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Integrated Environment-Occupant-Pathogen Information Modeling to Assess and
Communicate Room-Level Outbreak Risks of Infectious Diseases

Abstract

Microbial pathogen transmission within built environments is a main public health concern. The
pandemic of coronavirus disease 2019 (COVID-19) adds to the urgency of developing effective
means to reduce the pathogen transmission in mass-gathering public buildings such as schools,
hospitals, and airports. To inform occupants and guide facility managers to prevent and respond
to infectious disease outbreaks, this study proposed a framework to assess the room-level
outbreak risks in buildings by modeling built environment characteristics, occupancy
information, and pathogen transmission. Building information modeling (BIM) is exploited to
automatically retrieve building parameters and possible occupant interactions that are relevant
to pathogen transmission. The extracted information is fed into an environment pathogen
transmission model to derive the basic reproduction numbers for different pathogens, which
serve as proxies of outbreak potentials in rooms. A web-based system is developed to provide
timely information regarding outbreak risks to occupants and facility managers. The efficacy of
the proposed method was demonstrated by a case study, in which the building characteristics,
occupancy schedules, pathogen parameters, as well as hygiene and cleaning practices are
considered for outbreak risk assessment. This study contributes to the body of knowledge by
computationally integrating building, occupant, and pathogen information modeling for infectious
disease outbreak assessment, and communicating actionable information for built environment
management.
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1. Introduction

People spend most of their time in buildings, including homes, offices, schools, stores,
restaurants, theaters, and many others. The buildings become hotspots for pathogen
transmission and exposure, decimating populations through epidemics and everyday infections.
The disastrous impacts of infectious diseases highlight the urgent need to reduce the
transmission of pathogens, and their exposure to occupants in buildings. Humans can be
infected by microbial pathogens via contacting contaminated objects, referred to as fomites.
Fomite-based transmission is an important route in built environments for transferring disease-
causing microbiomes to a new human host [1]. The mechanism of fomite-mediated transmission
involves three steps. First, a surface is contaminated by infectious pathogens. The
contamination can occur when an infected person touches the surface or bioaerosols containing
pathogens settle down on the surface. Second, a person touches a contaminated surface with
his or her hand, transferring the pathogens to the hand. Third, the person touches susceptible
sites (mucous membranes) on his or her body with the contaminated hand, which inoculates the
site with pathogens, resulting in potential infection. A recent study [2] found that contamination
of a single doorknob or tabletop can spread the infectious pathogens to other commonly
touched objects, exposing 40-60% of people in the buildings.

Many pathogens can be transmitted via fomites. For example, during flu seasons, measurable
levels of influenza virus can be found on all common building surfaces [1,3], underlining the
importance of fomite in influenza transmission. The pandemic of coronavirus disease 2019
(COVID-19) has swept the entire world with more than 29.6 million infections and 935,898
deaths as of September 16, 2020 [4]. During the pandemic of COVID-19, viable severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected on various surfaces. High
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concentration of SARS-CoV-2 are found on surfaces in healthcare facilities where COVID-19
patients are treated [5,6]. Norovirus can also be transmitted via fomite [7,8], causing 93% of
nonbacterial gastroenteritis outbreaks in the U.S. In addition, pathogens including
staphylococcus aureus, Clostridium difficile, Staphylococcus aureus, Pseudomonas aeruginosa,
Pseudomonas putida, and Enterococcus faecalis can also be transmitted by surface contact [9].

Models have been developed for environmental risk assessment and environmental infection
transmission [10]. Fomite-mediated transmission has received increased attention [11,12]. To
assess pathogen transmission to susceptible hosts, the models such as the environmental
infection transmission system modeling framework consider the dynamics of contact and
pathogen transfer between individuals via their hands and fomites, pathogen persistence in the
environment, pathogen shedding, and recovery of infected individuals. Studies [13—15] also
exploited experimentation approaches to measure the transfer of microbiomes between fomites
and humans. The measured microbiological and epidemiological data can be used to assess
the transmissibility of the pathogens and used in the models for risk assessment. Despite
research efforts made in epidemiology, the modeling of building, occupant, and pathogen has
not been well linked to predict the microbial burdens and outbreak risks.

Predicting outbreak risks in buildings and communicating actionable information to occupants
and facility managers are challenging. First, pathogen burdens could differ considerably in
rooms even in the same building. Building design and operation can influence indoor microbial
communities [16,17]. The microbial communities in different rooms with different functionalities
and spatial configurations are found to exhibit very different patterns [18,19]. Occupancy also
significantly affects the microbial communities in buildings. For example, bacteria taxa in spaces
with a high occupant diversity and a high degree of physical connectedness are different from
that in spaces with low levels of connectedness and occupant diversity [16]. Humans can
transfer microbiomes including pathogens to the environment via skin-to-surface contact and
direct shedding of large biological particles [20,21]. The microbial exchange between occupants
and surfaces can occur in both directions [12]. With different uses and occupancy levels,
outbreak risks could vary depending on the locations in a building, underlining the need for a
spatially-adapted modeling approach. However, there lacks a computational modeling approach
to link the coupled physical-biological processes of buildings, occupants, and pathogens to
automatically assess the spatially-varying infection and outbreak risks at unprecedented scales.
Therefore, it is imperative to establish the computational framework to quickly compute the risk
in buildings to inform end-users and guide adaptive operations.

Second, due to the absence of an effective means for information communication, end-users
have limited access to easy-to-understand information regarding the outbreak risks to make
necessary interventions. Building information modeling (BIM) uses standardized machine-
readable information created or gathered about a facility throughout its lifecycle for all
stakeholders involved [22]. Information can be extracted from building information models, as
they are the shared digital representations of physical and functional characteristics of any built
objects [22]. In addition, BIM has also been used as a powerful tool to visualize the parametric
building model with computed rich information [23]. However, to the authors’ best knowledge,
existing studies have not explored the capability of BIM in environmental pathogenic infection
assessment, and leverage BIM as a platform to visualize and communicate outbreak risk
information to end-users for facility management.

This study aims to develop a framework for room-level outbreak risk assessment based on
integrated building-occupancy-pathogen modeling to mitigate the spread of infectious disease in
buildings. The rationale is twofold. First, buildings are highly heterogeneous with a variety of
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compartments of distinctive functionalities and characteristics, providing diverse habitats for
humans and various pathogens [17,18]. Modeling the pathogen transmission and exposure
within a building at the room level will provide useful information at an unprecedented resolution
to implement appropriate disease control strategies. Second, the spread of infectious diseases
can be mitigated if occupants and facility managers have adequate and timely information
regarding the outbreak risks within their buildings. Communicating actionable information to
occupants and facility managers through an easily accessible interface will help occupants to
follow hygiene and social distancing practice, and help facility managers to schedule disinfection
for rooms with high outbreak risks.

2. Method

To address the knowledge gaps, a novel environment-occupant-pathogen modeling framework
and a web-based information visualization system are developed to assess the outbreak risks
and mitigate the spread of infectious diseases in buildings (Fig. 1). First, to assess the outbreak
risks, the fomite-based pathogen transmission model proposed in [24] is adopted in this study.
The limitation of the model is that the environmental parameters and occupant characteristics
are not automatically extracted and incorporated in the model, hindering the computation of the
spatially-varying environmental infection risks in buildings. To overcome this limitation, BIM is
exploited to automatically retrieve venue-specific parameters including building characteristics
and occupancy information that are relevant to pathogen transmission and exposure. Then, the
extracted building and occupant parameters are used with pathogen-specific parameters in a
human-building-pathogen transmission model to compute the basic reproduction number R, for
each room in a building. Ry is used as a proxy to assess the outbreak risks of different infectious
diseases. Second, a web-based system is developed to enable information visualization and
communication in an interactive manner to provide guidance for occupants and facility
managers. This study innovatively establishes the computational links among building,
occupant, and pathogen modeling to predict outbreak risks. The risk prediction for spatially and
functionally distributed rooms in a building provides useful information for end-users to combat
and respond to the spread of infectious diseases, including the seasonal flu and COVID-19. The
developed method and system add a health dimension to transform the current building
management to a user-centric and bio-informed paradigm.

— Room-Level Outbreak Risk Assessment

Venue-Specific Pathogen-Specific
Parameters Parameters

+ Accessible Surface

+ Occupancy Fomite-Mediated * I“‘)C“!‘“‘O.n R_‘_“e
BIM Model — . Rate of Fomite l—» Transmission p— ° Infectl_ous Period
Touching Model * Shedding Rate

* Building Hygiene

Risk Classification

— Web-Based Information Communication System

v

Facility Risk Level
Managers

k o
Occupants

Fig. 1. Research Framework
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2.1. Room-Level Outbreak Risk Assessment

Employing the model proposed in [24], individuals are divided into three categories, i.e.,
susceptible, infectious, and recovered. Pathogens may survive outside the host and
contaminate either object surfaces or human hands. The pathogen exchange in built
environments can occur through hand-surface contacts. Contaminated hands of hosts can
contaminate surfaces of accessible objects, while susceptible people can get infected by
touching the contaminated surfaces and self-inoculation. Fig. 2 shows the fomite-mediated
pathogen transmission process in built environments. Building characteristics, occupant
behavior, and pathogen parameters collectively determine the transmission ability through the
dynamic processes of pathogen inoculation, fomite touching and transfer, pathogen excretion,
pathogen decay, individual recovery, and building disinfection and individual hygiene.
Characteristics of the built environment (e.g., contaminated objects and building hygiene) and
occupant behavior (e.g., fomite touching and hand cleaning) are critical in the process of fomite-
mediated pathogen transmission in the built environment and are considered as venue-specific
parameters. In addition, the transmission efficiency of different diseases also depends on
pathogen-specific parameters, such as recovery rates and pathogen excretion. The
determination and acquisition of venue-specific and pathogen-specific parameters are detailed

as follows.
e —%—® States transition
i e X Transition rate
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Hygiene practice || AtoB
A : . Cleaning process
/| Object (Furniture, Contaminated | \ i el
/ -1~ ~ 1 X . .
/| doorknobs, etc.) Object object \ : Cleaning efficiency
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! / : \ \‘
/ '/'/ l! I\'\
) | ¥ Hand to fomite \
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transfer _ S b
l; o T / Y |
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Host recover Host infection
Fig. 2. Fomite-mediated pathogen transmission in built environments (Adapted from [24])

2.1.1. Venue-specific parameters

Because venue-specific parameters vary across rooms with different functions and occupancy
levels, it is important to develop an effective means to accurately and automatically extract the
venue-specific parameters to assess the outbreak risks at the resolution of room level. A
building information model captures the relationships among different elements in a building,
and allows the storage and extraction of detailed geometric and non-geometric information in a
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3D virtual representation. The non-geometric information includes semantic and topological
information, describing the attributes of elements and the relationship between components,
respectively [25]. Hence, it is feasible and efficient to extract venue-specific parameters from a
building information model.

The BIM model can be divided into six Levels of Development (LOD) [26] that are suitable for
conceptual design (LOD 100), schematic design (LOD 200), design development (LOD 300),
construction documentation (LOD 350), fabrication and assembly (LOD 400), and maintenance
and operation (LOD 500). To effectively capture the characteristics of buildings and occupants,
this study uses LOD 500 BIM model that reflects the as-built conditions regarding the geometry
information and non-graphical building attributes, as well as occupancy information. Fig. 3
shows an example of a representative classroom in the BIM model. For most public buildings
such as schools and hospitals, and particularly during the pandemic, the occupancy can be
predetermined and incorporated in the BIM model as attributes.

[ nstraint: H
eve Floor | Floor level

Upper Limit 2Znd Floor
Limit Offset 10° 0°
Base Off<et o 0

3D model of a
representative
classroom

Dimensions

| Dimension parameters

Number 212

| Name 81P CLASSROOM
I‘ Finish Key Teaching Classroom... I Room type
Fire Protection :
Room.Occupancy.Function EDUCATION
QOccupancy.SF 20.000000
|l occupancy.RooM.cOUNT 91 | Room occupancy
Rate of fomite touching 45 Rate of fomite touching
Surface Clean Rate 2 Building hygiene frequency

Fig. 3. Building and Occupancy Information Modeling
The following venue-specific parameters will be extracted from the model.

1) Accessible surface. The surfaces of objects, including doorknobs, stair railings, tables, and
chairs, which people frequently interact with are considered as accessible surfaces. The
accessible surface is computed as the summation of surface area of all touchable objects in
a room. The proportion of accessible surface A is defined as the ratio of accessible surface
to the total area of surfaces within a room that includes both accessible surface and interior
surface. The calculation is shown in Eq. 1.

Y Accessible surface area

~ YAccessible surface area + ROOMpperarea (1)

2) Occupancy. The occupancy is the number of individuals present in a room per day. In this
study, it is assumed that the occupancy of each room is predefined based on room capacity.
During the pandemic of COVID-19, many buildings such as university campus buildings and
office buildings have developed detailed occupancy schedules, which can be updated in the
BIM model and then extracted for analysis. Consistent with the prior study [24], it is
assumed that all individuals are identical within each room regarding susceptibility, contact
rates, and infectiousness as well as other individual characteristics. This assumption
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3)

4)

simplifies the model to capture the complex nature of pathogen transmission process. The
only difference among the individuals is the state associated with them: Susceptible S,
Infected /, or Recovered R during the pathogen transmission process.

Rate of fomite touching. The rate of fomite touching is the frequency that occupants interact
with the objects inside a room on an hourly basis. A higher frequency of interaction indicates
a higher possibility of pathogen transmission between objects and hosts. In this study, the
rate of fomite touching is determined based on different functionalities of the rooms
considering the primary age group present in the rooms. For example, classrooms and
offices in a school building are two main types of rooms considered in this study. It is
assumed that the rate of fomite touching in classrooms is higher than that in offices because
the occupants in classrooms are younger people who are more likely to interact with the
built environment. According to the observations in [27], an average rate of touching
common areas (e.g., chairs, desks, facilities) in a school office is 12 times per hour.
Therefore, in this study, the rate of fomite touching is set as 12 times per hour for offices,
and that for classrooms is set as 45 times per hour based on [28]. Furthermore, to
incorporate the possible variation in different scenarios, a range of (0, 30) and (30, 60) is
considered for offices and classrooms, which also aligns with the setting in [28]. Analyses
will be conducted to examine the influence of the rate of fomite touching on outbreak risk.

Building Cleaning and Hand Hygiene. Building cleaning plays an important role in object
decontamination. For fomite-mediated transmission, surface cleaning can significantly
decrease the pathogen reproductive process. The frequency of building cleaning is
determined by the adopted sanitation schedule of the building. Hand hygiene removes
pathogens picked up from contaminated objects. For infected individuals, hand cleaning
also removes pathogens excreted to hand, and thus, preventing contaminating objects
through hand touching.

In this study, a computational tool is developed based on Dynamo [29] to extract the geometry
and properties of each room in a building, and to compute the corresponding venue-specific
parameters. Fig. 4 shows the workflow of the information retrieval process. Lines in Fig. 4
indicate direct information retrieval from the models and arrows indicate the information retrieval
involving calculations.
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Fig. 4. Workflow of information retrieval process.

The workflow for information retrieval is detailed as follows.

The steps for extracting room parameters are:

1)

2)

3)

Room element selection. Starting from a building information model, all elements are
selected from the Room category, which is a predefined category including all the rooms in
the model.

Room information extraction. The essential room-related and occupant-related parameters
are extracted from all the room elements. The room-related parameters include room area
(the floor area of each room, named roomy,), room perimeter (the summation of the length of
all walls, named roomp), room height (the height of the walls, named roomy) and the rate of
building hygiene. Occupant-related parameters include room occupancy and rate of fomite
touching. With room dimension parameters, the interior surface of a room (room,nerarea)
can be calculated by Eq. 2:

TOOMpnerarea = 2 ¥ T00My + 100Mp * TOOMY (2)

Acquisition of room bounding box. The bounding box of a room element indicates the
location of the boundaries of the room and is defined by two 3D point coordinates, i.e., the
minimum point and maximum point. The bounding box can be used to determine if an object
is inside a room by checking if the coordinate of an object is inside the range from the
minimum point to the maximum point. The bounding box results are used for object
parameter extraction.

Objects in the rooms such as furniture can be contaminated via hand-surface contact, and
involved in the fomite transmission pathway. The furniture in a room is considered as accessible
object.



261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281

282
283
284
285
286

287

The steps for extracting the object parameters are:
1) Furniture element selection. All the elements under the category “Furniture” are selected
from the model. This category contains information of all the furniture in the model.

2) Furniture information extraction. The essential furniture parameters are extracted from all
the furniture elements. The parameters include area (the surface area of furniture) and
location (the point location of each furniture element). The location of furniture is
transformed to a 3D point (a point with x, y, z coordinates) using a default function in
Dynamo. The coordinates represent the location of the furniture.

3) Location relationship between room and furniture. For each room element, the coordinates
of furniture in the model are compared with the coordinates of the room bounding box. This
process checks the 3D location relationship between each room and furniture.

Thereafter, the total furniture area in each room (Named furniture,) is calculated by summing
up the surface area of all furniture inside the room. The proportion of accessible surface (1) of
each room is calculated using Eq. 3.

furniturey

N furniturey + 100Mppnerarea (3)

2.1.2. Pathogen-specific parameters

Pathogen characteristics affect the transmission process through inoculation, excretion,
inactivation (decay), and recovery. According to the study [24], Table 1 lists the pathogen-
specific parameters used in the fomite-mediated transmission model.

Table 1. Description of pathogen parameters

Pathogen parameters Symbol Unit Parameter description
The period that an infectious
Infectious period 1/y days individual can excrete and
transmit pathogens
Shedding rate a pathogens/ Infectious individual releases

(hours x people)  pathogens at rate «

Pathogen inactivation rate Pathogens decay at rate pg

on surfaces Hr 1/hours on surfaces

Pathogen inactivation rate Uy 1/hours Pathogens decay at rate uy
on hands on hands

Transfer efficiency 1/touch Pathogens transfer from

from fomite to hand trH fomite to hand at rate 7
Transfer eff|0|enc'y T 1/touch Pathogens transfer from

from hand to fomite hand to fomite at rate typ
Pathogen excreted unitless The proportion that pathogens
to hand Pu are shed on hands

E:tiigrjiizogr?%%fcosa s unitless The infectivity of a pathogen
Rate of touching mouth or

Inoculation rate P 1/hours other routes of infection
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In this study, three pathogens, i.e., influenza, norovirus, and SARS-CoV-2 are considered.
Table 2 shows the parameter values used in the model. The pathogen-specific parameters of
the first two viruses are determined based on [24]. The parameters of SARS-CoV-2 were
determined based on a number of studies up to date. For the parameters that are still under
research, the values are set based on surrogate viruses and assumptions, which are described
as follows.

1)

2)

3)

4)

Table 2. Values of pathogen-specific parameters of four viruses
Pathogen-specific Influenza Norovirus SARS-CoV-2

parameter
1/y 6 15 8 [30]
1.99E4

« B4 288E3 (1 8E3, 2.39E4)
U 0.121 0.288 0.059

e 88.2 1.07 0.8

o 0.1 0.07 0.37

Thr 0.025 0.13 0.14

i 0.15 0.9 0.15

T 6.93E-05  4.78E-04  6.58E-06 [31]
p 15.8 15.8 15.8

The inactivation rates on surfaces (ur) and hands (uy). The inactivation rate on surfaces is
determined based on the study [32], which provides the half-life of infectivity (¢, 5) on
surfaces under common temperature and relative humidity. The inactivation process of the
virus is assumed as a first-order kinetic model in this paper, and the inactivation rate is
calculated as [n2/t, . Under the circumstance of 74°F and 40 of relative humidity, the
estimated half-life of infectivity on surfaces is 11.78 hours, and the approximate inactivation
rate is 0.059 per hour. Due to the lack of exact data of uy, the parameter inactivation rate on
skin of Middle East Respiratory Syndrome (MERS-CoV) is used in the paper, which is 0.8
per hour [33].

Transfer efficiency from fomite to hand (zzy) and transfer efficiency from hand to fomite
(tyr). The transfer efficiency coefficients are estimated using parameters of MERS-CoV in
[33] due to the absence of data. The transfer efficiency varies with surface materials.
Compared with porous surfaces (e.g. fabrics, clothes, and sponges), non-porous surfaces
such as desks, chairs, and door handles are more appropriate to represent the material of
furniture surfaces considered in this paper. Thus, the transfer rates between hands and non-
porous surfaces are used to indicate the transfer efficiency between hands and fomites.
According to the results in [33], Ty is set as 0.37, and 1 is set as 0.14.

Pathogen excreted to hand (¢;). Because the virus excretion behavior of SARS-CoV-2 such
as coughing, sneezing, and exhaling is similar to the excretion behavior of influenza, ¢y of
SARS-CoV-2 is estimated using the same parameter of influenza.

Shedding rate (a). In the paper, coughing is considered as the primary way for virus
shedding. The shedding rate is determined by the number of viruses in the respiratory tract
that is shed via coughing per hour per infectious individual. The equation for shedding rate
calculation is shown in Eq. 4.

a = Vdroplet X Fcough X Ndroplet XL (4)
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Varopietr indicates the volume per infectious droplet in cm?, Feougn is the coughing frequency
per hour, Ng,opie¢ is the number of droplets excreted per cough, L is the viral load in the
respiratory tract in copies/mL. According to [34], the viral load of SARS-CoV-2 for children
aging 0-22 is 6.2 log1o RNA copies/ml, which is adopted in this study as the occupants are
primarily children in school buildings. Due to the lack of data, other parameters are
estimated using parameters of MERS-CoV in [33]. Vopie: i calculated considering the
largest diameter for infectious droplets that best fits the scenario of fomite transmission. The
diameter is set as 100 um. F.,y,qp is set as 12 times per hour. Ny,ope; is set to be 2000 per
cough. Based on the calculation above, « is set to be 1.99E4. Besides, as the accurate
shedding rate is still not well understood, it is assumed within the range of (1.8E3, 2.39E4),
where the lower bound is set according to [28], and the higher bound is set as 1.2 times of
the estimated value to allow potential higher shedding rate value.

5) Dose response of pathogens on mucosa (). The infectivity is determined based on study
[31]. [31] found that the exponential model p = 1 — exp (—d/k) can well demonstrate the
dose-response function of SARS-CoV-2, where the constant k ranges from 6.19E4 to
7.28ES5. In the paper, k is set as 1.52E5, representing 50% of contribution from airborne
particles to the total dose. 7 is set as the inverse of k, which is 6.58E6.

2.1.3. Risk Assessment

In epidemic dynamics, the basic reproductive number (Ry) is an estimation of a pathogen’s
transmission ability of an infectious disease. Ry is the expected number of cases generated by
one single infected person, supposing all other individuals are susceptible to the epidemic [35].
In this study, Ry is used to represent the outbreak potential of each pathogen across different
rooms in the building. Given the fomite-mediated transmission model described in the previous
section, Ry is computed using the next generation matrix method [36], which consists of two
matrices, i.e., the matrix of disease transmission and matrix of host state transition. Ry is
identified as the dominant eigenvalue of the product of the two matrices, computed using Eq. 5
proposed in [24].

Ry =Ror + Ron

_ ar ’
RO,F - 7PinoculatioanickupP (0)
Roy =“2p PpickupP P'(0)
0H — y inoculation! pickup? deposit
pX
P o= PX
4 inoculation = 0, (5)
NpFH
P.. _ NpFH+UF+OF
pickup — NpFH PHF
(Nppa+up+6F) (LH+PHF+PX+0H)
P L —_— PHF
. deposit ™+ pyp+px+0y

R, r represents direct fomite contamination route, R, 4 is hand-fomite contamination route,
Pinoculation 18 the proportion of pathogens that are self-inoculated to susceptible hosts; Py;ckyp iS
the proportion of pathogens picked up by hands from fomites; Pyeposi: IS the proportion of
pathogens excreted to hands that are deposited to the fomites. P’(0) is the slope of the dose
function, indicating the infectivity of a dose of the pathogen.

In the above equations, ar = a(1 — @y)A, representing the rate pathogens excreted to surfaces,
where « is the shedding rate, ¢ is the proportion that pathogens are shed on hands, both
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defined in Table 1. 1 is the proportion of accessible surfaces, calculated by parameters
extracted from the BIM model. ay = a@y, representing the rate pathogens excreted to hands.
Infectious period 1/y, inoculation rate p, and pathogen inactivation rate in hands uy and in
fomites up, are all pathogen-specific parameters that are defined in Table 1. y is the proportion
of pathogens self-inoculated by susceptible hosts, set as 1 in this study. pyr = prTyr, indicating
the rate of pathogen deposited from hand to fomite, where pr is the rate of fomite touching
extracted from the BIM model, 7 is the transmission efficiency defined in Table 1. 8, is the
effective hand cleaning rate, which is set as the rate of hand washing. N is the occupancy of
each room, extracted from the BIM model. pry = Nprtpyk, representing the rate of pathogen
picked up by hands, where 1y is the transmission efficiency from fomites to hands, k is the

fingertip to surface ratio, set as oE-06 according to study [24]. 6 is the effective fomite cleaning
rate, which is set as the rate of building cleaning and can be extracted from BIM model.

In epidemiology literature, Ry is one of the most widely used indicators of transmission intensity
to demonstrate the outbreak potential of an infectious disease in a population. Commonly, Ry >
1 means the epidemic begins to spread in the population, Ro < 1 means the disease will
gradually disappear, and Ro = 1 means the disease will stay alive and reach a balance in the
population. With the increase of Ry, the outbreak risk will increase, and more severe control
measures and policies will be needed [37]. In this study, we categorize the level of outbreak risk
into low, mild, moderate, and severe based on the range of Ry. Specifically, the risk is low when
Ry < 1; the risk is mild when 1 < Ry < 1.5 because there is a fair chance that the transmission
will fade out as R, is not much larger than 1 [38]; the risk is moderate when 1.5 < Ry < 2,
indicating an epidemic can occur and is likely to do so [39,40]; and the risk is severe when Ry >
2 and immediate actions should be taken by facility managers, such as cleaning the surfaces, to
reduce the risk.

2.2. Web-Based Information Communication System

To better communicate the infection risk to occupants and facility managers, a web-based
system was developed to visualize the outbreak risk of different pathogens in each room within
a building. Fig. 5 illustrates the architecture of the web-based system, which consists of four
modules, i.e., data management, model derivative, web application, and user. The data
management module is maintained by the management team and allows them to upload
building models. In the model derivative module, the uploaded model is translated into the SVF
format which is the format used by the web application. The web application module displays
the building model and provides customized functionalities to facilitate visualization of pathogen
risk within the building. Finally, the user can access the web-based system and visualize the
room-level risk of pathogens. The web-based system is developed using Autodesk Forge that is
a collection of APIs to develop cloud-based platforms to access, manage, and visualize design
and engineering data. Each module is detailed below.
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Fig. 5. Web-based alert system

The data management module supports a variety of 3D model formats such as rvt, ifc, and 3ds,
where rvt is the file format used by the Autodesk Revit; ifc is an open international standard data
schema for BIM data that are supported by various software products such as AutoCAD, Revit,
and Tekla Structures; 3ds is the file format used by the Autodesk 3ds Max 3D modeling,
animation and rendering software. The management team needs to log into their account to
obtain authorization from the Forge OAuth API to access the Object Storage Service (OSS).
Model files are uploaded to the OSS and stored as objects in buckets. In the second module,
the model derivative translates the uploaded model into SVF format and extracts design
metadata such as geometric data and object properties (e.g. room area and occupancy). The
translated model and extracted data are also stored in the OSS. The model derivative
component generates a unique identifier called URN for each translated model. The URN is
then fed into the web application for the building model visualization.

The web application is built on the Forge Viewer API with customized functions. The Viewer API
is a WebGL-based JavaScript library to render both 2D and 3D models. It is developed to
display translated models generated by the model derivative component. ExpressJS was
selected to develop the web application due to its flexibility and scalability. ExpressJS is a
prebuilt NodeJS framework that is designed to create server-side web applications [41], and it
allows the web application to handle multiple requests concurrently. As such, pathogen risk
information can be quickly communicated to facility users even at times of peak traffic of the
website. ExpressJS allows the developer to design customized functionalities in the web
application. The routing technique was adopted to handle the Hypertext Transfer Protocol
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(HTTP) request. The routing technique manages the way the web application responds to user
requests. This technique is derived from the HTTP method [42] and attached to the ExpressJS
router instance. POST and GET methods were used to send and retrieve data from the
webserver.

Three add-in functions were developed to help users visualize the interior layout of the building
and color-coded rooms with their corresponding risk levels, as well as search specific room-
related disease outbreak risk information. The first add-in function is “vertical explode”, which is
used to view each level of the building. This function can help the user visualize the interior and
room layout. The facility users can also use this function to visualize the outbreak risk of rooms
on each floor and take appropriate practices. For facility managers, the “vertical explode”
function enables them to obtain a holistic view of risk distribution at each level and take
informed actions, such as limiting the number of occupants and implementing cleaning and
disinfection protocols, to control the spread of the disease. This function is integrated with the
web-based system, and clicking buttons were created to activate and deactivate it. The second
function is “room filtering”, which is used to highlight rooms at different risk levels for a specific
pathogen. The user needs to first select one of the three pathogens from the dropdown menu:
SARS-CoV-2, Influenza, and norovirus. Thereafter, the user can set a risk threshold to highlight
rooms with Ry greater than a specific value. In addition, different highlighting colors are used to
represent different infection risk levels. Low, mild, moderate, and severe risks are represented
by color green, blue, celery, and red, respectively. The third function is “room query”, which
enables the user to search for a specific room and retrieve infection risk for the three pathogens.
The “room query” function is displayed as a search box on the web-based system. The users
can easily find the potential risk of a specific room using this function. Finally, end users can
access the web-based information communication system and obtain information about
outbreak risk in each room of the building through various channels, including laptops,
smartphones, and tablets.

3. Case Study

A hypothetical case study is used as an example to demonstrate the efficacy of the proposed
framework and the newly developed web-based system. The building information model of a
six-floor school building with 221,000 square feet is used. The building contains classrooms and
faculty and graduate assistant offices.

3.1. Disease Outbreak Risk in Different Rooms

The room types considered in the case study include offices and classrooms. Five offices and
five classrooms were selected. The venue-specific parameters of the rooms are extracted and
listed in Table 3, and the computed Ry values of the three diseases are listed in Table 4.

Table 3. Venue-specific parameters in representative rooms

Accessible Occupancy Rate of fomite

Room Room Proportion of ) .
surface area ; (number of  touching (times
Type # accessible surface
(square feet) people) per hour)
#1 45.5 0.018 36 45 (30, 60)
#2 45.5 0.017 37 45 (30, 60)
Classroom #3 176.3 0.138 19 45 (30, 60)
#4 1328.9 0.194 91 45 (30, 60)
#5 410.9 0.151 26 45 (30, 60)
Office #1 36.6 0.052 2 12 (0, 30)
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#2 106.8 0.115 13 12 (0, 30)
#3 52.1 0.062 10 12 (0, 30)
#4 1289.8 0.306 9 12 (0, 30)
#5 53.7 0.053 15 12 (0, 30)
Table 4. Ry values of the three diseases of representative rooms
Room Type Room # Ro values
Influenza Norovirus COVID-19
#1 0.078 9.7042 0.962
#2 0.079 10.441? 0.970
Classroom #3 0.014 0.092 0.168
#4 0.237 2.6032 1.803"
#5 0.020 0.117 0.224
#1 0.002 0.023 0.022
#2 0.010 0.073 0.118
Office #3 0.008 0.098 0.099
#4 0.007 0.023 0.078
#5 0.011 0.169 0.146

Note: The superscripts indicate the risk level of the diseases, where 1 represents a moderate
risk level and 2 represents a severe risk level. Values without superscripts indicate the risk level
is low.

From Table 4, the values of Ry vary across different rooms and different diseases. Ry values in
offices are smaller than the values in classrooms, which stems from the small occupancy and
the low rate of fomite touching in offices compared to those in classrooms. For influenza, the Ry
values in all the rooms are less than 1, indicating that influenza is unlikely to outbreak in the
building through the fomite-mediated transmission. This could be partially explained by the
relatively short infectious period, high inactivation rate in hands, low hand-to-fomite pathogen
transmission efficiency, and relatively low infectiousness with the same amount of pathogens.
For COVID-19, the Ry values in all rooms are higher than those of influenza, and the risk in
Classroom 4 reaches a moderate level, indicating that COVID-19 has the potential to outbreak
in the classroom. COVID-19 has a relatively high outbreak risk in most cases because it has a
high shedding rate, small surface inactivation rate, and high transfer efficiency from fomites to
hands. For norovirus, the Rq values are high in most classrooms, which might be because of its
high infectivity, long infection period, and high hand-to-fomite transmission efficiency compared
to the other two diseases. This finding also aligns with the trend obtained in [24]. The above
results prove that the outbreak risk of an infectious disease is influenced by both venue-specific
and pathogen-specific parameters, which highlights the significance of integrating BIM and the
pathogen transmission model in assessing spatial-varying disease outbreak risk.

Sensitivity analysis was further conducted to evaluate the influence of the rate of fomite
touching (pr) and the shedding rate (a) of SARS-COV-2 on Ry based on the estimated ranges
of the two parameters (listed in Table 2). Fig. 6 illustrates the changes in Ry with the increase of
pr for all three diseases in both classrooms and offices. From Fig. 6, the disease outbreak risk
increases as the increase of py. The values of Ry for norovirus and COVID-19 in Classroom 1,
2, and 4 may exceed 1 with the increase of p;. On the other hand, the infection risk in offices
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499  and that for influenza in classrooms will remain low even occupants touch objects in the rooms
500 more frequently. Therefore, it is particularly important to educate students in classrooms with
501 relatively high occupancy to not touch the common areas frequently. Fig. 7 illustrates the

502 changes in Ry of COVID-19 with varying shedding rates. From the figure, a has a significant
503 impact on the outbreak risk of COVID-19 in Classroom 1, 2, and 4. Therefore, for classrooms
504  with relatively large occupancy, control strategies should be taken to reduce pathogen shedding
505 from the occupants, such as using face masks, and covering the mouth when coughing.
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513 3.2. Influence of Cleaning Practice

514  Cleaning is an effective strategy to reduce fomite-mediated pathogen transmission in built

515 environments [43]. This study examined the impact of surface cleaning at different times per day
516  on reducing the disease outbreak risk. The timing of each cleaning practice is not included in
517 the disease transmission model and the average Ry is estimated on an hourly basis. Fig. 8

518 llustrates the changes in Ry with respect to various times of surface cleaning each day.

519
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Fig. 8. Ro values with various times of surface cleaning per day

From Fig. 8, surface cleaning can significantly reduce the outbreak risk of all three diseases in
both classrooms and offices. Based on the analysis, different surface cleaning practices can be
applied to different rooms to reduce the risks to an acceptable low level. Cleaning the surface
five times per day will decrease Ry by over 50%, compared to no surface cleaning. Considering
the ongoing outbreak of COVID-19, classrooms with high occupancy (e.g., Classroom 4) should
be given particular attention on surface cleaning. Cleaning surfaces at least two times per day is
needed to achieve a low risk level. For norovirus, classrooms with relatively large occupancy
(e.g., Classroom 1, 2, and 4) will require more frequent surface cleaning to reduce the outbreak
risk to the low level. Other complementary strategies, such as increasing hand washing and
limiting occupancy, should be adopted to maintain a low level of outbreak risks.

3.3. Infection risk visualization via web-based system

Fig. 9 presents the user interface of the developed web-based system. The developed web
application provides an intuitive and responsive user interface to visualize outbreak risk
information in the building. The facility manager and user can navigate to the interior model to
visualize the interior layout of the building using the “Interior Model” button. The user can select
and visualize risk-related information for different diseases: COVID-19, influenza, and norovirus.
Fig. 10 illustrates the developed web visualization tool.

Navigate to interior
model

Vertical explode

COVID-19; Influenza;
Norovirus

Risk level; risk
threshold value

Search specific room

Display search result
for different diseases

Fig. 9. The user interface of the developed web-based alert system
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As shown in Fig. 10, room filtering and room query functions can help the user easily locate rooms
with high risk and query risk information for a specific room. Specifically, Fig. 10 (a) shows an
exemplary output of the room filtering function that highlights the rooms with R, value greater than
1 for COVID-19. Fig. 10 (b) displays an example of the room query function in the web system.
The pathogen risk information for influenza, norovirus, and COVID-19 is retrieved with
corresponding recommendations. With the web-based information communication system, facility
managers can take important measures to control the spread of diseases, such as designing
appropriate cleaning and disinfection strategies, promoting hand hygiene, reducing maximum
occupancy, and accommodating facility usage schedule based on risk distribution across rooms
within the building. For instance, deep cleaning and disinfection are required for rooms with
severe outbreak risk. In addition, facility managers can post signs at these high-risk areas to
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remind occupants to take essential practices such as social distancing and hand hygiene. The
web-based system will also keep facility users, including teachers, students, and other staff,
aware of up-to-date outbreak risk information within the building, and thus taking informed actions
to avoid further spread of diseases. For example, facility users can avoid entering rooms with high
outbreak risk.

4. Discussion

The results and insights derived from the analysis have important implications on adaptive built
environment management to prevent infectious disease outbreak and respond to on-going
pandemic. Due to varying building characteristics, occupancy levels, and pathogen parameters,
the microbial burdens and outbreak risks differ significantly even in the same building,
highlighting the need for spatially-adaptive management of the built environment. The proposed
method automates the batch process for simulation and prediction of outbreak risks for different
pathogens at the room level, and visualizes the risks for adaptive management. The results on
outbreak risks at room level enables the paradigm for spatially-adaptive management of the
built environment. With the new streams of risk information, customizable interventions can be
designed. For instance, in consistent with the practice during the COVID-19 pandemic, reducing
the accessible surfaces in rooms and restricting the occupancy in the room are some of the
effective strategies to reduce the outbreak risks. The spatially-varying risk information can also
guide the facility managers to pay close attention to high-risk areas by adopting more frequent
disinfection practices.

A BIM-based information system is developed to extract the necessary information for modeling
infection within buildings, and to visualize the derived information in an easy-to-understand and
convenient way through web pages. As such, the information-driven interventions could
alleviate the pathogenic burdens in the buildings to prevent the spread of infectious diseases.
Providing information to end-users is critically important for them to change behaviors. Human
behavior plays an important role in the transmission of pathogens such as the SARS-Cov-2.
Changing behaviors is critical to preventing transmission. Providing timely and contextual
information can be a promising option to motive the change of human behaviors. With the room-
level outbreak risk information, the users could be motivated or persuaded by the visualized
risks to practice appropriate behaviors such as wearing a mask, social distancing, and hand-
washing. The facility managers can use the information to conduct knowledge-based
management, such as limiting the occupancy in the room, managing crowd traffic, and
rearranging room layout.

This study has some limitations that deserve future research. First, the model does not consider
factors such as sunlight exposure, humidity, and airflow that may impact the persistence and
transmission of pathogens in built environments. This is mainly because the quantitative
impacts of these factors on pathogen persistence and transmission are largely ambiguous, if not
unknown. If these impacts can be quantified and the environmental parameters can be
monitored and modeled in BIM, our proposed framework can be extended to incorporate these
factors. Second, the computation of Ro only considers the fomite-mediated transmission, and
does not consider the airborne and close contact transmission. Microbial pathogens may have
different transmission routes, including airborne, close-contact, and fomite-based transmission.
This study focused on fomite-based transmission to illustrate the modeling approach for
assessing the outbreak risks, and demonstrate the efficacy of the developed information system
to guide infection control practices and building operations. To fully assess the exposure risks
and outbreak potentials, all important routes need to be considered. In addition, the outbreak
potentials of a variety of pathogens can be considered together to develop an aggregate index,
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which could be more intuitive for occupants and facility managers who are not public health
experts. Third, the system mainly relies on static models and does not make full use of dynamic
and real-time data regarding built environments and occupant behaviors such as presence and
interactions with objects. In future studies, the internet of things sensors can be installed in the
buildings and algorithms can be developed to retrieve dynamic data for integration with the
models for accurate and robust risk estimation. Fourth, the web-based system can be further
improved by connecting it with smart devices such as robots for automated cleaning and
disinfection and smartphones for precision notifications.

5. Conclusions

This study creates and tests a computational framework and tools to explore the connections
among built environment, occupant behavior, and pathogen transmission. Using BIM-based
simulations, building-occupant characteristics, such as occupancy and accessible surface, are
extracted as venue-specific parameters. The fomite-mediated transmission model is used to
predict the contamination risks in the built environment by calculating a room-by-room basic
reproductive number R, based on which the level of infection risk at each room is characterized
into low, mild, moderate, and severe. A web-based system is then created to communicate the
infection risk and outbreak potential information within buildings to occupants and facility
managers. The case study demonstrated the efficacy of the proposed methods and developed
systems. Practically, the method and system can be used in a variety of built environments,
especially, schools, hospitals, and airports, where transmission of infectious pathogens is of
particular concern. The outbreak risks predicted at room resolutions can inform the facility
managers to determine room disinfection and cleaning frequency, schedule, and standard. In
addition, appropriate operational interventions including access control, occupancy limits, social
distancing, and room arrangement (e.g. reducing the number of tables and chairs) can be
designed based on the derived information. The occupants can access the useful information
via webpage to plan their visit and staying time in the facilities, and practice appropriate
personal hygiene and cleaning practice based on the information. — Shuai Li
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