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Workspace Partitioning and Topology Discovery
Algorithms for Heterogeneous Multi-Agent

Networks
Efstathios Bakolas

Abstract—In this paper, we consider a class of workspace
partitioning problems that arise in the context of area coverage
for spatially distributed heterogeneous multi-agent networks. It
is assumed that each agent has certain directions of motion
or directions for sensing that are preferable to others. These
preferences are measured by means of convex and anisotropic
(direction-dependent) quadratic proximity metrics which can be
different for each agent. These proximity metrics induce Voronoi-
like partitions of the network’s workspace whose cells may not
always be convex (or even connected) sets but are necessarily
contained in a priori known ellipsoids. The main contributions
of this work are 1) a distributed algorithm for the computation
of a Voronoi-like partition of the workspace of a heterogeneous
multi-agent network and 2) a systematic process to discover the
network topology induced by the latter partition. The distributed
implementation of the proposed algorithms is enabled by the
utilization of a hypothetical agent which determines when the
performance of each agent is acceptable. Numerical simulations
that illustrate the efficacy of the proposed algorithms are also
presented.

I. INTRODUCTION

Area coverage and spatial load balancing correspond to two
fundamental classes of problems for spatially distributed multi-

agent networks. Such problems are typically addressed by

means of distributed control algorithms that rely on the use of
Voronoi or Voronoi-like (also known as generalized Voronoi)

partitions of the workspace of the multi-agent network. For the

distributed implementation of these algorithms, each agent has
to rely on information encoded in its own cell from the spatial

partition and perhaps the cells of its neighbors. However,

unless the Voronoi-like partitions are computed by means of
distributed partitioning algorithms, the induced control algo-

rithms are not truly distributed. Therefore, the development

of distributed partitioning algorithms constitutes an integral
component of any Voronoi-distributed control architecture

for a multi-agent network. A partitioning algorithm can be

characterized as distributed when each agent can compute its
own cell independently from its teammates without utilizing

a global reference frame while relying on exchange of infor-
mation with only a subset of them (e.g., those that lie within

its communication or sensing range). Ideally, an agent can

compute its own cell if it can exchange information with the
agents that correspond to its neighbors in the topology of the

Voronoi-like partition; these neighboring relations, however,

are unknown before the computation of the Voronoi-partition
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itself. We will refer to the problem of characterizing the set

of neighbors (or more realistically, a superset of the latter set)
in the topology induced by the Voronoi-like partition as the

“network topology discovery problem.”

In this work, we propose distributed algorithms that 1)

compute Voronoi-like partitions of the workspace of spatially
distributed heterogeneous multi-agent networks and 2) dis-

cover the network topology induced by the latter partitions.

In our approach, the agents are allowed to have different
preferences (hence the qualifier “heterogeneous”) which are

measured in terms of relevant proximity (generalized) metrics

such as the sensing cost that an agent will incur to obtain
measurements from an arbitrary point in its spatial domain or

the transition cost (e.g., fuel or battery / energy consumption)

that will have to incur to reach it. In our approach, we assume
that the proximity metric associated with an agent can be

expressed as the sum of a convex quadratic form associated

with a positive definite matrix, which we refer to as distance

operator [1], and a constant term, which we refer to as additive

gain. The distance operators are not necessarily the same
for all the agents given that their workspace may exhibit

anisotropic features (e.g., certain directions of motion or direc-

tions for sensing are preferable to others). Some characteristic
examples of anisotropic workspaces are oceanic environments,

atmospheric domains and hilly terrains in which anisotropic

features are induced by ocean currents, winds and elevation
variance, respectively. Typically, such anisotropic features are

spatially varying and thus it is natural to associate each agent

with a different distance operator. We will refer to the Voronoi-
like partition of the workspace of a multi-agent network

whose agents utilize proximity metrics with different distance

operators as the Heterogeneous Quadratic Voronoi Partition
(HQVP). In the formulation of the partitioning problem, a

point is assigned to the cell of a particular agent if and only if
it is closer to the latter agent than to 1) any of its teammates

(under the assumption that each agent employs its own metric

to measure its closeness from the point of interest), and 2)
a hypothetical agent (the 0-th agent) which determines the

minimum acceptable level of performance (measured in terms

of a relevant sensing or transition cost) for each agent in
the network. The utilization of the hypothetical agent will

enable the computation of the HQVP by means of distributed

algorithms. In general, the cells that comprise the HQVP
may not be convex, or even connected, sets. Consequently,

the computation of HQVP and the discovery of the induced

network topology is not a straightforward task in sharp contrast
with standard Voronoi partitions or other classes of well

studied Voronoi-like partitions (e.g., power diagrams).
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Literature review: Area coverage and spatial load balancing

problems for multi-agent networks have received significant

attention in the relevant literature. A well received approach
which leverages the so-called Lloyd’s algorithm [2] together

with sequences of standard Voronoi partitions can be found

in [3]. Several extensions of [3] have appeared in the relevant
literature (see, for instance, [4]–[15]). The aforementioned

papers deal with multi-agent networks that are homogeneous

in the sense that all of their agents employ the same proximity
metric modulo, perhaps, a different constant term (additive

gain). In this work, a multi-agent network will not be classified

as heterogeneous unless at least two of its agents have different
distance operators and regardless if their additive gains are the

same or not. Coverage problems for heterogeneous networks
with different distance operators are considered in [16] based

on, however, centralized techniques. Finally, the problem of

discovering the neighbors of an agent in the topology induced
by a standard Voronoi partition has been studied in [17],

[18]. The applicability of the methods proposed in these

references is limited to standard Voronoi partitions and cannot
be extended to the class of spatial partitions considered in this

paper.

In our previous work, we have addressed workspace par-

titioning problems for area coverage by homogeneous multi-
agent networks based on proximity (generalized) metrics cor-

responding to the optimal cost-to-go functions of relevant

optimal control problems [19]–[21]. In the special case of
linear quadratic optimal control problems, the latter metrics

correspond to convex quadratic functions whose associated

distance operators are, however, the same for all the agents.
Under this strong assumption, the induced Voronoi-like parti-

tions admit a special structure that renders them amenable to
computation by means of simple decentralized or distributed

algorithms [22], [23]. The problem of inferring the neighbors

of an agent in the topology induced by this class of spatial
partitions is also studied in [22], [23].

Statement of contributions: The main contribution of this

work is two-fold. First, we show that under some mild

technical assumptions, each cell of the proposed Voronoi-like
partition is necessarily contained inside an ellipsoid that is

known a priori to its corresponding agent. Next, we present

an algorithm which, by leveraging the latter key geometric
property, allows each agent to independently compute its own

cell from the HQVP. The proposed partitioning algorithm

executes a certain number of line searches that seek for the
boundary points of the cell of an agent. In contrast with the

algorithms proposed in our previous work [22], [23], whose
applicability is limited to partitions comprised of convex or

star convex cells, the algorithms proposed herein can suc-

cessfully characterize the cells of a HQVP despite the fact
that the latter may be non-convex or even disconnected sets.

The proposed algorithms rely on relative position measure-

ments only and thus, neither a global reference frame nor
a common grid are required, which is in contrast with most

computational geometric techniques for non-standard Voronoi-

like partitions [24]. The proposed partitioning algorithm can be
executed in a distributed way when combined with a network

topology discovery algorithm. The main idea of the latter

algorithm is to have each agent adjust its communication
range so that it can communicate directly (point-to-point

communication) with a group of agents from the same network

which is a superset of its set of neighbors in the topology of

the HQVP without having computed the latter partition.

Structure of the paper: The problem formulation and corre-
sponding preliminaries are presented in Section II. In Sec-

tion III, we analyze the partitioning problem and present

certain key properties enjoyed by its solution. The distributed
partitioning algorithm is presented in Section IV whereas the

network topology discovery problem is analyzed and solved

in Section V. Section VI presents numerical simulations, and
finally, Section VII concludes the paper with a summary of

remarks together with directions for future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

We denote by Rn the set of n-dimensional real vectors and
by R≥0 the set of non-negative real numbers. We write Z
to denote the set of integers. Given τ1, τ2 ∈ Z with τ1 ≤
τ2, we define the discrete interval from τ1 to τ2 as follows:

[τ1, τ2]Z := [τ1, τ2] ∩ Z. We write |α| to denote the 2-norm

of a vector α ∈ Rn. Moreover, we write A ≻ 0 to denote
that a symmetric matrix A = A

T is positive definite. Given

A = A
T, B = B

T, we write A ≻ B if and only if A −
B ≻ 0. Furthermore, given a symmetric matrix P = P

T, we
denote by λmin(P) and λmax(P) its minimum and maximum

(real) eigenvalues, respectively. Given x ∈ Rn, Σ ≻ 0, and

γ > 0, we write Eγ(x;Σ−1) to denote the ellipsoid {z ∈
Rn : (z − x)T

Σ(z − x) ≤ γ}. We denote by Bρ(xc) the

closed ball of radius ρ > 0 centered at xc, that is, Bρ(xc) :=
{z ∈ Rn : |z − xc| ≤ ρ}. Furthermore, bd(A) and rbd(A)
denote the boundary and the relative boundary of a set A,

whereas int(A) and rint(A) denote its interior and relative
interior. The powerset of a set A is denoted as ℘(A). Given

A, B ⊆ Rn, we denote by A⊕ B their Minkowski sum, that

is, A ⊕ B := {x = y + z : y ∈ A and z ∈ B}, and by
A ⊖ B their Minkowski difference, that is, A ⊖ B := {x :
{x} ⊕ B ⊆ A}. Given α, β ∈ Rn, we denote by [α, β] the

line segment connecting them (including the two endpoints),
that is, [α, β] := {x ∈ Rn : x = tα+(1− t)β, t ∈ [0, 1]}. In

addition, we denote by ]α, β] and [α, β[ the sets [α, β]\{α}
and [α, β]\{β}, respectively.

B. The Partitioning Problem for a Heterogeneous Multi-Agent

Network

In this section, we formulate the partitioning problem for

a multi-agent network comprised of n agents distributed over

a spatial domain S, which is assumed to be a convex and
compact set. To the latter network we attach an additional

agent, which we refer to as the 0-th agent of the network. The

latter agent may correspond, for instance, to a vehicle station
from which vehicles are dispatched in response to requests

issued in the vicinity of the station or a “mother vehicle” that

can deploy n mobile sensors to collect measurements from
various nearby locations. We will refer to the network that

includes the 0-th agent as the extended network. It is assumed

that the agents are located at n + 1 distinct locations in S,
which form the point-set X := {xi ∈ S : i ∈ [0, n]Z}.
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Our first objective is to subdivide S into n + 1 non-

overlapping subsets that will be associated with the n + 1
agents of the extended network in an one-to-one way. We
will refer to these subsets of S as regions of influence

(ROI) or simply cells that comprise a spatial partition of

the network’s workspace. In particular, the interior of each
cell will exclusively consist of points in S that are “closer”

to its corresponding agent than to any other agent of the

extended network. The closeness between the i-th agent and
an arbitrary point x ∈ S will be measured in terms of an

appropriate convex quadratic proximity (generalized) metric

δ(·;xi) : S → R≥0 with

δi(x;xi) := (x− xi)
T
Pi(x − xi) + µi, (1)

where µi ≥ 0 and Pi ≻ 0 for all i ∈ [0, n]Z. We will refer

to µi and Pi as the i-th additive gain and distance operator,
respectively. The proximity metric δi(x;xi) corresponds, for

instance, to the cost that the i-th agent will incur for its

transition from point xi to point x. Alternatively, it may reflect
the sensing cost that the i-th agent, which is located at xi,

will incur in order to obtain measurements from point x. In
particular, let us consider the bivariate Gaussian distribution

with mean mi ∈ R2 and covariance Σi ≻ 0 whose probability

density function is given by

ρi(x) :=
(
2π

√
det(Σi)

)−1
exp

(
− 1

2 (x−mi)
T
Σ

−1
i (x−mi)

)

and let us define the sensing cost as follows [25]:

ci(x) := −log(ρi(x))
= log

(
2π

√
det(Σi)

)
+ 1

2 (x−mi)
T
Σ

−1
i (x−mi).

Therefore, by taking Pi := 1
2Σ

−1
i , xi = mi and µi :=

log(2π
√
det(Σi), we have δi(x;xi) = ci(x) provided µi ≥ 0.

It is worth noting that the i-th additive gain µi corresponds
to the minimum value of δi(x;xi), which is attained at x = xi,

that is, µi = minx∈S δi(x;xi) = δi(xi;xi). In addition,

the i-th distance operator Pi determines which directions, if
any, are preferable to others for the i-th agent. In particular,

if Pi = λiI, where λi > 0, then the level sets of the
quadratic form (x−xi)

T
Pi(x− xi) are circles and thus there

are no preferred directions; otherwise, the latter level sets

become ellipses whose major axes determine the preferable
directions. In the first case, Pi is an isotropic distance operator

(i.e., direction independent), whereas in the second, and more

interesting case, is an anisotropic (i.e., direction-dependent)
distance operator. It is worth noting that requiring the existence

of a matrix P ≻ 0 such that Pi = P for all i ∈ [0, n]Z can be

a very restrictive assumption in practice. In this work, we will
consider the more general case in which there always exists

(i, j) with i 6= j such that Pi 6= Pj and we will refer to the

multi-agent network as “heterogeneous.”

Next, we provide a number of technical, yet practically intu-
itive, assumptions that will help us streamline the subsequent

discussion and analysis.

Assumption 1: For any i ∈ [0, n]Z, we have that
δi(xi;xi) < δj(xi;xj) or, equivalently,

(xj − xi)
T
Pj(xj − xi) + µj > µi, (2)

for all j 6= i, provided that xi 6= xj .

The previous assumption implies that the distance of the j-th

agent from the location xi of the i-th agent, which is equal to

δj(xi;xj), has to be greater than the distance of the i-th agent

from itself, which is equal to δi(xi;xi) = µi. For instance,
in the case of a sensor network, condition (2) implies that no

sensor different from the i-th sensor can obtain more accurate

measurements from the location xi of the i-th agent.

Remark 1 Although Assumption 1 is quite intuitive, there

exist applications in which it will not hold (for instance, when

the sensing capabilities of one or more agents are significantly
superior to the other agents of the network). It should also be

mentioned here that the partitioning algorithm that will be

presented herein can be applied even when Assumption 1 is
removed, after the necessary modifications have been carried

out (we will comment on some of these modifications later on).

Assumption 1 will allow us to streamline the presentation and
avoid discussing special cases of low interest.

Assumption 2: We assume that

Pi ≻ P0 ≻ 0, µi ≥ µ0 ≥ 0, ∀i ∈ [1, n]Z. (3)

The following proposition will allow us to better understand
the implications of Assumption 2.

Proposition 1: Let γ > maxi∈[1,n]Z µi and let x ∈ S. In

addition, let D0
γ(x) and Di

γ(x) denote the γ- sublevel-sets of,
respectively, δ0(·;x0) and δi(·;xi) when xi ≡ x0 ≡ x for all

i ∈ [1, n]Z, that is, D0
γ(x) := {x ∈ S : δ0(x; x) ≤ γ} and

Di
γ(x) := {x ∈ S : δi(x; x) ≤ γ}, for i ∈ [1, n]Z. Then, the

following set inclusion holds:

Di
γ(x) ( D0

γ(x), ∀i ∈ [1, n]Z. (4)

Proof: In view of (1), D0
γ(x) and Di

γ(x) can be expressed
as follows:

D0
γ(x) = {x ∈ S : (x− x)T

P0(x− x) ≤ γ − µ0},
Di

γ(x) = {x ∈ S : (x− x)T
Pi(x− x) ≤ γ − µi}.

By hypothesis γ > µi ≥ µ0 ≥ 0, and thus

D0
γ(x) ⊇ {x ∈ S : (x− x)T

P0(x− x) ≤ γ − µi}
) {x ∈ S : (x− x)T

Pi(x− x) ≤ γ − µi}
= Di

γ(x),

where the second set inclusion follows from the fact that Pi ≻
P0 ≻ 0. Thus, the set inclusion (4) holds true.

Remark 2 It is worth noting that D0
γ(x) = Eγ−µ0

(x;P−1
0 )∩S

and Di
γ(x) = Eγ−µi

(x;P−1
i )∩S. Proposition 1 implies that the

footprint of the set of points that are within distance γ from

the 0-th agent (distance measured in terms of δ0) is greater

than the footprint of the set of points that are within distance
γ from the i-th agent (distance measured now in terms of δi)
when both of the agents are placed at an arbitrary common

point x ∈ S.

C. Formulation of the Workspace Partitioning Problem

We can now give the precise definitions of the Voronoi-like

partition of S generated by the extended multi-agent network

based on the quadratic proximity metrics defined in (1).

Definition 1: Suppose that S ∈ R2 is a compact and convex
set and let X ⊂ S be a set comprised of n+1 distinct points
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(locations of the agents). Then, we say that the collection of

sets V(X ;S) := {V i ∈ ℘(S) : i ∈ [0, n]Z} where

V i := {x ∈ S : δi(x;xi) ≤ min
j 6=i

δj(x;xj)}, (5)

forms a Heterogeneous Quadratic Voronoi Partition (HQVP)
of S that is generated by X . In particular, i) S = ∪i∈[0,n]ZV i

and ii) int(V i) ∩ int(Vj) = ∅, for i 6= j. We will refer to the

set V i as the i-th cell or region-of-influence (ROI).

The following proposition highlights some fundamental prop-

erties of the HQVP.

Proposition 2: Let V i ∈ V(X ;S). Then, δi(x;xi) ≤
minj 6=i δj(x;xj) for all x ∈ V i and in particular,

1) δi(x;xi) < minj 6=i δj(x;xj), ∀x ∈ int(V i)
2) δi(x;xi) = minj 6=i δj(x;xj), ∀x ∈ bd(V i)\bd(S),

that is, there exists j = jx such that δi(x;xi) =
δjx(x;xjx).

It is worth considering what would happen if we dropped

Assumption 2 and assumed instead that µi = µ̄ and Pi = λI,
for all i ∈ [0, n]Z, where µ̄ ≥ 0 and λ > 0. In this special case,
each agent employs the same proximity metric; in particular,

δi(x;xi) = λ|x − xi|2 + µ̄, for all i ∈ [0, n]Z. In this case,

V i := {x ∈ S : λ|x − xi|2 ≤ λ min
j∈[0,n]Z

|x− xj |2}

= {x ∈ S : |x− xi| ≤ min
j∈[0,n]Z

|x− xj |},

which is precisely the definition of the i-th cell of the standard

Voronoi partition [26]. Consequently, in this special case, the

HQVP reduces to the standard Voronoi partition which has
combinatorial complexity in O(n) and computational com-

plexity in O(n log(n)). Another special case while keeping

Assumption 2 inactive, is when there is a pair (i, j), with
i 6= j, such that µi 6= µj and Pi = P, for all i ∈ [0, n]Z,

where P ≻ 0. As we have shown in [21], the HQVP in
the latter case reduces to an affine diagram, which has com-

binatorial complexity in Θ(n) and computational complexity

in Θ(n logn + n) [27] (note that the latter complexities are
modest and close to those of the standard Voronoi partition).

In this work, in view of Assumption 2, there always exists

a pair (i, j), with i 6= j, such that Pi 6= Pj (one can
take j = 0 and any i ∈ [1, n]Z). According to [28], the

HQVP has combinatorial complexity Θ(n3) and computa-
tional complexity in O(n3 + n log(n)); these complexities

are significantly higher than those of the standard and the

affine Voronoi partitions. One important fact is that the cells
of HQVP are not necessarily convex sets (they may even

be disconnected sets), which makes their computation by

means of distributed algorithms quite challenging. By virtue
of the previous discussion, it should become clear that the

partitioning algorithms proposed in our previous work [22],

[23], which can only compute affine partitions or partitions
comprised of star convex cells for homogeneous multi-agent

networks, are not applicable to the partitioning problem for

heterogeneous networks which is considered herein. The latter
problem requires the development of new and more powerful

tools which are applicable to partitions comprised of cells

which can be non-convex or even disconnected sets.

Next, we formulate the uncoupled partitioning problem in
which the i-th agent of the network is required to compute its

own cell in HQVP independently from its teammates.

Problem 1: Uncoupled Partitioning Problem over S: Let

V(X ;S) = {Vi ∈ ℘(S) : i ∈ [0, n]Z} be the HQVP of S
generated by the point-set X := {xi ∈ S : i ∈ [0, n]Z}.
For a given i ∈ [1, n]Z, compute the cell V i ∈ V(X ;S),
independently from the other cells of the same partition.

Remark 3 It is worth noting that the computation of the cell
V0 which is assigned to the 0-th agent of the extended network

is not included in the formulation of Problem 1. The latter

set (or more precisely, its interior) corresponds to the part
of the spatial domain S that is not claimed by any agent of

the actual network, that is, int(V0) = int(S)\ ∪ni=1 V i. We

will say that the open set int(V0) corresponds to the coverage
hole of the actual network. Intuitively, at any point in int(V0),
the ground station or mother vehicle (the latter correspond to

interpretations of the hypothetical 0-th agent) can rely to their
own sensing capabilities and therefore, they do not have to

dispatch any mobile sensors from the actual network to take

in-situ measurements there. Note that the non-emptiness of the
coverage hole V0 is a direct consequence of Assumption 2.

D. Formulation of the Network Topology Discovery Problem

In a nutshell, the goal of the network topology discovery

problem is to find a systematic way that will allow the i-th
agent of the network to determine its neighbors in the topology
induced by the HQVP.

Definition 2: The i-th agent and the j-th agent, which are

located at xi ∈ X and xj ∈ X , respectively, are neighbors in

the topology of V(X ;S), if the boundaries of their cells have
a non-empty intersection, that is, bd(V i) ∩ bd(Vj) 6= ∅.

Now, let us denote by Ni the index set of the neighbors of

the i-th agent. In view of Definition 2,

Ni := {ℓ ∈ [0, n]Z\{i} : bd(Vℓ) ∩ bd(V i) 6= ∅}. (6)

Proposition 3: The index-set of the neighbors of the i-th
agent, Ni, consists of all ℓ ∈ [0, n]Z\{i} such that δℓ(x;xℓ) =
δi(x;xi) for some x ∈ bd(V i).

Proof: The proof follows readily from Proposition 2 and

Definitions 1 and 2.

The network topology discovery problem seeks for a lower
bound on the communication range ηi of the i-th agent such

that its communication region Bηi
(xi) contains all of its

neighbors in the topology of HQVP.

Problem 2: Network Topology Discovery Problem: Find a
lower bound ηi > 0 on the communication range ηi of the

i-th agent, for i ∈ [1, n]Z, such that its communication region,

Bηi
(xi), contains all of its neighbors, that is,

Bηi
(xi) ) {xk ∈ X : k ∈ Ni}, ∀ηi ≥ ηi. (7)

III. ANALYSIS AND SOLUTION OF THE UNCOUPLED

PARTITIONING PROBLEM

A. Analysis of the Uncoupled Partitioning Problem

In this section, we will present some useful properties
enjoyed by the cells comprising the HQVP which we will
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subsequently leverage to develop distributed algorithms for the

computation of the solution to Problem 1. The first step of our

analysis will be the characterization of the bisector, Bi,j , that
corresponds to the loci of all points in S that are equidistant

from the i-th and the j-th agents with i 6= j, that is,

Bi,j := {x ∈ S : δi(x;xi) = δj(x;xj)}. (8)

The equation δi(x;xi) = δj(x;xj) is equivalent to

(x− xi)
T
Pi(x − xi) + µi = (x− xj)

T
Pj(x− xj) + µj

which can be written more compactly as follows

xT
Pi,jx− 2χT

i,jx+ σi,j = 0, (9)

where

Pi,j := Pi −Pj , (10a)

χi,j := Pixi −Pjxj , (10b)

σi,j := |P1/2
i xi|2 + µi − |P1/2

j xj |2 − µj . (10c)

If Pi,j = 0, that is, Pi = Pj , then equation (9) describes a
straight line. In the more interesting case when Pi,j 6= 0, (9)

corresponds to a quadratic vector equation that determines a

conic section.

Next, we will leverage Assumption 2 to show that the cell
V i, for i ∈ [1, n]Z, enjoys an important property that will prove

very useful in our subsequent analysis. To this aim, we first
note that, in view of Assumption 2, Pi ≻ P0 or equivalently

Pi,0 ≻ 0. Next, by completing the square in (9) and then

setting j = 0, we get

0 = xT
Pi,0x− 2χT

i,0P
−1/2
i,0 P

1/2
i,0 x+ χT

i,0P
−1
i,0χi,0

− χT
i,0P

−1
i,0χi,0 + σi,0

from which it follows that

|P1/2
i,0 (x−P

−1
i,0χi,0)|2 = |P−1/2

i,0 χi,0|2 − σi,0. (11)

Therefore, the bisector Bi,0 consists of all points x ∈ S that
satisfy Eq. (11), which is the equation of an ellipse provided

that the right hand side of the latter equation is a strictly

positive number.

Proposition 4: Let i ∈ [1, n]Z and let

ℓi,0 := |P−1/2
i,0 χi,0|2 − σi,0, (12)

where Pi,0, χi,0 and σi,0 are as defined in (10a)–(10c) for

j = 0. Then, ℓi,0 > 0 and the bisector Bi,0 satisfies

Bi,0 = bd(Ei) ∩ S, (13)

where Ei := Eℓi,0(P−1
i,0χi,0;P

−1
i,0 ).

Proof: In view of (10a)-(10b) for j = 0, we have

|P−1/2
i,0 χi,0|2 = |P−1/2

i,0 (Pixi −P0x0)|2

= xT
iPiP

−1
i,0Pixi + xT

0P0P
−1
i,0P0x0

− 2xT
iPiP

−1
i,0P0x0

= [xT
i , xT

0 ]

[
PiP

−1
i,0Pi −PiP

−1
i,0P0

−P0P
−1
i,0Pi P0P

−1
i,0P0

] [
xi

x0

]
.

In addition, from (10c) for j = 0, we get

σi,0 = |P1/2
i xi|2 + µi − |P1/2

0 x0|2 − µ0

= xT
iPixi − xT

0P0x0 + µi − µ0

= [xT
i , xT

0 ]

[
Pi 0

0 −P0

] [
xi

x0

]
+ µi − µ0.

Therefore, we have that

ℓi,0 = |P−1/2
i,0 χi,0|2 − σi,0

= [xT
i , xT

0 ]

[
PiP

−1
i,0Pi −Pi −PiP

−1
i,0P0

−P0P
−1
i,0Pi P0P

−1
i,0P0 +P0

] [
xi

x0

]

+ µ0 − µi. (14)

Now, in view of (2) for j = 0, we have that

µ0 − µi > −(x0 − xi)
T
P0(x0 − xi)

= [xT
i , xT

0 ]

[
−P0 P0

P0 −P0

] [
xi

x0

]
. (15)

Therefore, in view of (14), (15) gives

ℓi,0 > [xT
i , xT

0 ]Ψ

[
xi

x0

]
, Ψ :=

[
Ψ11 Ψ12

Ψ
T
12 Ψ22

]
, (16)

where Ψ11,Ψ12, Ψ13 ∈ R2×2 are defined as follows:

Ψ11 := PiP
−1
i,0Pi −Pi −P0, (17a)

Ψ12 := −PiP
−1
i,0P0 +P0, (17b)

Ψ22 := P0P
−1
i,0P0. (17c)

Note that Ψ22 = P0P
−1
i,0P0 ≻ 0. Next, we show that the

Schur complement of the block Ψ22 of the block matrix Ψ,

which is denoted as (Ψ/Ψ22) and defined as (Ψ/Ψ22) :=
Ψ11−Ψ12Ψ

−1
22 Ψ

T
12, is positive definite, that is, (Ψ/Ψ22) ≻ 0.

Indeed, in view of (17a)-(17c)

(Ψ/Ψ22) = PiP
−1
i,0Pi −Pi, (18)

where Pi,0 = Pi −P0. Furthermore, in light of (3), we have

that 0 ≺ Pi,0 = Pi−P0 ≺ Pi which implies that 0 ≺ P
−1
i ≺

P
−1
i,0 and thus

I ≺ P
1/2
i P

−1
i,0P

1/2
i . (19)

After pre- and post-multiply (19) with P
1/2
i , we take

PiP
−1
i,0Pi ≻ Pi. (20)

In view of (20), (18) implies that (Ψ/Ψ22) ≻ 0. The fact that

(Ψ/Ψ22) ≻ 0 and Ψ22 ≻ 0 imply that Ψ ≻ 0. Consequently,

by virtue of (16), we take ℓi,0 > 0, for all i ∈ [1, n]Z. Then,
all points x ∈ S that satisfy (11) belong to the boundary of the

ellipsoid Ei, and thus Bi,0 ⊆ bd(Ei) ∩ S. The set inclusion

Bi,0 ⊇ bd(Ei)∩S can be shown similarly and thus, equation
(13) follows readily. The proof is now complete.

Proposition 5: Let i ∈ [1, n]Z and let Ei :=
Eℓi,0(P−1

i,0χi,0;P
−1
i,0 ). Then, the cell V i ∈ V(X ;S) satisfies

the following set inclusion:

V i ⊆ Ei ∩ S. (21)

Proof: Let us consider the two disjoint sets Si,0 := {x ∈
S : δi(x;xi) ≤ δ0(x;x0)} and Sci,0 := {x ∈ S : δi(x;xi) >
δ0(x;x0)} where Sci,0 = S\Si,0. By definition,

Si,0 ⊇ {x ∈ S : δi(x;xi) ≤ min
j∈[0,n]Z

δj(x;xj)} = V i, (22)

where the last set equality follows from (5). Next, we show

that Si,0 = Ei ∩ S. Indeed, let x ∈ Ei ∩ S. Then, in view of

(11) and (12), we have that

|P1/2
i,0 (x −P

−1
i,0χi,0)|2 ≤ ℓi,0, (23)

which implies, after following backwards the derivation from
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(8)–(10c) for j = 0, that

(x− xi)
T
Pi(x− xi) + µi ≤ (x − x0)

T
Pj(x − x0) + µ0

which proves that x ∈ Si,0 and thus Si,0 ⊆ Ei ∩ S. The set

inclusion Ei ∩ S ⊆ Si,0 can be proven similarly. Therefore,
Si,0 = Ei ∩ S and thus, in view of (22), we conclude that

V i ⊆ Ei ∩ S which completes the proof.

Remark 4 Proposition 5 implies that the i-th agent can

determine the compact and convex set Ei ∩ S that will
necessarily contain its cell V i provided that the quantities P0,

µ0, and x0, which are associated with the 0-th agent of the
extended network, are known to it. All of these quantities

can be determined by the agents of the actual network by

means of distributed algorithms. For instance, x0 can be
taken to be the average position of the agents of the actual

network and thus can be computed by means of standard

average consensus algorithms [29], [30]. In addition, we can
set µ0 := min{µi ∈ R≥0 : i ∈ [1, n]Z}, which is in

accordance with Assumption 2 and can be computed by means

of, for instance, the flooding algorithm which is one of the
simplest distributed algorithms [31]. Furthermore, we can take

P0 = λ0I , where 0 < λ0 < min{λmin(Pi) : i ∈ [1, n]Z} so

that Assumption 2 is respected; again, one can compute λ0 by
means of a flooding-type distributed algorithm.

Proposition 5 also allows the complete characterization of

the coverage hole int(V0) of the actual network without
requiring (prior) knowledge or computation of any other cells

of the HQVP V(X ;S), which is a significant improvement

over its a posteriori characterization by the equation int(V0) =
int(S)\ ∪ni=1 V i, which was given in Remark 3.

Proposition 6: Let V0 ∈ V(X ;S) be the cell associated

with the 0-th agent and let Ei := Eℓi,0(P−1
i,0χi,0;P

−1
i,0 ). Then,

int(V0) = int(S)\ ∪ni=1 Ei. (24)

Proof: By definition, int(V0) = {x ∈ int(S) :
δ0(x;x0) < δi(x;xi), ∀i ∈ [1, n]Z}. Now let Si,0 :=
{x ∈ S : δi(x;xi) ≤ δ0(x;x0)}. It follows that int(V0) =
int(S)\ ∪ni=1 Si,0. In addition, in the proof of Proposition 5,

we have shown that Ei ∩ S = Si,0, which implies that

int(V0) = int(S)\ ∪ni=1 (Ei ∩ S) = int(S)\ ∪ni=1 Ei and
the proof is complete.

B. The i-th lower envelope ∆i

Let us consider the i-th lower envelope function ∆i(·;X) :
S → R with

∆i(x;X) := min
ℓ 6=i

δℓ(x;xℓ)− δi(x;xi). (25)

Proposition 7: Let i ∈ [1, n]Z and let Ei :=
Eℓi,0(P−1

i,0χi,0;P
−1
i,0 ). Then, x ∈ V i if and only if ∆i(x;X) ≥

0, that is,

V i = {x ∈ Ei ∩ S : ∆i(x;X) ≥ 0}. (26)

Moreover,

∆i(x;X) > 0, ∀x ∈ int(V i), (27a)

∆i(x;X) = 0, ∀x ∈ bd(V i)\bd(S). (27b)

Proof: Equation (26) follows from Definition 1 and

Proposition 5. In addition, (27a)–(27b) follows from Propo-

sition 2 and 5.

Besides the i-th lower envelope, we can also define the

global lower envelope function ∆(·;X) : S → R with

∆(x;X) := min
ℓ∈[0,n]Z

δℓ(x;xℓ). (28)

In view of the definition of the V i given in (5), it follows
immediately that a point x ∈ V i if and only if δi(x;xi) =
∆(x;X). In this work, we will use the i-th lower envelope

∆i(x;X) because we are interested in solving the decoupled
partitioning problem (the global lower envelope is relevant to

the centralized computation of V(X ;S)). Figure 1 illustrates

the concepts of both the i-th lower envelope ∆i and the global
lower envelope ∆ for a scenario with three agents. To make the

illustrations more transparent, we consider an one-dimensional
scenario in which the domain S is the line segment [0, 1]
and the set of generators X is the point-set {x0, x1, x2} with

0 < x0 < x1 < x2 < 1 which are denoted as black
crosses in the x-axis. In addition, δi(x;X) = c+αi(x−xi)

2,

for i ∈ {0, 1, 2}, with 0 < α0 < α1 < α2 and c ≥ 0
(which is in accordance with Assumption 1). The graphs of
the (generalized) proximity metrics δi and the cells V i, for

i ∈ {0, 1, 2} are illustrated with different colors for each

agent. The three cells correspond to line segments in S whose
boundaries are denoted as black squares. We note that V1

consists of two disconnected components. The global lower

envelope ∆ is illustrated as a dashed curve which corresponds
to what an observer sees while looking at the graphs of δ0,

δ1, and δ2 from below (from the x-axis in Fig. 1). Note that
the projection on S of the part of the graph of ∆ over which

the latter overlaps with the graph of the i-th proximity metric

δi corresponds to the cell V i. The 1st lower envelope ∆1

(associated with agent i = 1) is illustrated as a grey dashed-

dotted curve. In agreement with Proposition 7, ∆1 ≥ 0 over

the two disconnected line segments of S that comprise V1 and
∆1 < 0 elsewhere.

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

δ i

V0 V1 V1V2

x0 x1 x2

δ1
δ0
δ2

∆
∆1

Fig. 1. Illustration of the global lower envelope function ∆(x;X) for
a network of three agents located in the interval S := [0, 1] together
with the lower envelope function ∆1(x;X) associated with agent
i = 1.

It is worth noting that for the computation of ∆i(x;X),
the i-th agent doesn’t need to know either x or the set X
but instead the relative position x − xi and the positions of

the other agents relative to itself (no global reference frame is
required).
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Proposition 8: Let i ∈ [0, n]Z. There exists a function φi :
S ⊖ {xi} → R such that

∆i(x;X) = φi(x− xi;X ⊖ {xi}), ∀x ∈ S. (29)

Proof: Indeed, for any ℓ ∈ [0, n]Z\{i}, we have that

δℓ(x;xℓ) = (x− xℓ)
T
Pℓ(x− xℓ) + µℓ

= (x− xi + xi − xℓ)
T
Pℓ(x− xi + xi − xℓ) + µℓ

= (x− xi)
T
Pℓ(x− xi) + (xi − xℓ)

T
Pℓ(xi − xℓ)

+ 2(x− xi)
T
Pℓ(xi − xℓ) + µℓ.

Therefore,

∆i(x;X) = min
ℓ 6=i

(
(x− xi)

T
Pℓ(x− xi)

+ (xℓ − xi)
T
Pℓ(xℓ − xi)

− 2(x− xi)
T
Pℓ(xℓ − xi) + µℓ

− (x − xi)
T
Pi(x− xi)− µi

)

= min
ℓ 6=i

(
(x− xi)

T(Pℓ −Pi)(x− xi)

+ (xℓ − xi)
T
Pℓ(xℓ − xi)

− 2(x− xi)
T
Pℓ(xℓ − xi) + µℓ − µi

)
.

Therefore, ∆i(x;X) depends on the relative positions x− xi

and xi − xℓ, for ℓ 6= i. The result follows readily.

Remark 5 In light of Proposition 8, the computation of the

i-th lower envelope ∆i does not require a global reference
frame but it does require, in principle, that all the agents

communicate with each other in order to compute the quantity

minℓ 6=i δℓ(x;xℓ) in a centralized way (all-to-all communi-
cation). Later on, however, we will see that the i-th agent

can characterize ∆i by communicating with only a subset

of its teammates (the i-th agent will find the latter agents
by discovering the network topology induced by the HQVP;

the latter problem is addressed in Section V), and thus, the

computation of ∆i can take place in a distributed way.

C. Parametrization of V i and bd(V i)

Next, we will show that the cell V i ∈ V(X ;S) and

its boundary bd(V i), for i ∈ [1, n]Z, admit convenient
parametrizations. These parametrizations will allow us to pro-

pose a systematic way to compute proxies of V i and bd(V i)
in a finite number of steps. Before we proceed any further, we
introduce some useful notation. In particular, for a given i ∈
[1, n]Z and θ ∈ [0, 2π[, we will denote by Γθ the ray that starts
from xi and is parallel to the unit vector eθ = [cos θ, sin θ]T,

that is, Γθ := {x ∈ R2 : x = xi + ρeθ, ρ ≥ 0}. In addition,

we denote as xθ the point of intersection of Γθ with bd(Ei∩S)
where Ei := Eℓi,0(P−1

i,0χi,0;P
−1
i,0 ).

In view of Proposition 7, to characterize bd(V i) one has to
find the roots of ∆i = 0 in Ei ∩ S and also check if bd(V i)
contains boundary points of S. What we propose to do is to

find the roots of ∆i = 0 incrementally by searching along the
ray Γθ , or more precisely, the line segment Γθ ∩ (Ei ∩ S) =
[xi, xθ], for a different θ ∈ [0, 2π] at each time. For a given

θ ∈ [0, 2π], we will denote as P i
θ the point-set comprised of

the roots of the equation ∆i = 0 in [xi, xθ[, that is,

P i
θ := {x ∈ [xi, xθ[: ∆i(x;X) = 0}. (30)

If P i
θ 6= ∅, then let M := card(P i

θ) and let us consider the

ordered point-set

Pi
θ = {pm ∈ [xi, xθ] : m ∈ [0,M + 1]Z},

which is comprised of the same points as the set P i
θ∪{xi, xθ}

with the latter points be arranged as follows:

p0 := xi, |xi − p1| < · · · < |xi − pM |, pM+1 := xθ. (31)

The points of Pi
θ determine a partition {Im : m ∈ [1,M +

1]Z}, where Im := [pm−1, pm], of the line segment [xi, xθ].
Next, we provide one of the main results of this section
regarding the characterization of the intersection of the cell

V i and its boundary bd(V i) with the ray Γθ.

Proposition 9: Let i ∈ [1, n]Z and θ ∈ [0, 2π]. Let also

{Im := [pm−1, pm] : m ∈ [1,M + 1]Z} be the partition
of [xi, xθ] that is induced by the ordered point-set Pi

θ
whose points are arranged according to (31). In addition,

let p̂m denote the midpoint of the line segment Im and let

∆̂m
i := ∆i(p̂m;X). Further, let us consider the index-sets

M+ := {m ∈ [1,M + 1]Z : ∆̂m
i > 0}

M− := {m ∈ [1,M + 1]Z : ∆̂m
i < 0}.

Then,

V i ∩ Γθ = fθ(xi), bd(V i) ∩ Γθ = gθ(xi), (32)

where the set-valued maps fθ(·) : X ⇒ ℘([xi, xθ]) and gθ(·) :
X ⇒ ℘([xi, xθ]) are defined as follows:

i) If P i
θ = ∅, then

fθ(xi) := [xi, xθ], gθ(xi) := {xθ}.

ii) If P i
θ 6= ∅, then

fθ(xi) :=
⋃

m∈Mf

Im, gθ(xi) := {pm : m ∈Mg},

where Mf =M+ and Mg :=M+
g ∪M−

g . In particular, the

index-setM+
g is comprised of all m ∈M+∩[1,M ]Z such that

m+1 ∈ M− plus the index M +1 if M +1 ∈M+. Finally,

the index-set M−
g is comprised of all m ∈ M− ∩ [1,M ]Z

such that m+ 1 ∈M+.

Proof: First, we consider the case when P i
θ = ∅, that is,

∆i has no roots in [xi, xθ[. In view of Assumption 1, we have

∆i(xi;X) = min
ℓ 6=i

δℓ(xi;xℓ)− µi > 0.

By continuity, we conclude that in this case ∆i(x;X) > 0, for

all x ∈ [xi, xθ[, which implies that fθ(xi) = V i∩Γθ = [xi, xθ]
and gθ(xi) = bd(V i) ∩ Γθ = {xθ}.

Next, we consider the case when P i
θ 6= ∅. By definition,

∆̂m
i > 0 for all m ∈ M+. By continuity of ∆i, we have

that ∆i(x;X) ≥ 0 for all x ∈ Im = [pm−1, pm] and for

all m ∈ M+. Therefore, in view of equation (27a), we have⋃
m∈Mf

Im = V i ∩ Γθ = fθ(xi) with Mf = M+. Now, a

point pm with m ∈ [1,M ]Z belongs to bd(V i)∩ Γθ = gθ(xi)
if and only if as one transverses Γθ (with direction from xi

towards xθ), one of the following two events takes place: 1)

∆i, which is negative “before” pm, becomes positive “after”
pm (in which case m ∈ M+

g ) or 2) ∆i, which is positive

“before” pm, becomes negative “after” pm (in which case m ∈
M−

g ). Finally, if ∆i(p̂M+1;X) > 0, then pM+1 ∈ gθ(xi) and

M + 1 ∈ M+
g . This completes the proof.
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Example: To better understand the implications of Proposi-

tion 9 as well as the meaning of each index-set introduced

therein, let us consider the example illustrated in Figure 2.
We have that Pi

θ = {pm : m ∈ [0, 5]Z} where p0 ≡ xi and

p5 ≡ xθ and its induced partition is {Im = [pm−1, pm] : m ∈
[1, 5]Z}. The sign of ∆i at the mid-points of the segments
I1, I2, I4, I5, which are enclosed by dashed blue ellipses in the

figure, is positive and thus M+ =Mf = {1, 2, 4, 5} whereas

M− = {3}. We conclude that fθ(xi) = [xi, p2] ∪ [p3, xθ].
Furthermore, as one transverses Γθ (from xi towards xθ) ∆i

changes sign from positive to negative at p2 and in addition,

∆i > 0 at the mid-point of I5; thus, M+
g = {2, 5}. Also,

∆i changes sign from negative to positive at p3, and thus

M−
g = {3}. Hence, Mg = M+

g ∪ M−
g = {2, 3, 5}. We

conclude that gθ(xi) = {p2, p3, p5}. The points from Pi
θ that

form gθ(xi) are encircled by blue circles in Figure 2.

Remark 6 A careful interpretation of the results presented in

Proposition 9 reveals that under some mild and intuitive mod-

ifications, one can characterize the cell V i and its boundary
bd(V i) even for the more general case when Assumption 1

may not hold true. For instance, in the previous example, the

sign of ∆i in the segment ]xi, p1[ will not necessarily be
positive (it is always positive if Assumption 1 holds true) and,

instead, it will be equal to the sign of ∆i at any interior point in

that segment. For the sake of the argument, let us take the latter
sign to be negative. Then, assuming that the signs of ∆i in

all the other segments remain the same as in Fig. 2, it follows
that gθ(xi) = {p1, p2, p3, p5} and M+ =Mf = {2, 4, 5}.

Proposition 10: Let us consider a family of rays {Γθ : θ ∈
[0, 2π]}, where the ray Γθ emanates from xi and is parallel to
the unit vector eθ := [cos θ, sin θ]T. Then,

V i =
⋃

θ∈[0,2π]

fθ(xi), bd(V i) =
⋃

θ∈[0,2π]

gθ(xi), (33)

where the set-valued maps fθ(·) and gθ(·) are defined as in
Proposition 9 for each θ ∈ [0, 2π].

Proof: We have that⋃

θ∈[0,2π]

fθ(xi) =
⋃

θ∈[0,2π]

(V i
⋂

Γθ) = V i
⋂

(
⋃

θ∈[0,2π]

Γθ) = V i,

where in the first equality, we used (32) and in the last one,
we used that

⋃
θ∈[0,2π] Γθ = R2. Thus, we have proved that

the first equation in (33) holds true. The proof for the second

one follows similarly.

p1 p2 p3 p4 p5 ≡ xθp0 ≡ xi

∆i > 0 ∆i > 0

∆i < 0 ∆i > 0 ∆i > 0

Γθ

Ei

Fig. 2. Illustrative example on the characterization of V
i
∩ Γθ and

bd(Vi) ∩ Γθ based on Proposition 9.

IV. A SYSTEMATIC APPROACH FOR THE COMPUTATION OF

A FINITE APPROXIMATION OF bd(V i) AND V i

A. Efficient computation of the roots of the equation ∆i = 0

In this section, we will leverage Propositions 9 and 10 to
develop a systematic procedure to characterize the boundary

points of V i that lie on a given ray Γθ after a finite number

of steps. To this aim, let ρθ > 0 denote the length of [xi, xθ],
that is, ρθ := |xθ − xi|. Recall that xθ corresponds to the

intersection of Γθ with bd(Ei ∩ S). In addition, let

Ri,j
θ := {ρ ∈ [0, ρθ[: δi(xi + ρeθ;xi) =

δj(xi + ρeθ;xj)}, (34)

for j ∈ [0, n]Z\{i}. Equivalently, Ri,j
θ consists of all ρ ∈

[0, ρθ] that satisfy the following equation:

αρ2 + βρ+ γ = 0, (35)

where

α := |Π1/2
i eθ|2 − |Π1/2

j eθ|2, (36a)

β := 2(xj − xi)
T
Πjeθ, (36b)

γ := |Π1/2
j (xi − xj)|2 + µi − µj . (36c)

Note that if ρ ∈ Ri,j
θ , then the point p := xi + ρeθ will

belong to Γθ ∩ Bi,j . Let P i,j
θ := {p ∈ [xi, xθ[: p = xi +

ρeθ, ρ ∈ Ri,j
θ }. Note that there is an (obvious) one-to-one

correspondence between the point-sets P i,j
θ and Ri,j

θ , which

may both be empty for some j 6= i. Now, let

Ri
θ := ∪j 6=iRi,j

θ , P i
θ := ∪j 6=iP i,j

θ . (37)

Note that a point p ∈ P i
θ\{xi, xθ} is necessarily equidistant

from the i-th agent and at least a different agent from the same
extended network. This naturally leads us to the following

proposition.

Proposition 11: Let P i
θ be the point-set which is defined as

in (30). Then, P i
θ ⊇ P i

θ and thus,

P i
θ = {x ∈ P i

θ : ∆i(x;X) = 0}. (38)

Proof: The proof follows readily from the definitions of

P i
θ and P i

θ .

Proposition 11 implies that for the characterization of the

set P i
θ that consists of all the roots of ∆i = 0 in [xi, xθ[,

one has to evaluate the function ∆i at the points of the finite

point-set P i
θ, which is a superset of the unknown set P i

θ . In
particular, P i

θ is comprised of all those points of P i
θ at which

∆i vanishes and only them.

B. Line search algorithm for the computation of fθ(xi) and

gθ(xi)

Next, we present an algorithm that computes fθ(xi) and

gθ(xi) for a given θ ∈ [0, 2π[ based on the previous discussion
and analysis. The main steps of the proposed algorithmic

process can be found in Algorithm 1. In particular, the first

step is to compute the point-set P i
θ (line 5). If P i

θ = ∅,
then we set fθ(xi) and gθ(xi) to be equal to, respectively,

[xi, xθ] and {xθ} and the process is complete (lines 6-7).

If P i
θ 6= ∅, we characterize all of the points in P i

θ that
correspond to the roots of the equation ∆i = 0 in [xi, xθ[ to
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form the point-set P i
θ in accordance with Proposition 11 (line

8). Next, we apply a permutation to the point-set P i
θ∪{xi, xθ}

to obtain the point-set Pi
θ = {pm : m ∈ [1,M + 1]Z}

whose points are ordered in increasing distance from xi as

in (31) (lines 9-10). Then, we start an iterative process for

the characterization of the index sets Mf and Mg, with
Mf = M+ and Mg = M+

g ∪ M−
g (lines 11-25), where

the index sets M+, M+
g and M−

g are defined as in Propo-

sition 9. Finally, we set fθ(xi) := ∪m∈Mf
[pm−1, pm] and

gθ(xi) := {pm ∈ Pi
θ : m ∈Mg} (lines 26-27).

Note that after the computation of gθ(xi), then, in view of

Proposition 9, one can compute an approximation of bd(V i)
by computing gθ(xi) for all θ ∈ Θ, where Θ is a finite point-
set whose points define a partition of [0, 2π].

Algorithm 1 Computation of point-sets fθ(xi) = V i ∩Γθ and
gθ(xi) = bd(V i) ∩ Γθ

1: procedure CELL COMPUTATION

2: Input data: X , {(Pℓ, µℓ) : ℓ ∈ [0, n]Z}
3: Input variables: i, θ
4: Output variables: fθ(xi), gθ(xi)
5: Find P i

θ
6: if P i

θ = ∅ then

7: fθ(xi)← [xi, xθ], gθ(xi)← {xθ} return

8: Extract point-set P i
θ from P i

θ based on Proposition 11

9: Pi
θ ← P i

θ ∪ {xi, xθ}.
10: Re-arrange points in Pi

θ = {pm : m ∈ [0,M + 1]Z}
based on increasing distance from xi according to (31)

11: Mf ← ∅, M+
g ← ∅, M−

g ← ∅
12: for m = 1 : M + 1 do

13: x̂← 1
2 (pm−1 + pm) ⊲ x̂: midpoint of Im

14: ∆̂← ∆i(x̂;X)
15: if ∆̂ > 0 then Mf ←Mf ∪ {m}
16: if m < M + 1 then

17: x̂′ ← 1
2 (pm + pm+1) ⊲ x̂′: midpoint of Im+1

18: ∆̂′ ← ∆i(x̂
′;X)

19: if ∆̂ > 0 and ∆̂′ < 0 then

20: M+
g ←M+

g ∪ {m}
21: if ∆̂ < 0 and ∆̂′ > 0 then

22: M−
g ←M−

g ∪ {m}
23: if ∆̂ > 0 and m = M + 1 then

24: M+
g ←M+

g ∪ {m}
25: Mg ←M+

g ∪M−
g

26: fθ(xi)← {[pm−1, pm] : m ∈Mf}
27: gθ(xi)← {pm : m ∈ Mg}

V. DISCOVERY OF NETWORK TOPOLOGY INDUCED BY

HQVP

In order to solve Problem 1 in a distributed way, it is

necessary that the i-th agent can discover a superset of its
neighbors in the topology of HQVP before even computing

its own cell. Next, we characterize an upper bound on the

distance of the i-th agent, measured in terms of δi, from the
points in its own cell.

Proposition 12: Let Ei := Eℓi,0(P−1
i,0χi,0;P

−1
i,0 ). Then,

δi(x;xi) ≤ δi, ∀ x ∈ V i, (39)

where δi := max{δi(x;xi) : x ∈ bd(Ei ∩ S)}.
Proof: Because δi(x;xi) is a convex quadratic function,

we conclude that its restriction over the convex and compact

set Ei ∩ S attains its maximum value in the latter set and in
addition, at least one of its maximizers belongs to the boundary

bd(Ei ∩ S) of the same set. Consequently,

δi = max{δi(x;xi) : x ∈ Ei ∩ S}
= max{δi(x;xi) : x ∈ bd(Ei ∩ S)}.

Inequality (39) follows from the set inclusion (21).

Proposition 13: Let us consider the index-set Ñi which is

defined as follows:

Ñi := {ℓ ∈ [0, n]Z\{i} : δℓ(x;xℓ) ≤ δi, ∀x ∈ bd(Ei ∩ S)},
where δi := max{δi(x;xi) : x ∈ bd(Ei ∩ S)}. Then, the set

inclusion Ñi ⊇ Ni holds true.

Proof: In view of Proposition 2, all points in

bd(V i)\bd(S) are equidistant from at least one different

agent from the same network, that is, for any point x ∈
bd(V i)\bd(S), there exists jx ∈ [0, n]Z\{i} (the index jx
depends on x) such that δi(x;xi) = δjx(x;xjx ). Thus, in view

of Definition 2, jx ∈ Ni. Now let ℓ 6= i and let us assume

that ℓ ∈ Ñ c
i , where Ñ c

i := {ℓ ∈ [0, n]Z\{i} : ℓ /∈ Ñi}. Then,

δℓ(x;xℓ) > δi, ∀x ∈ bd(Ei ∩ S). But, in view of Proposi-

tion 12, δi(x;xi) ≤ δi, ∀x ∈ V i ) bd(V i); consequently,
there is no point x ∈ bd(V i) such that δi(x;xi) = δℓ(x;xℓ).
Thus, ℓ ∈ N c

i where N c
i := {ℓ ∈ [0, n]Z\{i} : ℓ /∈ Ni}, which

implies that Ñ c
i ⊆ N c

i . We conclude that Ñi ⊇ Ni and the

proof is complete.

Next, we will leverage Proposition 13 to show that the i-
th agent can find a subset of the spatial domain S that will
necessarily contain its neighbors without having computed V i.

Proposition 14: Let i ∈ [1, n]Z and let Ai denote the

compact set enclosed by the closed curve Ci : [0, 2π] → R2

with

Ci(φ) := P
−1
i,0χi,0 +

√
ℓi,0P

−1/2
i,0 eφ

+ (
√
r/‖P−1/2

0 P
1/2
i,0 eφ‖)P−1

0 P
1/2
i,0 eφ, (40)

where eφ := [cosφ, sinφ]T. Then, all the neighbors of the

i-th agent lie necessarily in Ai (or Ai ∩ S), that is,

xℓ ∈ Ai ∩X, ∀ ℓ ∈ Ni. (41)

Proof: Let w ∈ bd(Ei), where Ei :=
Eℓi,0(P−1

i,0χi,0;P
−1
i,0 ), and let us consider a point z such

that the intersection of the ellipsoid Eri(z;P−1
0 ), where

ri := δi − µ0 (note that ri > 0 in view of Assumption 2),

with Ei corresponds to the singleton {w}, that is,

{w} = Ei ∩ Eri(z;P−1
0 ) = bd(Ei) ∩ bd(Eri(z;P−1

0 )).

Because w ∈ bd(Ei) ∩ bd(Eri(z;P−1
0 )),

0 = ‖P1/2
i,0 (w −P

−1
i,0χi,0)‖ −

√
ℓi,0 = ‖P1/2

0 (w− z)‖ − √ri,
which implies that there exist φ, ϕ ∈ [0, 2π[ such that

w = P
−1
i,0χi,0 +

√
ℓi,0P

−1/2
i,0 eφ = z+

√
riP

−1/2
0 eϕ,

where eφ := [cosφ, sinφ]T and eϕ := [cosϕ, sinϕ]T. Thus,

z = P
−1
i,0χi,0 +

√
ℓi,0P

−1/2
i,0 eφ −

√
riP

−1/2
0 eϕ.
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The normal vectors of the ellipsoids Ei and Eri(z;P−1
0 ) at

point w (contact point) are anti-parallel, that is, there exists

λ > 0 such that

∂
∂x

(
(x−P

−1
i,0χi,0)

T
Pi,0(x−P

−1
i,0χi,0)− ℓi,0

)∣∣
x=w

= −λ ∂
∂x

(
(x− z)T

P0(x− z)− ri
)∣∣

x=w

,

from which it can be shown (see, for instance, Lemma 5 in

[32]) that

eϕ = −(1/‖P−1/2
0 P

1/2
i,0 eφ‖)P−1/2

0 P
1/2
i,0 eφ

and thus, we conclude that z = Ci(φ) where Ci(φ) is defined

in (40).

Now, let Ai be the compact set enclosed by the closed curve
Ci. We will show that all the neighbors of the i-th agent are

located in Ai, that is, Ai ) {xk ∈ X : k ∈ Ni}. In view

of Proposition 1, the set inclusion Eri(z;P−1
0 ) ) Eri(z;P−1

ℓ )
holds true for all z ∈ Ci and for all ℓ 6= i. Now, for a given

z ∈ Ci, we have that

δ0(x; z) = (x− z)T
P0(x− z) + µ0 = δi,

for all x ∈ bd(Eri(z;P−1
0 )) whereas

δℓ(y; z) = (y − z)T
Pℓ(y − z) + µℓ = δi + µℓ − µ0,

for all y ∈ bd(Eri(z;P−1
ℓ )). Because, µℓ − µ0 ≥ 0, we con-

clude that max{δℓ(y; z) : y ∈ Eri(z;P−1
ℓ )} ≥ max{δ0(x; z) :

x ∈ Eri(z;P−1
0 )} which together with the set inclusion

Eri(z;P−1
0 ) ) Eri(z;P−1

ℓ ) imply that δℓ(y; z) > δi for all
y ∈ Ei ⊇ Ei ∩ S ⊇ V i (the last set inclusion follows from

Proposition 5). Therefore,

δℓ(x; z) > δi ≥ max{δℓ(y;xi) : y ∈ V i}, ∀x ∈ V i. (42)

Hence, there is no point x ∈ bd(V i) such that δℓ(x; z) =
δℓ(x;xi) for any z ∈ Ci. Thus, in view of Proposition 2, it
follows that ℓ /∈ Ni and the proof is complete.

Proposition 14 implies that the neighbors of the i-th agent

are necessarily confined in Ai ∩ S which is known to this
agent before computing its cell V i. In practice, the i-th agent

can communicate and exchange information directly with its

neighbors (e.g., by means of point-to-point communication)
provided that its communication radius ηi > 0 is sufficiently

large such that its communication region Bηi
(xi) ⊇ Ai ⊇

Ai ∩ S.

Proposition 15: The neighbors of the i-th agent are neces-
sarily located in the communication region Bηi

(xi) of the i-th
agent, that is,

Bηi
(xi) ⊇ {xk ∈ X : k ∈ Ni}, ∀ηi ≥ ηi (43)

where ηi := maxφ∈[0,2π] ‖Ci(φ) − xi‖, with Ci(φ) defined as

in (40).

Proof: By the definition of ηi, we have that

Bηi
(xi) ) {Ci(φ) : φ ∈ [0, 2π]} = bd(Ai),

and thus Bηi
(xi) ⊇ Ai, for all ηi ≥ ηi. Because Ai contains

all the neighbors of the i-th agent in view of Proposition 14,

then so does the closed ball Bηi
(xi), for any ηi ≥ ηi. Thus,

the set inclusion (43) holds true.

Proposition 16: Let I ⊆ Ni ⊆ Ñi ⊆ [0, n]Z, where the in-

dex sets Ni and Ñi are defined as in (6) and Proposition 13, re-

spectively, and let ∆I
i (x) := minℓ∈I\{i} δℓ(x;xℓ)− δi(x;xi).

Then

∆I
i (x;xi) = ∆i(x;xi) = 0, ∀x ∈ bd(V i)\bd(S), (44)

where ∆i(x;xi) is defined as in (25).

Proof: By definition, ∆I
i (x) ≥ ∆i(x;X), for all x ∈ S,

given that the min operator in the definition of ∆I
i is applied

over an index set which is a subset of the one that appears in

the definition of ∆i in (25). In addition, in view of Prop. 7,

∆i(x;X) = 0 for all bd(V i)\bd(S), which implies that
∆I

i (x) ≥ 0 for all x ∈ bd(V i)\bd(S). Next, we show

that the previous non-strict inequality can only hold as an

equality. Let us assume that there exists z ∈ bd(V i)\bd(S)
such that ∆I

i (z) > 0. However, since ∆i(z;X) = 0, there

is jz /∈ I such that δ(z;xi) = δ(z;xjz ), which implies that

the agent jz is a neighbor of the i-th agent, or equivalently,
jz ∈ Ni. However, jz /∈ I and we know that, by hypothesis,

I ⊆ Ni; thus, we have reached a contradiction and the proof

is complete.

Remark 7 Proposition 16 implies that the Voronoi cell V i

and its boundary bd(V i), which are fully characterized in

Proposition 9, can be computed in a distributed way that relies
on the exchange of information of the i-th agent with only the

set of agents whose index belongs to Ñi ⊇ Ni (the latter set

of agents contains necessarily the set of neighbors of the i-
th agent in view of Proposition 13). In other words, the cell
V i and its boundary bd(V i) can be computed in a distributed

way, which is a key result of this work.

Remark 8 Let us assume that the i-th agent can communicate
with all of its teammates in order to compute the point-set

P i
θ , which according to Proposition 8 plays a key role in the

complete characterization of V i and bd(V i). For a given θ ∈
[0, 2π[, the point-set P i

θ will consist of M points, which means

that the i-th agent will have to exchange at least M messages
with the other agents from the same network (assuming the

exchange of one message for each point in P i
θ ). For each j 6= i,

there are at most two corresponding points in P i
θ (the quadratic

equation (35) has at most 2 solutions whose corresponding

points lie in S). Thus, in the worst case M = 2n. The most

expensive part of the proposed partitioning algorithm is the
ordering of the points in P i

θ (equivalent to sorting a list) in

accordance with (31) to construct the (ordered) point-set Pi
θ

which has worst-case time complexity in O(n log(n)). Let ni

denote the number of the agents which are located in Ai ∩S,

which is a compact subset of S that contains all the neighbors

of the i-th agent in view of Prop. 14. Then, the worst-time
complexity for ordering the points of P i

θ that lie in Ai ∩ S is

in O(ni log(ni)). We conclude that the smaller the ratio ni/n
is, the more substantial the advantages of using the proposed
distributed approach over a centralized approach are expected

to be. It is actually possible to obtain an a priori estimate
of the ratio ni/n if we assume that, for instance, the agents’

locations are drawn from a uniform distribution over S. In

this case, the latter estimate can be taken to be the ratio of the
area of Ai ∩ S over the area of S (note that the set Ai can

be completely characterized without having computed the cell

V i or any other cell of V(X ;S)).
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VI. NUMERICAL SIMULATIONS

We consider a heterogeneous multi-agent network of

n = 24 agents (plus the 0-th agent) with different distance

operators. For our simulations, we consider the spatial domain
S = [−4, 4] × [−4, 4] and we take Pi = UiDU

T
i , with

D =
[
8 0
0 3

]
and Ui =

[ cosφi − sinφi

sinφi cosφi

]
, where φi = 2πi/n,

for i ∈ [1, n]Z, and µi = 0 for all i ∈ [1, n]Z. Clearly,

λmin(Pi) = 3 and λmax(Pi) = 8 for all i ∈ [1, n]Z and
thus, the ratio λmax(Pi)/λmin(Pi) = 8/3, which indicates

the presence of strong anisotropic features. Furthermore, we
take x0 = (1/n)xi (average position of the agents of the

actual network), P0 = λ0I with λ0 ∈ {1.7, 2.9} and µ0 = 0
(note that 0 < λ0 < λmin(Pi) for all i ∈ [1, n]Z). With
this particular selection of parameters, both Assumptions 1

and 2 are clearly satisfied. The HQVPs generated by the

positions of the extended network are illustrated in Fig. 3(a)
for λ0 = 1.7 and in Fig. 3(b) for λ0 = 2.9. The partitions

in Figure 3 have been computed by means of exhaustive

numerical techniques and the obtained results are included
here mainly for verification purposes. In the same figure, we

have included contours (level sets) of the proximity metric

of each agent restricted on their own cells to illustrate the
anisotropic features in this partitioning problem. The cell V0

corresponds to the red cell which is placed near the center

of the spatial domain S. We observe that V0 is smaller when
λ0 = 2.9 than when λ0 = 1.7. Note that by letting λ0 get

closer (from below) to λmin(Pi) = 3, the matrix P0 gets
“closer” to violating Assumption 2 whereas the coverage hole

V0 becomes smaller. Thus, selection of λ0 has to strike a

balance between well-posedness of the proposed partitioning
algorithm and smallness of the coverage hole V0. Another

interesting observation is that the cell V15 in both partitions is

comprised of two disconnected components (only one of them
contains in its interior the corresponding generator x15).

Figure 4 illustrates the cells V14 and V23 of the HQVP

computed by means of the proposed distributed algorithm for

λ0 = 1.7 (Figs. 4(a)-4(b)) and λ0 = 2.9 (Figs. 4(c)-4(d)).
For these simulations, we have used a uniform grid of [0, 2π[
comprised of 360 nodes for the parameter (angle) θ. The cross

markers denote the generators x14 and x23 whereas the small
red circles and red disks correspond to the positions of the

rest of the agents of the extended network. In particular, the
red (filled) disks in Fig. 4 correspond to the neighbors of the

i-th agent in the topology of the HQVP, for i = 14 and i =
23, respectively. The red dashed-dotted curves in the same
figures indicate the boundaries of the ellipsoids E14 and E23

(recall that the latter ellipsoids contain the cells V14 and V23 in

view of Proposition 4) whereas the blue dashed curves denote
the boundaries of the sets A14 and A23 which contain the

neighbors of the i-th agent for, respectively, i = 14 and i =
23 in view of Proposition 14. We observe that the cells V14

and V23 in Fig. 4 match with their corresponding cells in

Fig. 3(a). In addition, the results illustrated in Fig. 4(a) –4(d)

are in agreement with Propositions 5 and 14. In particular, the
ellipsoids E14 and E23 contain, respectively, the cells V14 and

V23. Furthermore, the sets A14 and A23 contain the neighbors

of the i-th agent for, respectively, i = 14 and i = 23, which
are denoted as filled red disks.

We observe that the sets E14, E23, A14 and A23 in

x

y V0

V15

(a) P0 = 1.7I

x

y V0

V15

(b) P0 = 2.9I

Fig. 3. The HQVP generated by a heterogeneous network of n = 24
agents (plus the 0-th agent).

Figs. 4(a)-4(b) (corresponding to λ0 = 1.7) are significantly
smaller than their counterparts in Figs. 4(c)-4(d) (correspond-

ing to λ0 = 2.9). We conclude that although the decrease of

the value of the parameter λ0 may increase the size of the
coverage hole (cell V0), it may, on the other hand, render

the problem of discovering the network topology induced by

HQVP more meaningful in the sense that by solving the
latter problem each agent will be able to identify a rather

small subset of the spatial domain that necessarily contains

its neighbors. In this way, each agent will be able to avoid
communicating with non-neighboring agents which cannot

contribute to the process of computing its own cells. In our

simulations, we observe that while the cells V14 for λ0 = 1.7
and λ0 = 2.9 are identical and their agents have the exact

same sets of neighbors in both cases, the agent i = 14 has to
communicate with more agents (the ones that lie within the

set A14 in view of Prop. 14) and also search for the boundary

points of its own cell over a larger set (in view of the Prop. 5,
V14 is a subset of E14) when λ0 = 2.9 than when λ0 = 1.7.

The situation is similar for V23 although the changes on the

sets E23 and A23 have a less substantial effect mainly because
the agent i = 23 is isolated from the majority of its teammates

and is located close to the boundary of the spatial domain S.

VII. CONCLUSION

In this work, we have presented distributed algorithms for

workspace partitioning and network topology discovery prob-
lems for heterogeneous multi-agent networks whose agents

employ different quadratic proximity metrics. The proposed

algorithms leverage the underlying structure of the solutions
to the problems considered. In our future work, we will

explore how the proposed algorithms can be integrated in

solution techniques for distributed optimization and estimation
problems for heterogeneous networks operating in anisotropic

environments.
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