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Abstract— In this work, we consider the problem of steering
the first two moments of the uncertain state of a discrete-
time nonlinear stochastic system to prescribed goal quantities
at a given final time. In principle, the latter problem can
be formulated as a density tracking problem, which seeks
for a feedback policy that will keep the probability density
function of the state of the system close, in terms of an
appropriate metric, to the goal density. The solution to the
latter infinite-dimensional problem can be, however, a complex
and computationally expensive task. Instead, we propose a
more tractable and intuitive approach which relies on a greedy
control policy. The latter control policy is comprised of the
first elements of the control policies that solve a sequence of
corresponding linearized covariance steering problems. Each of
these covariance steering problems relies only on information
available about the state mean and state covariance at the
current stage and can be formulated as a tractable (finite-
dimensional) convex program. At each stage, the information on
the state statistics is updated by computing approximations of
the predicted state mean and covariance of the resulting closed-
loop nonlinear system at the next stage by utilizing the (scaled)
unscented transform. Numerical simulations that illustrate the
key ideas of our approach are also presented.

I. INTRODUCTION

This paper deals with the finite-horizon covariance steer-

ing problem for discrete-time stochastic nonlinear (DTSN)

systems. In particular, we consider the problem of steering

the first moment (mean) and the second central moment (co-

variance) of the uncertain state of a DTSN system to desired

quantities at a given (finite) terminal time. We will refer

to the latter problem as the nonlinear covariance steering

problem to emphasize the fact that it is the steering of the

state covariance that constitutes the most challenging and

less studied part of this stochastic control problem (steering

the state mean essentially corresponds to a standard, but not

necessarily trivial, controllability problem). Perhaps, one of

the most natural approaches to address nonlinear covariance

steering problems would be to place them under the umbrella

of PDE tracking problems in which one tries to minimize

the distance of the probability density of the state, which

evolves in space and time in accordance with the Fokker

Planck partial differential equation (PDE), from a desired

terminal density function [1]. The solution to the latter

infinite-dimensional optimization problem, however, can be a
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very complex task in general. In this work, we will employ

a more practical approach that relies on the solution of a

sequence of linearized steering problems which are in turn

reduced to tractable convex optimization problems.

Literature Review: In the special case of linear Gaussian

systems, that is, stochastic linear systems subject to Gaussian

white noise, the covariance steering problem corresponds to

a distribution steering problem, in the sense that the mean

and covariance of the terminal state uniquely determine the

(Gaussian) probability distribution of the latter state. Infinite-

horizon covariance steering (also known as covariance con-

trol) problems for both continuous-time and discrete-time

Gaussian systems have been studied extensively by Skelton

and his co-authors in a series of papers (see, for instance,

[2]–[6]). The finite-horizon problem for the continuous time

case was recently revisited and studied in detail in [7],

[8] whereas the same problem for the discrete-time case

was studied in [9]–[11]. The previous references assume

perfect state information (that is, the realization of the state

process at each state can be measured perfectly). Covariance

control problems in the case of incomplete and imperfect

state information have been studied in [12]–[14]. Nonlinear

density steering problems for feedback linearizable nonlinear

systems were recently studied in [15]. An iterative covariance

steering algorithm for nonlinear systems based on a simple

linearization of the system dynamics along reference state

and input trajectories can be found in [16]. Stochastic non-

linear model predictive control with probabilistic constraints

can be found in [17]–[20].

Main Contribution: In this work, we propose a greedy,

yet practical and intuitive, solution approach to the nonlinear

covariance steering problem. The proposed approach consists

of three key steps which are applied iteratively. In the first

step, we linearize the system dynamics around the current

state of the system (rather than along a reference trajectory).

The particular linearization scheme relies on information

available at the current stage and in particular, knowledge

of approximations of the mean and covariance of the current

state of the system. At each new stage, a new linearization

will be computed to account for the new information that

becomes available at that stage. We refer to the first step

as the recursive linearization step (RL step). In the second

step, we compute a feedback control policy (sequence of

feedback control laws) that solves a relevant linear, Gaussian

covariance steering problem based on available approxima-

tions of the current state mean and covariance and the linear

state space model computed at the LN step. The latter policy



can be computed in real-time by means of tractable convex

optimization techniques by leveraging the results of our

previous work in covariance steering problems for Gaussian

linear systems [9]–[11]. From the computed policy, only the

first control law is executed at each stage. We refer to the

latter step as the linearized Gaussian covariance steering

step (LGCS step).

In the third step, we compute approximations of the one-

stage-predictions of the state mean and covariance of the

closed-loop system that results by applying the feedback

control policy computed at the LGCS step. To compute

these approximations, we employ the (scaled) unscented

transform [21], [22]. The latter transform relies on the

propagation of a small number of points, which are known

as “sigma points,” in future stages. These points are selected

in a deterministic way such that their mean and variance are

compatible with prior information [21]. The predicted state

mean and covariance of the closed-loop system determine a

Gaussian (or normal) approximation of the (predicted) state

statistics of the next state. For this reason, we shall refer to

the latter step as the predictive normalization step (PN step).

This three-step process is repeated iteratively until the final

stage, when it is expected that the (terminal) state mean and

covariance are sufficiently close to the goal quantities.

The previously described iterative process corresponds to

an on-line (or real-time) greedy control policy for nonlinear

covariance steering. Because predictions of the state statistics

in this approach do not go beyond the next stage, there cannot

be explicit performance considerations as in a typical model

predictive control approach [23]. Instead, the emphasis of the

proposed greedy approach is placed on satisfying as closely

as possible the boundary conditions (by steering the state

mean and state covariance to desired prescribed quantities).

Structure of the paper: The rest of the paper is organized

as follows. In Section II, we formulate the nonlinear covari-

ance steering problem. A greedy algorithm for the solution

to the latter problem is presented in Section III. Furthermore,

we present numerical simulations in Section IV and we

conclude the paper with a number of remarks and directions

for future research in Section V.

II. PROBLEM FORMULATION

A. Notation

We denote by R
n the set of n-dimensional real vectors.

Given integers α, β with α ≤ β, we denote by [α, β]d,

the discrete interval from α to β. We denote by E[·] the

expectation operator. Given a random vector x, we denote by

E[x] its mean and by Cov[x] it covariance, where Cov[x] :=
E[(x − E[x])(x − E[x])T]. The space of real symmetric

n×n matrices will be denoted by Sn. Furthermore, we will

denote the convex cone of n×n (symmetric) positive semi-

definite and (symmetric) positive definite matrices by S
+
n and

S
++
n , respectively. Finally, we write bdiag(A1, . . . , A`) to

denote the block diagonal matrix formed by the matrices Ai,

i ∈ {1, . . . , `}.

B. Problem setup

We consider the following discrete-time nonlinear stochas-

tic system

x(t+ 1) = f(x(t), u(t)) + w(t), (1)

for t ∈ [0, N − 1]d, where N is a positive integer, and

x(0) = x0, where x0 is a random vector with E[x0] =
µ0 and Cov[x0] = Σ0, with µ0 ∈ R

n and Σ0 ∈ S
++
n

be given quantities. Furthermore, f(·) is a C1 function.

In addition, x0:N := {x(t) ∈ R
n : t ∈ [0, N ]d} and

u0:N−1 := {u(t) ∈ R
m : t ∈ [0, N − 1]d} correspond to the

state and input (random) processes, respectively. In addition,

w0:N−1 := {w(t) ∈ R
n : t ∈ [0, N − 1]d} corresponds

to the noise process which is assumed to be a sequence

of independent and identically distributed random variables

with

E [w(t)] = 0, E
[

w(t)w(τ)T
]

= δ(t, τ)Wt, (2)

for all t, τ ∈ [0, N − 1]d, where Wt ∈ S
+
n , and δ(t, τ) := 1,

when t = τ , and δ(t, τ) := 0, otherwise. Furthermore, x0 is

independent of w0:N−1, that is,

E
[

x0w(t)
T
]

= 0, E
[

w(t)xT
0

]

= 0, (3a)

for all t ∈ [0, N − 1]d. Finally, throughout this paper we

assume that we have perfect state information, that is, at each

stage t, the realization x(t) of the state process is perfectly

known (measured).

Because the system given in (1) is nonlinear, even if the

initial state is drawn from a normal distribution and the

noise is white Gaussian, it is not guaranteed that the state at

future stages will remain Gaussian. For this reason, it is not

meaningful to require that the terminal state of the system

should be steered to a prescribed normal distribution as in the

standard formulation of a finite-horizon covariance steering

problem for Gaussian linear systems. A more practical ap-

proach would be to require that the state mean and covariance

of the nonlinear system attain (exactly or approximately)

prescribed quantities. In particular, let us denote by µx(t)
and Σx(t) the state mean and covariance at stage t, that is,

µx(t) := E[x(t)], Σx(t) := Cov[x(t)]. (4)

The class of admissible control policies is taken to be the set

of sequences of control laws that are measurable functions

of the realization of the current state of the system. Then,

the nonlinear covariance steering problem can be formulated

as follows:

Problem 1: Let µ0, µf ∈ R
n and Σ0,Σf ∈ S

++
n be given.

Find a control policy π := {κ(t, ·) : t ∈ [0, N − 1]d)} that

will steer the system (1) from x(0) = x0 with E[x0] = µ0

and Cov[x0] = Σ0 to a terminal state x(N) with

µx(N) = µf , (Σf − Σx(N)) ∈ S
+
n . (5)



C. Collection of Finite-Horizon Linearized Covariance

Steering Problems

Next, we associate the DTSN system (1) at stage t =
k ∈ [0, N−1]d with a discrete-time stochastic linear system.

The latter system corresponds to a linearization of the DTSN

system around a given point (µk, νk) ∈ R
n × R

m which is

given by

z(t+ 1) = Ak(z(t)− µk) +Bk(u(t)− νk)

+ rk + w(t), (6)

for t ∈ [k,N − 1]d and z(k) = zk, with E[zk] = µk and

Cov[zk] = Σk, where µk ∈ R
n, Σk ∈ S

++
n , and νk ∈ R

m.

In addition, it is assumed that

E
[

zkw(t)
T
]

= 0, E
[

w(t)zT
k

]

= 0, (7a)

for all t ∈ [k,N −1]d. Furthermore, Ak and Bk are constant

(time-invariant) matrices whereas rk is a constant vector, and

in particular,

Ak :=
∂

∂x
f(x, u)

∣

∣

∣x=µk

u=νk

, Bk :=
∂

∂u
f(x, u)

∣

∣

∣x=µk

u=νk

, (8a)

rk := f(µk, νk). (8b)

We can equivalently write (6) in a slightly more compact

form as follows:

z(t+ 1) = Akz(t) +Bku(t) + dk + w(t), (9)

where dk := −Akµk −Bkνk + rk.

We will refer to the latter linear model as the k-th

linearized state space model (t = k corresponds to the initial

stage). It is worth noting that the triple (Ak, Bk, rk) remains

constant throughout the whole horizon [k,N−1]d. However,

for a different k, one obtains a different linearized sys-

tem with a different but time-invariant triplet (Ak, Bk, rk).
Therefore, (6) describes essentially a collection of N − k
different (one for each k) time-invariant systems. An implicit

assumption here is that the pair (Ak, Bk) is controllable.

An alternative linear model can be derived if one linearizes

the DTSN system (1) around (µf , νf) ∈ R
n ×R

m, where µf

is the goal mean of the terminal state and νf is such that

µf = f(µf , νf). Then, Ak = Af , Bk = Bf , and rk = rf ,
where

A :=
∂

∂x
f(x, u)

∣

∣

∣x=µf

u=νf

, B :=
∂

∂u
f(x, u)

∣

∣

∣x=µf

u=νf

(10a)

rk = f(µf , νf), (10b)

for all k ∈ [0, N − 1]. The previous linearization assumes

that the DTSN system operates “near” the terminal target

point (µf , νf) ∈ R
n × R

m.

Note that both of the previously described linearized

models are different from the one obtained after linearizing

a nonlinear system around a given pair of reference state

and input sequences z̄0:N := {z̄(t) : t ∈ [0, N ]d} and

ū0:N−1 := {ū(t) : t ∈ [0, N − 1]d}, respectively, as is

proposed, for instance, in [16]. In the latter case, one would

consider a single time-varying linearized system described

by the following equation:

z(t+ 1) = A(t)z(t) +B(t)u(t) + r(t) + w(t), (11)

for t ∈ [0, N − 1]d, where A(t), B(t), and r(t) are time-

varying matrices which are defined as follows:

A(t) :=
∂

∂x
f(x, u)

∣

∣

∣x=z̄(t)
u=ū(t)

, B(t) :=
∂

∂u
f(x, u)

∣

∣

∣x=z̄(t)
u=ū(t)

,

r(t) := f(z̄(t), ū(t))−A(t)z̄(t)−B(t)ū(t),

for all t ∈ [0, N − 1]d.

However, finding a reference state sequence z̄0:N and a

corresponding (compatible) reference input sequence ū0:N−1

may be a non-trivial task. In particular, the reference state

sequence should satisfy the desired boundary conditions

whereas the reference input sequence should generate the

corresponding reference state sequence.

Next, we will formulate a linearized covariance steering

problem for the system described in (6) for a given k ∈
[0, N − 1]d. The class U of admissible control policies for

the latter problem will consist of sequence of control laws

{φk(t, ·) : t ∈ [k,N − 1]d}, where

φk(t, z) = υk(t) +Kk(t)z, t ∈ [k,N − 1]d. (12)

We next formulate the linearized covariance steering based

on information available at stage t = k.

Problem 2 (k-th linearized covariance steering problem):

Let µk, µf ∈ R
n and Σk,Σf ∈ S

++
n be given.

Among all admissible control policies $k :=
{φk(k, ·), . . . , φk(N − 1, ·)} ∈ U , where φk(t, ·) satisfies

(12) for t ∈ [k,N − 1]d, find a control policy $?
k that

minimizes the following performance index

Jk($k) := E
[

N−1
∑

t=k

φk(t, z(t))
Tφk(t, z(t))

]

(13)

subject to the recursive dynamic constraints (6) and the

following boundary conditions:

E[zk] = µk, Cov[zk] = Σk, (14a)

E[z(N)] = µf , (Σf − Cov[z(N)]) ∈ S
+
n . (14b)

Remark 1 The choice of the performance index is to ensure

that the control input will have finite energy and thus

avoid excessive actuation (as we have already mentioned,

performance considerations are not of primary interest in

this work). Problem 2 does not correspond to a standard

finite-horizon linear quadratic Gaussian (LQG) problem due

to the presence of the (non-standard) terminal positive semi-

definite constraint (Σf − Cov[Σz(N)]) ∈ S
+
n . Although we

do not explicitly consider state or input constraints in the

formulation of Problem 2, we will present an optimization-

based solution which is also applicable to more general

problem formulations including those with input and/or state

constraints as in [11].



Remark 2 Note that finding a policy $k that solves

Problem 2 is equivalent to finding a sequence

{(υk(t),Kk(t)) : t ∈ [k,N − 1]d}. The main idea of

the proposed solution approach is that the first control

law of the control policy that solves the k-th linearized

covariance steering problem (Problem 2) can be used as

the control law corresponding to the stage t = k from the

control policy that is a candidate solution to the nonlinear

covariance steering problem (Problem 1). Later on, we will

see that this idea will have to be applied iteratively in the

sense that the data of the linear covariance problem will

change at each stage, and consequently, the corresponding

feedback policy has to be updated accordingly to reflect the

new information available.

D. Solution to the k-th Linearized Covariance Steering

Next, we will present the main steps of the solution to the

k-th linearized covariance steering problem (Problem 2). To

this aim, Eq. (6) can be written in compact form as follows:

z = G
k
zzk +G

k
uu+G

k
w(w + dk), (15)

where

z := [z(k)T, . . . , z(N)T]T, u := [u(k)T, . . . , u(N − 1)T]T

w := [w(k)T, . . . , w(N − 1)T]T dk := [dT
k, . . . , d

T
k]

T.

In addition, Gk
u, Gk

w, and G
k
z are defined as follows:

G
k
u :=















0 0 . . . 0
Bk 0 . . . 0

AkBk Bk . . . 0
...

... . . .
...

AN−1−k
k Bk AN−2−k

k Bk . . . Bk















,

G
k
w :=















0 0 . . . 0
I 0 . . . 0
Ak I . . . 0
...

... . . .
...

AN−1−k
k AN−2−k

k . . . I















,

G
k
z :=

[

I AT
k . . .

(

AN−k
k

)T
]T

.

In view of (12), an admissible control sequence can be

written compactly a follows:

u = Kkz + υk, (16)

where

Kk := [bdiag(Kk(k), . . . ,Kk(N − 1)), 0],

υk := [υk(k)
T, . . . , υk(N − 1)T]T.

Consequently, after plugging (16) into (15), we can ex-

press the closed-loop dynamics in compact form as follows:

z = T
k
zzk +T

k
υυk +T

k
w(w + dk) (17)

where

T
k
z := (I −G

k
uKk)

−1
G

k
z (18a)

T
k
υ := (I −G

k
uKk)

−1
G

k
u (18b)

T
k
w := (I −G

k
uKk)

−1
G

k
w. (18c)

Note that the matrix (I − G
k
uKk) corresponds to a block

lower triangular matrix whose diagonal blocks are equal to

the identity matrix (for more details, the reader may refer

to [11], [24]). Thus, (I −G
k
uKk)

−1 is well-defined.

In view of equation (17), (16) becomes

u = H
k
zzk +H

k
υυk +H

k
w(w + dk), (19)

where

H
k
z := Kk(I −G

k
uKk)

−1
G

k
z (20a)

H
k
υ := I +Kk(I −G

k
uKk)

−1
G

k
u (20b)

H
k
w := Kk(I −G

k
uKk)

−1
G

k
w. (20c)

After plugging (19) in (13), one can obtain an expression

for the (predicted) cost as a function of the decision variables

Kk and υk. In particular,

Jk($k) = E
[

u
T
u
]

= trace
(

E
[

uu
T
])

= trace
(

E
[(

H
k
zzk +H

k
υυk +H

k
w(w + dk)

)

×
(

H
k
zzk +H

k
υυk +H

k
w(w + dk)

)T])

=: J̃k(Kk,υk). (21)

It follows readily that

J̃k(Kk,υk) = trace
(

H
k
z(Σk + µkµ

T
k)(H

k
z)

T

+ 2Hk
zµkυ

T
k(H

k
υ)

T + 2Hk
zµkd

T
k(H

k
w)

T

+H
k
υυkυ

T
k(H

k
υ)

T + 2Hk
υυkd

T
k(H

k
w)

T

+H
k
w(Wk:N−1 + dkd

T
k)(H

k
w)

T
)

, (22)

where Wk:N−1 := bdiag(Wk, . . . ,WN−1). In the previous

derivation, we have used the available information about the

statistics of zk and in particular, that E[zk] = µk, E[zkz
T
k] =

Σk + µkµ
T
k.

Next, we express the terminal constraints in terms of the

decision variables (Kk,υk). In particular, we have

E[z(N)] = E[PNz] = PNE[z]

= PN

(

T
k
zµk +T

k
υυk +T

k
wdk

)

=: f(Kk,υk), (23)

where PN := [0, . . . , 0, I]. Therefore, the constraint

E[z(N)] = µf can be written as follows:

C1(Kk,υk) = 0, C1(Kk,υk) := f(Kk,υk)− µf , (24)

where f(Kk,υk) is given in (23). Furthermore, we have that

Cov[z(N)] = E[z(N)z(N)T]− µfµ
T
f , (25)



where

E[z(N)z(N)T] = PNE
[(

T
k
zzk +T

k
υυk +T

k
w(w + dk)

)

×
(

T
k
zzk +T

k
υυk +T

k
w(w + dk)

)T]

P
T
N

=: g(Kk,υk). (26)

Therefore, the terminal state covariance constraint: (Σf −
Σz(N)) ∈ S

+
n , can be written as the following positive semi-

definite constraint:

C2(Kk,υk) ∈ S
+
n , (27a)

C2(Kk,υk) := Σf − g(Kk,υk) + µfµ
T
f , (27b)

where g(Kk,υk) is defined in (26).

Problem 3: Find a pair (K?
k,υ

?
k) that minimizes the pre-

dicted cost J̃k(Kk,υk) subject to the constraints:

C1(Kk,υk) = 0, C2(Kk,υk) ∈ S
+
n , (28)

where C1(Kk,υk) and C2(Kk,υk) are defined in (24) and

(27b), respectively.

Problem 3 is not convex as is explained in [11]. One can

associate it, however, with a convex program by applying

suitable transformations to the pair of decision variables

(Kk,υk) in order to obtain a new pair of decision variables,

(Lk,νk), which are defined as follows [24]:

Lk := Kk(I −G
k
uKk)

−1, (29a)

νk := (I +LkG
k
u)υk. (29b)

As is shown in [9], [11], the predicted cost can be

expressed as a convex function of the new decision

variables (Lk,νk); this new expression is denoted as

J (Lk,νk). In addition, the constraint functions C1(Kk,υk)
and C2(Kk,υk) become C1(Lk,νk) and C2(Lk,νk), re-

spectively. In particular, C1(Lk,νk) corresponds to an affine

function in (Lk,νk) whereas the constraint C2(Lk,νk) ∈ S
+
n

can be expressed as an LMI constraint in terms of (Lk,νk)
as is shown in [9], [11], [13]. The reader may refer to the

latter references for the technical details on the conversion

of the latter problems into tractable convex programs.

E. Closed-Loop Nonlinear Dynamics and Propagation of

Uncertainty

Now let π = {κ(t, ·) : t ∈ [0, N − 1]} be an admissible

control policy for Problem 1. Then, the state space model of

the closed loop system is given by

x(t+ 1) = fcl(t, x(t)) + w(t), (30)

where

fcl(t, x) := f(x, κ(t, x)). (31)

Next, we describe the main steps for the propagation of the

mean and the covariance of the uncertain state of the nonlin-

ear system described by (30) based on the (scaled) unscented

transform [21], [22]. To this aim, let us assume that the mean

µk := E[x(k)] and the covariance Σk := Cov[x(k)] of the

state of (30) are known at stage k (in practice only estimates /

approximations of the latter quantities will be known). Then,

we will compute 2n + 1 (deterministic) points, known as

sigma points, by using the following equation:

σ
(i)
k =











µk, if i = 0,

µk +
√
n+ λΣ

1/2
k ei, if i ∈ [1, n]d,

µk −
√
n+ λΣ

1/2
k ei−n, if i ∈ [n+ 1, 2n]d,

(32)

where {ei : i ∈ [1, n]d} denotes the standard orthonormal

basis of R
n. To each sigma point, we associate a pair of

gains (γ
(i)
k , δ

(i)
k ) where

γ
(i)
k =

{

λ/(λ+ n), if i = 0

1/(2(λ+ n)), if i ∈ [1, 2n]d,
(33)

and

δ
(i)
k =

{

1− α2 + β + λ/(λ+ n), if i = 0,

1/(2(λ+ n)), if i ∈ [1, 2n]d.
(34)

The parameter α determines the spread around µk whereas β
is a positive number and λ := α2n−n. Typically, 0 < α � 1
and β = 2 for Gaussian approximations as suggested in [22],

[25].

Subsequently, we propagate the set of sigma points

{σ(i)
k : i ∈ [1, 2n + 1]d} at the next stage t = k + 1 to

obtain a new set of points {σ̂(i)
k+1 : i ∈ [1, 2n+ 1]d}, where

σ̂
(i)
k+1 = fcl(k, σ

(i)
k ), i ∈ [0, 2n]d. (35)

Using the point-set {σ̂(i)
k+1 : i ∈ [0, 2n]d}, one can

approximate the (predicted) state mean and state covariance

at stage t = k + 1 as follows:

µ̂x(k + 1) =

2L
∑

i=0

γ
(i)
k σ̂

(i)
k+1, (36a)

Σ̂x(k + 1) =

2L
∑

i=0

δ
(i)
k (σ̂

(i)
k+1 − µ̂x(k + 1))

× (σ̂
(i)
k+1 − µ̂x(k + 1))T +Wk, (36b)

where Wk ∈ S
+
n corresponds to the noise covariance at stage

t = k.

III. A GREEDY ALGORITHM FOR NONLINEAR

COVARIANCE STEERING

The proposed algorithm consists of three main steps. We

will describe these steps starting at stage t = k, where k ∈
[0, N − 1]d, and we will assume that approximations of the

state mean µ̂k, the state covariance Σ̂k, and the input mean

ν̂k are known (if k = 0, then we set µ̂k = µ0, Σ̂k = Σ0,

and ν̂k = 0).

We refer to the first step as the recursive linearization

step (RL step). In the RL step, we construct a linearization

(Ak, Bk, rk) of (1) around the point (µ̂k, ν̂k) by using (8a)–

(8b). Note that the approximations µ̂k and ν̂k will be updated



at the end of each stage and consequently, the linearized

model will also have to be updated at each new stage

to reflect the new information and hence the “recursive”

qualifier in the name of this step. We will write

(Ak, Bk, rk) = Λ
[

µ̂k, ν̂k; f(·)
]

. (37)

In the second step, which we refer to as the linearized

Gaussian covariance steering step (LGCS step), we compute

a feedback control policy (sequence of feedback control

laws) that solves the k-th linearized covariance steering

problem (Problem 2). To solve the latter problem, we need to

know the linearized model (Ak, Bk, rk), the approximations

of the predicted mean and covariance (µ̂k, Σ̂k) at stage

k assuming that the goal state mean and state covariance

(µf ,Σf) are known a priori. The triplet (Ak, Bk, rk) is

computed in the RL step, whereas the pair (µ̂k, Σ̂k) is

computed at the previous stage (by executing the third step

of the algorithm that will be discussed shortly next). The

policy $?
k that solves the k-th linearized covariance steering

problem with boundary conditions

E[z(k)] = µ̂k, Cov[z(k)] = Σ̂k, (38a)

E[z(N)] = µf , (Σf − Cov[z(N)]) ∈ S
+
n , (38b)

where z corresponds to the state of the linearized system.

We write

$?
k := Sk

[

Ak, Bk, rk, µ̂k, ν̂k, Σ̂k

]

, (39)

where $?
k := {φ?

k(k, ·), . . . , φ?
k(N − 1, ·)}. The computation

of the control policy $?
k can be done in real-time by means

of robust and efficient convex optimization techniques (for

details the reader should refer to [9], [11]). We refer to the

latter step as the linearized Gaussian covariance steering

step (LGCS step). After the computation of $?
k, we extract

from it its first control law, φ?
k(k, ·), that is, the control law

that corresponds to stage k. We write

φ?
k(k, z) := P1 [$

?
k] = υ?

k(k) +K?
k(k)z,

where P1(·) denotes the truncation operator that truncates all

the elements of a sequences except from the first one. Then,

we set the control law κ?(k, ·) corresponding to the k-th

element of the feedback control policy π? for the original

nonlinear covariance steering problem (Problem 1) to be

equal φ?
k(k, ·), that is,

κ?(k, x) := φ?
k(k, x) = υ?

k(k) +K?
k(k)x, (40)

where x is the state of the original nonlinear system.

Consequently, the one-stage transition map for the closed-

loop dynamics based on information available at stage k is

described by the following equation:

x(k + 1) = fk
cl(k, x) + w(k), (41)

where

fk
cl(k, x) := f(x, κ?(k, x)) = f(x, υ?

k(k) +K?
k(k)x). (42)

In the third step, we compute approximations µ̂x(k + 1)
and Σ̂x(k + 1) of the (predicted) mean and covariance of

the state of the closed-loop system at stage t = k + 1. To

this aim, we first compute a set of sigma points {σ̂k : k ∈
[0, 2n]d} and their corresponding weights (γ

(i)
k , δ

(i)
k ) based

on equations (32) and (33)-(33), respectively. Next, we

compute the point-set {σ̂k+1 : k ∈ [0, 2n]d} by using

equation (35) and the closed loop one-stage transition map

fk
cl(k, x) which is defined in (42). Subsequently, we compute

µ̂x(k + 1) and Σ̂x(k + 1) by using (36a)-(36b). The pair

(µ̂x(k+1), Σ̂x(k+1)) determines a Gaussian approximation

of the statistics of the state of the closed-loop system at stage

t = k+1. We set µ̂k+1 := µ̂x(k+1) and Σ̂k+1 := Σ̂x(k+1).
Finally, we set ν̂k+1 := φ?

k(k+1, µ̂k+1). We refer to the third

step as the predictive normalization step (PN step). We write

(µ̂k+1, ν̂k+1, Σ̂k+1) := Fk

[

µ̂k, Σ̂k; f
k
cl(k, ·)

]

. (43)

These three steps of the previously described iterative

process are repeated for all stages t ∈ [k,N − 1]d for

a given k ∈ [0, N − 1]d. At the end of the process, the

predicted approximations of the state mean and covariance

are sufficiently close to their corresponding goal quantities.

The output of this iterative process will be a control policy

π?
k:N−1 := {κ?(t, x) : t ∈ [k,N − 1]Z}. If k ∈ [1, N − 1]d,

then the policy π?
k:N−1 corresponds to the truncation of the

control policy π? that solves Problem 1, which is comprised

of the “last” N−k elements of the latter policy. If we start the

iterative process at k = 0, then the output of the process is

the control policy π? that solves Problem 1. The pseudocode

of the previous process is given in Algorithm 1.

Algorithm 1 Computation of feeback policy π?
k:N−1 :=

{κ?(t, ·) : t ∈ [k,N − 1]Z} that solves Problem 1

1: procedure GREEDY NONLINEAR COVARIANCE

STEERING

2: Input data: N , µf , Σf , f(·)
3: Input variables: k, µ̂k, ν̂k, Σ̂k

4: Output variables: πk:N−1, {µ̂x(t)}Nt=k, {Σ̂x(t)}Nt=k

5: for t = k : N − 1 do

6: (At, Bt, rt) := Λ
[

µ̂t, ν̂t, Σ̂t

]

7: $?
t := St[At, Bt, rt, µ̂t, Σ̂t]

8: κ?(t, ·) := P1[$
?
t ]

9: f t
cl(t, ·) := f(x, κ?(t, ·))

10: (µ̂t+1, ν̂t+1, Σ̂t+1) := Ft

[

µ̂t, Σ̂t; f
t
cl(t, ·)

]

11: π?
k:N−1 := {κ?(t, x) : t ∈ [k,N − 1]Z}

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to illus-

trate the basic ideas of this paper. In particular, we consider

the following DTSN system:

x1(t+ 1) = x1(t) + τx2(t), (44a)

x2(t+ 1) = x2(t)− τ(δx1(t) + ζx1(t)
3 + γx2(t))

+ τu(t) +
√
τw(t), (44b)
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Fig. 1. Time evolution of the sequence {Et}
N

t=0. The vertical axis
in this 3D graph corresponds to the (discrete) time-axis.

where [x1(0), x2(0)]
T ∼ N (µ0,Σ0) with µ0 = [0, 0]T

and Σ0 = diag(σ2
1 , σ

2
2), where σ1 = 2.5 and σ2 = 2.0. In

addition, the desired terminal state mean and covariance are

taken to be, respectively, µf = [0, 0]T and Σf = diag(s21, s
2
2),

where s1 = 1.25 and s2 = 1.0. For our simulations, we

consider the following parameter values: τ = 0.01, N = 100
and ζ = 0.05, γ = 0.05, δ = −1, α = 0.05, and β = 2.

Figure 1 illustrates the time evolution of the predicted state

covariance Σ̂x(t) in terms of the evolution of the sequence

of ellipsoids {Et}Nt=0, where

Et := {x ∈ R
2 : (x− µ̂x(t))

TΣ̂x(t)
−1(x− µ̂x(t)) = 1},

for t ∈ [0, N ]d (the ellipsoid Et is in an one-to-one

correspondence with Σ̂x(t)). To the desired terminal state

covariance Σf , we associate the ellipsoid Ef , where

Ef := {x ∈ R
2 : (x− µf)

TΣ−1
f (x− µf) = 1}.

In particular, Fig. 1 illustrates the evolution of the se-

quence {Et}Nt=0 in a 3D graph whose vertical axis corre-

sponds to the time-axis. Sample trajectories of the closed

loop system are illustrated in Fig. 2. The projection on the

x1−x2 plane of the 3D graph given in Fig. 1 is illustrated in

Fig. 3. In these three figures, the black ellipses correspond

to E0 and Ef . We observe that EN is very close to Ef and

thus, the predicted covariance of the terminal state Σ̂f is very

close to the goal covariance Σf .

The evolution of the sigma points used in the unscented

transform for the prediction of the state mean and covariance

are illustrated in Fig. 4. In particular, the red diamonds

correspond to the sigma points associated with the initial

state mean and covariance, whereas the magenta circles

correspond to the predicted sigma points generated for all

subsequent stages t ∈ [1, N ]d. The sigma points correspond-

ing to the original pair (µ0,Σ0) and the terminal pair (µf ,Σf)
belong to the ellipses E0 and Ef , respectively, where

E0 := {x ∈ R
2 : (x− µ0)

TΣ−1
0 (x− µ0) = 2 + λ},

Ef := {x ∈ R
2 : (x− µf)

TΣ−1
f (x− µf) = 2 + λ}.
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Fig. 2. Sample trajectories of the closed loop system.
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Fig. 3. Time evolution of {Et}
N

t=0. The black ellipses correspond
to E0 and Ef .

V. CONCLUSION

In this work, we have proposed a greedy covariance steer-

ing algorithm for discrete-time stochastic nonlinear systems.

The proposed approach relies on the solution of a sequence

of linearized covariance steering problems combined with

the (scaled) unscented transform that provides the one-stage

predictions of the mean and covariance of the state of the

closed loop system.
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Fig. 4. Time evolution of the sigma points for t ∈ [0, N ]d. The
black ellipses correspond to the ellipses E0 and Ef .



To put the presented work under the umbrella of stochastic

model predictive control, it is necessary that performance

and stability considerations as well as notions of invariance

based on reachability analysis are integrated in the proposed

algorithm. It is worth noting that the reachability analysis for

nonlinear covariance steering problems requires the charac-

terization of “admissible” sets of positive-definite matrices

from which the system can be steered to the desired state

terminal covariance in the given time horizon. To the best of

our knowledge, the latter reachability problem constitutes, at

least for the case of stochastic nonlinear systems, an open

problem. In our future work, we plan to study the latter

problem and we will also explore possible connections of this

work with modern techniques of stochastic model predictive

control.

Another important problem in the context of nonlinear

covariance steering is the problem of verification of the

results obtained with the proposed greedy algorithm. At

present, one can expect that the predicted state mean and

state covariance of the SNDT system, which are computed

by means of the unscented transform, will end up sufficiently

close to their goal quantities but this is not automatically the

case for the true state mean and state covariance of the SNDT

system. Finally, we plan to consider the case of incomplete

state information and also explore connections with recent

results on PDE tracking for distribution steering problems.
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