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iscrete convexity, in particular, Li-convexity and M’-convexity, provides a critical opening to attack several classical

problems in inventory theory, as well as many other operations problems that arise from more recent practices, for
instance, appointment scheduling and bike sharing. As a powerful framework, discrete convex analysis is becoming
increasingly popular in the literature. This review will survey the landscape of the approach. We start by introducing sev-
eral key concepts, namely, Li-convexity and M'-convexity and their variants, followed by a discussion of some fundamen-
tal properties that are most useful for studying operations models. We then illustrate various applications of these
concepts and properties. Examples include network flow problem, stochastic inventory control, appointment scheduling,
game theory, portfolio contract, discrete choice model, and bike sharing. We focus our discussion on demonstrating how
discrete convex analysis can shed new insights on existing problems, and/or bring about much more simpler analyses
and algorithm developments than previous methods in the literature. We also present several results and analyses that

are new to the literature.
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1. Introduction

Convexity plays a fundamental role in continuous
optimization. It is often regarded as the synonym
for computational tractability, and widely used to
characterize structures of optimal policies in dynamic
operations problems. However, discreteness or com-
binatorial structure often appears in many practical
problems which the traditional convex analysis is not
applicable or inadequate. For example, products may
be produced only in batches, and the number of
customers or patients waiting in a queue must be
integral. For many operations models with multi-
dimensional decisions and/or parameters, meaning-
ful results can be derived only under certain combina-
torial structures characterized by properties like
submodularity/supermodularity in addition to con-
vexity. In view of these, discrete convexity, which
extends important concepts and properties in convex
analysis to discrete spaces with salient combinatorial
structures, is becoming a prominent analytical frame-
work in the operations literature. It provides powerful
tools for characterizing the structures of optimal
policies, establishing the existence of equilibrium,
and /or facilitating the design of efficient algorithms
in many operations models.

The study of discrete convexity in operations
dates back to Miller (1971), who introduces the

concept of “discretely convex” to analyze an aircraft
maintenance problem. Over the years, various con-
cepts about different types of discrete convexity
have been introduced (see Murota 2003). Our
review is not intended to provide a comprehensive
coverage of the aforementioned developments of
discrete convex analysis. Instead, we give a concise
introduction to major concepts and key technical
results in a self-contained manner. Moreover, our
discussion will be oriented toward operations mod-
els. Specifically, we draw applications from diverse
areas ranging from network flow optimization,
inventory management, revenue management,
healthcare appointment scheduling, portfolio con-
tract selection, choice modeling, to bike sharing,
and game theory models. We show that with the
introduction of concepts and properties of discrete
convex analysis, the analysis of many operations
models, especially several classical ones, can be sig-
nificantly simplified or unified and their results can
often be established under much more general con-
ditions. In these cases, concise concepts and general
properties capture essential mathematical structures
of a variety of operations models that differ in con-
texts and details, which in turn, facilitates technical
analysis, and crystalize its presentation here.

A closely related survey paper is Chen (2017a),
which however only covers L'-convexity and
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applications associate with it. In comparison, this
review covers a broader scope that involves both
L'-convexity and M'-convexity and their variants,
and many more applications in diverse areas. We
have also included several new results and analy-
ses that are new to the literature. For example, for
a continuous review assemble-to-order inventory
model, we use the convex conjugate relationship
between Li-convexity and M'-convexity to provide
a simple proof for a key result in Dogru et al
(2017). Our analysis for some production control
problems with two products (facilities) shows that
M-convexity provides the needed concept to unify
different approaches in several different models.
We provide a sufficient and necessary condition for
the substitutability of a discrete choice model. For
a dock reallocation problem in bike sharing, we
present an alternative and intuitive proof of the
multimodularity of the objective function by the
use of preservation properties of elementary opera-
tions of L'-convexity.

The organization of this study is as follows. In
section 2, we first provide a brief review of several
key concepts in discrete convex analysis, L*/M"-con-
vexity and their variants, followed by some exam-
ples. We then present in section 3 some
fundamental properties that are important to opera-
tions models including monotonicity of optimal
solutions and preservation properties of L!/M'-con-
vexity under various operations. In section 4, we
discuss many different applications of discrete con-
vex analysis in studies of the aforementioned opera-
tions models. Our concluding remarks on future
research is given in section 5.

1.1. Notations and Terminologies

For convenience, we list the notations and terminolo-
gies used throughout this study. The real space and
the integer space are denoted by R and Z, respec-
tively. We use F to represent R or Z, F to denote
F U{—o00, +o0} and F to denote the set of all non-
negative numbers in F. For any subset S C R", we
denote Js its indicator function, that is, ds(x) = 0 if
x € S, and ds5(x) = +oo otherwise. This definition of
indicator function is commonly used in the convex
analysis literature (see Rockafellar 1970). We caution
the readers that this definition is different from
another commonly used one under the same name
which specifies Jds(x) =1 if x € S and ds(x) = 0
otherwise. For a positive integer n, we denote [n] the
set {1,2,...,n}. The power set and cardinality of a set X
are denoted by 2% and |X|, respectively. Denote e; the
vector with 1 in its i-th coordinate and 0 otherwise, eg
the zero vector, e the vector with 1 in each compo-
nent, and es = ) ,_se; for any subset S of the index

set. The dimensions of e;, ep,e,es should be clear
from the context. The component minimum and
maximum of two vectors x,y € R" are denoted by
x Ay = (min{x1,y1},...,min{x,,y,}) and xVy =
(max{x1,y1},...,max{x,, yn}), respectively. The posi-
tive and negative index set of a vector x are denoted
by supp*(x) = {i|lx; > 0} and supp™(x) = {i|x; <0},
respectively. The max norm and L; norm of a
vector xe€ R" are |[jx||, = maxj<i<n{|xi]} and
llx|l; = 3 |xil, respectively. The feasible domain of
a function f:F" - R is denoted by dom(f) =
{x € F"| — 00 < f(x) < oo}. For any p € R", the func-
tion f[p] : F" — R is defined as f[p](x) = f(x) + p"x.
A linearity domain of f is defined by arg min,c &= f[p](x)
for some p € R". The name is from the fact that
f is a linear function on any linearity domain. The
gradient and Hessian of a function f are denoted by Vf
and V?f, respectively. For a random variable & we
denote supp({) its support. A set X and a binary oper-
ation < on X is called a partially ordered set if (X,=)
satisfies (i) reflexivity: a < a for any a € X (ii) antisym-
metry: if a < band b < a, then a = b (iii) transitivity: if
a=<bandb <c thena <c.

2. Key Concepts and Examples

In this section, we review definitions and examples of
L/L"-convexity, M/M"-convexity and some of their
variants. All the materials for which no reference is
provided can be found in Murota (2003) and Simchi-
Levi et al. (2014). Although we focus on discrete con-
vexity concepts, we will freely refer to their concave
counterparts, whose definitions are straightforward,
when needed.

2.1. Definitions
We first recall that a function f : R" — (—o0, 00] is con-
vex if it satisfies the following inequality

(1= Xf(x) + My) = f((1 - Mx + Ay), Vx,y € R",
A e€[0,1].

(1)

Convex functions play an important role in contin-
uous optimization. The class of convex program-
ming problems, which minimize convex functions
subject to convex feasible set constraints, is usually
regarded as tractable since local optimality implies
global optimality among some other properties.

In an attempt to extend the tractability of convex
programming to integer space, one may define “dis-
crete convex” functions and impose at least the fol-
lowing properties:
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(@) Convex extensible to real spaces, that is,
there exists a convex function f such that
f(x) = f(x) for all x € Z",

(b) Local optimality (in some sense) implies
global optimality.

One possible approach to define such a discrete
convex function f: Z" — (—o0,00] is to consider its
local convex extension

f(x) = sup {p"x+alp"y+a<f(y),Vy with

peR" xcR
ly — xllo <1}

defined on R" (see Murota 2003, p. 93). If f is
convex, then f is called integrally convex. In one-
dimensional spaces, f is constructed by the linear
interpolation between (x,f(x)) and (x + 1,fix + 1)) for
any x € Z. In this case, a discrete function f is inte-
grally convex if and only if flx — 1) + flx + 1) = 2f(x)
for any x € Z and dom(f) is a set of consecutive
integers. Such one-dimensional functions are also
called univariate discrete convex functions'.

Integrally convex functions clearly satisfy prop-
erty (a), but a convex-extensible function is not
necessarily integrally convex (see Example 3.20
in Murota 2003). It is shown that an integrally
convex function f satisfies property (b) in the
following sense: x is a global minimizer if and
only if

f(x)<f(x+es—er) for all ,T C [n].

Although integrally convex functions satisfy prop-
erty (b), the computational complexity of checking
the local optimality is exponential in n in general
(see Note 3.23 in Murota 2003). In view of this, it is
desirable to restrict to tractable subclasses of inte-
grally convex functions. Among various function
classes proposed in the literature, L*-convex func-
tions and M"-convex functions are arguably the most
important ones.

Li-convexity can be motivated from the concept of
midpoint convexity, which requires a function fto sat-
isfy inequality (1) for A = 3, thatis,

f@) +10) > (3E), veye Rt @

It is well known that for lower semi-continuous
functions, convexity is equivalent to midpoint con-
vexity (see, e.g., Donoghue 1969, p. 12). To accom-
modate the integrality requirement, one can impose
certain integral conditions on the points involved in
the midpoint convexity definition. Specifically, we
can replace the midpoint in Equation (2) by

rounding it down and up to the nearest integral
points | ZZ| and [ZX] (see Figure 1) and impose
the discrete midpoint convexity, that is,

f) +f) 2 (1 552]) + (1521, vey e 2

A function defined on an integer space is called L*-
convexity if it satisfies the discrete midpoint convex-
ity. Here L" stands for “lattice” in view of the lattice
structure of the integral points.

It is not hard to show that a function
f:2" — (—o00,00] is Li-convex if and only if f(x — e)
is submodular in (x,¢) € Z" x Z. Here, a function
g : F" — (—o0, 00| is submodular if

g(x) +gy) >g(x Ay) +g(xVy), Vx,y € F".

This equivalent definition makes it convenient to
verify discrete Li-convexity via submodularity. Inter-
estingly, its extension to the continuous space is also
straightforward. In the following, we present a uni-
fied definition of L-convexity for both integer and
continuous spaces, which we feel is more convenient
for operations applications.

Dernmmion 2.1. A lower semi-continuous” function
f:F"— (—o0,0c] is called Li-convex on F" if f
(x—¢&e) is submodular in (x, &) € F" x F.

A closely related sibling of Li-convexity is L-con-
vexity. A function f : F" — (—o0, 0| is called L-convex
on F"iff : F" — (—o00,00] is L*-convex on F" and f is
linear in the direction of e, that is, flx + ue) = f(x) + ar
for some 7 € R and any « € F. Clearly, any L* (or L)-
convex function is submodular. In addition, a lower
semi-continuous L’ (or L)-convex function defined in
a continuous space is both convex and submodular.

Figure 1  Discrete Midpoint Convexity
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Li-convexity is also closely related to the concept of
multimodularity introduced by Hajek (1985) to study
an optimal admission control problem in a single
queue model under no queue information and inde-
pendently by Weber and Stidham (1987) under a dif-
ferent name to study a dynamic control of queues
problem with full state information. A lower semi-
continuous function f : " — (—o0, 0] is called multi-
modular if

f(xo,x) = f(x1 — X0, X2 — X1,.. ., Xp — Xn_1)

is submodular in (xo,x) € F"*'. By definition of L'-
convexity, f is multimodular if and only if f(0,x) is
L'-convex (see Murota 2005). We refer to Glasser-
man and Yao (1994) and Altman et al. (2003) for
more applications of multimodularity to static and
dynamic control of queues problems and Moriguchi
and Murota (2018) for fundamental operations
related to multimodularity.

M’~convexity is motivated by another equivalent
definition of convexity in a continuous space, equal-
distance convexity, which imposes the following

inequality:

f(x) +f(y) > f(x — alx —y)) + fy + a(x — y)),
Vx,y € R« € [0,1].

For lower semi-continuous functions, convexity is
equivalent to the equal-distance convexity as it
implies midpoint convexity. In the definition, the
two points x(«): = x — alx — y) and y(a): = y + alx —
y) maintain equal distance to x and y, respectively,
or equivalently they are symmetric with respect to
the midpoint 5% In addition, one can easily show
that the sum of the function values over the two
points x(x) and y(x) is non-increasing when they
move toward each other through the line segment
connecting them (see Figure 2a).

It is tempting to mimic this intuition when we
switch to integer spaces. Ideally, we would like to
construct the trajectories of two integral points x(«)

and y(«), starting from x and y, respectively, and sym-
metrical with respect to the midpoint 3%, such that
the sum of their function values is non-increasing as
the two points move closer. To keep integral, we
restrict the movement of the two points only along
the axes (see Figure 2b). However, unlike the continu-
ous space case in which x(«) and y(«) move along a
one-dimensional line segment, there are different
directions the two points can move along (this
becomes more prominent when the space dimension
is larger than two), and M'-convexity only imposes
the existence of such a direction. Similar to L'-convex-
ity, the same definition of M'-convexity for discrete
functions applies to continuous spaces with minor
modification.

DeriNtTioN 2.2. A lower semi-continuous® function
f:F" — (—o0,00] is called M'-convex on F" if it sat-
isfies the following exchange condition: for any x,
y € dom(f) and iesupp*(x—y), there exist
jesupp (x—y)U{0} and a positive number
og € F such that

f) +f(y) 2f(x — x(ei — €))) +f(y +o(ei — ¢)))

for every o € [0, 0] N F.

Here “M” stands for matroid in view of the connec-
tion of the exchange condition to the definition of
matroid.

We can also define the sibling of M*convexity, M-
convexity. A function f: F" — (—o0,00]| is called M-
convex on F" if f is M'-convex on F" and its domain is
contained in a hyperplane {x € 7"|> ", x; = r} for
somer € F.

Murota (2003) provides a host of weak variants of
Li-convexity and M"-convexity, most of which have
not been used in the operations literature. Here we
only introduce semistrictly quasi M*- (SSQM*-) convex-
ity, which is useful in the analysis of monotone com-
parative statics in parametric optimization problems

Figure 2 Convexity and M*-Convexity

z —a(z —y)
L N

L 4

(a) Equal-distance convexity

Y

<+

y+ (ei —e;) Y\ = (e;i —|e;)

E

(b) Exchange condition
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(see section 3). The concept is motivated by quasi-
convexity in continuous spaces, a relaxed version of
convexity, which requires

F((1 = Nx + Ay) < max{f(x), f(y)}, for any x,y € R",

or equivalently
fI(L=Nx +Ay) <flx) or f((1 = X)x + Ay) <f(y)-

Specifically, a lower semi-continuous function
f:F" — (—o00,00] is SSQM'-convex if for any x,
yedom(f) and iesupp™(x—y), there exist
jesupp (x—y)U{0} and a positive number
ap € F4 such that for any a € [0, 9] N F,

SSQM'-convexity is defined by relaxing the
exchange condition of M”-conveﬂty. Therefore, M"-
convex functions are SSQM-convex. The name
“semistrictly” comes from the strict inequality
requirement in (a) and (b).

Our discrete convexity concepts are defined for
extended functions, that is, functions can take the
value +00. This naturally imposes conditions on their
domains. A closed set S C F" is called Li-convex, M"-
convex, SSQM’-convex or a sublattice (of F") if its
indicator function Js is Li-convex, M-convex, SSQM"-
convex or submodular, respectively (recall ds(x) =
if x € S and ds(x) = +oo otherwise). Note that any
Li-convex set S is a sublattice since s is L"-convex,
and thus submodular. See Propositions 3.1 and 3.9 for
full characterizations of L"/M"-convex sets.

2.2. Examples
In the following, we present several examples of
L% /M-convex sets and functions.

Examples of L'-convex sets and functions

* Let U,VC€[n], AC[n]xIn], l;,uj,an € R for i € U,
jeV, (kD eA The polyhedron {xcR"
|x; > 1, x; <uj, xx —x;<ay, forallie U, je
V, (k,1) € A} is an L'-convex set. Its restriction
on Z" is a discrete Li*-convex set.

*Let f:F — (—o0,00] be a univariate convex
function. Then f is L'-convex and h(x,y) = fix—y)
is L%-convex in (x).

+ For any nondecreasing univariate convex func-
tion h and  bg,....b, € R, f(x) = h(max
bo,x1 + b1,...,x, + b,}) is Li-convex on F". If
f(x,t) is Li-convex on F™ x F and nondecreasing

in t, then g(x,y) = f(x,max{y,...,y,}) is L*
convex on F™ x F".

« A separable convex function on F" is L'-convex.
Here a function f: F" — (—o0,00] is separable
convex on F" if f(x) = Y[ ,fi(xi), where
fi: F — (—o0,00] (i =1,.,m) are univariate con-
vex functions.

+ A quadratic function f(x) = x"Ax with the
matrix A being symmetric is L'-convex on F" if
and only if A is a diagonally dominant M-matrix,
that is,

a; <0 Vi#j, and Zaijzov:',
j=1

where a;; refers to the ij-th component of matrix A.
+ Any submodular function on {0,1}" is L!-
convex.

Examples of M¥-convex sets and functions

* Let f be a submodular set function with a
ground set V and n = |V|. Its base polyhedron
B(f) = {x e R"| > ;cyxi<f(U) for all U C V and
iy Xi = f(V)} is an M'-convex set, and so is
the projection P = {y e R"|(x1,y)
€ B(f) for some x; € R}. Both B(f)nZ" and
PNZ" are discrete M*-convex sets.

* A separable convex function f : F — (—o0, 00] is
M¢-convex.

* Laminar convex functions. A nonempty set
£ C2M is called a laminar family if for any
A,Be L, ANB = & or ACB or BCA. A function
f:F"— (—o0,00] is called a laminar convex
function if it can be represented as

fa)=>_fs (Z) :

5L ies

where fs (S € £) are univariate convex functions
and £ is a laminar family.
A quadratic function f(x) = x" Ax with a sym-

metric matrix A is Mf-convex on Z" if and only
if the following conditions hold:

Agj >0V I}}' S [H]} and Agj > mi_n{A!-bAjk} Vk# f,j,
which is also equivalent to the laminar convex-

ity of £
A quadratic function f(x) = x" Ax with a sym-

metric matrix A is M'-convex on R" if and
only if for any 4>0, A+ Al is nonsingular
and (A+ M) is a diagonally dominant
M-matrix.
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* (Moriguchi and Murota 2018) A function
f:2* — (—00,00] is multimodular if and only if
it is Mf-convex.®

» Let (V,]) be a matroid with the ground set V
and the independent sets IC {0,1}", where
n=|V]. Then f(x) = max{a'ylyel, y<x} is
Mt-concave on {0,1}" for any a € R". In partic-
ular, the rank function is M"concave.

3. Characterizations and Properties

Similar to convexity, L*-convexity and M*-convexity
admit many salient characterizations and properties
that render broad applications. We focus on L'-con-
vexity first and then move on to M*-convexity.

We first provide some characterizations of L'-con-
vexity below. For Li-convex sets, the following propo-
sition shows that a closed set is L-convex if and only if
it is the intersection of F" with a polyhedron whose
facets are perpendicular to e; — e;,i,j € {0,1,...,n},i#].

Prorosimion 3.1. (Murota 2003, secTioN 5). A closed
subset of F" is Li-convex if and only if it can be
expressed as {x € F"|l<x<u, x; — x;<a;j, i #j} with
Lue ?” and a; € ?.6

Any discrete Li-convex function f is convex extensi-
ble as it is integrally convex. Furthermore, one of its
convex extensions can be constructed efficiently by
first extending on each unit hypercube using the so-
called Lovész extension (e.g., see Murota 2003, p. 16)
and then splicing them together. Hence, a discrete
L -convex functions can be regarded as the restriction
of certain (not any arbitrary) convex function on an
integer space. In contrast, the following result shows
that a discrete L'-convex function can also be
regarded as a function obtained by consistently
splicing linear functions defined on L'-convex sets. It
says that for a discrete L°-convex function f, if we
move any hyperplane to touch its epigraph {(x,)|t > f
(x),x € dom(f)}, the touch points form an L*-convex
set and vice versa.

ProrosiTioNn 3.2. (Murora 2003, THEOREM 7.17).
Assume that f : 7" — (—o0, 0o] has a nonempty bounded
dom(f). f is Li-convex if and only if its linearity domain
arg minflp] is an Li-convex set for all p € R".

For twice continuously differentiable functions, a
characterization in terms of the Hessian matrices is
provided below.

Prorosimion  3.3. (Murota AND SHIOURA 2004). A
twice continuously differentiable function f:R" — R is

Li-convex if and only if its Hessian matrix V>f(x) is a
diagonally dominant M-matrix for all x € R".

As an integrally convex function, local optimality of
discrete L*-convex functions implies global optimality
in the following sense.

ProposimoN 3.4. (Murora 2003, THeOrRem 7.14). Let
f:Z" — (—o0o,00| be a discrete L*-convex function. If
f(x) < min{f(x + es),f(x — es)} for all SC[n], then x is
a global optimum.

It seems that one needs to check 2"*! points to ver-
ify the local optimality. Interestingly, as f is submodu-
lar on both {x + es|S C [n]} and {x — es|S C [n]}, the
local optimality of a given point x can be verified by
conducting polynomial number of function evalua-
tions (see Orlin 2009). Based on this, Proposition 3.4
suggests an efficient steepest descent algorithm of
finding a global minimizer of an L"-convex function,
which can be further accelerated with a scaling tech-
nique. The computational complexity of this steepest
descent scaling algorithm is O(a(n)vm?log,(£)),
where a(n) = O(n°) is the number of function evalua-
tions of minimizing a submodular function over a
set with n elements, vy is an upper bound of the time
of evaluating function f, and K = max{||x —y||
|x,y € dom(f), xi = y; for some i € [n]} is (roughly)
the diameter of the domain of f (see Murota 2003, p.
305-308).

The intimate connection with submodularity allows
one to develop powerful monotone comparative stat-
ics results using L'-convexity. For a given function
f(-,), F™ x F* — (—00,00|, consider the parametric
optimization problem

inf_f(x,y), (3)

X =
8( ) yi(xy)es

where S refers to the graph of the feasible set. Let
Yy = argming; cs f(x,y) be the optimal solution
set given the parameter x.

Before we proceed to present the technical results,
we review the concept of induced set ordering in lat-
tice programming. Let Y C F" be a set. The induced
set ordering [ over 2Y\ {0} is defined as: for
Y,V €2¥Y\ {0}, YLV if for any ye€ Y and v € Y,
yAy €Yand yVvy €)' (see Topkis 1998, p. 32). Let
X be a partially ordered set with partial order < and
YV, be a nonempty set parameterized by x € X. ), is
said to be nondecreasing (nonincreasing) in x € X
with respect to the induced set ordering if for any
x 2x', Y:CVy (Vv CVy). Throughout the paper, the
partial order on a subset of F" refers to the compo-
nent-wise order <.
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The following proposition is a classical result in lat-
tice programming, which is widely used for mono-
tone comparative statics analyses in the operations
research and economics literature. Part (a) says the
optimal solution set is monotone and part (b) implies
submodularity is preserved under the parametric
optimization operation.

Prorosimion 3.5. (Torxis 1998, section 2.7). Consider
the parametric optimization problem (3). If f(-,-), F™x
F" — (—o0,00| is submodular on F™ x F" and the
graph of the feasible set S is a sublattice (i.e., ab € S
implies aAbavbes), then the following two
statements hold.

(a) The optimal solution set Y. is nondecreasing in
x€{z:Y, #0} with respect to the induced set
ordering.

(b) The optimal value function g(x) is submodular on
F™ provided g(x) > —0o for any x € F™.

The following monotonicity result of Li-convexity
can be directly obtained from Proposition 3.5(a).

Prorosimion 3.6. (CHEn ET AL. 2018). Consider the
parametric optimization problem 3). If
f(-,-), F™ x F" — (—00,00| is an Li-convex function in
F"x F" and SC F™ x F" is an L'-convex set in
F™ x F", then Y, is nondecreasing in x € {z: Y, # 0}
with respect to the induced set ordering, and in addition
yx+:e;yx + e fO?’ ﬂﬂy e -F+-

Proposition 3.6 implies that the optimal solution set
is nondecreasing in the parameter and has bounded
sensitivity along the direction of the all-ones vector e
with respect to the induced set ordering. If ), is com-
pact for each x, one can show that the largest element
in ), for each x (or the smallest elements in ), for each
x), guaranteed to exist under the assumption in Propo-
sition 3.6 and the nonemptyness and compactness of
Yy, is nondecreasing in x and has bounded sensitivity.

Similar to convexity, L'-convexity is preserved
under basic operations of scaling, translation and
addition. That is, if fi(x),f2(x) are Li-convex, then
Mi(x), fi(a + bx) and fi(x) + f2(x) are L*-convex in x
for all A € Ry, a € F" and b € F. Li-convexity is also
preserved under point-wise limit as submodularity is
preserved under point-wise limit. Moreover, given a
function f: F" x F™ — (—00,00] which is L-convex
in the first component, E[f(-, ¢)] is L"-convex for any
random vector £ on F™ provided the expectation is
well defined. Finally, the following result, a direct
corollary of Proposition 3.5(b), illustrates that L*-con-
vexity is preserved under parametric optimization
operations, which has been proven quite powerful to
deal with dynamic operations models.

ProrosrmoN 3.7. (Cuen Er AL, 2018). Consider the
parametric optimization problem (3). If f(-,-), F™x
F" — (—00,00] is an Li-comvex function on F™ x F"
and S C F™ x F" is an Li-convex set in F™ x F", then
the optimal objective value function g(x) is L'-convex on
F™ provided g(x) > —oo for any x € F".

This preservation property, together with the
monotonicity property Proposition 3.6, is useful to
analyze the monotone comparative statics of optimal
decisions in the literature of inventory control and
revenue management (to be discussed in section 4.2).

In operations models, we often end up with para-
metric optimization problems in which decisions are
truncated by random variables of the following
form:

g(x,z) = inf

u:(x,zu)ed

Eff(x,un (z+9))]; (4)

where x and z are some state variables, u is the deci-
sion vector, and [ is the expectation taking over the
random vector £ . For instance, in inventory models,
one may face uncertain supply/production capacity
due to random factors such as imperfect quality and
unreliable production process. In this case, z and u
may represent the initial inventory level and the tar-
get order-up-to level, respectively, £ is the uncertain
capacity level, u A (z + &) is the realized order-up-to
level, and f is the cost incurred (x is dummy here).
In capacity control of revenue management, u may
represent the booking limits of different demand
classes, z + £ is the realized demand with z being
mean demand forecast, x is the available capacity,
and f is the cost (or equivalently negative reward) of
serving accepted demand u A (z + ¢). A technical
challenge of problem (4) is that it is not a convex
programming problem in general even if f is a con-
vex function and A is a convex set. Interestingly,
under certain conditions, Properties 3.6 and 3.7 can
be extended to address such models (see Chen et al.
2018 and Chen and Gao 2019). For simplicity, we
impose the following structure on A:

A={(xz,u)
€ F™ x F" x F"|Au <b(x,z),u>u(x,z)}

where A is a matrix with an appropriate dimension,
and b and u are vectors which may depend on x
and z. Define

A ={(x,zyzw)lw=uA (z+ &), (x,z,u) € A, &
€ supp(&)}

and denote U*(x,z) the optimal solution set of prob-
lem (4).
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ProposiTioN 3.8.  (CHEN ET AL. 2018). Consider problem
(4). Assume that f:F™ x F" — (—oo,00| is an L°-
convex function in F" x F", ¢ is a random vector in F"
with independent components and A C F™ x F" x F"
is a nonempty set. If the matrix A is nonnegative and
z + ¢ = u(x,z) with probability one, then the following
statements hold.

(@) If A® is L*-convex, then g is Li-convex.

() If in addition A is L'-convex, then U*(x,z) is
nondecreasing in (x,z) and U*((x,z) + oe)
CU*(x,z) + ae for any o€ F.

We now focus on M'-convexity.

As integrally convex functions, discrete M'-convex
functions are convex extensible. In addition, the fol-
lowing characterizations of M'-convexity are parallel
to Propositions 3.1-3.4 for L-convexity.

Prorosimion 3.9. (Murora 2003, sectioNn 4). A none-
mpty polyhedron P in R" is M"-convex if and only if the
tangent cone Tp(x) of P at x (i.e., the cone generated by
vectors y—x for all y € P) is generated by vectors chosen
from {e; —ejli,j = 0,1,...,n} forall x € P.

Prorosimion  3.10. (Murora 2003, Taeorem 6.30).
Assume that f : 7" — (—o0, 0o] has a nonempty bounded
dom(f). Then f is M-convex if and only if its linearity
domain arg minflp] is an M"-convex set for all p € R.

ProposiTioN 3.11.  (Cren anp Li 2019). Let a,be R'.
A twice continuously differentiable convex function
f:(a,b) = R is Mi-convex on (ab) if and only if
V2f(x) + M is nonsingular and (V?f(x) + M)~ is a
diagonally dominant M-matrix for all x € (a,b) and all
positive number A.

Prorosimion  3.12. (Murotra 2003, THEOREM 6.26).
f:Z" — (—00,00] is M¥-convex, then x € dom(f) is a
global minimizer of f if and only if x is a local
minimizer, that is, f(x)<f(x—e; + e;) for any i,
j€ {01,...nk.

Proposition 3.12 suggests a steepest descent
algorithm of finding a global minimum of a dis-
crete M'-convex function f, and this algorithm
has a scaling version as well (see Murota 2003,
p- 281- 283). The computational complexity of the
steepest descent scaling algorithm is O(vm?Ky),
where vy is an upper bound of the time of
evaluating function f and K; = max{|x -yl

|x,y € dom(f)}, the diameter of the domain of f
in ¢;-norm.

For two-dimensional functions, Mh-conveﬂty, and
thus equivalently multimodularity as we pointed out
earlier, are characterized by the property of super-
modularity and diagonal dominance which finds
applications in several inventory and production
models (see section 4.3).

Proposimion 3.13. A function f : F* — (—o0, 00 is ME-
convex if and only if f is supermodular, and satisfies the
diagonal ~ dominance property: for any x € F?,
0,00 € Fy,

f(x1,x2) +f(x1 + 0+ 01,22 — 8) > f(x1+ ,x2 — 0)
+ f(x1 + 61, %2).7

For discrete functions, the diagonal dominance
property means A;f(x) > Ayf(x), i #],ij € {1,2}, where
Aif(x) = f(x+ ei+ e) —fx+e) — f(x + e) + f(x) is
the twice difference of f. For twice continuously differ-
entiable functions, the diagonal dominance property

means 570 (x) > 52 (x),i#],ij € {1.2}.

One may wonder whether M'-convexity would
allow us to derive some monotone comparative statics
in the parametric optimization problem (3). The issue
is more challenging than L*-convexity because the tra-
ditional lattice programming typically considers para-
metric minimization (or maximization) problems
with a submodular (or supermodular) objective func-
tion over a constraint set with a lattice structure while
an M-convex function is supermodular as stated in
the following proposition.

Prorosimion 3.14.  (Murora 2003, THEOREM 6.19; MUR-
OTA AND SHIOURA 2004). M"-convex functions are super-
modular.

In general, there is not much one can say about the
monotonicity of the optimal solution of problem (3) if
the objective function is merely supermodular. How-
ever, since M*-convexity is much stronger than super-
modularity, we can indeed derive some monotone
comparative statics using the concept of weak
induced set ordering. Let Y C F" be a set. The weak
induced set ordering [, over 2 \ {0} is defined as: for
Y,V €2Y\ {0}, YT,V if for any y € ), there exists
y' €)Y with y <y, and for any i’ € ), there exists
y € Y with y </ (see Topkis 1998, p. 38). Let X be a
partially ordered set with partial order < and ), be a
nonempty set parameterized by x € X. ) is said to
be nondecreasing (nonincreasing) in x € X with
respect to the weak induced set ordering if for any
x 2x, Voo Vr T
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Proposiion 3.15. (Cuen anp L1 2019). Consider pro-
blem (3). If f:F™ x F" — (—o0,00] is an M-convex
function and S = F™ x B with B being a box in F",
that is, B = [L,u] N F" and l,u € F', then the optimal
solution set Y, is nonincreasing in x and ey, + eTx is
nondecreasing in x with respect to the weak induced set

ordering for x € {z : ), # 0}.

The first part of Proposition 3.15 provides a condi-
tion under which the optimal solution set is nonin-
creasing in the parameters. This is totally different
from Propositions 3.5 and 3.6, where the optimal solu-
tion is nondecreasing (instead of nonincreasing) in
the parameters. Interestingly, this result can be
extended to SSQM"-convexity: if f is SSQM’-convex,
then ), is nonincreasing in x with respect to the weak
induced set ordering. The second part of Proposition
3.15 says e’), + elx is nondecreasing in x. In inven-
tory applications, if y represents the ordering quantity
and x the initial inventory, e’), + e'x being nonin-
creasing means that the total optimal order-up-to
level is nonincreasing in the initial inventory. See sec-
tion 4.3 for an application of Proposition 3.15 in a mul-
ti-product inventory model. We would like to point
out that Proposition 3.15 cannot be derived from clas-
sical results in lattice programming by making simple
variable transformation from (x,y) to (x,—y) or (—x,y)
as neither f(x,—y) nor f(—xy) is submodular in gen-
eral.

M’ ~convexity is preserved under several commonly
used operations. If f(x) is M*-convex, then if(x), fla +
x) and fIpl(x) are M'-convex for all A € R,, a € F"
and peR" If f(x) is M convex (SSQM’-convex,
M-convex), then f(x+y) is M'-convex (SSQM"-convex,
M-convex) in (x,y). M*-convexity is preserved under
point-wise limit. The following result illustrates that
M-convexity is preserved under infimal convolution.

ProrosiTion 3.16. (Murora 2003, THEOREMS 6.15 AND
6.50). The infimal convolution of two M*-convex func-
tions fi,fo: F" — (—o0,00|, defined as (fi0f)(x) =
min, - (fi(u) + f2(v)), remains M'-convex in F" if
(A0f)(x) > — oo for any x € F".

Finally, M*-convexity is preserved under paramet-
ric optimization operations in the setting of Proposi-
tion 3.15.

ProrosiTion 3.17. (Murora 2003, THEOREMS 6.15 AND
6.50). Consider problem (3). If f : F™ x F" — (—00, 00
is an M"-convex function and S = F™ x B with B being
a box in F", that is, B = [L,ulNF" and l,u eF", then
g(x) is M'-convex on F™ provided g(x) > —o0 for any
xeF".

Compared with Li-convexity, M’convexity is
much more challenging to deal with because M"-
convexity is not closed under some commonly used
operations. For example, f(bx) may not preserve
Mé-convexity for b€ R; the restricion of an M-
convex function on an M'-convex set is not neces-
sarily an M'-convex function; the summation of
two M'-convex functions may not be an M’-convex
function.

The result below links L/Li-convexity with M /M-
convexity through the Legendre transformation,
which we will exploit to analyze an assemble-to-order
inventory model in section 4.3. The Legendre trans-
formation (or conjugate function) of a function
f:F" — (—o0,00] is a function f*:F" — (—o0,00]
defined by

f(p) =sup{p'x —f(x)|x € F"}, p€ F".

Prorosmon  3.18. (Murora 1998, MUROTA AND
SHIOURA 2004). A function f is M'-convex (L"-convex) if
and only if f* is Li-convex (M'-convex). The statement
remains true when we replace Li-convex by L-convex and
M¢-convex by M-convex, respectively.

In the two-dimensional space, L'-convexity and M"-
convexity are essentially equivalent subject to a sim-
ple variable transformation.

Prorosmon  3.19. (FupsHice 2005, Lemma 17.4). A
two-dimensional ~function® f: F? — (—o0,00] is M-
convex if and only if f(—x1,x2) is Li-convex in (x1, x2).

As we mentioned earlier, Mh-conveﬂty is not pre-
served under addition operation in general. Proposi-
tion 3.19 together with the preservation of L'-
convexity under the addition operation implies that
the summation of two two-dimensional M’-convex
functions are M*-convex.

ProposimoN  320. If twe functions f,h:F?—
(=00, 00] are ME-convex, then f + h is M*-convex.

This property allows us to show preservation of
M'-convexity in models involving expectation
operations. See section 4.3 for a case study of a
two-location joint inventory and transshipment
model.

Proposition 3.19 together with the preservation of
M!-convexity under infimal convolution implies that
Li-convexity is preserved under infimal convolution
if we restrict to a two-dimensional space.

ProposmoN 321, (CHen Er AL. 2013). If fi: F2 —
(—o0,00] (i =1,...,n) are L -convex, then the function
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i=1

fo) = nﬁn{zﬂjﬁ(yfnijyf —xyeFic [n]}

is Li-convex.

4. Applications

In this section, we first review network flow problems
in which Lf-convexity and M'-convexity naturally
arise. We then review some applications of Li-convex-
ity and finally those for M-convexity.

4.1. Network Flow Problem

M-convexity and L*-convexity naturally arise in net-
work flow problems. Let (V,A) be a directed graph
with vertex set V and arc set A. For each arc a, denote
&(a) the flow on it and f; the cost function of its flow
which is assumed to be univariate convex. Denote
teF I the vector of flow on each arc. The boundary
o¢ € FIV of a flow vector atanode v € V is defined
as the total flows leaving v minus the total flows
entering v. Let T € V be the set of supply and demand
nodes. The minimum cost of the network flows with a
given supply and demand vector x € F 1% can then
be written as

f(x) :itgf{ ng (&)(0¢),=—xpifveTand Ootherwise} :

(5)

It is shown that ﬁmction(!’ : FIT = (—00,00] is M-
convex (see Murota 2003)."’ This result plays a criti-
cal role in Ma et al. (2018) to prove that a spatio-
temporal pricing mechanism is subgame-perfect
incentive compatible in a ride-sharing platform with
strategic drivers.

L -convexity arises if we consider a network (V,A)
of electric potentials. Let p, be the electric potential on
node v € V and p € F!V be the electric potential vec-
tor. The coboundary of an electric potential vector p
(viewed as voltages on the arcs) is a vector Ap € F/AI
defined by (Ap), = po — po for a = (v/,v). Let g, be
the cost function associated with arc a4, which is
assumed to be univariate convex. Given the potential
g € F'M on a node subset T C V, the minimum cost of
the network voltages can be written as

8(g) = igf{Zga((Ap)g)lpa =gy, VE T}.

acA

It is shown that function g: FITl — (—o00,00] is L-
convex. Moreover, under the same network, if f;
and g, are conjugate to each other for all a € A, then

f and g are conjugate to each other (see Murota
2003, Murota and Shioura 2004).

M'-convexity and Lf-convexity also arise in a net-
work with capacity constraints. In the above network
(V,A), assume f,(¢,) = —w,&, with weight w, € F for
every a € A and T =(. Let l,u € F be vectors of
the lower bound and the upper bound of the capacity
on each arc, respectively. Then problem (5) becomes a
max-weight circulation problem

F(w,l,u) = sup {Z &,w,|0¢ =0, Igﬁgu}.

eeFhl Laca

The function F can be M'-convex (concave) or L'-
convex (concave) in some of its variables depending
on whether their associated arcs are parallel or ser-
ies. Two arcs are said to be parallel (series) if they
are in the opposite (same) direction for every sim-
ple cycle containing them. A set of arcs is said to
be parallel (series) if it consists of pairwise parallel
(series) arcs. For a series set S and a parallel set P,
it is shown in Murota and Shioura (2005) that F(w,
Lu) is M'-convex in (w,),.s and separately M'-con-
cave in (l;),cp and (g),cp (F(w,lu) is Li-convex in
(wa),cp and separately Li-concave in (I,),.s and
(44),e5)- This result implies that F(w,lu) is sepa-
rately supermodular in (wg),cg, (Ia)es: (Ua)aes (sepa-
rately submodular in (Wa),cp, (le),eps (Ha)aep), @
crucial result in Gale and Politof (1981) which
plays an important role in the analysis of the pro-
cess flexibility in manufacturing (see Simchi-Levi
et al. 2014, Chap. 13).

Many important properties and algorithms of clas-
sical min-cost flow problems can be extended to set-
tings with M’-convex objectives. Consider the
fundamental form of the min-cost flow problem:

min{Zégwgli‘?é:—x, tgégu}, (6)
feri acA

that is, problem () with F =R, T=V,
fa(&) = ws&, for every a € A and a capacity con-
straint [Lu]. Numerous properties for problem (6)
have been developed, for example, optimal criteria
in terms of potentials (i.e., dual variables) and nega-
tive cycles as well as the integrality conditions of
optimal flows. There are also efficient algorithms of
finding an optimal solution such as the cycle cancel-
ing algorithm. We refer to Klein (1967) and Ahuja
et al. (1993) for more results on min-cost flow prob-
lems. Equipped with M"-convexity, these results can
be extended to a more general submodular flow
problem with a nonseparable objective function. The
submodular flow problem solves
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min Z &wa +f(0E) One can show that g(s,y,D) equals the optimal
acA objective value of the following problem.
st. I<¢&<u
<¢< (7) min h*(sg—u)+h™ (u—5g) +fiy1(51 — .82 — u,...,y — 1)
0¢ € dom(f)
s.t.0<u <D, u<sp,
¢ e RAL

where f: RYl — (—00,00] is a function with dom(f)
being a base polyhedron of some submodular func-
tion. It is shown in Murota (1998) and Murota (1999)
that if f is M-convex (the corresponding problem is
referred to as M-convex submodular flow problem
or MSFP for short), the results on optimal criteria in
terms of the potentials and negative cycles and inte-
grality conditions of optimal flows can be extended
to problem (7), and the optimal solution can be
obtained by the cycle cancelling algorithm. These
results of MSFP are used by Candogan et al. (2016)
to analyze the competitive equilibrium in a trading
network where agents have M'-concave valuations.
Specifically, they transform the problem of finding a
competitive equilibrium as a MSFP and show that a
competitive equilibrium exists and can be computed
efficiently.

4.2. Applications of L’-Convexity

4.2.1. Inventory Model with a Positive Lead
Time. L%-convexity is introduced by Zipkin (2008) to
analyze the structure of the optimal policy of the clas-
sical single-product stochastic inventory model with
lost sales and a positive lead time. In the model, at the
beginning of each period, we observe the state repre-
sented by s = (sp,s1,...,51-1), where [ is the fixed lead
time, and s; is the on-hand inventory plus the orders
to be arrived within i periods. Specifically, sp is the
on-hand inventory level and s;_; is the inventory posi-
tion. An order is then placed which incurs a cost of ¢
per unit and will be received [ periods later. Any left-
over inventory is carried over to the next period
incurring a holding cost of h™ per unit, and unsatis-
fied demand is lost incurring a lost-sales cost of h~
per unit. The cost-to-go function f;(s) at period t with
a state s satisfies the following Bellman equation.

fis) = min c(y —s;1) + Elgi(s, y, D)),

y=s

and
81(5,9.D) = (59— D)* + k(D — 50)" + fur ().

where y is the inventory position after ordering, D
is the random demand, and § = (57— sHA
D,sy —so AD,...,y —sy AD) is the state of the next
period. At the end of the planning horizon, any
remaining on-hand inventory is assumed to have a
salvage value of ¢ per unit.

which basically says that even with the flexibility of
satisfying only a portion of the demand, it is always
optimal to satisfy the demand as much as possible.
Based on this fact and Proposition 3.7, Zipkin (2008)
shows by induction that fi(s) and g(s,y,D) are L'-
convex, which together with Proposition 3.6 proves
that the optimal order-up-to level y*(s) is nonde-
creasing in s but the increased amount is bounded
by that of the on-hand inventory level (everything
else unchanged). The monotonicity result implies
that the optimal ordering quantity y*(s) —s;_; is
nonincreasing in the on-hand inventory sy and the
outstanding orders s; —sp,...,5;_1 —5;_». In addition,
it is more sensitive to more recent orders with
bounded sensitivities (i.e., the decreased amount of
the optimal order quantity is no more than the
increased amount in the on-hand inventory plus the
outstanding orders).

The analysis based on L'-convexity greatly simpli-
fies that for the lost-sales inventory model with posi-
tive lead time in the literature, and has been explored
for several other fundamental models in inventory
control and revenue management. Pang et al. (2012)
consider a single product joint inventory-pricing con-
trol problem with backlogging and a positive lead
time. Focusing on the case in which demand is a
deterministic function of the selling price with an
additive random noise independent of price, they
show that the profit-to-go function is Lf-concave.
Based on this, they establish a similar sensitivity
result for the optimal ordering quantity, and show
that the optimal demand is nondecreasing in the on-
hand inventory and the inventory in transit with
bounded sensitivities.

Chen et al. (2014b) investigate a joint inventory-pri-
cing-disposal control problem for a perishable pro-
duct with a fixed life time and a positive lead time.
They provide monotonicity results of the optimal
order-up-to level, the optimal ordering quantity and
the optimal demand level for both backlogging and
lost-sales cases. A similar monotonicity result for the
optimal ordering policy has been established by Fries
(1975) and Nahmias (1975) under a special case with
fixed prices, zero lead time and continuous demand
distributions using significantly more complicated
analysis. However, as pointed out by Nahmias (2011)
(page 10), “The main theorem requires 17 steps and is
proven via a complex induction argument.” In addi-
tion, for models with discrete demand, Nahmias and
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Schmidt (1986) developed a separate argument using
a sequence of continuous demand distributions to
approximate the discrete demand distribution, while
the proof of Chen et al. (2014b) is applicable for both
discrete demand and continuous demand.

Feng et al. (2019) consider a dynamic inventory sys-
tem of two substitutable products with positive
replenishment lead times. With a mild assumption on
the parameters, they show that the cost-to-go function
is L"-convex and provide sensitivity analyses for the
optimal order-up-to levels, optimal ordering quanti-
ties and optimal substitution quantities. By establish-
ing Proposition 3.8, Chen etal. (2018) develop
methodologies to handle a class of optimization mod-
els in which decision variables are truncated by ran-
dom variables and illustrate their applications on
several models including dual sourcing systems with
random supply capacity (see also Chen 2017b),
assemble-to-order systems with random supply
capacity, and capacity allocation in network revenue
management based on booking limit controls. Appli-
cations of Li-convexity to optimal control in several
other dynamic inventory models refer to Huh and
Janakiraman (2010), Gong and Chao (2013) and Chen
(2017a). We also refer to Li and Yu (2014) for several
dynamic inventory control applications in terms of
multimodularity.

So far Li-convexity is only used to derive structures
of optimal policies. It is useful to facilitate the compu-
tation of a class of dynamic program problems includ-
ing the above inventory models as well. Consider a
dynamic program with a planning horizon of T peri-
ods. Assume that the cost-to-go function f; of period t
satisfies the Bellman equation

fi(xs) = min Hy(x;,a;) + Eg [ferr (8e(xe,an, wr))],  (8)

ayE A (1)

where x; € 75 is the state, a; € 7% is the control,
Ai(x;) is the feasible action space, w; € Z* is a ran-
dom vector, H; is an integer-valued single-period
cost function and g is the state transition function.
Halman et al. (2009) show that solving this dynamic
program is NP-hard even for the one-dimensional
case, that is, kj = ks = k3 = 1. Chen et al. (2014a)
further show that no algorithm can provide an
g-approximation of f; in a polynomial time in the
input size of the dynamic program and ! for any
¢ > 0. Here a function fi(x) is called an e-approxima-
tion of fi(x) if [fi(x) —fi(x)| < e. Interestingly, by
assuming that fi(-), Hi(-,-), fi(g(-,-,-)) are Li-convex
and the supports of x;, a; and w; are boxes, Chen
et al. (2014a) provide an approximation algorithm
which outputs an e-approximation of fi(x) with a

running time that is pseudo-polynomial in the input
size and polynomial in L.

4.22. Assemble-to-Order Inventory Model. L*-
convexity is useful in several assemble-to-order
(ATO) inventory models. For example, as we men-
tioned in the above subsection, Chen et al. (2018) con-
sider the replenishment of different components
which are allocated and assembled to satisfy
demands in a periodic review stochastic model. For a
special class of ATO systems, a generalized M-system
in which a product uses all components while any
other product is associated with only one component,
they show that the optimal cost-to-go functions are
L'-convex and provide a characterization of the opti-
mal ordering policy.

Continuous-review ATO models are arguably the
first application of L'-convexity in inventory literature
(see Lu and Song 2005 and Bolandnazar et al. 2019).
Here we focus on the models analyzed in Reiman and
Wang (2015) and Dog'ru et al. (2017). Reiman and
Wang (2015) consider a continuous-review ATO sys-
tem with m products and n components. At each
moment, the manager observes the arrived random
demand and receives the components ordered before.
Assume that all the components have the same
replenishment lead time L. Then the manager deter-
mines how to allocate current available components
to fulfill the demand and how many components to
order. Assume that unsatisfied demand is backlogged
and unused components remain in the inventory. The
objective is to find a replenishment policy I" and an
allocation policy IT to minimize the long-run average
expected cost

T
ct = timsup. [ EBTB() + AT (9)
0

T—o0

Here, b is the vector of each product’s backlogging
cost per unit of time, h is the vector of each compo-
nent’s inventory holding cost per unit of time, B(t)
is the vector of backlog of each product at time ¢,
and I(t) is the vector of inventory level of each com-
ponent at time £.

Reiman and Wang (2015) show that for a general
bill of materials (BOM), it is asymptotically optimal to
follow a base stock replenishment policy for each
component and certain component allocation princi-
ple when the lead time L tends to infinity. The base
stock level can be set as arbitrary convex combination
of optimal solutions from the following optimization
problem (10) and its relaxation (11):

inf C(y), (10)

y=0
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where C(y) = b"E[D] + h'y — E[¢(y;D)], $(y;d) =
max{c’z|0<z<d, Az<y}, D is the lead time
demand vector, the matrix A is the BOM matrix
with a;; being the amount of component j needed to
assemble one unit of product i, and ¢ = b + ATk;

ifylfé(y), (11)

where C(y)=b"E[D]+h"y—E[p(y;D)] and ¢(y;d) =
max{c’z|z < d, Az <y}.

Motivated by a thought-provoking discussion in
Zipkin (2016) on combining polymatroids and dis-
crete convexity to analyze specially structured ATO
models, Dogru etal. (2017) consider a class of
ATO systems with a chained BOM in which every
product needs at most one unit of each component
for production (ie. it is a binary BOM), and for
any two products which share some common com-
ponent, the set of components used for one pro-
duct contains the set of components used for the
other one. Denote S; the set of components needed
for product i. It is clear that a chained BOM is
exactly a binary BOM with {S;},_;., forming a
laminar family. o

For an ATO system with a chained BOM, Dogu
et al. (2017) show that the objective functions C(y) and
C(y) are L*-convex, which allows them to greatly sim-
plify the solution procedure by taking advantage of
the existing optimization algorithms for Li-convex
functions. Their proof is lengthy. Here we give a sig-
nificantly simpler proof of the L'-convexity of C(y)
(the proof for C(y) follows the same argument) by
exploiting the conjugate relationship between L"-con-
vexity and M-convexity.

For this purpose, we only need to show that ¢(y;d)
is Li-concave. By Proposition 3.18, it suffices to prove
that the conjugate function of —¢(y;d), denoted by g
(w), is M*-convex. By definition,

g(w) = 51;pw7y+ d(y;d)

=sup wTy +c'z (12)
st. Az<y
0<z<d.

By linear programming strong duality, the function
value g(w) equals the optimal objective value of the dual
of problem (12), which can be written in a closed form

i di(ci + ij
i=1

j€si

d"(c+ ATw)" + Sp<o(w

+ Z 6wi£ﬂ(wf)

Since A is a chained BOM, g(w) is laminar convex,
and thus M"-convex.

4.23. Appointment Scheduling Problems. L!-
convexity and the closely related concept multimodu-
larity find applications in appointment scheduling
problems when appointment times (Begen and
Queyranne 2011, Ge et al. 2013) or the numbers of
appointments at given times (Kaandorp and Koole
2007, Wang et al. 2020, Zacharias and Pinedo 2017,
Zacharias and Yunes 2020, Zeng et al. 2010) need to
be determined.

Consider an appointment scheduling problem
where a decision maker needs to determine the
appointment times of n jobs with random process-
ing times. Denote A = {A1,A2,...,A”+1} with Ag
being the appointment time of job i (A, refers to
the ending time), and p;(w) the random processing
time of job i, where w represents one scenario from
a sample space Q. Let Sj(w) and Cj(w) be the start
time and completion time of job i, respectively.
Assuming all jobs arrive on time, the waiting of
job i+1 incurs an overage cost 0;((Ci(w) — Aip1)7),
while the idle time due to the earlier completion of
job i incurs an underage cost u;((Ai1 — Ci(w))").
The objective of the decision maker is to minimize
the expected total underage cost and overage cost
which can be formulated as the following optimiza-
tion problem.

min E, Zu Aip1 — Ci(w)) ") + 0i((Ci(w) — Aipa)™)

st i) = )
Ci(w) = Si(w) +pi(w) Vi=2,...,n,we Q
Si(w) =AivCia(w)Vi=2,...n,w e Q,
(13)

where C= {Ci(w)|i € [n],we Q}. Ge etal. (2013)
show that problem (13) admits an integral optimal
solution if wu;0; are continuous nondecreasing
piecewise linear functions with integral break-
points, u;(0) =0;(0) =0, and the random process-
ing times are integral and bounded. Moreover,
with an additional assumption that o;,u; are con-
vex and the summation of the smallest slopes of
u; and o; is no less than the largest slope of u;;1,
they show that the integral optimal solution can
be computed efficiently. More specifically, they
prove that problem (13) is equivalent to the two-
stage problem

min G(A), (14)

Please Cite this article in press as: Chen, X., M. Li. Discrete Convex Analysis and Its Applications in Operations: A Survey. Production
and Operations Management (2020), https: //doi.org/10.1111/poms.13234



https://doi.org/10.1111/poms.13234

Chen and Li: Discrete Convex Analysis and Its Applications

14 Production and Operations Management 0(0), pp. 1-23, © 2020 Production and Operations Management Society

where G(A) = E,[Fu(A)] and

H

Fy(A) = min Z ui(Cir1(w) — Ci(w) — pisa(w)) + o;

(15)

Note that the objective function in problem (15) is
L*-convex in (C;(w),...,Cns1(w),A) since u;,o0; are
univariate convex functions, and the graph of the con-
straint set of problem (15) is an L'-convex set by Pro-
position 3.1. It follows that F,,(A), and thus, G(A) are
L*-convex by Proposition 3.7. The integral optimal
solution can then be computed using a steepest des-
cent scaling algorithm with a running time bounded
by O(n’vglogp). Here, p is the maximal processing
time over all jobs and scenarios, v is an upper bound
of the time to evaluate function G(A). If the processing
times of the n jobs are independent, the function value
G(A) can be computed in O(n*p?) time (see Begen and
Queyranne 2011), which implies that the integral opti-
mal solution can be computed in O(n’p?log p) time.

A different appointment scheduling problem is to
decide the number of scheduled patients for each pre-
determined time slot. By assuming patient-homoge-
neous time-independent no-show probabilities and
punctuality of patients, the objective function is
shown to be multimodular in the following models: a
single-server system with exponential service times
(Kaandorp and Koole 2007, Zeng et al. 2010), a multi-
server system with deterministic service times
(Zacharias and Pinedo 2017), a single-server system
with deterministic service times and a general walk-
in process in which scheduled patients have priority
over unscheduled patients (Wang et al. 2020), and a
single-server system with general random service
times and a general walk-in process in which the ser-
vice discipline follows first-in-first-out and the sched-
uled patients have priority over unscheduled patients
(Zacharias and Yunes 2020). The relationship between
multimodularity and L'-convexity implies that the
objective functions are Li-convex in terms of a new
decision vector, whose ith component is the number
of cumulative scheduled patients up to the ith time
slot. Thus, the corresponding optimization problems
can be solved using existing algorithms developed for
L*-convex function minimization problems.

4.3. Applications of M*-Convexity

4.3.1. Exchange Economy. M'-convexity plays an
important role in establishing the existence of compet-
itive equilibrium in an exchange economy with

indivisible commodities. Here, the exchange economy
is an economic model in which consumers exchange
commodities through money so as to maximize their
surplus (utility of acquired commodities minus the
payment). For an exchange economy where com-
modities are indivisible and each has exactly one unit,
Kelso and Crawford (1982) propose a concept called
gross substitutability (GS) to show that a competitive
equilibrium (i.e., a price vector and an allocation of all
commodities such that the surplus of each agent is
maximized under this allocation) exists if consumers’
utility set functions'' are monotone and satisfy (GS).
Here, a function f : Z" — [—o0c, 00) satisfies (GS) if for
any two price vectors p,q € R" with p < g and any
x € arg maxfl—pl, there exists y € arg maxfl—q]
such that y; >x; when p; = g;. A consumer’s utility
function satisfies (GS) means that if the prices of some
commodities increase while the prices of the others
keep unchanged, then the demands of the commodi-
ties with unchanged prices increase. For an exchange
economy where more than one unit of each indivisi-
ble commodity can be consumed, Danilov et al.
(2001) show that there exists a competitive equilib-
rium if utility functions defined on Z" (n is the num-
ber of different commodities) are M"-concave. Later,
Murota and Tamura (2003) propose an efficient algo-
rithm to compute the competitive equilibrium.

These results on exchange economy with indivisi-
ble commodities lead to a series of investigations of
the relationship between (GS) and M'-concavity.
Fujishige and Yang (2003) prove that a set function is
M®-concave if and only if it satisfies (GS). Murota
et al. (2013) extend this result by showing that a con-
cave-extensible function with a bounded effective
domain is M'-concave if and only if it satisfies (GS)
and the law of the aggregate demand (LAD). Here, a
function f : Z" — [—o0, 00) satisfies (GS) and (LAD) if
for any p, g € R" with p<g and any x € arg maxfl—p],
there exists y € arg maxfl—q] such that y; > x; when
pi = giand Y ",y < Y1 x;. That is, when the prices
of some commodities increase, the total amount of
demands decreases while the demands of the com-
modities with unchanged prices increase.

4.3.2. Production Control Problems with Two
Products (facilities). M'-convexity is useful in the
analysis of optimal policies of dynamic models in
operations. In this subsection, we focus on a class of
dynamic production models with two products (facil-
ities). A common theme of these models is that their
underlying states lie in two-dimensional spaces and
their cost-to-go functions are supermodular and sat-
isfy the diagonal dominance property mentioned in
Proposition 3.13 (see, e.g., Ha 1997, Hu et al. 2008,
Yang 2004, Yang and Qin 2007). Yet, the literature
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establishes these properties on a case by case basis
and relies on a very careful analysis on the first-
order and second-order derivatives of the cost-to-go
functions in settings with real state spaces. Yang
and Qin (2007) believe that “there must be some
deeper theory that can unify all these different
approaches. However, such a theory still seems elu-
sive for the time being.” We show in the following
that M'-convexity is exactly what one can use to
unify the different approaches, and using M'-con-
vexity, the proof of showing the properties of super-
modularity and diagonal dominance can be
significantly simplified.

Ha (1997) studies a continuous-review dynamic
production scheduling problem with a single server
and two products. At each time t € [0,09), the pro-
duct manager can take three actions: produce pro-
duct 1, produce product 2 or do not produce.
Assume that demands for product i are independent
Poisson processes with rate \; (i = 1,2), and the pro-
duction time for product i is exponential distributed
with rate p. The server follows a preemptive
discipline and can only produce one product at each
time. The inventory cost (rate), which is charged
continuously over time, is h(X1(t), Xa2(t)) = Yoo hj
Xi(t)" +h7Xi(x)”, where X;(t) is the inventory level
at time f for product i and k", h; are its unit holding
and backlogging cost rate, respectively. The objective
is to dynamically determine the action for each time
to minimize the expected discounted inventory cost
over an infinite horizon. Denote f(x1,x2) the infimum
of the expected discounted cost over the infinite hori-
zon with initial inventory (x1,x2) € 7? at time 0. One
can show that function f satisfies a dynamic pro-
gramming recursion f = Tf. Here T is an operator
defined as

Tf(x1,%2) = h(x1, xX2) + Aif(x1 = 1,%2) + Aof (X1, %2 — 1)
+ pmin{f(x; + 1,x),f(x1,%2
+1),f(x1,%2)},

where the first term is the inventory cost rate, the
second term and the third term correspond to the
events of a unit demand of product 1 and product
2, respectively, and the last term refers to the deci-
sion to be made upon the completion of a produc-
tion. A key result in Ha (1997), which is used to
characterize the optimal policy, shows that the prop-
erties of supermodularity and diagonal dominance
are preserved under operator 7. Interestingly,
according to Proposition 3.13, this result is equiva-
lent to the preservation of M'-convexity under oper-
ator 7, which can be easily obtained by Proposition
3.16. To see this, define g(x1,x) = min{f(x; +1,x),
f(x1,x2 4+ 1), f(x1,x2) }. One can rewrite it as

8(x1,%2) = min {f(u1,u2) + Jp(v1,02)},

where B={(0,—-1),(—~1,0),(0,0)}. It is clear that B is a
discrete M*-convex set, and thus g(x) is the infimal
convolution of two M?-convex functions, which
implies that g(x) is M¥-convex by Proposition 3.16.
Yang and Qin (2007) investigate a periodic-review
joint production and transshipment control problem
in which a company manages two manufacturing
facilities. Each facility has its own market and its ran-
dom demand is assumed to be independent over time
but can be dependent on the demand of the other
facility. In each period k, the company divides its
decisions into two stages. In the production stage,
after observing the initial inventory (x1,x»), it decides
the production quantity z; € [0,Ti] of each facility
i = 1,2, and pays a linear production cost, where T; is
a deterministic capacity. The production lead time is
assumed to be 0. In the transshipment stage, after the
random demand D; is realized, the company decides
the quantity of products transferred from one facility
to the other one and pays a linear transshipment cost.
At the end of period k, the demand of each facility is
satisfied by its on-hand inventory and unsatisfied
demand is backlogged. Let H;(-) be the inventory car-
ryover and backorder cost function of product i. The
objective of the company is to decide the production
and transshipment quantities so as to minimize the
total discounted expected cost. Let fi(x1,x2) be the
cost-to-go function when there are k periods left in the
planning horizon and the initial inventory is (x1, x3).
We have the following dynamic program:

fie(x1,%2) =min Ep,p,[c1(y1 — x1) +c2(y2 — x2)

+ 81 — D1, y2 — D2| D1, D2)],
st.xy <y1<x1+T1, x2<y2 <x2 + T,

(16)
and

8k(u1,u2|D1,D2)= min _g(w1,w2,v1,v2)

w2, 02
st.wi+01 =u1,w+ v =uz,0 (17)
+12=0,71 <D1,12<D»,

where  g(wr,w2,v1,v2) = Hi(w1) + Hao(w2) + 107
+5205 + ofi_1 (w1, wy), si is the unit transshipment
cost and « is the discount factor. In formulation (16),
yi is the inventory level after production. In formula-
tion (17), w; is the inventory level after transshipment
and fulfillment of demand, v; is the amount of
demand of facility i assigned to the other facility, the
constraint 7, + v = 0 comes from the fact that one
only needs to consider unilateral transshipment, and
the constraint v; <D; means that the amount of
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demand assigned to the other facility should not
exceed D;. Note that in the formulation v; can be
nonzero even if the net on-hand inventory level u; is
negative, which is appropriate when the transship-
ment simply models the assignment of a portion of
demand generated in one facility to the other one
(though in the formulation we allow w; to be positive
even when v; <0, at optimality this won't happen).
Assume that f‘](x1,x2) = —C1X1 — C2X2, that is, the
inventory leftover/backorders in facility i can be sal-
vaged/fulfilled with a unit cost c;.

Yang and Qin (2007) show that the properties of
supermodularity and diagonal dominance of the
cost-to-go functions are preserved through the
dynamic programming induction, which is then
used to characterize the optimal production and
transshipment policies. As we mentioned earlier,
their proof of the preservation result is based on a
careful analysis on the derivatives of the cost-to-go
functions and relies heavily on the characterization
of optimal policies. Their derivation can be signifi-
cantly simplified with the help of M'<convexity by
observing that optimization problems (16) and (17)
can be written as infimal convolutions (one can put
the constraints v + v, = 0 and v;<D; into the
objective function by adding their corresponding
indicator functions) and M"convexity is preserved
under expectation operations for two-dimensional
functions. A similar argument using M'-convexity
works for a production control problem with a sin-
gle product and a single raw material studied in
Yang (2004).

Hu et al. (2008) consider a joint production and
transshipment model with random capacities and
lost sales. Their model differ significantly from
Yang and Qin (2007)’s model in that the capacity
T; is random and is realized after making the pro-
duction decision y;, and thus the effective inventory
level is y; A (x; + T;). Again, Hu et al. (2008) use a
complicated induction argument to prove the
preservation property of supermodularity and diag-
onal dominance of the cost-to-go function fi(x1,x2)
(Hu et al. 2008 actually consider the profit-to-go
function, which can be regarded as the negative of
f) and obtain the optimal polices. Later, Chen et al.
(2015) provide a new and simpler proof of this
preservation result by showing L'-convexity of a
modified cost-to-go function fi(x1, —x2) (i.e., chang-
ing one variable to its negative). Interestingly, since
by Proposition 3.19 fi(x;,—x;) is L°-convex in
(x1,x2) if and only if fy(x1,x2) is Mf-convex, we can
directly employ M‘-convexity to prove the preser-
vation property of supermodularity and diagonal
dominance of the cost-to-go function fi(x1,x2) with-
out the unnatural variable transformation by

slightly modifying the argument in Chen et al
(2015).

4.3.3. Multi-Product  Stochastic Inventory
Model. In this subsection, we illustrate the power
of M'-convexity on stochastic inventory models
with more than two products. Consider the classi-
cal multi-product inventory model analyzed in
Ignall and Veinott (1969) in which a company sell-
ing n products to m random demand classes over
N periods. At the beginning of period t, after
observing the initial inventory x,, the company
decides to raise the inventory to y;>x; (assuming
zero lead time) with a linear ordering cost
c"(y: — x1), where ¢ = (cy,.. .,cﬂ)T and ¢; is the unit
ordering  cost of  product i Demand
D; = (Dp,...,Dpn) is then realized and fulfilled by
on-hand inventory. Assume that D; (t =1,...,N) are
iid. random vectors. At the end of this period,
the company incurs a cost g(y;,D;) depending on
y and the realized demand D; (e.g., holding/back-
logging/lost-sales cost). The initial inventory of the
next period is assumed to be a function s(yy, Dy)
(e.g., s(y&,D¢) = yr — Dy (or (y — D;)") for the back-
logging model (or the lost-sales model) when each
demand class is associated with a unique product).
Inventory of product i carried over to period
N +1 will be returned with a unit price ¢;. Let
o € (0,1] be a discount factor. The objective of the
company is to determine the order-up-to levels
Y1,...,yn to minimize its total discounted expected
cost, that is,

N
min Zoc‘_l[E[cT(yg —xt) + (s, D)) — oNeTan 1
=1

s.t. e >,

Xi+1 :S(L’e,De):
Yi eY, t=1,...,N,
(18)

where Y denotes the feasible set of y; (e.g., in the
case with a storage capacity C, Y = {yle'Ty<C}). A
special case of the above model is the multi-product
stochastic inventory model with lost-sales and a
joint capacity constraint. In this case, m=mn,
s(y,Di)=(y:—Dy)", Y={yly>0,eTy<C} and g(y:,D:)=
Sr (b (yii—Dy) " +hi (Dii—yyi)"), where hf is the
per unit holding cost and k; is the per unit lost-
sales cost of product i. If we modify the definition
of s(y,D;) and Y to s(y;,D;)=y,—D; and
Y={y|e"y"<C}, it corresponds to the backlogging
model.
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Define a modified one-period cost function by

CTL’JF[EDfLS'(F: Df) - “S(y: D!)] fOI'y €Y
+00 otherwise

6 = {

and denote a myopic policy by
y(x) = argmin{G(y)ly>x, y € Y}.

An important concept called substitute property is
proposed by Ignall and Veinott (1969) to study the
optimal policy. They show that the myopic policy
y(x) is optimal if it (viewed as a function of x) satis-
fies the substitute property and certain regularity
conditions. Here, a function f satisfies the substitute
property if f(x)—x is nonincreasing in x.

Ignall and Veinott (1969) prove that if G is defined
on a box and twice continuously differentiable with
its Hessian matrix being a so-called substitute matrix at
every point in this box, then 7(x) satisfies the substi-
tute property. Chen and Li (2019) show that a substi-
tute matrix is exactly a symmetric inverse M-matrix.
This observation together with Proposition 3.11
implies that y(x) has the substitute proFerty if G(y) is
a twice continuously differentiable M*-convex func-
tion defined on a box. One may also note that the sub-
stitute property of 7(x) follows directly from
Proposition 3.15 and the preservation property of M'-
convexity under variable summation operations (i.e.,
G(x + z) is M!-convex in (x,z) if G(x) is Mf-convex
in x).

For a special case in which (G,Y) has a so-called
nested structure, Ignall and Veinott (1969) prove that
the Hessian of the objective function at any feasible
point is a substitute matrix and ¥(x) satisfies the sub-
stitute property. However, their proof relies on a com-
plicated network analysis, and as pointed out in their
paper, “Unfortunately, we have not been able to con-
struct a simple proof that V?G(y) is a substitute
matrix in the general nested case....” Interestingly,
these results can be obtained readily by recognizing
that the nested structure of (G,Y) essentially requires
that G is laminar convex with dom(G) =Y, a special
case of M'-convexity (see Chen and Li 2019). We
would like to mention that for the inventory model
with lost-sales and a joint capacity constraint men-
tioned above, (G,Y) has a nested structure, which
means that the myopic policy is optimal. For the cor-
responding backlogging model with a constraint
Y = {yle"y* <C}, though (G,Y) does not have a
nested structure, Chen and Li (2019) show that the
myopic policy still satisfies the substitute property by
a simple variable transformation.

4.3.4. Portfolio Contract Model. Consider a two-
stage problem where a retailer reserves capacities in

blocks from n competing suppliers to fulfill its ran-
dom demand D. At the first stage, each supplier offers
a block of capacities, its unit reservation fee and unit
execution fee. The retailer then selects a subset of sup-
pliers to reserve their capacities and pays a linear
reservation fee for each selected supplier. Note that
the retailer can reserve at most one block from each
supplier. At the second stage, the random demand D
is realized, the retailer allocates the reserved capaci-
ties to fulfill the demand and pays a linear execution
fee for used capacities. The retailer gains a revenue p
by fulfilling one unit of demand. The objective of the
retailer is to determine the portfolio of suppliers and
the allocation of capacities to maximize its expected
profit. Let x € {0,1}" represent the portfolio of suppli-
ers, where x; = 1 means that supplier i is selected
and otherwise x; = 0. Denote n(x|d) the maximal
profit by allocating capacities to fulfill the realized
demand d. The optimization problem can then be
written as

max II(x), (19)
x{0,1}"

where II(x) = Ep[n(x|D)] — >/, xiriK;. Here, r; and
K; are the unit reservation fee and the block size of
capacities from supplier I, respectively. Anderson
et al. (2017) show that Problem (19), though with an
objective function submodular on {0,1}", is NP-hard
in general. For the special case of equal block sizes,
they propose a dynamic programming approach
and show that it solves problem (19) in a polyno-
mial time. A key structual result in Anderson et al.
(2017), used to analyze the equilibrium behavior of
the suppliers, is that the optimal objective value
function

IT*(y) = max{I(x)|x <y, x € {0,1}"}

preserves submodularity when all block sizes are
equal. It is clear that this preservation of submod-
ularity does not follow from classical results in
lattice programming. In fact, Anderson et al.
(2017) give a rather lengthy proof which spans
six pages. Interestingly, Chen and Li (2019) show
that their proof can be significantly simplified
using M’-concavity. Note that n(x|d) can be refor-
mulated as

n -1
n(xld) =) pymin{(d - > xK)",x} (20)
=1 =1

n+1

j-1
=pd — Z(pj—l —pj)d - inKi)+: (21)
=1

=2
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where p; is the profit margin using one unit of capac-
ity of supplier j, p,,; = 0, and without loss of gener-
ality, the profit margin are ordered as p; > -+ > p,.
Equation (20) follows from the fact that it is optimal
to first use capacities from suppliers with higher
profit margins, and Equation (21) is from
min{a,b} =a—(a—b)" and (a*t —b)" = (a—b)" for
b>0. By formulation (21), it follows that n(x|d) is lami-
nar concave if K; (I = 1,...,n) are equal, which implies
that I1(x) is laminar concave, and thus M*concave. By
reformulating IT*(x) as a supremal convolution of M*-
concave functions, one can show that IT*(x) is M"-con-
cave and thus submodular by Propositions 3.14 and
3.16. This analysis can be extended to a more general
setting with a risk-averse retailer whose risk prefer-
ence is represented by a spectral risk measure. More-
over, with M‘concavity of TI(x) established, Chen
and Li (2019) point out that the dynamic program-
ming approach turns out to be the steepest ascent
algorithm for M-concave function maximization
problems.

4.3.5. Discrete Choice Model. In this subsection,
we show that M-convexity is closely related to a concept
of substitutability in discrete choice models proposed
by Feng etal. (2018). Given n alternatives, let
n = (m,...,m,) be the deterministic utility of each
alternative. A choice model can be represented by a
choice probability function g : R" — A,_; which maps
the utility vector 7 to a vector x in a (n — 1)-dimensional
simplex A,1 = {x|eTx = 1, x>0}, where the ith
component of x is the probability of choosing the ith
alternative or the fraction of the entire population that
chooses the ith alternative. We now introduce two dis-
crete choice models: the representative agent model and
the welfare-based choice model (See Feng et al. (2017)
and Feng et al. (2018) for more details on these models).

In a representative agent model, an agent represent-
ing the entire population makes a choice x among n
alternatives. Here x is a n-dimensional vector with its
ith component representing the fraction of the popu-
lation that chooses the ith alternative. The agent’s
objective is to maximize the average utility over all
alternatives while taking into account some degree of
diversification. More specifically, upon denoting V(x),
a convex and lower semi-continuous function, which
models the penalty for centralization of choice x, the
agent solves the optimization problem:

max 7' x — V(x). (22)

xEA,
Since in (22) only values of V(x) on A,_; are rele-
vant, we assume that V(x) takes value +oo if

x € Ay_1. We also assume that for any =, (22) has a
unique optimal solution g"(n), which is the choice

probability function under the representative agent
model.

We now introduce the welfare-based choice model.
A function w(n): R" — R is called a choice welfare
function if it satisfies the following properties:

* (Monotonicity) For any m,meR", m>m
implies w(n1) > w(mn2);

* (Translation Invariance) For any n € R", t € R,
w(n + te) = w(n) + t;

* (Convexity): For any =, m € R" and 4 € [0,1],
W(/\T[‘l + (1 - /\)T[;g) < /\W(T[‘l) + (1 - /\)W(T[g)

For a differentiable choice welfare function w(n),
the properties of monotonicity and translation invari-
ance imply g%(n) = Vw(n) € A,_1, which is defined
as the choice probability function in the welfare-based
choice model.

A function f : R — R is locally decreasing at x if there
exists § > 0 such that f(x — h) > fix) > f(x + h), Vh € (0,
0). A choice probability function q: R" — A,_; is said
to have the substitutability (or its corresponding choice
model is substitutable) if g;(r) is locally decreasing in
n;j for any i,j € [n], i #j. Feng et al. (2018) show that a
welfare-based choice model with a differentiable
choice welfare function w(n) is substitutable if and
only if w(n) is submodular. For the representative
agent model, though it is equivalent to the welfare-
based choice model as shown by Feng et al. (2017),
only a necessary condition for the substitutability of 4"
is provided in Feng et al. (2018). By establishing the
relationship between M-convexity and choice welfare
functions, we can give a sufficient and necessary con-
dition as follows.

Tueorem 4.1. A representative agent model with an
essentially strictly convex'? V(x) is substitutable if and
only if V(x) is M-convex.

To prove Theorem 4.1, first note that for a given
essentially strictly convex function V(x) whose domain
is contained in A, ;, its conjugate function V*(=),
which is exactly the optimal objective value function of
the representative agent model (22), is a choice welfare
function. Feng et al. (2018) observe that the choice
probability function 4" in the representative agent
model (22) is the same as the choice probability func-
tion g* in the welfare-based choice model with the
choice welfare function w(n) given by V*(n). Based on
this observation, the representative agent model with
the penalty function V(x) is substitutable if and only if
the welfare-based choice model with the choice wel-
fare function w(n) = V*(n) is substitutable. Observe
that a choice welfare function is submodular if and
only if it is L-convex. This, together with the characteri-
zation of the welfare-based choice model, implies that
the welfare-based choice model with the choice
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welfare function w(n) = V*(n) is substitutable if and
only if w(n) is L-convex, which in turn is equivalent to
the claim that V(x) is M-convex by Proposition 3.18.

Theorem 3.1 allows us to directly derive two results
on special representative agent models in Feng et al.
(2018). For V(x) = xT Ax with A being a positive defi-
nite matrix, they show that the corresponding repre-
sentative agent model is substitutable only if
Aj — Ak — Aij + A;i >0 for all distinct i,j,k € [n]. By
Theorem 4.1, this representative agent model is sub-
stitutable if and only if V(x) = x" Ax is M-convex.
Their result then follows from the characterization of
quadratic M-convex functions. For
V(x) = Yi, Vi(xi) on A,_1, where Vi(x;),[0,1] — Ris
a strictly convex function for i € [n], they show that
the corresponding representative agent model is sub-
stitutable. This result follows directly from our result
by observing that a separable convex function with an
effective domain A,,_; is M-convex.

4.3.6. Dock Reallocation Problem. Consider a
bike-sharing system with n bike stations. Each bike
station has some docks that can be used to store bikes.
Suppose at the beginning of a day, station i has d;
open docks and b; bikes (hence the station has
u; = di + b; docks in total). Denote by X =
(X1,...,X;) a random sequence of customers arriving
at station i during a day (X depends on i but for sim-
plicity we omit the index i), where s is a random num-
ber denoting the total arrivals and the random
variable X; takes value 1 if the ith customer wants to
rent a bike and —1 if the ith customer wants to return
a bike. If there is no bike available when a customer
wants to rent a bike, or there is no open dock when a
customer wants to return a bike, an out-of-stock event
occurs. Denote by ¢ (d;, b;) the number of out-of-stock
events at station i, and c;(d;, b;) = Ex[cX(d;,b;)] the
expected number of out-of-stock events, where the
expectation is taken over all possible customer
sequences. The objective is to determine the starting
allocation (b,d) = (by,...,b,,dq,...,d,) to minimize
the expected number of out-of-stock events under
some budget constraints and an operational con-
straint. The optimization problem can be written as

II‘;‘I:Ibn;Cg(dg, b!)
st.e’(d+b)=D+B
e'b<B (23)
ld+b— (@ +b)|; <2y
I<d+b<u,
dbeZ".

Here, the first constraint means that the total num-
ber of docks are fixed, the second constraint means
that the total number of bikes does not exceed B, and
the third operational constraint means that the reallo-
cation (d,b) should not be too far from a fixed alloca-
tion (4,b). Freund et al. (2017) show by definition that
for each random sequence X, ¢X(d;, b;) is multimodu-
lar in (d;, b;), and thus so is c;(d;, bi), or equivalently
ci(d;, by) is M!-convex by Example 2.2. Based on this
observation, Freund et al. (2017) provide a steepest
descent algorithm which outputs an optimal realloca-
tion within y iterations and a polynomial scaling algo-
rithm.

Their problem is a special case of a more general
problem of minimizing an M-convex function under
an Li-distance constraint (MML1), which solves

min f(x)
s.t. [Jx — xc|[; <2y,

where flx) is an M-convex function with
dom(f) C {x|eTx = 6} and x is a point in dom(f). In
the dock reallocation problem, define f(x) = min
{Xrici(dibi)ld +b=x, e'b<B, d,beZ}} with
dom(f) = {x € Z%|eTx = D + B, I<x<u}. Shioura
(2018) shows that f(x) is M-convex, which means
that problem (23) can be reformulated as a special
case of problem (MML1). For the general problem
(MMLI1), Shioura (2018) provides a variant of the
steepest decent algorithm, and shows that a minor
modification of his algorithm turns out to be the
steepest descent algorithm provided in Freund et al.
(2017). Moreover, Shioura (2018) shows that problem
(MML1) can be reduced to an unconstrained M-con-
vex function minimization problem which can be
solved by a fast proximity scaling algorithm. Based
on this, he proves that problem (MML1) can be
solved in O(n®log?(y/n)) time.

We now provide an alternative proof of the mul-
timodularity of the number of out-of-stock events
under sequence X, c(d;,b;). For this purpose, let
fe(dit, u;) be the number of out-of-stock events to
occur starting from the time immediately before
the tth customer’s arrival with d;; open docks avail-
able until the end of the day. Recall u; is the num-
ber of total docks. Upon the arrival of event X;, an
out-of-sock occurs if dy =0 and X; = -1, or
d;‘g = Ui and Xg = 1. Thu.s,

fe(die, i) = |(die + X¢) = (die + Xo) ™ A wi| + fra(die
+ X)) Aui, ).

We claim that f;(dy,u;) can be derived by the fol-
lowing dynamic programming recursion:
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fi (die,u;) = min  |(dir + Xi) — 2| + fi11 (2, wi)
s.t. z e [0,ul NZ.

and f;+1 (d!“5+1,ug) = 0. That is, fg(d”,ug) = f:(dﬁ,ug).
To see this, we observe that f{(di,u;) is a relaxation
of fi(di,u;) in the sense that we now have the flex-
ibility of changing the number of open docks to
keep upon the arrival of an event while incurring a
unit cost for each change unnecessary from a myo-
pic perspective. For example, if d; =0 and
X; = —1, an out-of-stock event occurs. The relaxed
problem allows to set z =0 which captures exactly
the out-of-stock event and incurs a unit cost or set
z > 0 which incurs a unit cost for out-of-stock plus
a unit cost for each bike removed from an occu-
pied dock to open up docks for future usage. It
is not hard to show that the optimal solution of
the dynamic programming is to set z =
(di + X¢)" Au, that is, if a change is unnecessary
myopically, then it is unnecessary for the long run
(one can  simply use the fact that
If{(d!‘g, ug) — f:(d;‘g + 1, ug)l < 1). One can show by
induction that f/(d, u;) is L -convex in (dit, u;) using
Proposition 3.7, and thus c¢X(d;,b;) = fi(d;,d; + b;)
is multimodular in (d;,b;) by the relationship
between Li-convexity and multimodularity. Our
proof builds upon the basic preservation properties
presented in the previous section and seems to be
more intuitive than that directly using the defini-
tion of multimodularity.

4.3.7. Congestion Games on an Extension-
Parallel Network. Let G = (V,A) be a directed graph
with a sink and a source, where V is the set of
nodes and A is the set of arcs. Graph G is called an
extension-parallel network if it is constructed by
starting from finitely many copies of single-edge
graph with a source and a sink, and repeatedly per-
forming operations of source/sink extension and
parallel join defined below. Given a network G, a
source extension of G is a new network G’ con-
structed by adding an arc a to G in a way that the
head of a merges with the source of G and the tail
of a becomes the source of G'. The sink extension is
defined accordingly. Given two networks Gi,Gz, a
parallel join of G;,G, is a new network G’ con-
structed by merging the sources of G1,G; to form a
source of G' and merging the sinks of G1,G; to form
a sink of G'.

Given an extension-parallel network G = (V,A)
with a source s and sink ¢, consider a congestion game
with n players and A being the set of resources. The
strategy set of player i, denoted by P;, is a set of
elementary directed paths from source s to sink t
(st-path) in graph G. For every resource a € A,

the congestion cost function on a, denoted by
c:Zy — Ry , is a nondecreasing function with
c2(0) = 0. Given a strategy profile P = (P;:i € [n]),
the congestion on resource a is defined as
vp(a) = |{i € [n]|a € P;}|, that is, the number of play-
ers using resource 4, and the cost of player i is given
by mi(P) = 3,cp. ca(ve(a)), that s, the total congestion
costs of the resources that player i uses. Note that any
congestion game is a potential game with potential
function ®(P) = > _,¢Ci(ve(a)), where (k) =
>F_, cali) (see Monderer and Shapley 1996). That is,
for any player i, (P, P_;) — (P, P_;) =
®(P;,P_;) —® (P,P_;) for any P;,P; € P; where
P_; = (P :j #1i), thatis, given any two action profiles
which differ only at the action of player i, the differ-
ence of player 's utility between these two profiles is
given by the difference of the potential function val-
ues between these profiles. Fotakis (2010) shows that
for any symmetric congestion game on an extension-
parallel network with P; being the set of all st-paths,
the following best-response algorithm generates a
pure Nash equilibrium in n steps.
Best-response algorithm:

Step 1. Starting from any strategy profile P. Let
(i1,...,iy) be any permutation of {1,...n}

Step 2. For i = i1,...,1,, let P «— (P_!-,f?!-), where
P; is a minimizer of ®(P_;,Q) over
Q € P;.

Step 3. Output P.

Note that in Step 2, the minimizer P; is the best
response of player i given the strategies P_; of
other players by the definition of potential
functions. Interestingly, by observing the close rela-
tionship between this potential function ®(P) and
M-convexity, Fujishige et al. (2015) point out that
the above best-response algorithm can be derived
from the steepest descent algorithm for M-convex
function minimization problems mentioned in sec-
tion 3. To see the relationship between M-convexity
and @, denote by Q, the set of st-paths containing
arc a. One can show that for an extension-parallel
network, {Q,:a€ A} forms a laminar family.
Denote by P, the set of all st-paths and treat each
strategy profile P as a vector xp € Z™, where the
value of xp at coordinate Q € P, is the number of
st-path Q in P. With these notations, ®(P) =
S era(0p(@) = Syenta(Soco, x(Q)), which can
be regarded as a function ®(xp) over Z%«. Note
that the effective domain of ®(xp) is contained in
{x|eTx = n} as each of the n players selects one st-
path. Since ¢, is univariate convex and {Q, :a € A}
is a laminar family, ®(xp) is laminar convex and
thus M-convex.
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5. Conclusion

In this survey, we have reviewed key concepts and
fundamental properties of discrete convex analysis,
with a focus on L-convexity, M'-convexity and their
variants. We show that these notions are natural
abstractions of essential structures of many operations
models. We show that as a consequence, structural
analysis and algorithm design for many operations
models, ranging from inventory management and
revenue management to healthcare scheduling and
bike sharing, can be simplified, enhanced, and gener-
alized by focusing on discrete convexity, especially
L -convexity and M'-convexity.

To conclude this review, we point out that discrete
convex analysis is a growing area of operations man-
agement, with new concepts and analysis continuing to
be introduced. The new developments in turn calls for
further efforts to extend the problem scope and culti-
vate deeper understanding of the approach. For exam-
ple, Zipkin (2016) introduces the concept of cover-L*-
convexity, illustrates its use to analyze some ATO sys-
tems with special structures, and also follows up with a
list of intriguing questions for future research. Chen
and Li (2020) propose a new concept, which they refer
to as substitute concavity, to capture the gross substi-
tutability property in continuous spaces and develop
monotone comparative statics results under conditions
weaker than M‘<concavity. A weaker version of
SSQM'-concavity, referred to as SSQM!-concavity,
applies to a portfolio selection model developed by
Chade and Smith (2006). An even weaker condition,
SSQM”-concavity, features in a constrained assort-
ment problem of Chen and Simchi-Levi (2017). It
would be interesting to see how these concepts can be
used to facilitate the design of efficient algorithms or
the development of structural properties.

Acknowledgments

The authors are grateful for the valuable comments and sug-
gestions from the review team, Professor Qiong Wang, and
Jinglong Zhao which significantly improve the exposition of
this study. The authors also thank Professors George Shan-
thikumar and David Yao for encouraging them to write the
review.

Notes

"Note that in Murota (2003): f is a univariate discrete con-
vex function if lx — 1) +f(x +1) = 2f(x) for all x€ Z.
Without the assumption that the domain dom(f) is a set of
consecutive integers, it includes functions that are not
integrally convex. For example, f(—2) = f(2) = 0,f(x) = +c0
on other points.

2Note that in a continuous space, lower semi-continuity of
f and submodularity of flx—e) imply convexity of f, a

condition explicitly imposed in Murota (2003)’s definition.
Since lower semi-continuous convex functions are equiva-
lent to closed convex functions, the Lf-convex functions
defined in Definition 2.1 are closed L'-convex functions. In
this study, all Li-convex functions refer to closed L'-con-
vex functions unless otherwise specified. Also note that a
function defined in an integer space is automatically lower
semi-continuous.

*Again a discrete function is automatically lower semi-
continuous, and in a continuous space the lower semi-con-
tinuity combined with the exchange condition implies con-
vexity, a condition explicitly imposed in Murota (2003)'s
definition. The functions in continuous variables defined
in Definition 2.2 are closed M'-convex functions. In this
study, all M'-convex functions refer to closed M’-convex
functions unless otherwise specified.

*See Hochbaum et al. (1992) for a tardiness scheduling
problem with a quadratic M*-convex objective function.
>The equivalence is pointed out by Moriguchi and Murota
(2018) only for discrete functions. Its extension to real
spaces is straightforward.

°It means that the example of L'-convex sets given in sec-
tion 2.2 is exhaustive.

"The proof of Proposition 3.13 follows directly from the
definition of multimodularity.

8If f is not lower semi-continuous, then f(x1,x,) being M'-
convex does not imply f(—x1,x2) being Li-convex. For
example, f(.I‘l ,.IQ) = 53(.I1,.I2) with B= {(.I1,.IQ)|.I1 +x=
0,x1 #0} is M-convex but f(—x1,x) =3(x1,x2) is not L
convex, where B= {(x;,%2)|x; =x2,x1#0}.

°In the operations management literature, v € T is typi-
cally referred to as a supply node if x, > 0 and a demand
node if x, < 0.

°This result still holds if x satisfies a box constraint
x € [Lul.

"'Since each commodity has only one unit, a consumer’s
utility is a function of the set of acquired commodities.
Any strictly convex function is essentially strictly con-
vex. See section 26 of Rockafellar (1970) for more on essen-
tially strictly convexity.
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