
Transactional Causal Consistency for
Serverless Computing

Chenggang Wu
UC Berkeley

cgwu@berkeley.edu

Vikram Sreekanti
UC Berkeley

vikrams@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

ABSTRACT
We consider the setting of serverless Function-as-a-Service
(FaaS) platforms, where storage services are disaggregated
from the machines that support function execution. FaaS
applications consist of compositions of functions, each of
which may run on a separate machine and access remote
storage.

The challenge we address is improving I/O latency in this
setting while also providing application-wide consistency.
Previous work has explored providing causal consistency for
individual I/Os by carefully managing the versions stored in
a client-side data cache. In our setting, a single application
may execute multiple functions across di�erent nodes, and
therefore issue interrelated I/Os to multiple distinct caches.
This raises the challenge ofMultisite Transactional Causal
Consistency(MTCC): the ability to provide causal consistency
for all I/Os within a given transaction even if it runs across
multiple physical sites. We present protocols for MTCC im-
plemented in a system calledHydroCache. Our evaluation
demonstrates orders-of-magnitude performance improve-
ments due to caching, while also protecting against consis-
tency anomalies that otherwise arise frequently.

ACM Reference Format:
Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2020.
Transactional Causal Consistency for Serverless Computing. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD'20), June 14�19, 2020, Portland, OR,
USA.ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3318464.3389710

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD'20, June 14�19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . .$15.00
https://doi.org/10.1145/3318464.3389710

1 INTRODUCTION
Serverless computing has gained signi�cant attention re-
cently, with a focus on Function-as-a-Service (FaaS) sys-
tems [2, 13� 15, 23, 28]. These systems�e.g., AWS Lambda,
Google Cloud Functions�allow programmers to upload ar-
bitrary functions and execute them in the cloud without
having to provision or maintain servers.

These platforms enable developers to construct applica-
tions as compositions of multiple functions [17]. For example,
a social network generating a news feed might have three
functions: authenticate a user, load posts in that user's time-
line, and generate an HTML page. Functions in the work�ow
are executed independently, and di�erent functions may not
run on the same physical machine due to load balancing,
fault tolerance, and varying resource requirements.

For developers, the key bene�t of FaaS is that it trans-
parently autoscales in response to workload shifts; more re-
sources are provisioned when there is a burst in the request
rate, and resources are de-allocated as the request rate drops.
As a result, cloud providers can o�er developers attractive
consumption-based pricing. Providers also bene�t from im-
proved resource utilization, which comes from dynamically
packing the current workload into servers.

FaaS platforms achieve �exible autoscaling bydisaggregat-
ing the compute and storage layers, so they can scale indepen-
dently. For example, FaaS applications built on AWS Lambda
typically use AWS S3 or DynamoDB as the autoscaling stor-
age layer [4]. This design, however, comes at the cost of high-
latency I/O�often orders of magnitude higher than attached
storage [13]. This makes FaaS ill-suited for low-latency ser-
vices that would naturally bene�t from autoscaling�e.g. web-
servers managing user sessions, discussion forums managing
threads, or ad servers managing ML models. These services
all dynamically manipulate data based on request parameters
and are therefore sensitive to I/O latency.

A natural solution is to attach caches to FaaS compute
nodes to eliminate the I/O latency for data that is frequently
accessed from remote storage. However, this raises chal-
lenges around maintaining consistency of the cached data�
particularly in the context of multi-I/O applications that may
run across di�erent physical machines with di�erent caches.

Returning to the social network setting, consider a sce-
nario where Alice updates her photo access permissions to

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

ban Bob from viewing her pictures and then posts a picture
that makes fun of him. When Bob views his timeline, the
cache his request visits for Alice's permissions may not yet
re�ect her recent update, but the cache visited to fetch posts
may include the picture that she posted. The authentica-
tion process mistakenly will allow Bob to view the picture,
creating a consistency anomaly [8, 19, 24].

The source of this inconsistency is that reads and writes
fail to respectcausality: Bob �rst observes a stale set of
permissions, then observes a photo whose write was in�u-
enced by a newer permission set. Such anomalies can be
prevented by transactional causal consistency (TCC), the
strongest consistency model that can be achieved without
expensive consensus protocols [5, 19, 21] required in stricter
consistency models such as serializable transactions.

However, providing TCC for low-latency applications cre-
ates unprecedented challenges in a serverless environment,
where cluster membership rapidly changes over time due
to autoscaling infrastructure and user requests span mul-
tiple compute nodes. Recent systems such as Cure [1] and
Occult [22] enforce TCC at the storage layer, so FaaS-layer
caches would need to access storage for each causally consis-
tent I/O, which reintroduces network roundtrips and violates
our low-latency goal. Moreover, the consistency mechanisms
in prior work rely on �xed node membership, which we can-
not assume of an autoscaling system.

An alternative approach is Bolt-on Causal Consistency [7]
(BCC). BCC enforces consistency in a cache layer similar
to the one proposed here and does not rely on �xed-size
clusters. However, BCC only guarantees Causal+ Consis-
tency [19], which is weaker than TCC and inadequate to
prevent the anomaly described above. BCC also does not
guarantee consistency across multiple caches.

To solve these challenges, we presentHydroCache, a
distributed caching layer attached to each node in a FaaS
system.HydroCache simultaneously provides low-latency
data access and introducesmultisite transactional causal con-
sistency(MTCC) protocols to guarantee TCC for requests
that execute on multiple nodes. Our MTCC protocols do not
rely on the membership of the system, andHydroCache
does not interfere with a FaaS layer's crucial autoscaling
capabilities. In summary, this paper's contributions are:

(1) The design ofHydroCache, which provides low la-
tencies while also guaranteeing TCC for individual
functions executed at a single node (Section 3).

(2) E�cient MTCC protocols to guarantee TCC for com-
positions of functions, whose execution spans multiple
nodes (Section 4).

(3) An evaluation that shows TCC o�ers an attractive
trade-o� between performance and consistency in a
serverless setting andHydroCache achieves a 10×

Figure 1: Cloudburst architecture.

performance improvement over FaaS architectures
without a caching layer while simultaneously o�ering
stronger consistency (Section 5).

2 BACKGROUND
In this section, we brie�y introduce the system architecture
within which we implementHydroCache. We also de�ne
causal consistency and its extensions, which are essential
for understanding the material in the rest of the paper.

2.1 System Architecture
Figure 1 shows an overview of our system architecture,
which consists of a high-performance key-value store (KVS)
Anna [31, 32] and a function execution layer Cloudburst [30].
We chose Anna as the storage engine as it o�ers low latencies
and �exible autoscaling, a good �t for serverless. Anna also
supports custom con�ict resolution policies to resolve con-
current updates. As we discuss in Section 2.2, this provides
a necessary foundation to support causal consistency.

Cloudburst deploys KVS-aware caches on the same nodes
as the compute workers, allowing for low-latency data access.
We build our own function execution layer as there is no
way to integrate our cache into existing FaaS systems.

In Cloudburst, all requests are received by a scheduler
and routed to worker threads based on compute utilization
and data locality heuristics. Each compute node has three
function executor threads, each of which has a unique ID. As
we discuss in Section 2.2, these IDs are used to capture causal
relationships. The compute threads on a single machine in-
teract with oneHydroCache instance, which retrieves data
for the function executors as necessary. The cache also trans-
parently writes updates back to the KVS.

Cloudburst users write functions in vanilla Python, and
register them with the system for execution. The system
enables low-latency function chaining by allowing users to
register function compositions forming aDAGof functions.
DAG execution is optimized by automatically passing results
from one function executor to the next. Each DAG has a sin-
glesink function with no downstream functions, the results
of which are either returned to the user or written to Anna.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

84

2.2 Causal Consistency

Causal Consistency (CC). Under CC, reads and writes re-
spect Lamport's �happens-before� relation [18]. If a read
of key 𝑎𝑖 (𝑖 denotes a version of key𝑎) in�uences a write
of key 𝑏 𝑗 , then𝑎𝑖 happens before𝑏 𝑗 , or 𝑏 𝑗 depends on𝑎𝑖 ;
we denote this as𝑎𝑖 → 𝑏 𝑗 . happens beforeis transitive: if
𝑎𝑖 → 𝑏 𝑗 ∧ 𝑏 𝑗 → 𝑐𝑘 , then𝑎𝑖 → 𝑐𝑘 . In our system, depen-
dencies are explicitly generated during function execution
(known as explicit causality [6,16]). A write causally depends
on keys that the function previously read from storage.

A key 𝑘𝑖 has four components[𝑘,𝑉𝐶𝑘𝑖 , 𝑑𝑒𝑝𝑠, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑]; 𝑘
is the key's identi�er,𝑉𝐶𝑘𝑖 is avector clock[26, 29] that iden-
ti�es its version,𝑑𝑒𝑝𝑠 is its dependency set, and𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is
the value.𝑉𝐶𝑘𝑖 consists of a set of⟨𝑖𝑑, 𝑐𝑙𝑜𝑐𝑘⟩ pairs where the
𝑖𝑑 is the ID of a function executor thread that updated𝑘𝑖 , and
the 𝑐𝑙𝑜𝑐𝑘 represents that thread's monotonically growing
logical clock.𝑑𝑒𝑝𝑠 is a set of⟨𝑑𝑒𝑝_𝑘𝑒𝑦,𝑉𝐶⟩ pairs represent-
ing key versions that𝑘𝑖 depends on.

During writes, the𝑉𝐶 and dependency set are modi�ed
as follows. Let thread𝑒1 write 𝑎𝑖 . Thread𝑒2 then writes𝑏 𝑗
with 𝑎𝑖 → 𝑏 𝑗 . 𝑎𝑖 will have𝑉𝐶𝑎𝑖 = ⟨⟨𝑒1, 1⟩⟩ and an empty
dependency set, and𝑏 𝑗 will have 𝑉𝐶𝑏 𝑗

= ⟨⟨𝑒2, 2⟩⟩ and a
dependency set⟨⟨𝑎𝑖 ,𝑉𝐶𝑎𝑖 ⟩⟩. If another thread𝑒3 writes𝑏𝑘
such that𝑏 𝑗 → 𝑏𝑘 , then𝑏𝑘 will have𝑉𝐶𝑏𝑘 = ⟨⟨𝑒2, 2⟩, ⟨𝑒3, 3⟩⟩
and a dependency set⟨⟨𝑎𝑖 ,𝑉𝐶𝑎𝑖 ⟩⟩. In this example, 1, 2 and
3 are the values of logical clocks of𝑒1, 𝑒2 and𝑒3 during the
writes. Dependencies between versions of the same key are
captured in the key's𝑉𝐶, and dependencies across keys are
captured in the dependency set.

Given𝑎𝑖 and𝑎 𝑗 , 𝑎𝑖 → 𝑎 𝑗 ⇐⇒ 𝑉𝐶𝑎𝑖 → 𝑉𝐶𝑎 𝑗
. Let𝐸 be a

set that contains all executor threads in our system. We de�ne
𝑉𝐶𝑖 → 𝑉𝐶 𝑗 as∀𝑒 ∈ 𝐸 | 𝑒 ∉ 𝑉𝐶𝑖 ∨ 𝑉𝐶𝑖 (𝑒) ≤ 𝑉𝐶 𝑗 (𝑒) and
∃𝑒 ′ ∈ 𝐸 | (𝑒 ′ ∉ 𝑉𝐶𝑖 ∧ 𝑒 ′ ∈ 𝑉𝐶 𝑗) ∨ (𝑉𝐶𝑖 (𝑒 ′) < 𝑉𝐶 𝑗 (𝑒 ′)). In
other words,𝑉𝐶 𝑗 �dominates�𝑉𝐶𝑖 if and only if all ⟨𝑖𝑑, 𝑐𝑙𝑜𝑐𝑘⟩
pairs of𝑉𝐶 𝑗 are no less than the matching pairs in𝑉𝐶𝑖 and
at least one of them dominates. If𝑎𝑖 ↛ 𝑎 𝑗 ∧ 𝑎 𝑗 ↛ 𝑎𝑖 , then
𝑎𝑖 is concurrentwith 𝑎 𝑗 , denoted as𝑎𝑖 ∼ 𝑎 𝑗 .

CC requires that if a function reads𝑏 𝑗 , which depends on
𝑎𝑖 (𝑎𝑖 → 𝑏 𝑗), then the function can subsequently only read
𝑎𝑘 | 𝑎𝑘 ↛ 𝑎𝑖 �i.e. 𝑎𝑘 == 𝑎𝑖 , 𝑎𝑖 → 𝑎𝑘 , or 𝑎𝑘 ∼ 𝑎𝑖 .
Causal+ Consistency (CC+) [19] is an extension to CC
that�in addition to guaranteeing causality�ensures that
replicas of the same key eventually converge to the same
value. To ensure converence, we register a con�ict resolution
policy in Anna by implementing the following de�nitions:

Definition 1 (Concurrent Version Merge). Given two
concurrent versions𝑎𝑖 and 𝑎 𝑗 , let 𝑎𝑘 be a merge of𝑎𝑖 and
𝑎 𝑗 (denoted as𝑎𝑘 = 𝑎𝑖 ∪ 𝑎 𝑗). Then𝑉𝐶𝑎𝑘 = 𝑉𝐶𝑎𝑖 ∪ 𝑉𝐶𝑎 𝑗

=

⟨⟨𝑒, 𝑐⟩|⟨𝑒, 𝑐𝑖⟩ ∈ 𝑉𝐶𝑎𝑖 ∧ ⟨𝑒, 𝑐 𝑗 ⟩ ∈ 𝑉𝐶𝑎 𝑗
∧ 𝑐 = max(𝑐𝑖 , 𝑐 𝑗)⟩.

The merged𝑉𝐶 is the key-wise maximum of the input𝑉𝐶s.
Note that the above de�nition has a slight abuse of notation:
𝑒 might not exist in one of the two𝑉𝐶s. If ⟨𝑒, 𝑐𝑖⟩ ∉ 𝑉𝐶𝑎𝑖 , we
simply set⟨𝑒, 𝑐⟩ = ⟨𝑒, 𝑐 𝑗 ⟩ ∈ 𝑉𝐶𝑎 𝑗

and vice versa.
In addition to merging the𝑉𝐶s, we also merge the de-

pendency sets using the same mechanism above. Finally,
we merge the payloads by taking a set union (𝑎𝑘 .𝑝𝑎𝑦𝑙𝑜𝑎𝑑 =

⟨𝑎𝑖 .𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑎 𝑗 .𝑝𝑎𝑦𝑙𝑜𝑎𝑑⟩). When a function requests a key
that has a set of payloads, applications can specify which
payload to return; by default we return the �rst element in
the set to avoid type error. If𝑎𝑖 and𝑎 𝑗 are not concurrent
(say𝑎𝑖 → 𝑎 𝑗), then𝑎 𝑗 overwrites𝑎𝑖 during the merge.

Transactional Causal Consistency (TCC) [1, 22] is a fur-
ther extension of CC+ that guarantees the consistency of
reads and writes for asetof keys. Speci�cally, given a read
set𝑅, TCC requires that𝑅 forms acausal snapshot.

Definition 2. 𝑅 is a causal snapshot⇐⇒ ∀(𝑎𝑖 , 𝑏 𝑗) ∈
𝑅, ∄𝑎𝑘 | 𝑎𝑖 → 𝑎𝑘 ∧ 𝑎𝑘 → 𝑏 𝑗 .

That is, for any pair of keys𝑎𝑖 , 𝑏 𝑗 in 𝑅, if 𝑎𝑘 is a dependency
of 𝑏 𝑗 , then𝑎𝑖 is not allowed to happen before𝑎𝑘 ; it can be
equal to𝑎𝑘 , happen after𝑎𝑘 , or be concurrent with𝑎𝑘 . Note
that TCC is stronger than CC+ because issuing a sequence
of reads to a data store that guarantees CC+ does not ensure
that the keys read are from the same causal snapshot.

In the social network example, the application explicitly
speci�es that Alice's photo update depends on her permis-
sion update. TCC then ensures that the system only reveals
the newpermission and the funny picture to the application,
which rejects Bob's request to view the picture.

TCC also ensuresatomic visibilityof written keys; either
all writes from a transaction are seen or none are. In our
context, if a DAG writes𝑎𝑖 and𝑏 𝑗 and another DAG reads𝑎𝑖
and𝑏𝑘 , TCC requires𝑏𝑘 == 𝑏 𝑗 ∨ 𝑏 𝑗 → 𝑏𝑘 .

3 HYDROCACHE
In this section, we introduce the design ofHydroCache
and discuss how it achieves TCC for individual functions
executed at a single node. To achieve both causal snapshot
reads and atomic visibility, each cache maintains a single
strict causal cut𝐶 (abbreviated ascut) which we de�ne below.

Definition 3. 𝐶 is a cut ⇐⇒ ∀𝑘𝑖 ∈ 𝐶,
∀𝑑 𝑗 ∈ 𝑔𝑒𝑡_𝑡𝑢𝑝𝑙𝑒 (𝑘𝑖 .𝑑𝑒𝑝𝑠), ∃𝑑𝑘 ∈ 𝐶 | 𝑑𝑘 == 𝑑 𝑗 ∨ 𝑑 𝑗 → 𝑑𝑘 .

A cut requires that forany dependency,𝑑 𝑗 , of any key in
𝐶, there is a𝑑𝑘 ∈ 𝐶 such that either the two versions are
equal or𝑑𝑘 happens after𝑑 𝑗 . We formally de�ne this notion:

Definition 4. Given two versions of the same key𝑘𝑖 and𝑘 𝑗 ,
we say that𝑘𝑖 supersedes𝑘 𝑗 (𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑖 , 𝑘 𝑗)) when𝑘𝑖 ==
𝑘 𝑗 ∨ 𝑘 𝑗 → 𝑘𝑖 . Similarly, given two sets of key versions𝑇 and
𝑆, let𝐾 be a set of keys that appear in both𝑇 and𝑆. We say

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

85

that𝑇 supersedes𝑆 if ∀𝑘 ∈ 𝐾, let𝑘𝑖 ∈ 𝑇 and𝑘 𝑗 ∈ 𝑆, we have
𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑖 , 𝑘 𝑗).

Note that a cut di�ers from a causal snapshot in two ways.
First, cuts are closed under dependency: If a key is in the
cut, so are its dependencies. Second, thehappens-beforecon-
straint in a cut is more stringent than in a causal snapshot:
The key𝑑𝑘 must be equal-to or happen after every depen-
dency𝑑 𝑗 associated with other keys in the cut�concurrency
is disallowed. We will see why this is important in Section 3.2.

Updating the Local Cut . HydroCache initially contains
no data, so it trivially forms a cut,𝐶. When a function re-
quests a key𝑏 that is missing from𝐶, the cache fetches a
version𝑏 𝑗 from Anna. Before exposing it to the functions, the
cache checks to see if all of𝑏 𝑗 's dependencies are superseded
by keys already in𝐶. If a dependency𝑎𝑖 is not superseded,
the cache fetches versions of𝑎, 𝑎𝑚, from Anna until𝑎𝑖 is su-
perseded by𝑎𝑚. HydroCache then recursively ensures that
all dependencies of𝑎𝑚 are superseded. This process repeats
until the dependencies of all new keys are superseded. At
this point, the cache updates𝐶 by merging the new keys
with keys in𝐶 and exposes them to the functions. If a cache
runs out of memory during the merge of requested keys, the
requesting function is rescheduled on another node.

The cache �subscribes� to its cached keys with Anna, and
Anna periodically pushes new versions to �refresh� the cache.
New data is merged into𝐶 following the same process as
above. When evicting key𝑘, all keys depending on𝑘 are also
evicted to preserve the cut invariant.

In the rest of this section, we �rst discuss howHydro-
Cache guarantees TCC at a single node�providing a causal
snapshot for the read set (Section 3.1) and atomic visibil-
ity for the write set (Section 3.2). We then discuss garbage
collection and fault tolerance in Section 3.3.

3.1 Causal Snapshot Reads
From De�nition 3, we know that for any pair of keys𝑎𝑖 , 𝑏 𝑗
in a cut𝐶, if 𝑎𝑘 → 𝑏 𝑗 , then𝑎𝑖 supersedes𝑎𝑘 �either 𝑎𝑘 ==

𝑎𝑖 ∨ 𝑎𝑘 → 𝑎𝑖 . This is stronger than the de�nition of a causal
snapshot (De�nition 2), as that de�nition permits𝑎𝑘 to be
concurrent with𝑎𝑖 . Since each function reads from the cut in
its local cache, the read set trivially forms a causal snapshot.

As we show below, this stricter form of causal snapshot
(disallowing𝑎𝑘 and𝑎𝑖 to be concurrent) also ensures atomic
visibility. Therefore, from now on, we consider this type of
causal snapshot and abbreviate it assnapshot.

3.2 Atomic Visibility
Say a function writes two keys,𝑎𝑖 and𝑏 𝑗 ; in order to make
them atomically visible,HydroCache makes them mutually
dependent�𝑎𝑖 → 𝑏 𝑗 and𝑏 𝑗 → 𝑎𝑖 . If another function reads a
snapshot that contains𝑎𝑖 and𝑏𝑘 , since𝑏 𝑗 → 𝑎𝑖 , the snapshot

ensures that𝑏𝑘 == 𝑏 𝑗 ∨ 𝑏 𝑗 → 𝑏𝑘 , satisfying atomic visibility.
When executing a DAG, in order to ensure that writes across
functions are mutually dependent, all writes are performed
at the end of the DAG at the sink function.

There is, however, a subtle issue. Recall that𝑉𝐶s consist of
the IDs of threads that modify a key along with those threads'
logical clocks. All functions performing writes through an
executor threadsharethe same ID. This introduces a new
challenge: Consider two functions𝐹 and𝐺 both using execu-
tor 𝑒 to write key versions𝑎𝑖 and𝑎 𝑗 . When𝑒 writes these two
versions�say 𝑎𝑖 �rst, then 𝑎 𝑗 � 𝑎𝑖 may be overwritten since
𝑒 attaches a larger logical clock to𝑉𝐶 (𝑒) of 𝑎 𝑗 . However,𝑎𝑖
and𝑎 𝑗 may in fact be logically concurrent (𝑎𝑖 ∼ 𝑎 𝑗) since𝐹
may not have observed𝑎 𝑗 before writing𝑎𝑖 and vice versa.
This violates atomic visibility: If a function writes𝑎𝑖 and𝑏𝑘 ,
𝑎𝑖 can be overwritten by a concurrent version from the same
thread. For a later read of𝑎 and𝑏,𝑏𝑘 is visible but𝑎𝑖 is lost.

To prevent this from happening, each executor thread
keeps the latest version of keys it has written. When a func-
tion writes 𝑎𝑖 at executor𝑒, 𝑒 inspects its dependency set
to see whether this write depends on the most recent write
of the same key,𝑎𝑙𝑎𝑡𝑒𝑠𝑡 , performed by𝑒. If so,𝑒 advances
its logical clock, updates𝑉𝐶𝑎𝑖 (𝑒), writes to Anna, and up-
dates𝑎𝑙𝑎𝑡𝑒𝑠𝑡 to 𝑎𝑖 . If not, then𝑎𝑖 ∼ 𝑎𝑙𝑎𝑡𝑒𝑠𝑡 . This is because
since𝑎𝑙𝑎𝑡𝑒𝑠𝑡 is not in 𝑎𝑖 's dependency set,𝑎𝑙𝑎𝑡𝑒𝑠𝑡 ↛ 𝑎𝑖 , and
since𝑒 wrote 𝑎𝑙𝑎𝑡𝑒𝑠𝑡 before𝑎𝑖 , 𝑎𝑖 ↛ 𝑎𝑙𝑎𝑡𝑒𝑠𝑡 . Since the ver-
sions are not equal, we have𝑎𝑖 ∼ 𝑎𝑙𝑎𝑡𝑒𝑠𝑡 . In this case,𝑒 �rst
merges𝑎𝑖 and𝑎𝑙𝑎𝑡𝑒𝑠𝑡 following De�nition 1 to produce𝑎𝑘 ,
advances its logical clock and updates𝑉𝐶𝑎𝑘 (𝑒), writes to
Anna, and sets𝑎𝑙𝑎𝑡𝑒𝑠𝑡 to 𝑎𝑘 . Doing so prevents each executor
from overwriting keys with a potentially concurrent version.

3.3 Discussion

Dependency Metadata Garbage Collection . Causal de-
pendencies accumulate over time. For a key𝑏 𝑗 | 𝑎𝑖 → 𝑏 𝑗 , we
can safely garbage collect⟨𝑎𝑖 ,𝑉𝐶𝑎𝑖 ⟩ ∈ 𝑏 𝑗 .𝑑𝑒𝑝𝑠 if all replicas
of 𝑎 supersede𝑎𝑖 . We run a background consensus protocol
to periodically clear this metadata.

Fault Tolerance . When writes to Anna fail due to storage
node failures or network delay, they are retried with the same
key version, guaranteeing idempotence. Function and DAG
executions areat least once. Heartbeats are used to detect
node failures in the compute layer, and un�nished functions
and DAGs at a failed node are re-scheduled at other nodes.

4 MTCC PROTOCOLS
Although the design introduced in Section 3 guarantees TCC
for individual functions executed at a single node, this is
insu�cient for serverless applications. Recall that a DAG in
Cloudburst consists of multiple functions, each of which can
be executed at a di�erent node. To achieve TCC for the DAG,

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

86

we must ensure that a read set spanningmultiplephysical
sites forms a distributed snapshot. A naïve approach is to
have all caches coordinate and maintain a large distributed
cut across all cached keys at all times. This is infeasible in
a serverless environment due to the enormous tra�c that
protocol would generate amongst thousands of nodes.

In this section, we discuss a set of MTCC protocols we
developed to address this challenge while minimizing coor-
dination and data shipping overheads across caches. The key
insight is that rather than eagerly constructing a distributed
cut, caches collaborate to create a snapshot of each DAG's
read set during execution. This leads to signi�cant savings
for two reasons. First, snapshots are constructed per-DAG;
the communication to form these snapshots is combined
with that of regular DAG execution, without any global co-
ordination. Second, snapshots are restricted to holding the
keys read by the DAG, whereas a cut must include all keys'
transitive dependencies.

We start with thecentralized(CT) protocol in which all
functions in a DAG are executed at a single node. We then
introduce three protocols�optimistic(OPT),conservative
(CON), andhybrid (HB)�that allow functions to be executed
across di�erent nodes. Throughout the rest of this section, we
assume the read set of each function is known, but we return
to cases in which the read set is unknown in Section 4.6.

4.1 Centralized (CT)
Under CT, all functions in a DAG are executed at a single
node, accessing a single cache. This signi�cantly simpli�es
the challenge of providing TCC, as we do not need to worry
about whether reads from cuts on di�erent nodes form a
snapshot. Before execution, the cache creates a snapshot
from the local cut that contains the read set of all functions in
the DAG. All reads are serviced from the created snapshot to
ensure that they observe the same cut, regardless of whether
the cut is updated while the DAG is executing.

The main advantage of CT is its simplicity: Since all func-
tions are executed on the same node, there is no network
cost for passing results across nodes. However, CT su�ers
from some key limitations. First, it constrains scheduling:
Scheduling happens at the DAG level instead of at the level
of individual functions. The distributed nature of our sched-
uler sometimes leads to load imbalances, as schedulers do
not have a global view of resource availability. When the
scheduling granularity becomes coarse (from function to
DAG), the performance penalty due to load imbalance will
be ampli�ed. Second, CT requires the data requested by all
functions to be co-located at a single cache. The overheads
of fetching data from remote storage and constructing the
cut can be signi�cant if there are many cache misses or if the
read set is large. Finally, CT limits the amount of parallelism

in a DAG to the number of executor threads on a single node.
In Section 5.2, we evaluate these limitations and quantify the
trade-o� between CT and our distributed protocols.

4.2 Towards Distributed Snapshots
The goal of our distributed protocols below is to ensure that
each DAG observes a snapshot as computation moves across
nodes. This requires care, as reading arbitrary versions from
the various local cuts may not correctly create a snapshot.

4.2.1 Theorems. Before describing our protocols, we present
simple theorems and proofs that allow us to combine data
from each node to ensure the distributed snapshot property.

Definition 5 (Keysets and Versionsets). A keyset̃𝑅
is a set of keys without speci�ed versions. A versionset𝑅 is a
binding that maps each𝑘 ∈ 𝑅 to a speci�c version𝑘𝑖 .

In subsequent discussion, we notate keysets with a tilde
above. As a mild abuse of notation, we will refer to the inter-
section of a keyset̃𝐾 with a versionset𝑉 ; this is the maximal
subset of𝑉 whose keys are found in the keyset̃𝐾 . Each ele-
ment in the versionset only contains the key identi�er and its
𝑉𝐶; dependency and payload information are not included.

Definition 6 (Keyset-Overlapping Cut). Given a ver-
sionset𝑉 and a keyset̃𝐾 , we say that𝑉 is a keyset-overlapping
cut for𝐾 when∀𝑘𝑖 ∈ 𝑉 , we have𝑘 ∈ 𝐾 ∧ ∀𝑑 𝑗 → 𝑘𝑖 , if 𝑑 ∈ 𝐾 ,
then∃𝑑 𝑗𝑠 ∈ 𝑉 | 𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑑 𝑗𝑠 , 𝑑 𝑗).

In essence, a keyset-overlapping cut for𝐾 is similar to
a cut with the relaxation that it only consists of keys and
dependencies that overlap with̃𝐾 .

Lemma 1.Given a keyset̃𝐾 and a cut𝐶, 𝑆 = 𝐶 ∩ 𝐾 is a
keyset-overlapping cut for̃𝐾 .

Proof. This follows directly from De�nition 6.𝑆 is the
intersection of the versionset𝐶 and𝐾 ; the fact that𝐶 is a
cut ensures that the conditions of De�nition 6 hold. □

Definition 7 (Versionset Union). Given two versionsets
𝑉1 and𝑉2, their union𝑉3 = 𝑉1 ∪𝑉2 includes all keys𝑘𝑚 such
that:

𝑘𝑚 =


𝑘𝑖 ∈ 𝑉1 ∄𝑘 𝑗 ∈ 𝑉2

𝑘𝑖 ∈ 𝑉2 ∄𝑘 𝑗 ∈ 𝑉1

𝑘𝑖 ∪ 𝑘 𝑗 ∃𝑘𝑖 ∈ 𝑉1 ∧ ∃𝑘 𝑗 ∈ 𝑉2

We show keyset-overlapping cuts are closed under union:

Theorem 1 (Closure Under Union). Given keyset̃𝐾 , let
𝑆1 = 𝐶1 ∩ 𝐾, 𝑆2 = 𝐶2 ∩ 𝐾 be keyset-overlapping cuts for𝐾 .
Then𝑆3 = 𝑆1 ∪ 𝑆2 is a keyset-overlapping cut for̃𝐾 .

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

87

Proof. Let𝑘3 ∈ 𝑆3 and𝑑3 → 𝑘3. Since𝑆3 = 𝑆1 ∪ 𝑆2, we
know 𝑘3 = 𝑘1 ∪ 𝑘2 where𝑘1 ∈ 𝑆1, 𝑘2 ∈ 𝑆2, and𝑑3 = 𝑑1 ∪ 𝑑2
where𝑑1 → 𝑘1,𝑑2 → 𝑘2.

If 𝑑 ∈ 𝐾 , according to De�nition 6,∃𝑑1𝑠 ∈ 𝑆1 | 𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒
(𝑑1𝑠 , 𝑑1) and∃𝑑2𝑠 ∈ 𝑆2 | 𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑑2𝑠 , 𝑑2). It follows that
𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑑1𝑠 ∪ 𝑑2𝑠 , 𝑑1 ∪ 𝑑2), where𝑑1 ∪ 𝑑2 = 𝑑3 and𝑑1𝑠 ∪
𝑑2𝑠 = 𝑑3𝑠 ∈ 𝑆3; we have𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑑3𝑠 , 𝑑3). This holds for all
dependencies iñ𝐾 . We omit cases where∄𝑘1 ∈ 𝑆1 or ∄𝑘2 ∈
𝑆2 as they follow trivially from set union and De�nition 6.
Therefore,𝑆3 is a keyset-overlapping cut for̃𝐾 . □

We conclude with a simple lemma that ensures the snap-
shot property that is the goal of our protocols in this section.

Lemma 2.Every keyset-overlapping cut is a snapshot.

Proof. Let𝑆 be a keyset-overlapping cut for keyset̃𝐾 . For
(𝑎𝑖 , 𝑏 𝑗) ∈ 𝑆, if 𝑎𝑘 → 𝑏 𝑗 , since𝑎 ∈ 𝐾 , from De�nition 6 we
know 𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑎𝑖 , 𝑎𝑘). The same holds for other pairs of
keys in𝑆. Therefore,𝑆 is a snapshot. □

4.3 Optimistic (OPT)
OPT is our �rst MTCC protocol. The idea is to eagerly start
running the functions in a DAG and check for violations of
the snapshot property at the time of each function execution.
If no violations are found�e.g. when updates are infrequent
so the cuts at di�erent nodes are roughly in sync�then no
communication costs need be incurred by constructing a
DAG-speci�c snapshot in advance. Even when violations are
found at some node, we can potentially adjust the versionset
being read at that node to re-establish the snapshot property
for the DAG. However, we will see that in some cases the
violation cannot be �xed, and we must restart the DAG.

OPT validates the snapshot property in two cases: when
an upstream function triggers a downstream function (linear
�ow), and when multiple parallel functions accumulate their
results (parallel �ow). We present an algorithm for each case.

4.3.1 Linear Flow Validation. In the linear �ow case, we
have an �upstream� function in the DAG that has completed
with its readset bound to speci�c versions, and an about-to-
be-executed �downstream� function whose readset is still
unbound. If we are lucky, the current cut at the downstream
node forms a snapshot with the upstream function's readset;
if not, we will try to modify the downstream readset to suit.

Speci�cally, given a versionset𝑅𝑢 read until now in the
DAG, a downstream function𝐹𝑑 must bind a keyset̃𝑅𝑑 to a
versionset𝑅𝑑 , where𝑅𝑑 ∪ 𝑅𝑢 is a snapshot. This require two
properties: (Case I)𝑅𝑑 supersedes𝑅𝑢 's dependencies,𝑅𝑢 .𝑑𝑒𝑝𝑠
(see De�nition 4), and (Case II)𝑅𝑢 supersedes𝑅𝑑 .𝑑𝑒𝑝𝑠.

Algorithm 1 shows the validation process. When an up-
stream function𝐹𝑢 triggers𝐹𝑑 , it sends the results(𝑅𝑢, 𝑆𝑢)
from running Algorithm 1 on𝐹𝑢 .𝑅𝑢 is the versionset read by

Algorithm 1 Linear Flow Validation

Input: 𝑎, 𝑆𝑢 , 𝑅𝑢 , 𝑅𝑑 , 𝑅𝐷𝐴𝐺 ,𝐶

1: if 𝑎 == 𝑇𝑟𝑢𝑒 then
2: return �Abort�
// Ensure all keys iñ𝑅𝑑 are available for execution
3: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 B ∅
4: for 𝑘 ∈ 𝑅𝑑 do
5: if 𝑘𝑖 ∉ 𝐶 ∧ 𝑘 𝑗 ∈ 𝑆𝑢 then
6: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 .add(𝑘 𝑗)
7: else if 𝑘𝑖 ∉ 𝐶 ∧ 𝑘 𝑗 ∉ 𝑆𝑢 then
8: 𝐶.update(𝑘)
// Case I
9: 𝑅𝑙𝑜𝑐𝑎𝑙 B 𝐶 ∩ 𝑅𝑑

10: for 𝑘𝑖 ∈ 𝑆𝑢 do
11: if 𝑘 𝑗 ∈ 𝑅𝑙𝑜𝑐𝑎𝑙∧!𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘 𝑗 , 𝑘𝑖) then
12: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 .add(𝑘𝑖)
// Case II

13: 𝑎𝑏𝑜𝑟𝑡 B 𝐹𝑎𝑙𝑠𝑒

14: 𝑆_𝑚𝑎𝑝 B {} // an empty map
15: for 𝑘𝑖 ∈ 𝑅𝑙𝑜𝑐𝑎𝑙 do
16: 𝑆𝑖 = RetrieveCut(𝑘, 𝑅𝐷𝐴𝐺 ,𝐶) // Algorithm 2
17: 𝑆_𝑚𝑎𝑝 [𝑘𝑖] = 𝑆𝑖
18: for 𝑚𝑖 ∈ 𝑆𝑖 do
19: if 𝑚 𝑗 ∈ 𝑅𝑢∧!𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑚 𝑗 ,𝑚𝑖) then
20: // key 𝑘 violates Case II. Try to move it to𝑅𝑟𝑒𝑚𝑜𝑡𝑒

21: if 𝑘 𝑗 ∉ 𝑆𝑢 then // cannot read𝑘 from upstream to
�x

22: 𝑎𝑏𝑜𝑟𝑡 = 𝑇𝑟𝑢𝑒

23: break
24: else // can read𝑘 from upstream to �x
25: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 .add(𝑘 𝑗)
26: 𝑅𝑙𝑜𝑐𝑎𝑙 .remove(𝑘𝑖)

27: if 𝑎𝑏𝑜𝑟𝑡 then
28: return �Abort�
29: else
30: 𝑆𝑑 B ∅
31: for 𝑘𝑖 ∈ 𝑅𝑙𝑜𝑐𝑎𝑙 do
32: 𝑆𝑑 = 𝑆𝑑 ∪ 𝑆_𝑚𝑎𝑝 [𝑘𝑖]
33: 𝑆𝑑 .version() // create temporary versions for keys in𝑆𝑑
34: 𝑅𝑑 B 𝑅𝑙𝑜𝑐𝑎𝑙
35: for 𝑘𝑖 ∈ 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 do
36: 𝑅𝑑 .merge(fetch(𝑘𝑖))

37: return 𝑆𝑛𝑒𝑤_𝑢 = 𝑆𝑢 ∪ 𝑆𝑑 , 𝑅𝑛𝑒𝑤_𝑢 = 𝑅𝑢 ∪ 𝑅𝑑

𝐹𝑢 and any of its upstream functions.𝑆𝑢 is a versionset with
two properties: It is a keyset-overlapping cut for the DAG's
read set (̃𝑅𝐷𝐴𝐺), and𝑅𝑢 ⊆ 𝑆𝑢 �all keys in 𝑅𝑢 are present in𝑆𝑢 .
Since𝑆𝑢 is a snapshot (Lemma 2), we know𝑆𝑢 supersedes the
dependencies of𝑅𝑢 . We show later how𝑆𝑢 is constructed and
prove its properties in Theorem 2. Recall that𝑆𝑢 and𝑅𝑢 only
contain the id and vector clock for each key. Dependency
metadata and payloads arenot shipped across functions.

In lines 1-2 of Algorithm 1, we check if the upstream
validation process decided to abort (𝑎 is an abort �ag from

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

88

Algorithm 2 RetrieveCut

Input: 𝑘, 𝑅𝐷𝐴𝐺 ,𝐶

1: 𝐶 ′ B ∅
2: 𝑡𝑜_𝑐ℎ𝑒𝑐𝑘 B {𝑘𝑖 ∈ 𝐶} // 𝑘𝑖 is the version of𝑘 in 𝐶
3: while 𝑡𝑜_𝑐ℎ𝑒𝑐𝑘 ≠ ∅ do // transitively add dependencies
4: for 𝑣 𝑗 ∈ 𝑡𝑜_𝑐ℎ𝑒𝑐𝑘 do . // of 𝑘 to construct the cut𝐶 ′

5: for 𝑑𝑘 ∈ 𝑣 𝑗 .𝑑𝑒𝑝𝑠 do
6: if 𝑑𝑙 ∉ 𝐶

′ then // 𝐶 ′ does not contain𝑑
7: 𝐶 ′.add(𝑑𝑚 ∈ 𝐶)
8: 𝑡𝑜_𝑐ℎ𝑒𝑐𝑘.add(𝑑𝑚 ∈ 𝐶)
9: 𝑡𝑜_𝑐ℎ𝑒𝑐𝑘.remove(𝑣 𝑗)

10: return𝐶 ′ ∩ 𝑅𝐷𝐴𝐺 // a keyset-overlapping cut for̃𝑅𝐷𝐴𝐺

the upstream). If so, we also abort. Otherwise, beginning on
line 3, we ensure that the keys̃𝑅𝑑 to be read in𝐹𝑑 are available.
For each𝑘 ∈ 𝑅𝑑 that is not present in the local cut𝐶, if 𝑘
exists in𝑆𝑢 as𝑘𝑖 , we add it to the versionset𝑅𝑟𝑒𝑚𝑜𝑡𝑒 (line 6);
it will be fetched from upstream at the end of the algorithm.
Otherwise, we update𝐶 to include𝑘 (line 8) following the
Local Cut Update process described in Section 3.

Next, we begin handling the two cases mentioned above. In
Case I (lines 9-12), we start by forming a candidate mapping
for 𝑅𝑑 ,𝑅𝑙𝑜𝑐𝑎𝑙 , by simply binding𝑅𝑑 to the overlap of the local
cut𝐶 (line 9). We then check each element of𝑅𝑙𝑜𝑐𝑎𝑙 to see
if it supersedes the corresponding element of𝑅𝑢 .𝑑𝑒𝑝𝑠. It is
su�cient to check if each element of𝑅𝑙𝑜𝑐𝑎𝑙 supersedes the
corresponding element of𝑆𝑢 , which in turn supersedes the
element of𝑅𝑢 .𝑑𝑒𝑝𝑠. When we discover a violation, we add
the corresponding key from𝑆𝑢 to 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 .

In Case II (line 13), we ensure that𝑅𝑢 supersedes𝑅𝑑 .𝑑𝑒𝑝𝑠.
To do so, we identify elements in𝑅𝑙𝑜𝑐𝑎𝑙 whose dependencies
are not superseded by the corresponding keys in𝑅𝑢 (line 19).

For𝑘𝑖 ∈ 𝑅𝑙𝑜𝑐𝑎𝑙 , it is su�cient to construct 𝑆𝑖 , a keyset-
overlapping cut for𝑅𝐷𝐴𝐺 that contains𝑘𝑖 and check if𝑅𝑢
supersedes𝑆𝑖 . 𝑆𝑖 is created as follows: we �rst construct a
cut𝐶 ′ from𝐶 that includes𝑘𝑖 and intersect𝐶 ′ with 𝑅𝐷𝐴𝐺 to
get𝑆𝑖 (Algorithm 2). According to Lemma 1,𝑆𝑖 is a keyset-
overlapping cut for𝑅𝐷𝐴𝐺 . We remove elements not iñ𝑅𝐷𝐴𝐺

as they need not be checked for supersession. This optimiza-
tion signi�cantly reduces the amount of causal metadata we
ship across nodes (line 10 of Algorithm 2).

If 𝑅𝑢 does not supersede𝑆𝑖 , then𝑘𝑖 cannot be included
in 𝑅𝑑 , and we try to use the upstream versions instead. If𝑘

does not exist upstream, we fail to form a snapshot and abort
(lines 21-22). Otherwise, we add an older version𝑘 𝑗 ∈ 𝑆𝑢 to
𝑅𝑟𝑒𝑚𝑜𝑡𝑒 (line 25) and remove𝑘𝑖 from 𝑅𝑙𝑜𝑐𝑎𝑙 (line 26).

At this point we can construct𝑆𝑑 , a union of all keyset-
overlapping cuts for̃𝑅𝐷𝐴𝐺 that supersedes dependencies of
𝑅𝑙𝑜𝑐𝑎𝑙 (lines 31-32). By Theorem 1,𝑆𝑑 is a keyset-overlapping
cut for 𝑅𝐷𝐴𝐺 . The cache creates temporary versions that are

stored locally for keys in𝑆𝑑 in case they need to be fetched
by other caches during the distributed snapshot construction
(line 33). Finally, we initialize𝑅𝑑 to 𝑅𝑙𝑜𝑐𝑎𝑙 and fetch the keys
in 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 to merge into𝑅𝑑 . 𝑅𝑑 is now provided to𝐹𝑑 for
execution, and𝑆𝑛𝑒𝑤_𝑢 = 𝑆𝑢 ∪ 𝑆𝑑 , 𝑅𝑛𝑒𝑤_𝑢 = 𝑅𝑢 ∪ 𝑅𝑑 are used
for validation in subsequent functions.

Correctness. 𝑆𝑛𝑒𝑤_𝑢 passed to subsequent functions must
have the same properties as𝑆𝑢 . Recall that𝑆𝑢 has two prop-
erties. First, it is a keyset-overlapping cut for̃𝑅𝐷𝐴𝐺 . Second,
𝑅𝑢 ⊆ 𝑆𝑢 . For the �rst property, recall that𝑆𝑑 is also a keyset-
overlapping cut for𝑅𝐷𝐴𝐺 . Hence by Theorem 1, we know
𝑆𝑛𝑒𝑤_𝑢 = 𝑆𝑢 ∪ 𝑆𝑑 is also a keyset-overlapping cut for̃𝑅𝐷𝐴𝐺 .
We now show𝑅𝑛𝑒𝑤_𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 .

Theorem 2. If the validation process in Algorithm 1 suc-
ceeds, let𝑅𝑛𝑒𝑤_𝑢 = 𝑅𝑢 ∪ 𝑅𝑑 and 𝑆𝑛𝑒𝑤_𝑢 = 𝑆𝑢 ∪ 𝑆𝑑 . Then
𝑅𝑛𝑒𝑤_𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 .

Proof. We prove by induction. We �rst prove the base
case where there is no upstream. In this case,𝑅𝑢 = ∅, 𝑆𝑢 = ∅,
so it is su�cient to show 𝑅𝑑 ⊆ 𝑆𝑑 . Recall by construction
𝑆𝑑 contains all keys in𝑅𝑙𝑜𝑐𝑎𝑙 (line 34-35). Since there is no
upstream function, we do not fetch any data to update𝑅𝑑
(line 39), so we have𝑅𝑑 = 𝑅𝑙𝑜𝑐𝑎𝑙 . Hence,𝑅𝑛𝑒𝑤_𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 .

Inductive hypothesis : Given𝑅𝑢, 𝑆𝑢 such that𝑅𝑢 ⊆ 𝑆𝑢 ,
we want to show𝑅𝑛𝑒𝑤_𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 . It is su�cient to show
that 𝑅𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 and𝑅𝑑 ⊆ 𝑆𝑛𝑒𝑤_𝑢 . For the �rst part, let
𝑘𝑖 ∈ 𝑅𝑢 , 𝑘𝑚 ∈ 𝑆𝑑 and𝑘 𝑗 ∈ (𝑆𝑢 ∪ 𝑆𝑑). Since𝑅𝑢 ⊆ 𝑆𝑢 , we
know𝑘𝑖 ∈ 𝑆𝑢 , and therefore𝑘 𝑗 = 𝑘𝑖 ∪𝑘𝑚. Since Case II of the
validation process ensures that𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑖 , 𝑘𝑚), we know
𝑘𝑖 ∪ 𝑘𝑚 = 𝑘𝑖 , and therefore𝑘𝑖 == 𝑘 𝑗 . If 𝑘𝑚 ∉ 𝑆𝑑 , it is trivially
true that𝑘𝑖 == 𝑘 𝑗 . Hence,𝑅𝑢 ⊆ 𝑆𝑛𝑒𝑤_𝑢 .

We now prove the second half of the inductive hypothesis.
If 𝑘 ∈ 𝑅𝑑 , there are two cases: either𝑘 is read from𝐶 (and
potentially from upstream) or𝑘 is not read from𝐶. In the �rst
case, let𝑘𝑚 ∈ 𝐶. By construction, we know𝑘𝑚 ∈ 𝑆𝑑 . Suppose
𝑘 𝑗 ∈ 𝑆𝑢 and𝑘𝑖 ∈ 𝑅𝑑 . If 𝑘 is also read from the upstream, then
𝑘𝑖 = 𝑘𝑚 ∪ 𝑘 𝑗 . Otherwise,𝑘𝑖 = 𝑘𝑚. Note that since Case
I ensures that𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑖 , 𝑘 𝑗), we can still express𝑘𝑖 as
𝑘𝑚 ∪ 𝑘 𝑗 . Therefore, regardless of whether𝑘 is read from the
upstream, we always have𝑘𝑖 = 𝑘𝑚 ∪ 𝑘 𝑗 . Also, since𝑘𝑚 ∈ 𝑆𝑑
and𝑘 𝑗 ∈ 𝑆𝑢 , we know𝑘𝑖 = (𝑘𝑚 ∪ 𝑘 𝑗) ∈ (𝑆𝑢 ∪ 𝑆𝑑). We now
have𝑅𝑑 ⊆ 𝑆𝑛𝑒𝑤_𝑢 . If 𝑘 is not read from𝐶, 𝑘𝑖 ∈ 𝑅𝑑 is read
from 𝑆𝑢 , so𝑘𝑖 ∈ 𝑆𝑢 , and Case II ensures that𝑘 𝑗 ∉ 𝑆𝑑 . Hence
𝑅𝑑 ⊆ 𝑆𝑛𝑒𝑤_𝑢 , and𝑆𝑛𝑒𝑤_𝑢 has the same properties as𝑆𝑢 . □

4.3.2 Parallel Flow Validation. When multiple parallel up-
stream functions(𝑈1,𝑈2, ...,𝑈𝑛) accumulate their results to
trigger a downstream function, we need to validate if the
versionsets read across these parallel upstreams form a snap-
shot. To this end, we check if their read sets(𝑅1, 𝑅2, ..., 𝑅𝑛)
supersede(𝑆1, 𝑆2, ..., 𝑆𝑛), each𝑆𝑖 being a keyset-overlapping
cut for 𝑅𝐷𝐴𝐺 that contains each upstream𝑈𝑖 's read set𝑅𝑖 .

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

89

Algorithm 3 Parallel Flow Validation

Input: (𝑆1, 𝑅1, 𝑎1), (𝑆2, 𝑅2, 𝑎2), ..., (𝑆𝑛, 𝑅𝑛, 𝑎𝑛)
1: 𝑎 B

𝑛∨
𝑖=1

𝑎𝑖

2: if 𝑎 == 𝑇𝑟𝑢𝑒 then
3: return �Abort�

4: 𝑆 B
𝑛⋃
𝑖=1

𝑆𝑖

5: for 𝑖 ∈ [1, 𝑛] do
6: for 𝑘𝑚 ∈ 𝑅𝑖 do
7: if !𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑚, 𝑘𝑛 ∈ 𝑆) then
8: return �Abort�

9: 𝑅 B
𝑛⋃
𝑖=1

𝑅𝑖

10: return 𝑆, 𝑅

Algorithm 4 CreateSnapshot

Input: 𝑅𝑖 , 𝑅𝐷𝐴𝐺 ,𝐶

1: for 𝑘 ∈ 𝑅𝑖 | 𝑘 ∉ 𝐶 do
2: 𝐶.update(𝑘)

3: 𝑆𝑖 B ∅
4: for 𝑘 ∈ 𝑅𝑖 do
5: 𝑆𝑖 = 𝑆𝑖∪ RetrieveCut(𝑘, 𝑅𝐷𝐴𝐺 ,𝐶) // Algorithm 2

6: 𝑆𝑖 .version() // create temporary versions for keys in𝑆𝑖
7: return 𝑆𝑖

In Algorithm 3, we �rst check if any upstream function
aborts due to linear �ow validation. If so, we also abort. Oth-
erwise, we create𝑆, a union of all upstream𝑆𝑖s that contains
the read sets of all parallel upstreams; it follows that𝑆 su-
persedes the dependencies of all parallel upstream read sets.
For each𝑘𝑚 in each read set𝑅𝑖 , we check if𝑘𝑚 supersedes
the corresponding𝑘𝑛 ∈ 𝑆. Since we are validating between
parallel upstreams whose functions have already been exe-
cuted, OPT cannot perform any �repair� as in Algorithm 1.
Therefore, if validation fails, we abort. Note that𝑆 has ex-
actly the same properties as𝑆𝑖 if validation succeeds. We
omit the proof as it is almost the same as Theorem 2.

4.4 Conservative (CON)
CON is the opposite of OPT: Instead of lazily validating read
sets as the DAG progresses, the scheduler coordinates with
all caches involved in the DAG request to construct a dis-
tributed snapshot of̃𝑅𝐷𝐴𝐺 before execution. Each function's
corresponding cache �rst creates𝑆𝑖 , a keyset-overlapping cut
for 𝑅𝐷𝐴𝐺 , such that𝑆𝑖 contains the function's read set. Ac-
cording to Theorem 1 and Lemma 2, the distributed snapshot
𝑆 can then be formed by taking the union of all𝑆𝑖s.

In Algorithm 5, the scheduler instructs each function𝐹𝑖 's
cache to create𝑆𝑖 (line 4) via Algorithm 4. If a key iñ𝑅𝑖 is
missing from𝐶, the cache updates𝐶 to include the key (lines
1-2 of Algorithm 4). Then, for each key𝑘 ∈ 𝑅𝑖 , the cache

Algorithm 5 Distributed Snapshot Construction

Input: (𝐹1, 𝑅1), (𝐹2, 𝑅2), ..., (𝐹𝑛, 𝑅𝑛), 𝑅𝐷𝐴𝐺

1: 𝑆 B ∅
2: 𝑅 B [] // empty list
3: for 𝑖 ∈ [1, 𝑛] do
4: 𝑆𝑖 = 𝐹𝑖 .GetCache.CreateSnapshot(𝑅𝑖 , 𝑅𝐷𝐴𝐺) // Algorithm 4
5: 𝑅𝑖 = 𝑆𝑖 ∩ 𝑅𝑖
6: 𝑅.append(𝑅𝑖)
7: 𝑆 = 𝑆 ∪ 𝑆𝑖
8: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 B {} // an empty map
9: for 𝑅𝑖 ∈ 𝑅 do

10: for 𝑘𝑚 ∈ 𝑅𝑖 do
11: if !𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑑𝑒 (𝑘𝑚, 𝑘𝑛 ∈ 𝑆) then
12: 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 [i].add(𝑘𝑛) // cache𝑖 needs to fetch𝑘𝑛
13: for 𝑖 ∈ 𝑅𝑟𝑒𝑚𝑜𝑡𝑒 do
14: 𝐹𝑖 .GetCache.Fetch(𝑅𝑟𝑒𝑚𝑜𝑡𝑒 [i])

creates a keyset-overlapping cut for̃𝑅𝐷𝐴𝐺 that includes𝑘 and
unions all the keyset-overlapping cuts to create𝑆𝑖 (line 5). It
then creates temporary versions for keys in𝑆𝑖 in case they
need to be fetched by other caches during the distributed
snapshot construction (line 6). After that, the scheduler forms
𝑅𝑖 , the versionset that𝐹𝑖 reads from the local cut, by binding
𝑅𝑖 to the overlap of𝑆𝑖 (line 5 of Algorithm 5). After all𝑆𝑖s
are created, the scheduler unions them to create𝑆 (line 7).
It then inspects the𝑅𝑖 of each function. If a key𝑘𝑚 ∈ 𝑅𝑖
cannot supersede𝑘𝑛 ∈ 𝑆 (line 11), then the corresponding
cache fetches from remote caches to match𝑘𝑛 (line 14). The
scheduler only begins execution after all remote reads �nish;
each function reads from a partition of𝑆.

4.5 Hybrid (HB)
The OPT protocol starts a DAG immediately without coordi-
nation but is susceptible to aborts, and there is no guarantee
as to how many times it retries before succeeding. On the
other hand, the CON protocol never aborts but has to pay
the cost of coordinating with all caches involved in a request
to construct a distributed snapshot.

The hybrid protocol (HB) combines the bene�ts of the
OPT and CON protocols. HB (run by the scheduler) starts the
OPT subroutine and simultaneously performs a simulation
of OPT. This simulation is possible because OPT only needs
the read set of each function and the local cut at each cache
to perform validation, and the simulation process can get the
same information by querying the caches. The simulation is
much faster than executing the request because no functions
are executed and no causal metadata is passed across nodes.
The CON subroutine is activated only when the simulation
aborts. HB includes some key optimizations that enable the
two subroutines to cooperate to improve performance.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

90

Pre-fetching . After the simulation, we know what data
must be fetched from remote storage during each function's
validation process (Algorithm 1). In this case, the HB protocol
noti�es caches involved in the request to pre-fetch relevant
data before the OPT subroutine reaches these caches.

Early Abort . When our simulation aborts, HB noti�es all
caches to stop the OPT process to save unnecessary com-
putation. This is especially useful for DAGs with parallel
functions: A function is not aware that a sibling has aborted
in Algorithm 1 until they �meet� and abort in Algorithm 3.

Function Result Caching . After each function is executed
under OPT, its result and key versions read are stored in the
cache. If OPT aborts, the function is re-executed under CON,
and if CON's key versions match the original execution's,
we skip execution and retrieves the result from the cache.
This data is cleared immediately after the DAG �nishes.

4.6 Discussion
We now discuss a few important properties of our MTCC
protocols and how to handle cases wheñ𝑅𝐷𝐴𝐺 is unknown.

Interaction with Autoscaling . Recall the naïve approach
at the beginning of Section 4 in which all caches coordi-
nate to maintain a large distributed cut at all times. Such an
approach requires knowing the membership of the system,
which dynamically changes in a serverless setting. This pro-
tocol will thus require expensive coordination mechanisms
to establish cluster memberhsip before each cut update; the
autoscaling policy cannot act while the cut is being updated.

On the other hand, none of protocols described in this sec-
tion rely on node membership to achieve TCC. Each cache in-
dependently maintains its own cut, and only a small number
of caches involved in a DAG request needs to communicate
to ensure the snapshot property. Therefore,HydroCache
guarantees TCC in a way that is orthogonal to autoscaling.

Repeatable Read. If two functions in a single request both
read key𝑘, it is natural to expect that they will read the
same version of𝑘 [5]. The CT and CON protocols trivially
achieve repeatable read because their snapshots are con-
structed prior to DAG execution. For OPT, repeatable read
is a simple corollary of Theorem 2. Given𝑅𝑢, 𝑅𝑑 , 𝑆𝑛𝑒𝑤_𝑢 ,
𝑘𝑖 ∈ 𝑅𝑢 ⇒ 𝑘𝑖 ∈ 𝑆𝑛𝑒𝑤_𝑢 , and𝑘 𝑗 ∈ 𝑅𝑑 ⇒ 𝑘 𝑗 ∈ 𝑆𝑛𝑒𝑤_𝑢 . Hence
𝑘𝑖 == 𝑘 𝑗 , and OPT and HB achieve repeatable read.

Versioning . Our protocols do not rely on aggressive multi-
versioning; they createtemporaryversions (line 33 of Al-
gorithm 1 and line 6 of Algorithm 4) so that remote caches
can retrieve the correct versions of keys to construct snap-
shots. These versions are garbage collected after each request
�nishes, signi�cantly reducing storage overhead.

Unknown Read Set. When the readset is unknown, CON
can no longer pre-construct the distributed snapshot. Instead,

we rely on OPT to �explore� the DAG's read set as the request
progresses and validate if the keys read so far form a snapshot.
When the validation fails, we invoke CON to construct a
distributed snapshot for all keys read thus farbeforeretrying
the request. This way, the next trial of OPT will not abort due
to causal inconsistencies between keys that we have already
explored. We switch between OPT and CON until the read
sets of all functions in the DAG are fully explored.

With an unknown𝑅𝐷𝐴𝐺 , we can no longer perform the
optimization in line 10 of Algorithm 2 to reduce causal meta-
data shipped across nodes. Finally, as OPT explores new keys,
the protocol may abort multiple times. However, in practice,
a DAG will likely only read a small number of keys that are
updated very frequently. These keys are the primary culprits
for aborts, and the number of aborts will roughly be bounded
by the number of such write-heavy keys.

5 EVALUATION
This section presents a detailed evaluation ofHydroCache.
We �rst study aspects ofHydroCache in isolation: MTCC's
performance (§5.2), a comparison to other consistency mod-
els (§5.3), and scalability (§5.4). We then evaluateHydro-
Cache's broader bene�ts by comparing its performance and
consistency against cache-less architectures (§5.5).

5.1 Experiment Setup and Workload
Our experiments were run in theus-east-1a AWS avail-
ability zone (AZ). Function schedulers were run on AWS
c5.large EC2 VMs (2 vCPUs and 4GB RAM), and com-
pute nodes usedc5.4xlarge EC2 VMs (16 vCPUs and 32GB
RAM); hyperthreading was enabled. Each compute node had
3 function executors that shared aHydroCache. Cloudburst
was deployed with 3 scheduler nodes; the system's auto-
scaling policy enforced a minimum of 3 compute nodes (9
Python execution threads and 3 caches total). Clients were
run on separate machines in the same AZ.

Unless otherwise speci�ed, for each experiment, we used
6 concurrent benchmark threads, each sequentially issuing
500 DAG execution requests. The cache �refresh� period for
cut updates was set to 100ms. Our dataset was 1 million keys,
each with an 8-byte payload. Caches were pre-warmed to
remove the data retrieval overheads from the KVS.

Our benchmarks evaluate two DAG topologies: a linear
DAG and a V-shaped DAG. Linear DAGs are chains of three
sequentially executed functions, where the result of each
upstream function is passed in as an argument to the down-
stream function. V-shaped DAGs also contain three functions,
but the �rst two functions are executed in parallel, and their
results are passed as arguments to the third function.

Every function takes two arguments, except for the sink
function of the V-shaped DAG, which takes three arguments.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

91

0

5

10

15

20

25

C
entralized

O
ptim

istic

C
onservative

H
ybrid

C
entralized

O
ptim

istic

C
onservative

H
ybrid

C
entralized

O
ptim

istic

C
onservative

H
ybrid

(a) Linear DAG

Zipf = 1.00 Zipf = 1.25 Zipf = 1.50

L
a

te
n

c
y
 (

m
s
)

3.8 4.0
5.6

3.9

13
11 11

10

3.8
5.1

6.4
4.7

14

19

12
10

3.7
5.6

7.0
5.2

15

23

12
11

0

5

10

15

20

25

30

C
entralized

O
ptim

istic

C
onservative

H
ybrid

C
entralized

O
ptim

istic

C
onservative

H
ybrid

C
entralized

O
ptim

istic

C
onservative

H
ybrid

(b) V-shaped DAG

Zipf = 1.00 Zipf = 1.25 Zipf = 1.50

Zipf = 1.00 Zipf = 1.25 Zipf = 1.50

L
a

te
n

c
y
 (

m
s
)

3.9 4.0
5.4

3.9

14 15

12
10

3.8
5.6

6.8 5.7

16

28

12 11

3.8

7.1 7.6 6.7

15

32

13 12

Figure 2: Median (bar) and P99 (whisker) latencies
across di�erent protocols for executing linear and V-
shaped DAGs.

The arguments are either a reference to key in Anna (drawn
from a Zip�an distribution) or the result of an upstream
function. At the end of a DAG, the sink function writes its
result into a key randomly chosen from the DAG's read set;
the write is causally dependent on the keys in the read set.
Each function returns immediately to eliminate function
execution overheads, and we assume the read set is known.

5.2 Comparison Across Protocols
In this section, we evaluate the protocols proposed in Sec-
tion 4. Figure 2 shows the end-to-end DAG execution latency
for our protocols, with varying topologies and Zip�an distri-
butions (1.0, 1.25, and 1.5). Our experiments show that HB
has the best performance of the three distributed protocols
and highlight a trade-o� between CT and HB, which we dis-
cuss in more detail. We omit discussion of the experiments
with a Zip�an coe�cient of 1.25, as the performance is in
between that of the other two contention levels.

Centralized (CT) achieves the best median latency in all
settings because each request has only one round of com-
munication with a single cache to create its snapshot before
execution. This avoids the additional overhead of passing
causal metadata across caches; neither DAG topology nor
workload contention a�ect performance. Furthermore, func-
tion results within a DAG are passed between threads rather
than between nodes, avoiding expensive network latencies.

Nonetheless, its 99th percentile latency is consistently worse
than the conservative protocol's (CON) and the hybrid pro-
tocol's (HB), because requiring all functions to execute on a
single node leads to more load imbalance (Section 4.1).

Optimistic (OPT) achieves excellent performance for lin-
ear DAGs (Figure 2 (a)) when the Zip�an coe�cient is set
to 1.0, a moderately contended distribution. Key accesses
are spread across the entire key space, so each read likely
accesses the most recent update, which has already been
propagated and merged into the cut of all caches. As a result,
88% of DAG executions see local cuts that form a distributed
snapshot without any intervention, signi�cantly improving
performance.

For the most contended workload (Zipf=1.5), the median
latency increases by 40% due to increased data shipping costs
(line 39 of Algorithm 1) to construct a snapshot; data shipping
occurred in 82% of DAG executions. Correspondingly, 99th
percentile latency was 2.1× worse. Under high contention,
the probability of the OPT protocol's validation phase failing
increases, which leads to more aborts and retries. In this
experiment, 8% of the DAGs aborted at least once, and in the
worst case, a DAG was retried 7×before succeeding.

OPT performs similarly for V-shaped DAGs (Figure 2 (b)).
The key di�erence is that increasing contention signi�cantly
degrades 99th percentile latencies. By design, OPT is un-
aware of the causal metadata required across the two parallel
functions until parallel �ow validation (Algorithm 3). The
probability of validation failure is much higher since repair
cannot be performed during Algorithm 3. For the most con-
tended workload, 75% of DAGs were aborted at least once;
in the worst case, a request required 14 retries.

Conservative (CON)'s median latency is 40% higher than
OPT's due to the coordination prior to DAG execution. How-
ever, 99th percentile latency is more stable for high-contention
workloads, with an increase of 1ms from the least to most
contention. Each cache already has a snapshot for the DAG's
read set before executing, so requests never abort.

Hybrid (HB) o�ers the best median and 99th percentile
latency in all settings. To explain the performance improve-
ments, Tables 1 and 2 show how often each protocol subrou-
tine was activated for each topology and contention level.

Under moderate contention (Zipf=1.0), HB has OPT's ad-
vantages of immediately executing the DAG without coor-
dination. We see that in a large majority of cases�90% for
linear DAGs and 83% for V-shaped DAGs�no data fetching
is required; the OPT subroutine of HB simply passes causal
metadata along the DAG. Much of the DAG has already been
executed under HB by the time the CON protocol �nishes
constructing its snapshot. This explains the 44% and 38% im-
provements in median latency for linear DAGs and V-shaped
DAGs, respectively.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

92

HB Subroutines (Linear)

OPT Metadata Only OPT Data Fetch CON

Z
ip

f

1.0 90% 7% 3%

1.25 37% 55% 8%

1.5 10% 81% 9%

Table 1: Percentage of di�erent HB subroutines activated
across contention levels for linear DAGs. The �rst column
shows when OPT subroutine succeeds and only causal meta-
data is passed across nodes. The second column means the
OPT subroutine succeeds but data is shipped across nodes
to construct the snapshot. In the third column, OPT subrou-
tine aborts and the DAG is �nished by the CON subroutine
with data shipping.

HB Subroutines (V-shaped)

OPT Metadata Only OPT Data Fetch CON

Z
ip

f

1.0 83% 5% 12%

1.25 29% 17% 54%

1.5 10% 12% 78%

Table 2: Percentage of di�erent HB subroutines activated
across di�erent contention levels for V-shaped DAGs.

Under high contention (Zipf=1.5), HB o�ers 35% better
median latency than CON for linear DAGs. However, for V-
shaped DAGs, the performance improvement is less than 15%.
The reason, seen in Table 2, is that the OPT subroutine aborts
frequently under high contention: In 78% of the cases, the
CON subroutine is activated. Nevertheless, for the remaining
22% of requests, the OPT subroutine succeeds, leading to a
moderate improvement in median latency.

Interestingly, the median latency of HB is even lower than
OPT. There are two reasons for this: First, the CON subrou-
tine prevents aborts to which OPT is susceptible. Second,
while the OPT subroutine executes, the CON subroutine
pre-fetches data to help OPT construct the snapshot (see
Section 4.5). At the 99th percentile, HB matches the perfor-
mance of CON and signi�cantly outperforms OPT due to the
avoided aborts.

Takeaway: HB consistently achieves the best performance
among the distributed protocols, by taking advantage of opti-
mistic execution while avoiding repeated aborts.

5.2.1 Centralized vs. Hybrid. From the previous section, it is
clear that HB is the best distributed protocol, but CT achieves
better median latencies while compromising on 99th per-
centile latencies. We now turn to the question of whether
our system should choose to use CT, as it is a simpler protocol
that achieves reasonable performance.

0

5

10

15

20

25

30

35

40

45

LW
W

BC
C

H
B

SI (m
ock)

LW
W

BC
C

H
B

SI (m
ock)

LW
W

BC
C

H
B

SI (m
ock)

Zipf = 1.00 Zipf = 1.25 Zipf = 1.50

L
a
te

n
c
y
 (

m
s
)

2.4 3.7 3.9 5.0
4.3

9.7 10

14

2.4 3.6 4.7 5.2
4.7

9.2 10

33

2.5 3.6
5.2 5.4

4.6

8.9
11

45

Figure 3: Median and P99 latencies between LWW,
BCC, HB, and simulated SI protocols.

As discussed in Section 4.1, CT has three key limitations:
coarse-grained scheduling, forcing all data to a single node,
and limited parallelism. In this section, we have not seen
the data retrieval overhead as all caches were warmed up in
advance. As we show in Section 5.5, the overhead of remote
data fetches can be signi�cant, especially for large data.

To better understand the limitation due to parallelism, we
use a single benchmark thread to issue V-shaped DAGs with
varying fanout (number of parallel functions), ranging from
1 to 9. To emphasize the performance gains from parallelism,
each parallel function executes for 50ms, and the sink func-
tion returns immediately (for brevity, no �gure is shown for
this experiment). We observe that under a workload with
moderate contention, HB's performance (median latency)
is relatively stable, as it parallelizes sibling functions across
nodes. However, CT executes all functions on the same node,
so parallelism is limited to the three executors on that node.
Therefore, we observe latency jumps as fanout grows from
3 to 4 and from 6 to 7. For DAGs with fanout greater than 7,
HB outperforms CT by 3×.

Takeaway: Many factors a�ect the optimal protocol for a
given workload, including load balancing, cache hits rates, and
the degree of parallelism within a DAG. In general, the HB
protocol o�ers the most �exibility.

5.3 Consistency Overheads
In this section, we compare the performance of the HB pro-
tocol against two weaker consistency protocols (last-writer-
wins (LWW) and Bolt-on Causal Consistency (BCC) [7]) and
one strong consistency protocol (Snapshot Isolation (SI)).
We begin by discussing LWW and BCC and return to SI in
Section 5.3.1. We evaluate linear DAGs in this experiment
and vary the workload's contention level.

The LWW protocol attaches a timestamp to each write,
and concurrent updates are resolved by picking the write
with the largest timestamp. LWW only guarantees eventual
replica convergence for individual keys but o�ers the best

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

93

performance as there are no constraints on which key ver-
sions can be read. BCC only guarantees CC+ (see Section 2.2)
for keys read within individual functions.

As shown in Figure 3 LWW and BCC are insensitive to
workload skew. No causal metadata need be passed across
nodes, and no data is shipped to construct a distributed snap-
shot. HB, as discussed previously (Section 5.2), incurs higher
overheads under high contention due to the data fetching
overhead incurred by the OPT subroutine and the coordina-
tion overhead incurred by the CON subroutine.

Under moderate contention (Zipf=1.0), HB matches the
performance of BCC and is 62% slower than LWW. Under
high contention, HB is 44% slower than BCC and 2× slower
than LWW. However, Table 1 shows that 90% of DAGs require
data shipping across caches under high contention. Since
BCC does not account for multiple caches, over 90% of the
BCC requests violated the TCC guarantee.

In addition to latency, we measure the maximum causal
metadata storage overhead for each key in the working set
for the HB protocol. Under moderate contention (Zipf=1.0),
the median metadata overhead is 120 bytes and the 99th
percentile overhead is 432 bytes. Under high contention
(Zipf=1.5), the median and the 99th percentile overheads
increase to 300 bytes and 852 bytes, respectively. Under
high contention, both the keys' vector clock lengths and de-
pendency counts increase: The 99th percentile vector clock
length is 9 and the dependency count is 7.

5.3.1 Snapshot Isolation. HydroCache relies on Anna for
its storage consistency; both components are coordination-
free by design. However, there are databases that provide
�strong� isolation with serverless scaling. Notably, AWS Server-
less Aurora [27] provides Snapshot Isolation (SI) via its Post-
greSQL con�guration. SI is stronger than TCC in two ways:
(1) it guarantees that reads observe all committed transac-
tions, and (2) at commit time, SI validates writes and aborts
transactions that produce write-write con�icts. TCC allows
transactions to observe stale data and also allows concurrent
updates, asynchronously resolving con�icts via the conver-
gent con�ict resolution policy (set union in our case).

To determine whether a strongly consistent serverless
framework could compete withHydroCache and Anna, we
conduct two experiments. As a baseline, we replace Anna
with Aurora-PostgreSQL (with SI) and measure performance.
We warm the Aurora database by querying every key once
in advance of the experiment, so that all future requests hit
Aurora's bu�er cache and there are no disk accesses on the
critical path. Second, we perform a more apples-to-apples
comparison usingHydroCache and Anna, replaying the
cache misses and abort/retry patterns observed in Aurora.

In the �rst experiment, we observe that SI is over an order
of magnitude slower than HB at both the median and the

99th percentile across all contention levels. (Due to space
constraints, no �gure is shown for this experiment.) There
are four likely reasons for this gap. The �rst three echo the
guarantees o�ered by SI. (a) Guarantee (1) requires that when
a transaction �rst reads any key𝑘, it must bypass our cache
and fetch𝑘 from an up-to-date database replica. (b) Both
guarantees (1) and (2) require coordination inside Aurora
to ensure that replicas agree on the set of committed trans-
actions. (c) Guarantee (2) causes transactions to abort/retry.
The fourth reason is a matter of system architecture: (d) Au-
rora is built on PostgreSQL, almost certainly resulting in
more query overhead thanHydroCache and Anna.

The absolute numbers from this experiment do not pro-
vide much insight into the design space due to reason (d).
However, workload traces can be used to simulate the per-
formance of SI inHydroCache and Anna.

Therefore, in our second experiment, we take the Aurora
trace (accounting for cache misses and abort/retry count)
and run it under LWW (our fastest option) usingHydro-
Cacheand Anna. This is alower boundon the latency of a
full SI implementation, as it doesn't account for coordination
overheads (reason (b)). The overhead of coordination proto-
cols such as two-phase commit is at least 17ms as reported
by Google Spanner [9] and worsens as the system scales.

The SI (mock) bars in Figure 3 show the simulated results.
Median latency is worse than HB's due to the added network
round-trip overhead during cache misses. While HB's 99th
percentile latency is insensitive to workload skew, SI's tail
latency is over 3x worse as we increase the contention from
Zipf=1.0 to 1.5. Under high contention, a large number of
transactions concurrently update a single key and only one
is allowed to commit. All other transactions are aborted and
retried, contributing to the high tail latency. In fact, 23% of the
transactions are retried at least once, and in the worst case,
a transaction is retried 18 times before committing. Thus, SI
does not meet our goal of low-latency function serving.

Takeaway: MTCC protocols incur a reasonable overheads�
at most 2× performance penalty and sub-KB metadata overheads�
compared to weaker protocols while preventing anomalies on
up to 90% of requests. MTCC also avoids the cache misses and
expensive aborts caused by snapshot isolation.

5.4 Scalability
Thus far, we have only studied small DAGs of length at
most 3. In this section, we explore the scalability of our
MTCC protocol as DAG length increases. Figure 4 reports
the performance of the HB protocol as a function of the
length of a linear DAG for di�erent contention levels. We
normalize (divide) the latency by the length of the DAG.
Ideally, we would expect a constant normalized latency for
each skew.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

94

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

 2 4 6 8 10 12 14 16N
o
rm

a
liz

e
d
 L

a
te

n
c
y
 (

m
s
)

DAG Length

Zipf=1.00
Zipf=1.25
Zipf=1.50

Figure 4: Normalized median latency as we increase
the length of a linear DAG.

In practice, as we increase DAG length from 3 to 15, the
normalized latency grows under all contention levels. Longer
DAGs with larger read sets require creating larger snapshots,
so the volume of causal metadata being passed along the
DAG increases linearly with respect to DAG length. Further-
more, the protocol must communicate across a larger number
of caches to construct the snapshot as the DAG grows. Un-
der moderate contention (Zipf=1.0), the normalized latency
grows from 1.15ms to 1.53ms (a 33% increase), while under
high contention (Zipf=1.5), the normalized latency doubles.

The reason for the di�erence across contention levels is
that the OPT subroutine avoids data fetches for 91% of re-
quests under moderate contention. Under high contention,
75% of requests require OPT to ship data across caches, and
12% of requests require the CON subroutine to communicate
with all caches, signi�cantly increasing latencies.

Takeaway: Our MTCC protocols scale well from short to
long DAGs under moderate contention, with normalized laten-
cies only increasing by 33%; however, high contention work-
loads require large amounts of expensive data shipping, leading
to a 2×increase in normalized latency.

5.5 Life Without HydroCache
Finally, we investigate the bene�ts ofHydroCache (using
the HB protocol) relative to a cache-less architecture. We
study two di�erent architectures: One fetches data directly
from Anna, and another fetches data from AWS ElastiCache
(using Redis in cluster mode). Although ElastiCache is not an
autsocaling system, we include it in our evaluation because
it is an industry-standard, memory-speed KVS [25].

5.5.1 Caching Benefits. We �rst study the performance ben-
e�ts of HydroCache. We begin with caches empty, and
execute linear DAGs with 3 functions. In previous exper-
iments, the reads and writes were drawn from the same
distribution. Here, we draw the read set from a Zip�an distri-
bution of 100,000 keys with a coe�cient of 1.5. We study two,
less-skewed distributions for the write set�a uniform distri-
bution and a Zip�an distribution with coe�cient 0.5. This
variation in distributions is commonly observed in many
social network applications [12].

0

10

20

30

40

50

60

70

80

90

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

H
C
 uniform

H
C
 skew

ed

Anna

ElastiC
ache

0.5MB 1.0MB 2.0MB

L
a
te

n
c
y
 (

m
s
)

3.7 5.6

11 11

18
22

27
23

4.3
7.8

20 19

34

45
40

37

4.5

12

40 39

70

88

77
80

Figure 5: Median and P99 latency comparison against
architectures without HydroCache.

Writing new key versions forcesHydroCache to exer-
cise the MTCC protocol, which highlights its performance
overhead under di�erent levels of write skew. To focus on
the bene�t of caching large payloads, we con�gure each
DAG executed withHydroCache to write a small (1 byte)
payload to avoid the overhead of expensive writes to the
KVS. To prevent this write from clobbering the original large
payload�thereby reducing the cost of future KVS reads�we
attach the 1 byte payload with a vector clock concurrent
with what is stored in Anna. This payload will bemerged
with the original payload via set union so that further reads
to the same key still fetch both payloads. Since ElastiCache
does not support payload merge, we simplify the workload
of cache-less architectures by making the DAG read-only.

Figure 5 comparesHydroCache, Anna, and ElastiCache
as we increase payload size from 0.5MB to 2MB. Anna and
ElastiCache exhibit similar performance for all payload sizes.
HydroCache with uniform random writes outperforms both
systems by 3× at median for small payloads and 9× for large
payloads. 99th percentile latencies are uniform across sys-
tems because cache misses incur remote data fetches.

With a slightly skewed write distribution (Zipf=0.5), our
protocol is forced to more frequently ship data between
executor nodes to construct a distributed snapshot. For large
payloads, the median latency is only 3.5× better than other
systems, and 99th percentile latency is in fact 14% higher.

Takeaway:HydroCache improves performance over cache-
less architectures by up to an order-of-magnitude by avoiding
expensive network hops for large data accesses.

5.5.2 Consistency Benefits. We measure how many incon-
sistenciesHydroCache prevents relative to Anna and Elasti-
Cache, neither of which guarantee TCC. To track violations
in the other systems, we embed causal metadata directly into
each key's payload when writing it to storage. At the end
of a request, we extract the metadata from the read set to
check whether the versions formed a snapshot.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

95

Write Skew

Uniform 0.5 0.75 1.0 1.25 1.5

HydroCache 0% 0% 0% 0% 0% 0%

Anna 0.02% 0.4% 1.9% 6.6% 15% 21%

ElastiCache 0.03% 0.4% 2.0% 6.6% 14% 20%

Table 3: Rates of inconsistencies observed with varying
write skew for HydroCache/Anna, Anna only, and Elasti-
Cache.

Table 3 shows the rates of TCC violations for di�erent
write skews. The number of inconsistencies increases signif-
icantly as skew increases. For the two most skewed distribu-
tions, over 14% of requests fail to form a causal snapshot.

Takeaway: In addition to improving performance,Hydro-
Cache prevents up to 21% of requests from experiencing causal
consistency anomalies that occur in state-of-the-art systems
like Redis and Anna.

6 RELATED WORK
Many recent storage systems provide causal consistency in
various settings, including COPS [19], Eiger [20], Orbe [10],
ChainReaction [3], GentleRain [11], Cure [1] and Occult [22].
However, these are �xed-deployment systems that do not
meet the autoscaling requirements of a serverless setting.
[1, 3, 10, 11, 22] rely on linear clocks attached to each data
partition to version data, and they use a �xed-size vector
clock comprised of the linear clocks to track causal depen-
dencies across keys. The size of these vector clocks is tightly
coupled with system deployment�speci�cally, the shard and
replica counts. Correctly modifying this metadata when the
system autoscales requires an expensive coordination pro-
tocol, which we rejected inHydroCache's design. [19] and
[20] reveal a new version only when all of its dependencies
have been retrieved. This design is susceptible to �slowdown
cascades� [22], in which a single straggler node limits write
visibility and increases the cost of write bu�ering.

By extending the Bolt-On Causal Consistency approach
[7], HydroCache guarantees TCC at the caching layer, sep-
arate from the complexity of the autoscaling storage layer.
Each cache creates its own causal cut without coordination,
eliminating the possibility of a slowdown cascade, which
removes concerns about autoscaling at the compute tier.
Our cache tracks dependencies via individual keys' metadata
rather than tracking the linear clocks of �xed, coarse-grained
data partitions. This comes at the cost of increased depen-
dency metadata overhead; we return to this in Section 7.

Another causal system that employs a client-side caching
approach is SwiftCloud [33]. That work assumes that clients
are resource-poor entities like browsers or edge devices, and
the core logic of enforcing causal consistency is implemented
in the data center to which client caches connect. We did not

consider this design because constructing a causal cut for
an entire datacenter is expensive, especially in a serverless
setting where the system autoscales. Moreover, SwiftCloud is
not designed to guarantee causal consistency acrossmultiple
caches, one of the main contributions of our paper.

7 CONCLUSION AND FUTURE WORK
Disaggregating compute and storage services allows for an at-
tractive separation of concerns around autoscaling resources
in a serverless environment; however, it introduces perfor-
mance and consistency challenges for applications written
on FaaS platforms. In this paper, we presentedHydroCache,
a distributed cache co-located with a FaaS compute layer
that mitigates these limitations.HydroCache guarantees
transactional causal consistency for individual functions at a
single node, and we developed new multisite TCC protocols
that o�er the same guarantee for compositions of functions
spanning multiple physical nodes. This architecture enables
up to an order-of-magnitude performance improvements
while also preventing a plethora of anomalies to which ex-
isting cloud infrastructure is susceptible.

While HydroCache signi�cantly outperforms existing
systems, there is a variety of future work we plan to explore:

Metadata Garbage Collection . As discussed in Section 3.3,
HydroCache periodically garbage collects (GCs) depen-
dency metadata through a background consensus protocol.
However, we do not GC vector clock entries (node IDs) when
function executors leave the system. Simultaneously GCing
node IDs and dependencies requires extra care, as it intro-
duces race conditions. To GC a vector clock entry from a
particular key𝑘 's𝑉𝐶, we must ensure that keys which de-
pend on𝑘 have had their dependency metadata correctly
GCed to match𝑘 's newly garbage collected𝑉𝐶. Furthermore,
for frequently-written keys, the length of the vector clock
can grow linearly with the number of nodes in the system.
Therefore, we also plan to explore mechanisms to garbage
collect𝑉𝐶 entries corresponding to nodes that are still active.

Dynamic Scheduling . We are interested exploring in two,
more advanced scheduling techniques. First, we want to ex-
plore policies that choose between the CT and HB protocols
based on workload characteristics and resource availability.
Second, our policies have assumed that functions are exe-
cuted at predetermined locations, and we ship the required
data to the function's node. However, it might be cheaper
to ship functions to where the data lives�e.g., given a large
key𝑘 on node𝐴 and a small function𝑓 on node𝐵, we would
rather ship𝑓 to 𝐴 than𝑘 to 𝐵. Exploring network- and data-
aware scheduling techniques is an exciting future direction.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

96

REFERENCES
[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,

N. Preguiça, and M. Shapiro. Cure: Strong semantics meets high
availability and low latency. In2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), pages 405�414. IEEE, 2016.

[2] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt. SAND: Towards high-performance serverless computing.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
923�935, 2018.

[3] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. InProceedings of the
8th ACM European Conference on Computer Systems, EuroSys '13, pages
85�98, New York, NY, USA, 2013. ACM.

[4] Aws Lambda - case studies. https://aws.amazon.com/lambda/
resources/customer-case-studies/.

[5] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Sto-
ica. Highly available transactions: Virtues and limitations.Proceedings
of the VLDB Endowment, 7(3):181�192, 2013.

[6] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. The
potential dangers of causal consistency and an explicit solution. In
Proceedings of the Third ACM Symposium on Cloud Computing, page 22.
ACM, 2012.

[7] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal
consistency. InProceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD '13, pages 761�772, New
York, NY, USA, 2013. ACM.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!'s
hosted data serving platform.Proc. VLDB Endow., 1(2):1277�1288, Aug.
2008.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, and et al. Spanner:
Google's globally distributed database.ACM Trans. Comput. Syst.,
31(3), Aug. 2013.

[10] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal
consistency using dependency matrices and physical clocks. InPro-
ceedings of the 4th Annual Symposium on Cloud Computing, SOCC '13,
pages 11:1�11:14, New York, NY, USA, 2013. ACM.

[11] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. GentleRain: Cheap
and scalable causal consistency with physical clocks. InProceedings of
the ACM Symposium on Cloud Computing, pages 1�13. ACM, 2014.

[12] F. Fu, L. Liu, and L. Wang. Empirical analysis of online social net-
works in the age of web 2.0.Physica A: Statistical Mechanics and its
Applications, 387:675�684, 01 2008.

[13] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu. Serverless computing: One
step forward, two steps back. InCIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings, 2019.

[14] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless computation
with OpenLambda. In8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association.

[15] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gon-
zalez, R. A. Popa, I. Stoica, and D. A. Patterson. Cloud programming
simpli�ed: A Berkeley view on serverless computing. Technical Re-
port UCB/EECS-2019-3, EECS Department, University of California,
Berkeley, Feb 2019.

[16] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high avail-
ability using lazy replication.ACM Trans. Comput. Syst., 10(4):360�391,

Nov. 1992.
[17] Common lambda application types and use cases. https://docs.aws.

amazon.com/lambda/latest/dg/applications-usecases.html.
[18] L. Lamport. Time, clocks, and the ordering of events in a distributed

system.Commun. ACM, 21(7):558�565, July 1978.
[19] W. Lloyd, M. Freedman, M. Kaminsky, and D. G. Andersen. Don't

settle for eventual: Scalable causal consistency for wide-area storage
with cops. InSOSP'11 - Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, pages 401�416, 10 2011.

[20] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency geo-replicated storage. InPresented as part
of the 10th{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13), pages 313�328, 2013.

[21] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, con-
vergence. Technical Report TR-11-22, Computer Science Department,
University of Texas at Austin, May 2011.

[22] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd.
I can't believe it's not causal! scalable causal consistency with no
slowdown cascades. In14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 453�468, Boston, MA, Mar.
2017. USENIX Association.

[23] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. SOCK: Rapid task provisioning with serverless-
optimized containers. In2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 57�70, Boston, MA, 2018. USENIX Association.

[24] R. Pang, R. Caceres, M. Burrows, Z. Chen, P. Dave, N. Germer, A. Golyn-
ski, K. Graney, N. Kang, L. Kissner, J. L. Korn, A. Parmar, C. D. Richards,
and M. Wang. Zanzibar: Google's consistent, global authorization sys-
tem. In2019 USENIX Annual Technical Conference (USENIX ATC 19),
pages 33�46, Renton, WA, July 2019. USENIX Association.

[25] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Ja-
cobsen, and S. Mankovskii. Solving big data challenges for enterprise
application performance management.Proc. VLDB Endow., 5(12):1724�
1735, Aug. 2012.

[26] M. Raynal and M. Singhal. Logical time: Capturing causality in dis-
tributed systems.Computer, 29(2):49�56, Feb. 1996.

[27] Amazon aurora serverless. https://aws.amazon.com/rds/aurora/
serverless/.

[28] M. Shahrad, J. Balkind, and D. Wentzla�. Architectural implications
of function-as-a-service computing. InProceedings of the 52Nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO '52,
pages 1063�1075, New York, NY, USA, 2019. ACM.

[29] M. Singhal and A. Kshemkalyani. An e�cient implementation of
vector clocks.Inf. Process. Lett., 43(1):47�52, Aug. 1992.

[30] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. M. Faleiro, J. Gonza-
lez, J. M. Hellerstein, and A. Tumanov. Cloudburst: Stateful functions-
as-a-service.ArXiv, abs/2001.04592, 2020.

[31] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. Anna: A kvs for any scale.
IEEE Transactions on Knowledge and Data Engineering, 2019.

[32] C. Wu, V. Sreekanti, and J. M. Hellerstein. Autoscaling tiered cloud
storage in anna.Proceedings of the VLDB Endowment, 12(6):624�638,
2019.

[33] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and
M. Shapiro. Write fast, read in the past: Causal consistency for client-
side applications. InProceedings of the 16th Annual Middleware Con-
ference, Middleware '15, pages 75�87, New York, NY, USA, 2015. ACM.

Research 2: Serverless and Cloud Data Management SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

97

https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://docs.aws.amazon.com/lambda/latest/dg/applications-usecases.html
https://docs.aws.amazon.com/lambda/latest/dg/applications-usecases.html
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/

