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Abstract— In this work, we consider the problem of steering
the first two moments of the uncertain state of a discrete-
time nonlinear stochastic system to prescribed goal quantities
at a given final time. In principle, the latter problem can
be formulated as a density tracking problem, which seeks
for a feedback policy that will keep the probability density
function of the state of the system close, in terms of an
appropriate metric, to the goal density. The solution to the
latter infinite-dimensional problem can be, however, a complex
and computationally expensive task. Instead, we propose a
more tractable and intuitive approach which relies on a greedy
control policy. The latter control policy is comprised of the
first elements of the control policies that solve a sequence of
corresponding linearized covariance steering problems. Each of
these covariance steering problems relies only on information
available about the state mean and state covariance at the
current stage and can be formulated as a tractable (finite-
dimensional) convex program. At each stage, the information on
the state statistics is updated by computing approximations of
the predicted state mean and covariance of the resulting closed-
loop nonlinear system at the next stage by utilizing the (scaled)
unscented transform. Numerical simulations that illustrate the
key ideas of our approach are also presented.

I. INTRODUCTION

This paper deals with the finite-horizon covariance steer-
ing problem for discrete-time stochastic nonlinear (DTSN)
systems. In particular, we consider the problem of steering
the first moment (mean) and the second central moment (co-
variance) of the uncertain state of a DTSN system to desired
quantities at a given (finite) terminal time. We will refer
to the latter problem as the nonlinear covariance steering
problem to emphasize the fact that it is the steering of the
state covariance that constitutes the most challenging and
less studied part of this stochastic control problem (steering
the state mean essentially corresponds to a standard, but not
necessarily trivial, controllability problem). Perhaps, one of
the most natural approaches to address nonlinear covariance
steering problems would be to place them under the umbrella
of PDE tracking problems in which one tries to minimize
the distance of the probability density of the state, which
evolves in space and time in accordance with the Fokker
Planck partial differential equation (PDE), from a desired
terminal density function [1]. The solution to the latter
infinite-dimensional optimization problem, however, can be a
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very complex task in general. In this work, we will employ
a more practical approach that relies on the solution of a
sequence of linearized steering problems which are in turn
reduced to tractable convex optimization problems.

Literature Review: In the special case of linear Gaussian
systems, that is, stochastic linear systems subject to Gaussian
white noise, the covariance steering problem corresponds to
a distribution steering problem, in the sense that the mean
and covariance of the terminal state uniquely determine the
(Gaussian) probability distribution of the latter state. Infinite-
horizon covariance steering (also known as covariance con-
trol) problems for both continuous-time and discrete-time
Gaussian systems have been studied extensively by Skelton
and his co-authors in a series of papers (see, for instance,
[2]-[6]). The finite-horizon problem for the continuous time
case was recently revisited and studied in detail in [7],
[8] whereas the same problem for the discrete-time case
was studied in [9]-[11]. The previous references assume
perfect state information (that is, the realization of the state
process at each state can be measured perfectly). Covariance
control problems in the case of incomplete and imperfect
state information have been studied in [12]—-[14]. Nonlinear
density steering problems for feedback linearizable nonlinear
systems were recently studied in [15]. An iterative covariance
steering algorithm for nonlinear systems based on a simple
linearization of the system dynamics along reference state
and input trajectories can be found in [16]. Stochastic non-
linear model predictive control with probabilistic constraints
can be found in [17]-[20].

Main Contribution: In this work, we propose a greedy,
yet practical and intuitive, solution approach to the nonlinear
covariance steering problem. The proposed approach consists
of three key steps which are applied iteratively. In the first
step, we linearize the system dynamics around the current
state of the system (rather than along a reference trajectory).
The particular linearization scheme relies on information
available at the current stage and in particular, knowledge
of approximations of the mean and covariance of the current
state of the system. At each new stage, a new linearization
will be computed to account for the new information that
becomes available at that stage. We refer to the first step
as the recursive linearization step (RL step). In the second
step, we compute a feedback control policy (sequence of
feedback control laws) that solves a relevant linear, Gaussian
covariance steering problem based on available approxima-
tions of the current state mean and covariance and the linear
state space model computed at the LN step. The latter policy



can be computed in real-time by means of tractable convex
optimization techniques by leveraging the results of our
previous work in covariance steering problems for Gaussian
linear systems [9]-[11]. From the computed policy, only the
first control law is executed at each stage. We refer to the
latter step as the linearized Gaussian covariance steering
step (LGCS step).

In the third step, we compute approximations of the one-
stage-predictions of the state mean and covariance of the
closed-loop system that results by applying the feedback
control policy computed at the LGCS step. To compute
these approximations, we employ the (scaled) unscented
transform [21], [22]. The latter transform relies on the
propagation of a small number of points, which are known
as “sigma points,” in future stages. These points are selected
in a deterministic way such that their mean and variance are
compatible with prior information [21]. The predicted state
mean and covariance of the closed-loop system determine a
Gaussian (or normal) approximation of the (predicted) state
statistics of the next state. For this reason, we shall refer to
the latter step as the predictive normalization step (PN step).
This three-step process is repeated iteratively until the final
stage, when it is expected that the (terminal) state mean and
covariance are sufficiently close to the goal quantities.

The previously described iterative process corresponds to
an on-line (or real-time) greedy control policy for nonlinear
covariance steering. Because predictions of the state statistics
in this approach do not go beyond the next stage, there cannot
be explicit performance considerations as in a typical model
predictive control approach [23]. Instead, the emphasis of the
proposed greedy approach is placed on satisfying as closely
as possible the boundary conditions (by steering the state
mean and state covariance to desired prescribed quantities).

Structure of the paper: The rest of the paper is organized
as follows. In Section II, we formulate the nonlinear covari-
ance steering problem. A greedy algorithm for the solution
to the latter problem is presented in Section III. Furthermore,
we present numerical simulations in Section IV and we
conclude the paper with a number of remarks and directions
for future research in Section V.

II. PROBLEM FORMULATION

A. Notation

We denote by R" the set of n-dimensional real vectors.
Given integers «, 8 with « < (3, we denote by [«, 5]q4,
the discrete interval from « to 3. We denote by E[-] the
expectation operator. Given a random vector =, we denote by
E[z] its mean and by Cov[z] it covariance, where Cov|z] :=
E[(z — E[z])(z — E[z])T]. The space of real symmetric
n X n matrices will be denoted by S,,. Furthermore, we will
denote the convex cone of n X n (symmetric) positive semi-
definite and (symmetric) positive definite matrices by S; and
S}, respectively. Finally, we write bdiag(As, ..., A) to
denote the block diagonal matrix formed by the matrices A;,

ie{l,...,¢}.

B. Problem setup

We consider the following discrete-time nonlinear stochas-
tic system

z(t+1) = f(2(t),u)) +w(t), (1)
for ¢ € [0, N — 1]y, where N is a positive integer, and
x(0) = xo, where zy is a random vector with E[zo] =

po and Covlzg] = Xo, with gg € R"™ and Xy € ST
be given quantities. Furthermore, f(-) is a C! function.
In addition, zo.y = {z(t) € R™ : ¢t € [0,N]s} and
ug:n—1 = {u(t) € R™: t € [0, N —1]q} correspond to the
state and input (random) processes, respectively. In addition,
wo.ny—1 = {w(t) € R" : t € [0,N — 1]4} corresponds
to the noise process which is assumed to be a sequence
of independent and identically distributed random variables
with

E [w(t)] =0, E [w(t)w(r)'] = 6(t, )W,  (2)

for all t,7 € [0, N — 1|4, where W; € S}, and (¢, 7) := 1,
when t = 7, and 4(t, 7) := 0, otherwise. Furthermore, x is
independent of wg.n_1, that is,

E [zow(t)'] =0, E[w(t)z] =0, (3a)

for all t € [0, N — 1],4. Finally, throughout this paper we
assume that we have perfect state information, that is, at each
stage t, the realization z(t) of the state process is perfectly
known (measured).

Because the system given in (1) is nonlinear, even if the
initial state is drawn from a normal distribution and the
noise is white Gaussian, it is not guaranteed that the state at
future stages will remain Gaussian. For this reason, it is not
meaningful to require that the terminal state of the system
should be steered to a prescribed normal distribution as in the
standard formulation of a finite-horizon covariance steering
problem for Gaussian linear systems. A more practical ap-
proach would be to require that the state mean and covariance
of the nonlinear system attain (exactly or approximately)
prescribed quantities. In particular, let us denote by g (%)
and X (t) the state mean and covariance at stage ¢, that is,

pa(t) := Elz(1)];

The class of admissible control policies is taken to be the set
of sequences of control laws that are measurable functions
of the realization of the current state of the system. Then,
the nonlinear covariance steering problem can be formulated
as follows:

S (t) := Covlz(t)]. o)

Problem 1: Let g, ue € R™ and 3o, Xf € ST be given.
Find a control policy 7 := {k(t,-) : t € [0, N — 1]4)} that
will steer the system (1) from x(0) = xo with E[zg] = po
and Cov[zg] = ¥ to a terminal state z(N) with

pe(N) = pe, (B —E2(N)) €St (5)



C. Collection of Finite-Horizon Linearized Covariance
Steering Problems

Next, we associate the DTSN system (1) at stage ¢t =
k € [0, N —1]4 with a discrete-time stochastic linear system.
The latter system corresponds to a linearization of the DTSN
system around a given point (ug, ;) € R™ x R™ which is
given by

2(t+1) = Ap(2(t) — p) + Br(u(t) — vi)

+ 7+ w(t), (6)
for t € [k, N — 1] and z(k) = z, with E[z;] = p and

Cov|zg] = Xk, where pi € R", ) € ST, and vy, € R™.
In addition, it is assumed that

E [zkw(t)T] =0, E [w(t)zﬂ =0,

for all t € [k, N —1]4. Furthermore, A; and By, are constant
(time-invariant) matrices whereas ry, is a constant vector, and
in particular,

(7a)

9 0
A= g0y B g f (0 Wy 9
k= f(bks Vk)- (&0

We can equivalently write (6) in a slightly more compact
form as follows:

2(t+1) = Apz(t) + Bru(t) + di + w(t), )

where dj, := *Ak,uk — Brug + rg.

We will refer to the latter linear model as the k-th
linearized state space model (¢ = k corresponds to the initial
stage). It is worth noting that the triple (A, By, 7)) remains
constant throughout the whole horizon [k, N — 1];. However,
for a different k, one obtains a different linearized sys-
tem with a different but time-invariant triplet (A, B, %)
Therefore, (6) describes essentially a collection of N — k
different (one for each k) time-invariant systems. An implicit
assumption here is that the pair (A, By) is controllable.

An alternative linear model can be derived if one linearizes
the DTSN system (1) around (ug, v¢) € R™ x R™, where fis
is the goal mean of the terminal state and v¢ is such that
e = f(,uf,l/f). Then, Ak = Af, Bk = Bf, and r, = rg,
where

0 0
A= £f(x,u) f;’zfﬁ’ B = %f(x,u) = (10a)
e = f(ue, ve), (10b)

for all k € [0, N — 1]. The previous linearization assumes
that the DTSN system operates “near” the terminal target
point (uf, v¢) € R™ x R™.

Note that both of the previously described linearized
models are different from the one obtained after linearizing
a nonlinear system around a given pair of reference state
and input sequences Zo.n = {Z(t) : ¢ € [0,N]q} and
to:n—1 = {a(t) : t € [0,N — 1]4}, respectively, as is
proposed, for instance, in [16]. In the latter case, one would

consider a single time-varying linearized system described
by the following equation:

z(t+1) = A(t)z(t) + B{t)u(t) + r(t) +w(t), (11)

for t € [0, N — 1]4, where A(t), B(t), and r(¢) are time-
varying matrices which are defined as follows:

A(t) == g

r(t) = f(2(t), u(t)) —
for all t € [0, N — 1]g.

However, finding a reference state sequence Zy.y and a
corresponding (compatible) reference input sequence ug. y—1
may be a non-trivial task. In particular, the reference state
sequence should satisfy the desired boundary conditions
whereas the reference input sequence should generate the
corresponding reference state sequence.

B(t) := % (z,u)

A(t)z(t) — B(t)u(t),

(2, u) z=%(t)"
u=u(t)

=z(t)’
=u(t)

Next, we will formulate a linearized covariance steering
problem for the system described in (6) for a given k €
[0, N — 1]4. The class U of admissible control policies for
the latter problem will consist of sequence of control laws
{¢r(t,"): t €[k, N—1]4}, where

¢k(t7z) = Uk(t) + f{}<;(lf),27 te [k,N — 1}d~ (12)

We next formulate the linearized covariance steering based
on information available at stage ¢ = k.

Problem 2 (k-th linearized covariance steering problem):

Let pr,pue € R™ and i, % € SfT be given.
Among all admissible control policies S
{r(k,-),....,0u(N — 1,))} € U, where ¢y(t,-) satisfies

(12) for t € [k,N — 1]q, find a control policy wj} that
minimizes the following performance index

Z¢kt2

subject to the recursive dynamic constraints (6) and the
following boundary conditions:

E[Zk] = Uk,
Elz(N)] = ps, (X

Tor(t, 2(t)]  (13)

COV[Zk] = Ek,
— Cov[z(N)]) €S}

(14a)
(14b)

Remark 1 The choice of the performance index is to ensure
that the control input will have finite energy and thus
avoid excessive actuation (as we have already mentioned,
performance considerations are not of primary interest in
this work). Problem 2 does not correspond to a standard
finite-horizon linear quadratic Gaussian (LQG) problem due
to the presence of the (non-standard) terminal positive semi-
definite constraint (3f — Cov[X,(N)]) € S;7. Although we
do not explicitly consider state or input constraints in the
formulation of Problem 2, we will present an optimization-
based solution which is also applicable to more general
problem formulations including those with input and/or state
constraints as in [11].



Remark 2 Note that finding a policy wyj that solves
Problem 2 is equivalent to finding a sequence
{(vg(t), Kx(t)) : t € [k, N — 1]4}. The main idea of
the proposed solution approach is that the first control
law of the control policy that solves the k-th linearized
covariance steering problem (Problem 2) can be used as
the control law corresponding to the stage ¢ = k from the
control policy that is a candidate solution to the nonlinear
covariance steering problem (Problem 1). Later on, we will
see that this idea will have to be applied iteratively in the
sense that the data of the linear covariance problem will
change at each stage, and consequently, the corresponding
feedback policy has to be updated accordingly to reflect the
new information available.

D. Solution to the k-th Linearized Covariance Steering

Next, we will present the main steps of the solution to the
k-th linearized covariance steering problem (Problem 2). To
this aim, Eq. (6) can be written in compact form as follows:

z =Gz, + GFu + GF (w + dy), (15)
where
z = [z(k)T, ol z(N)T]T, u = [u(k:)T, oo u(N — 1)T]T
w = [wk),...,w(N -V d,:=[d,...,d]".

In addition, Gﬁ, fov, and G’j are defined as follows:

0 0 e 0
By, 0 e 0
Gk' AkBk Bk 0
AYTITREB ANT2ED L By
0 0 0
I 0 0
AN ANk
T
kE._ —\T
GE[r ap (A

In view of (12), an admissible control sequence can be
written compactly a follows:

u=Kpz+ vy, (16)
where
1y = [bdiag(Kx(k), ..., Ky(N — 1)), 0],
Vg = [Uk(k)T7 s 7Uk(N - 1)T}T'
Consequently, after plugging (16) into (15), we can ex-

press the closed-loop dynamics in compact form as follows:

z =Tz, + TFo + TF (w + dy.) (17)

where
T .= (I - GFKc,)~1GF (18a)
TF .= (I - GFrc,)~'GE (18b)
T .= (I - GFKc,) " 1GE. (18¢)

Note that the matrix (I — GFICy) corresponds to a block
lower triangular matrix whose diagonal blocks are equal to
the identity matrix (for more details, the reader may refer

to [11], [24]). Thus, (I — GFKC,)~1 is well-defined.

In view of equation (17), (16) becomes

u = Hfz, + Hrv, + HE (w + dy), (19)
where
H' = KC.(I - GFKp)1GH (202)
HF = T4+ Kp(I - GFC) "' GE (20b)
HY = KC.(I - GFiC,) " 1GE. (20c)

After plugging (19) in (13), one can obtain an expression
for the (predicted) cost as a function of the decision variables
ICi and wvy. In particular,

Ji(wy) = E[u"u] = trace(E [uu'])
= trace(E[(Hiz, + HE vy, + HE (w + dy))
x (HEzj, + Hvp + HE (w + dk))T])
=: Ji(ICx, vi). @1

It follows readily that

Ti(ICk, vy,) = trace(HE (g + ) (HE)T
+ 28 ppof (BT + 2HE . dj (HE)T
+HF v ol (HN)T + 2H v, d] (HE)T

+HY, (Win—1 + diedp)(HE)T), (22)

where Wy.n_1 := bdiag(W, ..., Wy_1). In the previous
derivation, we have used the available information about the
statistics of zj and in particular, that E[z] = ux, Elzxz}] =
S+ pnpig

Next, we express the terminal constraints in terms of the
decision variables (KCj, vy). In particular, we have

E[2(N)] = E[Pxz] = PyE[2]
=Py (TEpup + TEvp + TE dy,)

= f(Kk,vk), (23)

where Py := [0,...,0, I]. Therefore, the constraint
E[2(N)] = pr can be written as follows:

Ci(Ki,vi) =0, Ci(Ky,vp) = (K, vr) — ps, (24)

where f(ICk, vy) is given in (23). Furthermore, we have that

Cov[z(N)] = E[2(N)2(N)'] — pepif, (25)



where
E[z(N)z(N)'] = PNE[(TEzg + Thoy, + T4 (w + dy))

x (Thzj, + Ty, + TE (w + dy)) ' | PR
=: g(Kr, vi). (26)

Therefore, the terminal state covariance constraint: (X¢ —
Y.(N)) € S, can be written as the following positive semi-
definite constraint:

CQ(’Ck,Uk) c S:,
Co (K, vk) := Sg — g(IC, vk) + piepiy
where g(KCy,vy,) is defined in (26).

Problem 3: Find a pair (KCj;, v}) that minimizes the pre-
dicted cost Jk(ICk, vy ) subject to the constraints:

C1(Kg,vr) =0, Co(Ky,vi) €S}, (28)

where Cy (ICx, vi) and Co(Ky, vy) are defined in (24) and
(27b), respectively.

(27a)
(27b)

Problem 3 is not convex as is explained in [11]. One can
associate it, however, with a convex program by applying
suitable transformations to the pair of decision variables
(ICk, vg) in order to obtain a new pair of decision variables,
(L, vy), which are defined as follows [24]:

L:k = ’Ck(f — GZ’C}C)_I,
vp = (I + L,GF)vy.

(29a)
(29b)

As is shown in [9], [11], the predicted cost can be
expressed as a convex function of the new decision
variables (Lj,vy); this new expression is denoted as
J (L, V). In addition, the constraint functions C; (K, vg)
and Co(Ky,vy) become Ci(Ly,vy) and Co(Ly,vy), re-
spectively. In particular, C; (L, ) corresponds to an affine
function in (L, v ) whereas the constraint Co (L, Vi) € S,
can be expressed as an LMI constraint in terms of (L, vy)
as is shown in [9], [11], [13]. The reader may refer to the
latter references for the technical details on the conversion
of the latter problems into tractable convex programs.

E. Closed-Loop Nonlinear Dynamics and Propagation of
Uncertainty

Now let m = {(t,) : t € [0, N — 1]} be an admissible
control policy for Problem 1. Then, the state space model of
the closed loop system is given by

w(t+1) = fa(t, z(t) + w(t), (30)

where
fa(t,x) = f(z,k(t, x)). 31
Next, we describe the main steps for the propagation of the
mean and the covariance of the uncertain state of the nonlin-
ear system described by (30) based on the (scaled) unscented
transform [21], [22]. To this aim, let us assume that the mean
& := E[z(k)] and the covariance Xy, := Cov[z(k)] of the

state of (30) are known at stage k (in practice only estimates /
approximations of the latter quantities will be known). Then,
we will compute 2n + 1 (deterministic) points, known as
sigma points, by using the following equation:

B if i =0,
,(:) = e +vVn+A 2116/26“ if ¢ € [1,n]q,
=Vt e, ifi€n+1,2n]a,

(32)

where {e; : i € [1,n]q} denotes the standard orthonormal
basis of R™. To each sigma point, we associate a pair of
gains (fy,C ,(5( ) where

(i) _ A/ (A+n), if1=0 (33)
/@A +n), ifie (1,20,
and
(i) _ 1—a2+5+)\/()\+n), ifz’zO, (34)
o 1@ +n), if i € [1,2n]q.

The parameter « determines the spread around pij, whereas 3
is a positive number and \ := a?n—n. Typically, 0 < a < 1
and 8 = 2 for Gaussian approximations as suggested in [22],
[25].

Subsequently, we propagate the set of sigma points
{0'](;) : i € [1,2n + 1]4} at the next stage t = k + 1 to

obtain a new set of points {5’1(:_3_1 : i €[1,2n+ 1]4}, where

&l(c:-l fa(k, Uk))7

Using the point-set {&kﬁrl i € [0,2n]q}, one can
approximate the (predicted) state mean and state covariance
at stage t = k + 1 as follows:

- [0, 27’L]d (35)

o(k+1) ka e (36)
(k+1) Z 5 — fiz(k +1))
x (a,ggl — fa(k+ 1)+ Wi,  (36b)

where W}, € S; corresponds to the noise covariance at stage
t=k.

III. A GREEDY ALGORITHM FOR NONLINEAR
COVARIANCE STEERING

The proposed algorithm consists of three main steps. We
will describe these steps starting at stage t = k, where k €
[0, N — 1]4, and we will assume that approximations of the
state mean [iy, the state covariance f]k and the input mean
D are known (if k& = 0, then we set fix = f10, Lx = 2o,
and ﬁk = 0).

We refer to the first step as the recursive linearization
step (RL step). In the RL step, we construct a linearization
(Ag, By, 7)) of (1) around the point (fix, 7 ) by using (8a)—
(8b). Note that the approximations /i and 7, will be updated



at the end of each stage and consequently, the linearized
model will also have to be updated at each new stage
to reflect the new information and hence the “recursive”
qualifier in the name of this step. We will write

(Ag, Bi, i) = Al fik, o5 ()] (37)

In the second step, which we refer to as the linearized
Gaussian covariance steering step (LGCS step), we compute
a feedback control policy (sequence of feedback control
laws) that solves the k-th linearized covariance steering
problem (Problem 2). To solve the latter problem, we need to
know the linearized model (Ay, By, ), the approximations
of the predicted mean and covariance (ﬂk,ik) at stage
k assuming that the goal state mean and state covariance
(e, X¢) are known a priori. The triplet (A, Bg,7k) is
computed in the RL step, whereas the pair (ji, %) is
computed at the previous stage (by executing the third step
of the algorithm that will be discussed shortly next). The
policy =} that solves the k-th linearized covariance steering
problem with boundary conditions

E[z(k)] = ik, Cov[z(k)] = i,
E[z(N)] = ps, (5 — Cov[z(N)]) € ST,

(38a)
(38b)

where z corresponds to the state of the linearized system.
We write

w; = Skl:Ak:aBkarkaﬂk7f/k7ik]a (39)

where @} = {¢7(k,-),..., ¢} (N —1,-)}. The computation
of the control policy =}, can be done in real-time by means
of robust and efficient convex optimization techniques (for
details the reader should refer to [9], [11]). We refer to the
latter step as the linearized Gaussian covariance steering
step (LGCS step). After the computation of wj, we extract
from it its first control law, ¢} (k, -), that is, the control law
that corresponds to stage k. We write

Oi(k, 2) = Pr [w] = vjg(k) + K (F)z,

where P4 (+) denotes the truncation operator that truncates all
the elements of a sequences except from the first one. Then,
we set the control law k*(k,-) corresponding to the k-th
element of the feedback control policy n* for the original
nonlinear covariance steering problem (Problem 1) to be

equal ¢} (k,-), that is,
K (k,xz) = ¢p(k,x) = vi (k) + K} (k)x, (40)

where x is the state of the original nonlinear system.
Consequently, the one-stage transition map for the closed-
loop dynamics based on information available at stage k is
described by the following equation:

z(k+1) = fE(k,2) + w(k), (41)
where
[k, ) o= f(z, 5% (k,2)) = f(z,v5(k) + Ki(k)x). (42)

In the third step, we compute approximations fi,(k + 1)
and 3, (k + 1) of the (predicted) mean and covariance of

the state of the closed-loop system at stage ¢ = k£ + 1. To
this aim, we first compute a set of sigma points {6 : k €
[0,2n]4} and their corresponding weights (’y,(j),d,(:)) based
on equations (32) and (33)-(33), respectively. Next, we
compute the point-set {6411 : k € [0,2n]s} by using
equation (35) and the closed loop one-stage transition map
fE(k, ) which is defined in (42). Subsequently, we compute
fiz(k 4+ 1) and 3, (k + 1) by using (36a)-(36b). The pair
(fiz(k+1), 5, (k+1)) determines a Gaussian approximation
of the statistics of the state of the closed-loop system at stage
t =k+1. We set fig+1 := fi(k+1) and 2k+1 = f]T(k+1)
Finally, we set D41 := ¢} (k+1, fig41). We refer to the third
step as the predictive normalization step (PN step). We write

(fes1, Ph 1, Sir1) o= F [fuer Sis £ (K, )] (43)

These three steps of the previously described iterative
process are repeated for all stages t € [k, N — 1|4 for
a given k € [0, N — 1]4. At the end of the process, the
predicted approximations of the state mean and covariance
are sufficiently close to their corresponding goal quantities.
The output of this iterative process will be a control policy
Trn_y =it x): te[k,N—-1)z}. Ifke[l,N —1]4,
then the policy 7. _; corresponds to the truncation of the
control policy 7* that solves Problem 1, which is comprised
of the “last” N —k elements of the latter policy. If we start the
iterative process at k£ = 0, then the output of the process is
the control policy 7* that solves Problem 1. The pseudocode
of the previous process is given in Algorithm 1.

Algorithm 1 Computation of feeback policy 7}.y_; =
{k*(t,") : t € [k, N — 1]z} that solves Problem 1
1: procedure GREEDY NONLINEAR COVARIANCE
STEERING

2: Input data: N, pg, 3¢, f(¢)

3. Input variables: k, ju,, D, Sk

4 Output variables: mg.n—1, {1z (t)}Y,, {ih(f)}é\ik
5: fort=k:N—1do A

6 (A, Bi,ry) == Alju, 20, 53]

7: @y = Si[Ar, Bi, 1o, fie, 2]

8: K*(t,-) == P1lwt]

o a(t,) = fx,k*(t,-)) X

10: (At Doy Be) = Fi [, 35 Fo (8, )]

—
—_

Trn_y = {k*(t,x): t € [k,N — 1]z}

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to illus-
trate the basic ideas of this paper. In particular, we consider
the following DTSN system:

r1(t+1) = 21 (t) + T22(1), (44a)
ot + 1) = @2(t) — 7(621(t) + Cx1(1)® + a2 (t))
+ Tu(t) + VTw(t), (44b)



100

Fig. 1. Time evolution of the sequence {E;}i,. The vertical axis
in this 3D graph corresponds to the (discrete) time-axis.

where [21(0), x2(0)]T ~ N(uo,Xo) with pg = [0, 0]T
and %y = diag(o?,02), where o1 = 2.5 and 03 = 2.0. In
addition, the desired terminal state mean and covariance are
taken to be, respectively, ur = [0, 0]T and 3¢ = diag(s?, s2),
where s; = 1.25 and s, = 1.0. For our simulations, we
consider the following parameter values: 7 = 0.01, N = 100
and ¢ = 0.05, v =0.05, § = —1, « = 0.05, and 8 = 2.

Figure 1 illustrates the time evolution of the predicted state
covariance X, (t) in terms of the evolution of the sequence
of ellipsoids {E;} ,, where

Et = {X S R2 : (X - ﬂz(t))Tﬁ:x(t)_l(X - ﬂ$(t)) = 1}’

for ¢ € [0,N]q (the ellipsoid E; is in an one-to-one
correspondence with Y., (¢)). To the desired terminal state
covariance ¢, we associate the ellipsoid Ef, where

Ep:={xeR*: (x — ue)"S; H(x — pe) = 1}.

In particular, Fig. 1 illustrates the evolution of the se-
quence {FE;}¥, in a 3D graph whose vertical axis corre-
sponds to the time-axis. Sample trajectories of the closed
loop system are illustrated in Fig. 2. The projection on the
x1 — 9 plane of the 3D graph given in Fig. 1 is illustrated in
Fig. 3. In these three figures, the black ellipses correspond
to Ey and Ef. We observe that E is very close to Er and
thus, the predicted covariance of the terminal state S is very
close to the goal covariance X¢.

The evolution of the sigma points used in the unscented
transform for the prediction of the state mean and covariance
are illustrated in Fig. 4. In particular, the red diamonds
correspond to the sigma points associated with the initial
state mean and covariance, whereas the magenta circles
correspond to the predicted sigma points generated for all
subsequent stages ¢ € [1, N]4. The sigma points correspond-
ing to the original pair (jo, Xo) and the terminal pair (p, )
belong to the ellipses & and &, respectively, where

Eo = {x €R?: (x — uo) "85 H(x — po) = 2+ A},
E = {x €R?: (x — pg) T8 (x — pe) = 2+ AL

Fig. 3. Time evolution of {E;}{_,. The black ellipses correspond
to Ep and Ex.

V. CONCLUSION

In this work, we have proposed a greedy covariance steer-
ing algorithm for discrete-time stochastic nonlinear systems.
The proposed approach relies on the solution of a sequence
of linearized covariance steering problems combined with
the (scaled) unscented transform that provides the one-stage
predictions of the mean and covariance of the state of the
closed loop system.
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Fig. 4. Time evolution of the sigma points for ¢ € [0, N]q. The
black ellipses correspond to the ellipses & and &;.



To put the presented work under the umbrella of stochastic
model predictive control, it is necessary that performance
and stability considerations as well as notions of invariance
based on reachability analysis are integrated in the proposed
algorithm. It is worth noting that the reachability analysis for
nonlinear covariance steering problems requires the charac-
terization of “admissible” sets of positive-definite matrices
from which the system can be steered to the desired state
terminal covariance in the given time horizon. To the best of
our knowledge, the latter reachability problem constitutes, at
least for the case of stochastic nonlinear systems, an open
problem. In our future work, we plan to study the latter
problem and we will also explore possible connections of this
work with modern techniques of stochastic model predictive
control.

Another important problem in the context of nonlinear
covariance steering is the problem of verification of the
results obtained with the proposed greedy algorithm. At
present, one can expect that the predicted state mean and
state covariance of the SNDT system, which are computed
by means of the unscented transform, will end up sufficiently
close to their goal quantities but this is not automatically the
case for the true state mean and state covariance of the SNDT
system. Finally, we plan to consider the case of incomplete
state information and also explore connections with recent
results on PDE tracking for distribution steering problems.
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