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Integrated Environment-Occupant-Pathogen Information Modeling to Assess and 1 
Communicate Room-Level Outbreak Risks of Infectious Diseases 2 

 3 
Abstract 4 

Microbial pathogen transmission within built environments is a main public health concern. The 5 
pandemic of coronavirus disease 2019 (COVID-19) adds to the urgency of developing effective 6 
means to reduce the pathogen transmission in mass-gathering public buildings such as schools, 7 
hospitals, and airports. To inform occupants and guide facility managers to prevent and respond 8 
to infectious disease outbreaks, this study proposed a framework to assess the room-level 9 
outbreak risks in buildings by modeling built environment characteristics, occupancy 10 
information, and pathogen transmission. Building information modeling (BIM) is exploited to 11 
automatically retrieve building parameters and possible occupant interactions that are relevant 12 
to pathogen transmission. The extracted information is fed into an environment pathogen 13 
transmission model to derive the basic reproduction numbers for different pathogens, which 14 
serve as proxies of outbreak potentials in rooms. A web-based system is developed to provide 15 
timely information regarding outbreak risks to occupants and facility managers. The efficacy of 16 
the proposed method was demonstrated by a case study, in which the building characteristics, 17 
occupancy schedules, pathogen parameters, as well as hygiene and cleaning practices are 18 
considered for outbreak risk assessment. This study contributes to the body of knowledge by 19 
computationally integrating building, occupant, and pathogen information modeling for infectious 20 
disease outbreak assessment, and communicating actionable information for built environment 21 
management. 22 
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1. Introduction 27 

People spend most of their time in buildings, including homes, offices, schools, stores, 28 
restaurants, theaters, and many others. The buildings become hotspots for pathogen 29 
transmission and exposure, decimating populations through epidemics and everyday infections. 30 
The disastrous impacts of infectious diseases highlight the urgent need to reduce the 31 
transmission of pathogens, and their exposure to occupants in buildings. Humans can be 32 
infected by microbial pathogens via contacting contaminated objects, referred to as fomites. 33 
Fomite-based transmission is an important route in built environments for transferring disease-34 
causing microbiomes to a new human host [1]. The mechanism of fomite-mediated transmission 35 
involves three steps. First, a surface is contaminated by infectious pathogens. The 36 
contamination can occur when an infected person touches the surface or bioaerosols containing 37 
pathogens settle down on the surface. Second, a person touches a contaminated surface with 38 
his or her hand, transferring the pathogens to the hand. Third, the person touches susceptible 39 
sites (mucous membranes) on his or her body with the contaminated hand, which inoculates the 40 
site with pathogens, resulting in potential infection. A recent study [2] found that contamination 41 
of a single doorknob or tabletop can spread the infectious pathogens to other commonly 42 
touched objects, exposing 40-60% of people in the buildings. 43 
 44 
Many pathogens can be transmitted via fomites. For example, during flu seasons, measurable 45 
levels of influenza virus can be found on all common building surfaces [1,3], underlining the 46 
importance of fomite in influenza transmission. The pandemic of coronavirus disease 2019 47 
(COVID-19) has swept the entire world with more than 29.6 million infections and 935,898 48 
deaths as of September 16, 2020 [4]. During the pandemic of COVID-19, viable severe acute 49 
respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected on various surfaces. High 50 
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concentration of SARS-CoV-2 are found on surfaces in healthcare facilities where COVID-19 51 
patients are treated [5,6]. Norovirus can also be transmitted via fomite [7,8], causing 93% of 52 
nonbacterial gastroenteritis outbreaks in the U.S. In addition, pathogens including 53 
staphylococcus aureus, Clostridium difficile, Staphylococcus aureus, Pseudomonas aeruginosa, 54 
Pseudomonas putida, and Enterococcus faecalis can also be transmitted by surface contact [9]. 55 
 56 
Models have been developed for environmental risk assessment and environmental infection 57 
transmission [10]. Fomite-mediated transmission has received increased attention [11,12]. To 58 
assess pathogen transmission to susceptible hosts, the models such as the environmental 59 
infection transmission system modeling framework consider the dynamics of contact and 60 
pathogen transfer between individuals via their hands and fomites, pathogen persistence in the 61 
environment, pathogen shedding, and recovery of infected individuals. Studies [13–15] also 62 
exploited experimentation approaches to measure the transfer of microbiomes between fomites 63 
and humans. The measured microbiological and epidemiological data can be used to assess 64 
the transmissibility of the pathogens and used in the models for risk assessment. Despite 65 
research efforts made in epidemiology, the modeling of building, occupant, and pathogen has 66 
not been well linked to predict the microbial burdens and outbreak risks. 67 
 68 
Predicting outbreak risks in buildings and communicating actionable information to occupants 69 
and facility managers are challenging. First, pathogen burdens could differ considerably in 70 
rooms even in the same building. Building design and operation can influence indoor microbial 71 
communities [16,17]. The microbial communities in different rooms with different functionalities 72 
and spatial configurations are found to exhibit very different patterns [18,19]. Occupancy also 73 
significantly affects the microbial communities in buildings. For example, bacteria taxa in spaces 74 
with a high occupant diversity and a high degree of physical connectedness are different from 75 
that in spaces with low levels of connectedness and occupant diversity [16]. Humans can 76 
transfer microbiomes including pathogens to the environment via skin-to-surface contact and 77 
direct shedding of large biological particles [20,21]. The microbial exchange between occupants 78 
and surfaces can occur in both directions [12]. With different uses and occupancy levels, 79 
outbreak risks could vary depending on the locations in a building, underlining the need for a 80 
spatially-adapted modeling approach. However, there lacks a computational modeling approach 81 
to link the coupled physical-biological processes of buildings, occupants, and pathogens to 82 
automatically assess the spatially-varying infection and outbreak risks at unprecedented scales. 83 
Therefore, it is imperative to establish the computational framework to quickly compute the risk 84 
in buildings to inform end-users and guide adaptive operations. 85 
 86 
Second, due to the absence of an effective means for information communication, end-users 87 
have limited access to easy-to-understand information regarding the outbreak risks to make 88 
necessary interventions. Building information modeling (BIM) uses standardized machine-89 
readable information created or gathered about a facility throughout its lifecycle for all 90 
stakeholders involved [22]. Information can be extracted from building information models, as 91 
they are the shared digital representations of physical and functional characteristics of any built 92 
objects [22]. In addition, BIM has also been used as a powerful tool to visualize the parametric 93 
building model with computed rich information [23]. However, to the authors’ best knowledge, 94 
existing studies have not explored the capability of BIM in environmental pathogenic infection 95 
assessment, and leverage BIM as a platform to visualize and communicate outbreak risk 96 
information to end-users for facility management. 97 
 98 
This study aims to develop a framework for room-level outbreak risk assessment based on 99 
integrated building-occupancy-pathogen modeling to mitigate the spread of infectious disease in 100 
buildings. The rationale is twofold. First, buildings are highly heterogeneous with a variety of 101 
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compartments of distinctive functionalities and characteristics, providing diverse habitats for 102 
humans and various pathogens [17,18]. Modeling the pathogen transmission and exposure 103 
within a building at the room level will provide useful information at an unprecedented resolution 104 
to implement appropriate disease control strategies. Second, the spread of infectious diseases 105 
can be mitigated if occupants and facility managers have adequate and timely information 106 
regarding the outbreak risks within their buildings. Communicating actionable information to 107 
occupants and facility managers through an easily accessible interface will help occupants to 108 
follow hygiene and social distancing practice, and help facility managers to schedule disinfection 109 
for rooms with high outbreak risks. 110 
 111 
2. Method 112 

To address the knowledge gaps, a novel environment-occupant-pathogen modeling framework 113 
and a web-based information visualization system are developed to assess the outbreak risks 114 
and mitigate the spread of infectious diseases in buildings (Fig. 1). First, to assess the outbreak 115 
risks, the fomite-based pathogen transmission model proposed in [24] is adopted in this study. 116 
The limitation of the model is that the environmental parameters and occupant characteristics 117 
are not automatically extracted and incorporated in the model, hindering the computation of the 118 
spatially-varying environmental infection risks in buildings. To overcome this limitation, BIM is 119 
exploited to automatically retrieve venue-specific parameters including building characteristics 120 
and occupancy information that are relevant to pathogen transmission and exposure. Then, the 121 
extracted building and occupant parameters are used with pathogen-specific parameters in a 122 
human-building-pathogen transmission model to compute the basic reproduction number R0 for 123 
each room in a building. R0 is used as a proxy to assess the outbreak risks of different infectious 124 
diseases. Second, a web-based system is developed to enable information visualization and 125 
communication in an interactive manner to provide guidance for occupants and facility 126 
managers. This study innovatively establishes the computational links among building, 127 
occupant, and pathogen modeling to predict outbreak risks. The risk prediction for spatially and 128 
functionally distributed rooms in a building provides useful information for end-users to combat 129 
and respond to the spread of infectious diseases, including the seasonal flu and COVID-19. The 130 
developed method and system add a health dimension to transform the current building 131 
management to a user-centric and bio-informed paradigm. 132 
 133 

 134 
Fig. 1. Research Framework 135 



4 
 

2.1. Room-Level Outbreak Risk Assessment 136 

Employing the model proposed in [24], individuals are divided into three categories, i.e., 137 
susceptible, infectious, and recovered. Pathogens may survive outside the host and 138 
contaminate either object surfaces or human hands. The pathogen exchange in built 139 
environments can occur through hand-surface contacts. Contaminated hands of hosts can 140 
contaminate surfaces of accessible objects, while susceptible people can get infected by 141 
touching the contaminated surfaces and self-inoculation. Fig. 2 shows the fomite-mediated 142 
pathogen transmission process in built environments. Building characteristics, occupant 143 
behavior, and pathogen parameters collectively determine the transmission ability through the 144 
dynamic processes of pathogen inoculation, fomite touching and transfer, pathogen excretion, 145 
pathogen decay, individual recovery, and building disinfection and individual hygiene. 146 
Characteristics of the built environment (e.g., contaminated objects and building hygiene) and 147 
occupant behavior (e.g., fomite touching and hand cleaning) are critical in the process of fomite-148 
mediated pathogen transmission in the built environment and are considered as venue-specific 149 
parameters. In addition, the transmission efficiency of different diseases also depends on 150 
pathogen-specific parameters, such as recovery rates and pathogen excretion. The 151 
determination and acquisition of venue-specific and pathogen-specific parameters are detailed 152 
as follows. 153 

 154 
Fig. 2. Fomite-mediated pathogen transmission in built environments (Adapted from [24])  155 

 156 
2.1.1. Venue-specific parameters 157 

Because venue-specific parameters vary across rooms with different functions and occupancy 158 
levels, it is important to develop an effective means to accurately and automatically extract the 159 
venue-specific parameters to assess the outbreak risks at the resolution of room level. A 160 
building information model captures the relationships among different elements in a building, 161 
and allows the storage and extraction of detailed geometric and non-geometric information in a 162 
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3D virtual representation. The non-geometric information includes semantic and topological 163 
information, describing the attributes of elements and the relationship between components, 164 
respectively [25]. Hence, it is feasible and efficient to extract venue-specific parameters from a 165 
building information model. 166 
 167 
The BIM model can be divided into six Levels of Development (LOD) [26] that are suitable for 168 
conceptual design (LOD 100), schematic design (LOD 200), design development (LOD 300), 169 
construction documentation (LOD 350), fabrication and assembly (LOD 400), and maintenance 170 
and operation (LOD 500). To effectively capture the characteristics of buildings and occupants, 171 
this study uses LOD 500 BIM model that reflects the as-built conditions regarding the geometry 172 
information and non-graphical building attributes, as well as occupancy information. Fig. 3 173 
shows an example of a representative classroom in the BIM model. For most public buildings 174 
such as schools and hospitals, and particularly during the pandemic, the occupancy can be 175 
predetermined and incorporated in the BIM model as attributes. 176 
 177 

 178 
Fig. 3. Building and Occupancy Information Modeling 179 

 180 
The following venue-specific parameters will be extracted from the model.  181 
 182 
1) Accessible surface. The surfaces of objects, including doorknobs, stair railings, tables, and 183 

chairs, which people frequently interact with are considered as accessible surfaces. The 184 
accessible surface is computed as the summation of surface area of all touchable objects in 185 
a room. The proportion of accessible surface 𝜆 is defined as the ratio of accessible surface 186 
to the total area of surfaces within a room that includes both accessible surface and interior 187 
surface. The calculation is shown in Eq. 1. 188 
 189 

𝜆 =
∑𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

∑𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 + 𝑅𝑜𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐴𝑟𝑒𝑎
 

 
(1) 

 190 
2) Occupancy. The occupancy is the number of individuals present in a room per day. In this 191 

study, it is assumed that the occupancy of each room is predefined based on room capacity. 192 
During the pandemic of COVID-19, many buildings such as university campus buildings and 193 
office buildings have developed detailed occupancy schedules, which can be updated in the 194 
BIM model and then extracted for analysis. Consistent with the prior study [24], it is 195 
assumed that all individuals are identical within each room regarding susceptibility, contact 196 
rates, and infectiousness as well as other individual characteristics. This assumption 197 
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simplifies the model to capture the complex nature of pathogen transmission process. The 198 
only difference among the individuals is the state associated with them: Susceptible S, 199 
Infected I, or Recovered R during the pathogen transmission process. 200 
 201 

3) Rate of fomite touching. The rate of fomite touching is the frequency that occupants interact 202 
with the objects inside a room on an hourly basis. A higher frequency of interaction indicates 203 
a higher possibility of pathogen transmission between objects and hosts. In this study, the 204 
rate of fomite touching is determined based on different functionalities of the rooms 205 
considering the primary age group present in the rooms. For example, classrooms and 206 
offices in a school building are two main types of rooms considered in this study. It is 207 
assumed that the rate of fomite touching in classrooms is higher than that in offices because 208 
the occupants in classrooms are younger people who are more likely to interact with the 209 
built environment. According to the observations in [27], an average rate of touching 210 
common areas (e.g., chairs, desks, facilities) in a school office is 12 times per hour. 211 
Therefore, in this study, the rate of fomite touching is set as 12 times per hour for offices, 212 
and that for classrooms is set as 45 times per hour based on [28]. Furthermore, to 213 
incorporate the possible variation in different scenarios, a range of (0, 30) and (30, 60) is 214 
considered for offices and classrooms, which also aligns with the setting in [28]. Analyses 215 
will be conducted to examine the influence of the rate of fomite touching on outbreak risk. 216 

 217 
4) Building Cleaning and Hand Hygiene. Building cleaning plays an important role in object 218 

decontamination. For fomite-mediated transmission, surface cleaning can significantly 219 
decrease the pathogen reproductive process. The frequency of building cleaning is 220 
determined by the adopted sanitation schedule of the building. Hand hygiene removes 221 
pathogens picked up from contaminated objects. For infected individuals, hand cleaning 222 
also removes pathogens excreted to hand, and thus, preventing contaminating objects 223 
through hand touching. 224 

 225 
In this study, a computational tool is developed based on Dynamo [29] to extract the geometry 226 
and properties of each room in a building, and to compute the corresponding venue-specific 227 
parameters. Fig. 4 shows the workflow of the information retrieval process. Lines in Fig. 4 228 
indicate direct information retrieval from the models and arrows indicate the information retrieval 229 
involving calculations. 230 
 231 
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 232 
Fig. 4. Workflow of information retrieval process. 233 

 234 
The workflow for information retrieval is detailed as follows. 235 
 236 
The steps for extracting room parameters are: 237 
1) Room element selection. Starting from a building information model, all elements are 238 

selected from the Room category, which is a predefined category including all the rooms in 239 
the model. 240 

2) Room information extraction. The essential room-related and occupant-related parameters 241 
are extracted from all the room elements. The room-related parameters include room area 242 
(the floor area of each room, named 𝑟𝑜𝑜𝑚𝐴), room perimeter (the summation of the length of 243 
all walls, named 𝑟𝑜𝑜𝑚𝑃), room height (the height of the walls, named 𝑟𝑜𝑜𝑚𝐻) and the rate of 244 

building hygiene. Occupant-related parameters include room occupancy and rate of fomite 245 
touching. With room dimension parameters, the interior surface of a room (𝑟𝑜𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐴𝑟𝑒𝑎) 246 

can be calculated by Eq. 2: 247 
 248 

𝑟𝑜𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐴𝑟𝑒𝑎 = 2 ∗ 𝑟𝑜𝑜𝑚𝐴 + 𝑟𝑜𝑜𝑚𝑃 ∗ 𝑟𝑜𝑜𝑚𝐻                          (2) 249 

 250 
3) Acquisition of room bounding box. The bounding box of a room element indicates the 251 

location of the boundaries of the room and is defined by two 3D point coordinates, i.e., the 252 
minimum point and maximum point. The bounding box can be used to determine if an object 253 
is inside a room by checking if the coordinate of an object is inside the range from the 254 
minimum point to the maximum point. The bounding box results are used for object 255 
parameter extraction. 256 

 257 
Objects in the rooms such as furniture can be contaminated via hand-surface contact, and 258 
involved in the fomite transmission pathway. The furniture in a room is considered as accessible 259 
object.  260 
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 261 
The steps for extracting the object parameters are: 262 
1) Furniture element selection. All the elements under the category “Furniture” are selected 263 

from the model. This category contains information of all the furniture in the model. 264 
 265 

2) Furniture information extraction. The essential furniture parameters are extracted from all 266 
the furniture elements. The parameters include area (the surface area of furniture) and 267 
location (the point location of each furniture element). The location of furniture is 268 
transformed to a 3D point (a point with x, y, z coordinates) using a default function in 269 
Dynamo. The coordinates represent the location of the furniture. 270 

 271 
3) Location relationship between room and furniture. For each room element, the coordinates 272 

of furniture in the model are compared with the coordinates of the room bounding box. This 273 
process checks the 3D location relationship between each room and furniture. 274 

 275 
Thereafter, the total furniture area in each room (Named 𝑓𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒𝐴) is calculated by summing 276 
up the surface area of all furniture inside the room. The proportion of accessible surface (𝜆) of 277 

each room is calculated using Eq. 3. 278 
 279 

𝜆 =
𝑓𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒𝐴

𝑓𝑢𝑟𝑛𝑖𝑡𝑢𝑟𝑒𝐴 + 𝑟𝑜𝑜𝑚𝑖𝑛𝑛𝑒𝑟𝐴𝑟𝑒𝑎
 

 
(3) 

 280 
2.1.2. Pathogen-specific parameters 281 

Pathogen characteristics affect the transmission process through inoculation, excretion, 282 
inactivation (decay), and recovery. According to the study [24], Table 1 lists the pathogen-283 
specific parameters used in the fomite-mediated transmission model. 284 
 285 

Table 1. Description of pathogen parameters 286 

Pathogen parameters Symbol Unit Parameter description 

Infectious period 1/𝛾 days 
The period that an infectious 
individual can excrete and 
transmit pathogens 

Shedding rate 𝛼 
pathogens/ 

(hours × people) 
Infectious individual releases 
pathogens at rate 𝛼 

Pathogen inactivation rate 
on surfaces 

𝜇𝐹 1/hours 
Pathogens decay at rate 𝜇𝐹 

on surfaces 
Pathogen inactivation rate 
on hands 

𝜇𝐻 1/hours 
Pathogens decay at rate 𝜇𝐻 

on hands 
Transfer efficiency 
from fomite to hand 

𝜏𝐹𝐻 1/touch 
Pathogens transfer from 
fomite to hand at rate 𝜏𝐹𝐻 

Transfer efficiency 
from hand to fomite 

𝜏𝐻𝐹 1/touch 
Pathogens transfer from 
hand to fomite at rate 𝜏𝐻𝐹 

Pathogen excreted 
to hand 

𝜑𝐻 unitless 
The proportion that pathogens 
are shed on hands 

Dose response of 
pathogens on mucosa 

𝜋 unitless The infectivity of a pathogen 

Inoculation rate 𝜌 1/hours 
Rate of touching mouth or 
other routes of infection 

 287 
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In this study, three pathogens, i.e., influenza, norovirus, and SARS-CoV-2 are considered. 288 
Table 2 shows the parameter values used in the model. The pathogen-specific parameters of 289 
the first two viruses are determined based on [24]. The parameters of SARS-CoV-2 were 290 
determined based on a number of studies up to date. For the parameters that are still under 291 
research, the values are set based on surrogate viruses and assumptions, which are described 292 
as follows. 293 
 294 

Table 2. Values of pathogen-specific parameters of four viruses 295 

Pathogen-specific 
parameter 

Influenza Norovirus SARS-CoV-2 

1/𝛾 6 15 8 [30] 

𝛼 1E4 2.88E3 
1.99E4  

(1.8E3, 2.39E4)  
𝜇𝐹 0.121 0.288 0.059 
𝜇𝐻 88.2 1.07 0.8  
𝜏𝐹𝐻 0.1 0.07 0.37 
𝜏𝐻𝐹 0.025 0.13 0.14 
𝜑𝐻 0.15 0.9 0.15 

𝜋 6.93E-05 4.78E-04 6.58E-06 [31] 
𝜌 15.8 15.8 15.8 

 296 
1) The inactivation rates on surfaces (𝜇𝐹) and hands (𝜇𝐻). The inactivation rate on surfaces is 297 

determined based on the study [32], which provides the half-life of infectivity (𝑡0.5) on 298 

surfaces under common temperature and relative humidity. The inactivation process of the 299 
virus is assumed as a first-order kinetic model in this paper, and the inactivation rate is 300 
calculated as 𝑙𝑛2/𝑡0.5. Under the circumstance of 74°F and 40 of relative humidity, the 301 

estimated half-life of infectivity on surfaces is 11.78 hours, and the approximate inactivation 302 
rate is 0.059 per hour. Due to the lack of exact data of 𝜇𝐻, the parameter inactivation rate on 303 

skin of Middle East Respiratory Syndrome (MERS-CoV) is used in the paper, which is 0.8 304 
per hour [33]. 305 
 306 

2) Transfer efficiency from fomite to hand (𝜏𝐹𝐻) and transfer efficiency from hand to fomite 307 
(𝜏𝐻𝐹). The transfer efficiency coefficients are estimated using parameters of MERS-CoV in 308 

[33] due to the absence of data. The transfer efficiency varies with surface materials. 309 
Compared with porous surfaces (e.g. fabrics, clothes, and sponges), non-porous surfaces 310 
such as desks, chairs, and door handles are more appropriate to represent the material of 311 
furniture surfaces considered in this paper. Thus, the transfer rates between hands and non-312 
porous surfaces are used to indicate the transfer efficiency between hands and fomites. 313 
According to the results in [33], 𝜏𝐹𝐻 is set as 0.37, and 𝜏𝐻𝐹 is set as 0.14. 314 
 315 

3) Pathogen excreted to hand (𝜑𝐻). Because the virus excretion behavior of SARS-CoV-2 such 316 

as coughing, sneezing, and exhaling is similar to the excretion behavior of influenza, 𝜑𝐻 of 317 
SARS-CoV-2 is estimated using the same parameter of influenza. 318 

 319 
4) Shedding rate (𝛼). In the paper, coughing is considered as the primary way for virus 320 

shedding. The shedding rate is determined by the number of viruses in the respiratory tract 321 
that is shed via coughing per hour per infectious individual. The equation for shedding rate 322 
calculation is shown in Eq. 4. 323 

𝛼 = 𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 × 𝐹𝑐𝑜𝑢𝑔ℎ × 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 × 𝐿 (4) 
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𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 indicates the volume per infectious droplet in 𝑐𝑚3, 𝐹𝑐𝑜𝑢𝑔ℎ is the coughing frequency 324 

per hour, 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is the number of droplets excreted per cough, 𝐿 is the viral load in the 325 

respiratory tract in 𝑐𝑜𝑝𝑖𝑒𝑠/𝑚𝐿. According to [34], the viral load of SARS-CoV-2 for children 326 

aging 0-22 is 6.2 log10 RNA copies/ml, which is adopted in this study as the occupants are 327 
primarily children in school buildings. Due to the lack of data, other parameters are 328 
estimated using parameters of MERS-CoV in [33]. 𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is calculated considering the 329 

largest diameter for infectious droplets that best fits the scenario of fomite transmission. The 330 
diameter is set as 100 µ𝑚. 𝐹𝑐𝑜𝑢𝑔ℎ is set as 12 times per hour. 𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is set to be 2000 per 331 

cough. Based on the calculation above, 𝛼 is set to be 1.99E4. Besides, as the accurate 332 
shedding rate is still not well understood, it is assumed within the range of (1.8E3, 2.39E4), 333 
where the lower bound is set according to [28], and the higher bound is set as 1.2 times of 334 
the estimated value to allow potential higher shedding rate value. 335 
 336 

5) Dose response of pathogens on mucosa (𝜋). The infectivity is determined based on study 337 
[31]. [31] found that the exponential model 𝑝 = 1 − exp (−𝑑/𝑘) can well demonstrate the 338 

dose-response function of SARS-CoV-2, where the constant 𝑘 ranges from 6.19E4 to 339 

7.28E5. In the paper, 𝑘 is set as 1.52E5, representing 50% of contribution from airborne 340 
particles to the total dose. 𝜋 is set as the inverse of 𝑘, which is 6.58E6. 341 

 342 
2.1.3. Risk Assessment 343 

In epidemic dynamics, the basic reproductive number (R0) is an estimation of a pathogen’s 344 
transmission ability of an infectious disease. R0 is the expected number of cases generated by 345 
one single infected person, supposing all other individuals are susceptible to the epidemic [35]. 346 
In this study, R0 is used to represent the outbreak potential of each pathogen across different 347 
rooms in the building. Given the fomite-mediated transmission model described in the previous 348 
section, R0 is computed using the next generation matrix method [36], which consists of two 349 
matrices, i.e., the matrix of disease transmission and matrix of host state transition. R0 is 350 
identified as the dominant eigenvalue of the product of the two matrices, computed using Eq. 5 351 
proposed in [24]. 352 
 353 

{
 
 
 
 
 

 
 
 
 
 

𝑅0 = 𝑅0,𝐹  + 𝑅0,𝐻

𝑅0,𝐹  =
𝑎𝐹

𝛾
𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑃𝑝𝑖𝑐𝑘𝑢𝑝𝑃

′(0)

𝑅0,𝐻  =
𝑎𝐻

𝛾
𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑃𝑝𝑖𝑐𝑘𝑢𝑝𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑃’(0)

𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝜌𝜒

𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻

𝑃𝑝𝑖𝑐𝑘𝑢𝑝  =

𝑁𝜌𝐹𝐻
𝑁𝜌𝐹𝐻+𝜇𝐹+𝜃𝐹

1−
𝑁𝜌𝐹𝐻

(𝑁𝜌𝐹𝐻+𝜇𝐹+𝜃𝐹)
 

𝜌𝐻𝐹
(𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻)

𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡 =
𝜌𝐻𝐹

𝜇𝐻+𝜌𝐻𝐹+𝜌𝜒+𝜃𝐻

                                 (5) 354 

 355 
𝑅0,𝐹 represents direct fomite contamination route, 𝑅0,𝐻 is hand-fomite contamination route, 356 

𝑃𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛  is the proportion of pathogens that are self-inoculated to susceptible hosts; 𝑃𝑝𝑖𝑐𝑘𝑢𝑝 is 357 

the proportion of pathogens picked up by hands from fomites; 𝑃𝑑𝑒𝑝𝑜𝑠𝑖𝑡  is the proportion of 358 

pathogens excreted to hands that are deposited to the fomites. 𝑃′(0) is the slope of the dose 359 

function, indicating the infectivity of a dose of the pathogen. 360 
 361 
In the above equations, 𝑎𝐹 = 𝛼(1 − 𝜑𝐻)𝜆, representing the rate pathogens excreted to surfaces, 362 
where 𝛼 is the shedding rate, 𝜑𝐻 is the proportion that pathogens are shed on hands, both 363 
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defined in Table 1. 𝜆 is the proportion of accessible surfaces, calculated by parameters 364 
extracted from the BIM model. 𝑎𝐻 = 𝛼𝜑𝐻, representing the rate pathogens excreted to hands. 365 

Infectious period 1/𝛾, inoculation rate 𝜌, and pathogen inactivation rate in hands 𝜇𝐻 and in 366 
fomites 𝜇𝐹, are all pathogen-specific parameters that are defined in Table 1. 𝜒 is the proportion 367 

of pathogens self-inoculated by susceptible hosts, set as 1 in this study. 𝜌𝐻𝐹 = 𝜌𝑇𝜏𝐻𝐹, indicating 368 

the rate of pathogen deposited from hand to fomite, where 𝜌𝑇 is the rate of fomite touching 369 
extracted from the BIM model, 𝜏𝐻𝐹 is the transmission efficiency defined in Table 1. 𝜃𝐻 is the 370 

effective hand cleaning rate, which is set as the rate of hand washing. N is the occupancy of 371 
each room, extracted from the BIM model. 𝜌𝐹𝐻 = 𝑁𝜌𝑇𝜏𝐹𝐻𝜅, representing the rate of pathogen 372 

picked up by hands, where 𝜏𝐹𝐻 is the transmission efficiency from fomites to hands, 𝜅 is the 373 

fingertip to surface ratio, set as 
6𝐸−06

𝜆
  according to study [24]. 𝜃𝐹 is the effective fomite cleaning 374 

rate, which is set as the rate of building cleaning and can be extracted from BIM model.  375 
 376 
In epidemiology literature, R0 is one of the most widely used indicators of transmission intensity 377 
to demonstrate the outbreak potential of an infectious disease in a population. Commonly, R0 > 378 
1 means the epidemic begins to spread in the population, R0 < 1 means the disease will 379 
gradually disappear, and R0 = 1 means the disease will stay alive and reach a balance in the 380 
population. With the increase of R0, the outbreak risk will increase, and more severe control 381 
measures and policies will be needed [37]. In this study, we categorize the level of outbreak risk 382 
into low, mild, moderate, and severe based on the range of R0. Specifically, the risk is low when 383 
R0 < 1; the risk is mild when 1 ≤ R0 < 1.5 because there is a fair chance that the transmission 384 
will fade out as 𝑅0 is not much larger than 1 [38]; the risk is moderate when 1.5 ≤ R0 < 2, 385 

indicating an epidemic can occur and is likely to do so [39,40]; and the risk is severe when R0 > 386 
2 and immediate actions should be taken by facility managers, such as cleaning the surfaces, to 387 
reduce the risk. 388 
 389 
2.2. Web-Based Information Communication System 390 

To better communicate the infection risk to occupants and facility managers, a web-based 391 
system was developed to visualize the outbreak risk of different pathogens in each room within 392 
a building. Fig. 5 illustrates the architecture of the web-based system, which consists of four 393 
modules, i.e., data management, model derivative, web application, and user. The data 394 
management module is maintained by the management team and allows them to upload 395 
building models. In the model derivative module, the uploaded model is translated into the SVF 396 
format which is the format used by the web application. The web application module displays 397 
the building model and provides customized functionalities to facilitate visualization of pathogen 398 
risk within the building. Finally, the user can access the web-based system and visualize the 399 
room-level risk of pathogens. The web-based system is developed using Autodesk Forge that is 400 
a collection of APIs to develop cloud-based platforms to access, manage, and visualize design 401 
and engineering data. Each module is detailed below. 402 
 403 
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 404 
Fig. 5. Web-based alert system 405 

 406 
The data management module supports a variety of 3D model formats such as rvt, ifc, and 3ds, 407 
where rvt is the file format used by the Autodesk Revit; ifc is an open international standard data 408 
schema for BIM data that are supported by various software products such as AutoCAD, Revit, 409 
and Tekla Structures; 3ds is the file format used by the Autodesk 3ds Max 3D modeling, 410 
animation and rendering software. The management team needs to log into their account to 411 
obtain authorization from the Forge OAuth API to access the Object Storage Service (OSS). 412 
Model files are uploaded to the OSS and stored as objects in buckets. In the second module, 413 
the model derivative translates the uploaded model into SVF format and extracts design 414 
metadata such as geometric data and object properties (e.g. room area and occupancy). The 415 
translated model and extracted data are also stored in the OSS. The model derivative 416 
component generates a unique identifier called URN for each translated model. The URN is 417 
then fed into the web application for the building model visualization. 418 
 419 
The web application is built on the Forge Viewer API with customized functions. The Viewer API 420 
is a WebGL-based JavaScript library to render both 2D and 3D models. It is developed to 421 
display translated models generated by the model derivative component. ExpressJS was 422 
selected to develop the web application due to its flexibility and scalability. ExpressJS is a 423 
prebuilt NodeJS framework that is designed to create server-side web applications [41], and it 424 
allows the web application to handle multiple requests concurrently. As such, pathogen risk 425 
information can be quickly communicated to facility users even at times of peak traffic of the 426 
website. ExpressJS allows the developer to design customized functionalities in the web 427 
application. The routing technique was adopted to handle the Hypertext Transfer Protocol 428 
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(HTTP) request. The routing technique manages the way the web application responds to user 429 
requests. This technique is derived from the HTTP method [42] and attached to the ExpressJS 430 
router instance. POST and GET methods were used to send and retrieve data from the 431 
webserver. 432 
 433 
Three add-in functions were developed to help users visualize the interior layout of the building 434 
and color-coded rooms with their corresponding risk levels, as well as search specific room-435 
related disease outbreak risk information. The first add-in function is “vertical explode”, which is 436 
used to view each level of the building. This function can help the user visualize the interior and 437 
room layout. The facility users can also use this function to visualize the outbreak risk of rooms 438 
on each floor and take appropriate practices. For facility managers, the “vertical explode” 439 
function enables them to obtain a holistic view of risk distribution at each level and take 440 
informed actions, such as limiting the number of occupants and implementing cleaning and 441 
disinfection protocols, to control the spread of the disease. This function is integrated with the 442 
web-based system, and clicking buttons were created to activate and deactivate it. The second 443 
function is “room filtering”, which is used to highlight rooms at different risk levels for a specific 444 
pathogen. The user needs to first select one of the three pathogens from the dropdown menu: 445 
SARS-CoV-2, Influenza, and norovirus. Thereafter, the user can set a risk threshold to highlight 446 
rooms with R0 greater than a specific value. In addition, different highlighting colors are used to 447 
represent different infection risk levels. Low, mild, moderate, and severe risks are represented 448 
by color green, blue, celery, and red, respectively. The third function is “room query”, which 449 
enables the user to search for a specific room and retrieve infection risk for the three pathogens. 450 
The “room query” function is displayed as a search box on the web-based system. The users 451 
can easily find the potential risk of a specific room using this function. Finally, end users can 452 
access the web-based information communication system and obtain information about 453 
outbreak risk in each room of the building through various channels, including laptops, 454 
smartphones, and tablets. 455 
 456 
3. Case Study 457 

A hypothetical case study is used as an example to demonstrate the efficacy of the proposed 458 
framework and the newly developed web-based system. The building information model of a 459 
six-floor school building with 221,000 square feet is used. The building contains classrooms and 460 
faculty and graduate assistant offices. 461 
 462 
3.1. Disease Outbreak Risk in Different Rooms 463 

The room types considered in the case study include offices and classrooms. Five offices and 464 
five classrooms were selected. The venue-specific parameters of the rooms are extracted and 465 
listed in Table 3, and the computed R0 values of the three diseases are listed in Table 4. 466 
 467 

Table 3. Venue-specific parameters in representative rooms 468 

Room 
Type 

Room 
# 

Accessible 
surface area 
(square feet) 

Proportion of  
accessible surface 

Occupancy 
(number of 
people) 

Rate of fomite 
touching (times 
per hour) 

Classroom 

#1 45.5 0.018 36 45 (30, 60) 

#2 45.5 0.017 37 45 (30, 60) 

#3 176.3 0.138 19 45 (30, 60) 

#4 1328.9 0.194 91 45 (30, 60) 

#5 410.9 0.151 26 45 (30, 60) 

Office #1 36.6 0.052 2 12 (0, 30) 
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#2 106.8 0.115 13 12 (0, 30) 

#3 52.1 0.062 10 12 (0, 30) 

#4 1289.8 0.306 9 12 (0, 30) 

#5 53.7 0.053 15 12 (0, 30) 

 469 
Table 4. R0 values of the three diseases of representative rooms 470 

Room Type Room # 
R0 values 

Influenza Norovirus COVID-19 

Classroom 

#1 0.078 9.7042 0.962 

#2 0.079 10.4412 0.970 

#3 0.014 0.092 0.168 

#4 0.237 2.6032 1.8031 

#5 0.020 0.117 0.224 

Office 

#1 0.002 0.023 0.022 

#2 0.010 0.073 0.118 

#3 0.008 0.098 0.099 

#4 0.007 0.023 0.078 

#5 0.011 0.169 0.146 

Note: The superscripts indicate the risk level of the diseases, where 1 represents a moderate 471 
risk level and 2 represents a severe risk level. Values without superscripts indicate the risk level 472 
is low.  473 
 474 
From Table 4, the values of R0 vary across different rooms and different diseases. R0 values in 475 
offices are smaller than the values in classrooms, which stems from the small occupancy and 476 
the low rate of fomite touching in offices compared to those in classrooms. For influenza, the R0 477 
values in all the rooms are less than 1, indicating that influenza is unlikely to outbreak in the 478 
building through the fomite-mediated transmission. This could be partially explained by the 479 
relatively short infectious period, high inactivation rate in hands, low hand-to-fomite pathogen 480 
transmission efficiency, and relatively low infectiousness with the same amount of pathogens. 481 
For COVID-19, the R0 values in all rooms are higher than those of influenza, and the risk in 482 
Classroom 4 reaches a moderate level, indicating that COVID-19 has the potential to outbreak 483 
in the classroom. COVID-19 has a relatively high outbreak risk in most cases because it has a 484 
high shedding rate, small surface inactivation rate, and high transfer efficiency from fomites to 485 
hands. For norovirus, the R0 values are high in most classrooms, which might be because of its 486 
high infectivity, long infection period, and high hand-to-fomite transmission efficiency compared 487 
to the other two diseases. This finding also aligns with the trend obtained in [24]. The above 488 
results prove that the outbreak risk of an infectious disease is influenced by both venue-specific 489 
and pathogen-specific parameters, which highlights the significance of integrating BIM and the 490 
pathogen transmission model in assessing spatial-varying disease outbreak risk. 491 
 492 
Sensitivity analysis was further conducted to evaluate the influence of the rate of fomite 493 
touching (𝜌𝑇) and the shedding rate (𝛼) of SARS-COV-2 on R0 based on the estimated ranges 494 

of the two parameters (listed in Table 2). Fig. 6 illustrates the changes in R0 with the increase of 495 
𝜌𝑇 for all three diseases in both classrooms and offices. From Fig. 6, the disease outbreak risk 496 
increases as the increase of 𝜌𝑇. The values of R0 for norovirus and COVID-19 in Classroom 1, 497 

2, and 4 may exceed 1 with the increase of 𝜌𝑇. On the other hand, the infection risk in offices 498 
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and that for influenza in classrooms will remain low even occupants touch objects in the rooms 499 
more frequently. Therefore, it is particularly important to educate students in classrooms with 500 
relatively high occupancy to not touch the common areas frequently. Fig. 7 illustrates the 501 
changes in R0 of COVID-19 with varying shedding rates. From the figure, 𝛼 has a significant 502 

impact on the outbreak risk of COVID-19 in Classroom 1, 2, and 4. Therefore, for classrooms 503 
with relatively large occupancy, control strategies should be taken to reduce pathogen shedding 504 
from the occupants, such as using face masks, and covering the mouth when coughing. 505 
 506 

 507 
Fig. 6. R0 values with various rates of fomite touching (𝜌𝑇) 508 

 509 

 510 
Fig. 7. R0 of COIVD-19 with various shedding rate (𝛼) 511 

 512 
3.2. Influence of Cleaning Practice 513 

Cleaning is an effective strategy to reduce fomite-mediated pathogen transmission in built 514 
environments [43]. This study examined the impact of surface cleaning at different times per day 515 
on reducing the disease outbreak risk. The timing of each cleaning practice is not included in 516 
the disease transmission model and the average R0 is estimated on an hourly basis. Fig. 8 517 
illustrates the changes in R0 with respect to various times of surface cleaning each day. 518 
 519 
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 520 
Fig. 8. R0 values with various times of surface cleaning per day 521 

 522 
From Fig. 8, surface cleaning can significantly reduce the outbreak risk of all three diseases in 523 
both classrooms and offices. Based on the analysis, different surface cleaning practices can be 524 
applied to different rooms to reduce the risks to an acceptable low level. Cleaning the surface 525 
five times per day will decrease R0 by over 50%, compared to no surface cleaning. Considering 526 
the ongoing outbreak of COVID-19, classrooms with high occupancy (e.g., Classroom 4) should 527 
be given particular attention on surface cleaning. Cleaning surfaces at least two times per day is 528 
needed to achieve a low risk level. For norovirus, classrooms with relatively large occupancy 529 
(e.g., Classroom 1, 2, and 4) will require more frequent surface cleaning to reduce the outbreak 530 
risk to the low level. Other complementary strategies, such as increasing hand washing and 531 
limiting occupancy, should be adopted to maintain a low level of outbreak risks. 532 
 533 
3.3. Infection risk visualization via web-based system 534 

Fig. 9 presents the user interface of the developed web-based system. The developed web 535 
application provides an intuitive and responsive user interface to visualize outbreak risk 536 
information in the building. The facility manager and user can navigate to the interior model to 537 
visualize the interior layout of the building using the “Interior Model” button. The user can select 538 
and visualize risk-related information for different diseases: COVID-19, influenza, and norovirus. 539 
Fig. 10 illustrates the developed web visualization tool. 540 
 541 

 542 
Fig. 9. The user interface of the developed web-based alert system 543 
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 544 

 545 
Fig. 10. Demonstration of pathogen risk visualization. (a) room filtering based on risk value 546 

threshold; (b) search specific room 547 
 548 

As shown in Fig. 10, room filtering and room query functions can help the user easily locate rooms 549 
with high risk and query risk information for a specific room. Specifically, Fig. 10 (a) shows an 550 
exemplary output of the room filtering function that highlights the rooms with R0 value greater than 551 
1 for COVID-19. Fig. 10 (b) displays an example of the room query function in the web system. 552 
The pathogen risk information for influenza, norovirus, and COVID-19 is retrieved with 553 
corresponding recommendations. With the web-based information communication system, facility 554 
managers can take important measures to control the spread of diseases, such as designing 555 
appropriate cleaning and disinfection strategies, promoting hand hygiene, reducing maximum 556 
occupancy, and accommodating facility usage schedule based on risk distribution across rooms 557 
within the building. For instance, deep cleaning and disinfection are required for rooms with 558 
severe outbreak risk. In addition, facility managers can post signs at these high-risk areas to 559 
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remind occupants to take essential practices such as social distancing and hand hygiene. The 560 
web-based system will also keep facility users, including teachers, students, and other staff, 561 
aware of up-to-date outbreak risk information within the building, and thus taking informed actions 562 
to avoid further spread of diseases. For example, facility users can avoid entering rooms with high 563 
outbreak risk. 564 
 565 
4. Discussion 566 

The results and insights derived from the analysis have important implications on adaptive built 567 
environment management to prevent infectious disease outbreak and respond to on-going 568 
pandemic. Due to varying building characteristics, occupancy levels, and pathogen parameters, 569 
the microbial burdens and outbreak risks differ significantly even in the same building, 570 
highlighting the need for spatially-adaptive management of the built environment. The proposed 571 
method automates the batch process for simulation and prediction of outbreak risks for different 572 
pathogens at the room level, and visualizes the risks for adaptive management. The results on 573 
outbreak risks at room level enables the paradigm for spatially-adaptive management of the 574 
built environment. With the new streams of risk information, customizable interventions can be 575 
designed. For instance, in consistent with the practice during the COVID-19 pandemic, reducing 576 
the accessible surfaces in rooms and restricting the occupancy in the room are some of the 577 
effective strategies to reduce the outbreak risks. The spatially-varying risk information can also 578 
guide the facility managers to pay close attention to high-risk areas by adopting more frequent 579 
disinfection practices. 580 
 581 
A BIM-based information system is developed to extract the necessary information for modeling 582 
infection within buildings, and to visualize the derived information in an easy-to-understand and 583 
convenient way through web pages. As such, the information-driven interventions could 584 
alleviate the pathogenic burdens in the buildings to prevent the spread of infectious diseases. 585 
Providing information to end-users is critically important for them to change behaviors. Human 586 
behavior plays an important role in the transmission of pathogens such as the SARS-Cov-2. 587 
Changing behaviors is critical to preventing transmission. Providing timely and contextual 588 
information can be a promising option to motive the change of human behaviors. With the room-589 
level outbreak risk information, the users could be motivated or persuaded by the visualized 590 
risks to practice appropriate behaviors such as wearing a mask, social distancing, and hand-591 
washing. The facility managers can use the information to conduct knowledge-based 592 
management, such as limiting the occupancy in the room, managing crowd traffic, and 593 
rearranging room layout. 594 
 595 
This study has some limitations that deserve future research. First, the model does not consider 596 
factors such as sunlight exposure, humidity, and airflow that may impact the persistence and 597 
transmission of pathogens in built environments. This is mainly because the quantitative 598 
impacts of these factors on pathogen persistence and transmission are largely ambiguous, if not 599 
unknown. If these impacts can be quantified and the environmental parameters can be 600 
monitored and modeled in BIM, our proposed framework can be extended to incorporate these 601 
factors. Second, the computation of R0 only considers the fomite-mediated transmission, and 602 
does not consider the airborne and close contact transmission. Microbial pathogens may have 603 
different transmission routes, including airborne, close-contact, and fomite-based transmission. 604 
This study focused on fomite-based transmission to illustrate the modeling approach for 605 
assessing the outbreak risks, and demonstrate the efficacy of the developed information system 606 
to guide infection control practices and building operations. To fully assess the exposure risks 607 
and outbreak potentials, all important routes need to be considered. In addition, the outbreak 608 
potentials of a variety of pathogens can be considered together to develop an aggregate index, 609 
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which could be more intuitive for occupants and facility managers who are not public health 610 
experts. Third, the system mainly relies on static models and does not make full use of dynamic 611 
and real-time data regarding built environments and occupant behaviors such as presence and 612 
interactions with objects. In future studies, the internet of things sensors can be installed in the 613 
buildings and algorithms can be developed to retrieve dynamic data for integration with the 614 
models for accurate and robust risk estimation. Fourth, the web-based system can be further 615 
improved by connecting it with smart devices such as robots for automated cleaning and 616 
disinfection and smartphones for precision notifications. 617 
 618 
5. Conclusions 619 

This study creates and tests a computational framework and tools to explore the connections 620 
among built environment, occupant behavior, and pathogen transmission. Using BIM-based 621 
simulations, building-occupant characteristics, such as occupancy and accessible surface, are 622 
extracted as venue-specific parameters. The fomite-mediated transmission model is used to 623 
predict the contamination risks in the built environment by calculating a room-by-room basic 624 
reproductive number R0, based on which the level of infection risk at each room is characterized 625 
into low, mild, moderate, and severe. A web-based system is then created to communicate the 626 
infection risk and outbreak potential information within buildings to occupants and facility 627 
managers. The case study demonstrated the efficacy of the proposed methods and developed 628 
systems. Practically, the method and system can be used in a variety of built environments, 629 
especially, schools, hospitals, and airports, where transmission of infectious pathogens is of 630 
particular concern. The outbreak risks predicted at room resolutions can inform the facility 631 
managers to determine room disinfection and cleaning frequency, schedule, and standard. In 632 
addition, appropriate operational interventions including access control, occupancy limits, social 633 
distancing, and room arrangement (e.g. reducing the number of tables and chairs) can be 634 
designed based on the derived information. The occupants can access the useful information 635 
via webpage to plan their visit and staying time in the facilities, and practice appropriate 636 
personal hygiene and cleaning practice based on the information. – Shuai Li 637 
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