAIM: COCV,
vol. 11, no. 4, pp. 691-719, 2005.

S. Martinez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661-
668, 2006.

M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive cov-
erage control for networked robots,” Int. J. Robot. Res., vol. 28, no. 3,
pp. 357-375, 2009.

J. Cortes, “Coverage optimization and spatial load balancing by robotic
sensor networks,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 749—
754, 2010.

A. Breitenmoser, M. Schwager, J. C. Metzger, and D. Rus, “Distributed
coverage and exploration in unknown non-convex environments,” in
Proc. of the International Conference on Robotics and Automation,
(Anchorage, Alaska), pp. 4982-4989., May 2010.

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms
for environment partitioning in mobile robotic networks,” IEEE Trans.
Autom. Control, vol. 56, no. 8, pp. 1834-1848, 2011.

M. Schwager, D. Rus, and J.-J. Slotine, “Unifying geometric, proba-
bilistic, and potential field approaches to multi-robot deployment,” Int.
J. Robot. Res., vol. 30, no. 3, pp. 371-383, 2011.

F. Bullo, R. Carli, and P. Frasca, “Gossip coverage control for robotic
networks: Dynamical systems on the space of partitions,” SIAM Journal
on Control and Optimization, vol. 50, no. 1, pp. 419-447, 2012.

R. Patel, P. Frasca, and F. Bullo, “Centroidal area-constrained par-
titioning for robotic networks,” ASME Journal of Dynamic Systems,
Measurement, and Control, vol. 136, no. 3, p. 031024, 2014.

Y. Stergiopoulos and A. Tzes, “Spatially distributed area coverage op-
timisation in mobile robotic networks with arbitrary convex anisotropic
patterns,” Automatica, vol. 49, no. 1, pp. 232-237, 2013.

S. Bhattacharya, R. Ghrist, and V. Vijay Kumar, “Multi-robot coverage
and exploration on Riemannian manifolds with boundaries,” Int. J.
Robot. Res., vol. 33, no. 1, pp. 113-137, 2014.

S. G. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot control using
time-varying density functions,” IEEE Transactions on Robotics, vol. 31,
pp. 489493, April 2015.

A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi based

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

[28]

[29]
[30]

[31]
[32]

12

coverage control with anisotropic sensors,” in American Control Con-
ference, pp. 736741, June 2008.

M. Cao and C. N. Hadjicostis, “Distributed algorithms for Voronoi
diagrams and applications in ad-hoc networks,” Technical Report UILU-
ENG-03-22222160, UIUC Coordinated Science Laboratory, 2003.

M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed Voronoi
neighbor identification from inter-robot distances,” IEEE Robotics and
Automation Letters, vol. 2, pp. 1320-1327, July 2017.

E. Bakolas and P. Tsiotras, “The Zermelo-Voronoi diagram: a dynamic
partition problem,” Automatica, vol. 46, no. 12, pp. 2059-2067, 2010.
E. Bakolas and P. Tsiotras, “Optimal partitioning for spatiotemporal
coverage in a drift field,” Automatica, vol. 49, no. 7, pp. 2064-2073,
2013.

E. Bakolas, “Optimal partitioning for multi-vehicle systems using
quadratic performance criteria,” Automatica, vol. 49, no. 11, pp. 3377-
3383, 2013.

E. Bakolas, “Distributed partitioning algorithms for multi-agent net-
works with quadratic proximity metrics and sensing constraints,” Sys-
tems & Control Letters, vol. 91, pp. 36-42, 2016.

E. Bakolas, “Distributed partitioning algorithms for locational optimiza-
tion of multiagent networks in SE(2),” IEEE Transactions on Automatic
Control, vol. 63, no. 1, pp. 101-116, 2018.

K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast
computation of generalized Voronoi diagrams using graphics hardware,”
in SIGGRAPH ’99, (New York, NY, USA), pp. 277-286, 1999.

O. Arslan, “Statistical coverage control of mobile sensor networks,”
IEEE Transactions on Robotics, vol. 35, no. 4, pp. 889 — 908, 2019.
G. F. Voronoi, “Nouveles applications des paramétres continus a la
théorie de formas quadratiques,” Journal fiir die Reine und Angewandte
Mathematik, vol. 134, pp. 198-287, 1908.

J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry. Cambridge,
United Kingdom: Cambridge University Press, 1998.

J.-D. Boissonnat, C. Wormser, and M. Yvinec, “Anisotropic diagrams:
Labelle Shewchuk approach revisited,” Theoretical Computer Science,
vol. 408, no. 2-3, pp. 163-173, 2008.

C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE Trans.
Inf. Theory, vol. 52, no. 11, pp. 4753-4766, 2006.

L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33-46, 2007.

N. A. Lynch, Distributed algorithms. Elsevier, 1996.

B. H. Lee, J. D. Jeon, and J. H. Oh, “Velocity obstacle based local
collision avoidance for a holonomic elliptic robot,” Autonomous Robots,
vol. 41, no. 6, pp. 1347-1363, 2017.

Efstathios Bakolas (M’ 10) received his Diploma in
Mechanical Engineering with highest honors from
the National Technical University of Athens, Greece,
in 2004 and his M.S. and Ph.D. degrees in Aerospace
Engineering from the Georgia Institute of Technol-
ogy, Atlanta, in 2007 and 2011, respectively. He is
currently an Associate Professor in the Department
of Aerospace Engineering and Engineering Mechan-
ics, University of Texas at Austin. His research is
mainly focused on stochastic optimal control theory
and optimal decision-making and control of au-

tonomous agents and multi-agent networks. Other interests include differential
and dynamic games, control of uncertain systems, nonlinear control theory and
optimization-based control.



