
Dex-Net AR: Distributed Deep Grasp Planning
Using a Commodity Cellphone and Augmented Reality App

Harry Zhang, Jeffrey Ichnowski, Yahav Avigal, Joseph Gonzalez, Ion Stoica, and Ken Goldberg1

Abstract— Consumer demand for augmented reality (AR) in
mobile phone applications, such as the Apple ARKit. Such
applications have potential to expand access to robot grasp
planning systems such as Dex-Net. AR apps use structure from
motion methods to compute a point cloud from a sequence of
RGB images taken by the camera as it is moved around an
object. However, the resulting point clouds are often noisy due
to estimation errors. We present a distributed pipeline, Dex-
Net AR, that allows point clouds to be uploaded to a server
in our lab, cleaned, and evaluated by Dex-Net grasp planner
to generate a grasp axis that is returned and displayed as an
overlay on the object. We implement Dex-Net AR using the
iPhone and ARKit and compare results with those generated
with high-performance depth sensors. The success rates with
AR on harder adversarial objects are higher than traditional
depth images.

I. INTRODUCTION

Grasping real-world objects using a robot gripper is
complicated due to the limitations of sensing modalities.
In highly controlled environments, such as industrial ware-
houses, sensing modalities such as depth sensors can be
calibrated to their environment. However, in everyday life,
such controlled circumstances are unlikely. To address this
problem, we propose using structure from motion (SfM) to
generate point clouds that can be used to generate grasps.
To use and generate the data for SfM, one needs to move
an RGB camera (such as one found on most smartphones)
through 3D space to create a representative image set. Then,
SfM extracts points from the images, reflecting the location
of objects located in a 3D space. As the camera moves
through space, the density of the point cloud increases, better
detecting and defining the object’s surfaces for grasping.

In this paper, we present Dex-Net AR, a system that
collects images, generates and cleans a point cloud, uploads
it to a deep learning system, and generates high-quality
grasp points for a grasp planning system such as Dex-Net
[1]. We use an iPhone and ARKit [2], a popular consumer
smartphone and a free software developer kit from Apple
Inc., to generate a point cloud from which Dex-Net AR
can compute grasp points and a mobile manipulator robotic
grasp. Dex-Net AR can generate grasps with accuracy similar
to state-of-the-art systems that rely on expensive, industry-
grade depth sensors. Compared with depth camera systems
that capture images from a fixed view, usually top-down,
Dex-Net AR allows the user to move the smartphone camera

1The authors are with the University of California at
Berkeley, Berkeley, CA, USA 94720 {harryhzhang, jeffi,
yahav avigal, jegonzal, istoica, goldberg}
@berkeley.edu

(a) Object (b) Noisy point cloud

(c) Cleaned point cloud (d) Planned grasp

(e) AR grasp overlay (f) ABB YuMi physical grasp

Fig. 1. Distributed deep grasp planning applied on a 3D printed object.
Top row: Original object, and the visualization of raw point cloud data
which exhibit a large amount of noise, collected by iPhone ARKit. Middle
row: point cloud data after removing ground plane using RANSAC and a
kNN-based cleaning process, and the planned grasp simulated by GQ-CNN.
Bottom row: Augmented reality grasp overlay and real grasp by an ABB
YuMi robot.

all around the object, collecting three-dimensional point
cloud data. Such data are able to reflect more geometric
details and features from other facets of the objects that are
less likely to be captured by any depth camera from a top-
down view, which can potentially reveal better grasp points
in areas that are usually occluded or poorly inferred from
a single fixed view. Dex-Net AR has potential to expand
the collection of more 3D data of a variety of novel real-
world objects due to the ubiquity of smartphones compared
to depth cameras, which can in turn be used to further train
the existing grasp planning systems such as Dex-Net.

This paper contributes:

1) A pipeline to record point cloud data of an object using

commodity smartphones, upload this data to our server
which applies an outlier removal algorithm based on
Random Sample Consensus (RANSAC) and k-Nearest
Neighbors (kNN) to clean up the point cloud data,
and feed the point cloud data to a deep learning grasp
planning policy, Dex-Net 4.0, to plan grasps on the
object.

2) A method to show multiple facets of the objects to the
robot in order to generate grasps with higher qualities.

3) Experiments measuring the advantage of 3D point
clouds as input over traditional depth maps, that point
clouds reveal more geometric information of the ob-
jects by calulating the success rates of grasping eight
geometrically complex objects, which we call adver-
sarial objects, from 9 different synthetic orientations
generated by Dex-Net AR.

II. RELATED WORK

a) Augmented Reality: Augmented reality (AR) is an
interactive experience of a real-world environment where
the objects in the real-world can be enhanced by perceptual
information generated by a computer. It was first introduced
by USAF Armstrong Labs [3] in order to create a virtual
augmentation of a real environment to improve human
performance in physical tasks. Recently, researchers have
combined AR with computer vision techniques to recognize
and classify objects in physical environments [4], [5], [6],
[7].

b) Structure from Motion: In 3D reconstruction, Struc-
ture from Motion (SfM) is used when 3D point positions
are not known in advance [8], [9], [10], SfM simultaneously
recovers the 3D structure and pose of the camera from image
correspondences given multiple frames of RGB images. In
this way, SfM estimates the 3D locations of points on the
object’s notable geometric features from continuous frames.
One limitation of SfM is that the objects being reconstructed
must have notable geometric features such as contours,
edges, and vertices. Thus, the objects need to be non-
reflective and chromatic for the feature points to be detected
and recorded.

c) Point Cloud Cleaning: To clean the SfM-generated
3D point cloud, we use a k-Nearest Neighbors (kNN) based
approach which removes remote and isolated outliers. Ning
et al. [11] developed a method to locally fit a plane using
kNN and then project the near-surface, non-isolated outliers
to the plane, further making the surface smoother and cleaner.
In addition, Rakotosaona et al. [12] suggested a learning-
based approach to denoise dense point cloud data. We build
on this line of research by cleaning the point cloud recorded
by a smartphone to generate better quality grasps.

d) Grasp Planning: Grasp planning considers the prob-
lem of finding a gripper configuration that maximizes the Q
value of grasp. There are several different approaches. An-
alytic approaches typically assume knowledge of the object
and gripper state and consider the capability of constraining
the object’s motion [13] under perturbations and noises.
Examples include GraspIt! [14], OpenGRASP [15], and the

Dexterity Network (Dex-Net) 2.0 [1]. Specifically, Dex-Net
4.0 introduced an ambidextrous policy for robot grasping
and suction, which evaluates the Q value of the grasps using
Grasp Quality CNN (GQ-CNN) [16], [17]. In order to fully
satisfy the assumption of known state, analytic methods use
a registration-based perception system: matching sensor data
to known 3D models available in the existing database [18],
[19], [20], [21], [22]. Empirical approaches [23] use learning-
based methods to develop models that map sensor readings
to success labels from humans or physical trials [24]. Both
classes of approaches often use depth images taken from
high-end depth cameras for both training and real data. In
contrast, we explore planning grasps from relatively low-
cost point cloud data taken from commodity devices, such
as iPhones.

III. PROBLEM DEFINITION

We wish to take a sequence of images of an object from
moving the camera of a commodity smartphone, and plan
a grasp on the object. Suppose we move a camera around
an object to scan it, during the recording process, which we
define as a session, n frames are recorded. In each frame i,
the camera captures an RGB image fi, where fi ∈ RW×H×3.
W and H are the width and height of fi, and they vary
depending on the camera we are using. Therefore, the input
F is a sequence of captured RGB images:

F = {f1, f2, ..., fn}

In each frame, SfM can detect notable geometric features
of the object in the RGB image, and record the features as
points, where each point is a 3D vector in R3, representing
the (x, y, z) coordinates in the camera’s local coordinates
system. Multiple features detected in a frame can then be
recorded as a point cloud of this frame. Thus, from F , we
use SfM to generate point cloud data:

Craw = c1 ∪ c2 ∪ ... ∪ cn

where ci is the set of points extracted from image fi. In
each frame, we also record the frame number, a camera
transformation matrix, and the points’ unique identifiers.
However, for SfM to generate point clouds with higher
qualities, the scanned objects should not be monochromatic,
reflective, or small. Thus, the objects that perform better in a
session are those with a decent amount of texture variation.
Points extracted by SfM also contain a large amount of noisy
points, so Craw, as an aggregation of all point clouds that
are recorded, contains both the point cloud of the object
of interest and points from noise. Let Q ⊂ R3 be the
actual points of the objects’ surfaces captured in F , and let
X ⊂ R3 \Q be the noise points that are captured. We want
to clean Craw by removing X from it to obtain a point cloud
with less noise:

Cclean = f(Craw)

where f is our cleaning method applied to the aggregation
of all point clouds from different frames.

Record RGB
images F

Extract noisy
point cloud Craw

Clean up the
noisy point
cloud and

obtain Cclean

Transform into
depth map D

Feed into
GQ-CNN and

return the grasp
quality value Q

Fig. 2. Pipeline of Dex-Net AR

With a cleaner aggregated point cloud of the object, we
transform the data to a depth map D:

D = g (Cclean, dplane,nplane,K, T)

where dplane and nplane are the depth and the normal vector,
respectively, of the ground plane or desktop on which the
object is placed, and K is the known camera intrinsics matrix
of a depth camera, and T ∈ R4×4 is the camera pose
transformation matrix.

To plan a grasp, we feed D into a convolutional neural
network architecture N called GQ-CNN [1], [16], [25], [17]:

Q = N (D)

where the output value Q ∈ [0, 1] represents the quality of
the grasp planned. The objective is to generate a robust grasp
while maintaining a relatively high Q value, which largely
relies on high-quality point cloud data.

IV. METHOD

Our distributed system is divided into five steps. Fig 2
shows the pipeline of our method.

A. Point Cloud Data Recording

The purpose of the first and second steps of Fig 2 is to
record the point cloud data of the object of interest. The input
data F is a set of RGB images. SfM extracts the point cloud
data, and points’ unique identifiers from the RGB images.
The aggregated point cloud generated from F contains large
amounts of noise from the ground plane that the object is
placed on. As a result, after extracting Craw from F , we
have an extremely noisy and dense point cloud that contains
large amounts of noise (X) such as from the ground plane
which is not usable for the experiments because in this case
the grasp planning tool is likely to grasp the noise.

B. Point Cloud Data Cleaning

We observed a noise problem that we refer to as “drifting”.
During a session, the same geometric feature of an object
is likely to be recorded multiple times across different
frames, resulting in multiple points of the same geometric
feature. Such points share the same unique identifier, but
have different (x, y, z) coordinates. The points that share
the same unique identifier tend to fit a straight line, hence
the notion of a drift. However, different lines don’t share
the same direction, so the drift effect does not appear to
be uniform across the point cloud. To clean up Craw we
average out points with same unique identifiers as the first
cleaning technique. Suppose we record geometric feature k

Fig. 3. Drifted points in a point cloud. Points that are extracted by the
ARKit from the same feature and are from different frames are colored by
the same color. A magnified window at the upper left corner exhibits the
drift and shows that the drifting points roughly lie on the same line.

of the object and m drifts occur in total. We have m points
with the same identifier, but different (x, y, z) coordinates.
Each point p of a geometric feature k has its coordinates
(px, py, pz), and the set of all points for geometric feature k
is Pk, so m = |Pk|. We update feature k’s points as follows:

p′ =
1

m

∑
p∈Pk

p

As illustrated in Fig 3, when a point drifts, it roughly creates
a straight line, and in most cases, the actual geometric feature
point of the object lies right in the middle of the line.
Thus, we are able to recover the actual geometric feature
points by taking an average over drifted points. We iterate
through every point of geometric feature based on its unique
identifier. After this step, each geometric feature only has
one point. While we have reduced the drifting problem, we
now have a sparser point cloud, which we denote as U .
Our assumption, that the drifting problem originates from a
linear transformation (rotation and translation), is reinforced
by different point cloud registration methods we have tried
(iterative closest point and bundle adjustment [8]). However,
the results are similar to the averaging method while these
methods are much more time-consuming.

Having reduced the drifts, we proceed to further clean
up and denoise the new point cloud. First, we need to
eliminate the dense ground plane that camera captures during
a session. The points on the ground plane are a major source
of noise in the point cloud. They are as dense as the feature
points from the object, so it is essential to get rid of the
noise points from the plane. We fit and remove the plane
using RANSAC because RANSAC is fast enough for a large

Algorithm 1 kNN-Based Outliers Removal
Require: Uobj , k, and ε

1: for p ∈ Uobj do
2: knn = k-Nearest Neighbors of p
3: dist = 0
4: for nn ∈ knn do
5: dist ← dist + ‖p− nn‖
6: dist ← dist / k
7: if dist > ε then
8: Uobj ← Uobj \ {p}
9: return updated Uobj as Cclean

number of data points captured by the camera. After running
RANSAC [26], [27] on U , we obtain two output values
dplane,nplane, where dplane is the threshold value in locally
fit z-direction, representing the approximate z-coordinate of
the plane that we are trying to get rid of, and nplane ∈ R3

is the approximate normal vector of the plane calculated by
RANSAC. Using dplane and nplane, we can cut off the points
on the ground plane by rejecting any point p with:

pz 6 dplane

(
nplane · k̂

)
The above criterion separates the object from the plane in
the point cloud U . We call the separated object point cloud
without plane Uobj .

After rejecting the points from the ground plane noise
in the point cloud, outliers still exist, and they are either
near-surface or isolated. Such outliers are easier to remove
because they are usually sparser than regular data points.

We propose an algorithm based on k-Nearest Neighbor
(kNN) to rid the point cloud of the sparse outliers by iterating
through every point p in Uobj . kNN is able to effectively filter
out the noise while maintaining the features captured in the
point cloud. In Algorithm 1, for each point p, we calculate its
kNN, and we reject the selected point if the average distance
from it to its kNN is above a threshold value ε, meaning that
the point is potentially a sparse outlier. Here, k and ε are
hyperparameters.

The updated Uobj point cloud contains substantially less
noise from the ground and isolated outliers. As a result, we
obtain a better-quality point cloud data, and we can convert
the updated Uobj into a depth map that is compatible with
GQ-CNN. We denote the updated Uobj as Cclean.

C. Transformation to a Depth Map

We want to transform the point clouds to depth maps
because most grasp planning tools are based on the depth
images captured by a depth camera. To generate a depth
map, we first create an artificial depth camera, and we fix
the camera at depth 0. Then to create an artificial “bin” to
emulate regular robot grasping and bin-picking tasks, we use
the output from RANSAC. First, since dplane

(
nplane · k̂

)
represents the approximate z-coordinate of the ground plane
in the camera’s local coordinates, we use this value as the

depth of the bin or the desk in grasping scenarios, which
should be the farthest from the camera.

One of the potential advantages of point clouds over
traditional depth images is that a point cloud contains richer
geometric information about the object: depth images only
contain top-down views. Since we artificially create a depth
camera, we can manipulate the camera pose in order to view
the object from different angles, thus revealing more geome-
try of the objects which is potentially useful to generate more
robust grasps. We use a camera pose matrix T to adjust the
view orientations of the object, which can potentially reveal
more information about grasp locations on other facets of
the object.

One caveat about changing view orientation is that the
system is not aware of the ground after we change view an-
gle. Under this circumstance, the robotic arm might interfere
with the plane when it is trying to grasp from the side. Even
though such grasps have high Q values, interfering with the
ground plane makes such grasps not applicable. To address
this, we introduce a constraint function c, where c takes in
a grasp, analyzes its pose, and outputs a boolean value. If
the parallel jaws try to grasp some point beyond the plane
limit, we reject the grasp, and c outputs False. Since GQ-
CNN samples all possible grasps and outputs the grasp with
the highest Q, we will return the grasp G with the highest
Q such that it does not interfere with the ground plane and
c(G) returns True.

After setting the camera pose and defining the grasp
constraint function, we obtain a depth map converted from
the point cloud. Note that this depth map may have some
holes in it because of the sparsity of the point cloud data. The
resulting depth map is likely to be porous, where each hole is
a group of zero-valued pixels. So one last step we do before
feeding the image into GQ-CNN is to inpaint [28] the image.
This step fills in the zero-valued pixels in the holes based on
the values of surrounding pixels using OpenCV [29]. Having
reduced the number of holes, we can then feed the image into
GQ-CNN to plan a grasp.

D. Feeding into GQ-CNN

In this step, the pre-trained network GQ-CNN takes in a
depth image and generates 100 potential grasps, where each
potential grasp should satisfy the constraint function c. The
output grasp will be the grasp with the highest Q value. We
visualize the grasp with the overlaid grasp vector onto the
depth map and record the Q value of the grasp.

V. RESULTS

A. Simulation

To record the point cloud, we use an iPhone X with
ARKit. ARKit uses SFM to extract feature points from
an RGB image sequence [2]. As shown in Fig 1 and 3,
the points collected by ARKit is extremely noisy. We use
the default setting of the iPhone’s camera, which is 60fps.
In the simulation, we use parallel-jaw grippers with jaw
widths of 5 and 10 centimeters. Therefore, the objects are
chosen according to that size limit for the grippers to grasp

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9

Q = 0.996 Q = 0.999 Q = 1.000 Q = 1.000 Q = 0.981 Q = 0.785 Q = 0.980 Q = 0.876 Q = N/A

Fig. 4. Results with nine objects and their Q values. Top Row: photos. Middle Row: the cleaned and denoised point clouds. Bottom Row: planned
grasps on the transformed depth images. Note that Obj 9 is a failure case due to the reflective and monochromatic feature of the object.

successfully. We use ε = 0.005 and k = 10, and this
combination of hyperparameters gives us the best point cloud
cleaning result. To add an artificial depth camera, we use
the intrinsics of a Photoneo PhoXi camera, which is the
camera that was used in GQ-CNN’s training process, and the
intrinsics are: fx = 1122.0, fy = 1122.0, cx = 511.5, cy =
384.0.

To test the proposed pipeline, we run the method on
nine different objects. Other than the size limit, the objects
should have relatively complex physical shapes in order to
reflect discrepancy in geometry when viewed from different
orientations. Object 9 in Fig 4 is actually a failure case. Such
an object demonstrates the drawback of SfM, which is that
it does not recognize features on reflective, monochromatic,
or small objects.

In the trials, for each object, we record 5 point clouds of
the object separately. For each point cloud, we plan 9 grasps
based on 9 different view orientations of the camera: one
grasp from traditional top-down view, four grasps from 45
degrees camera poses, with each pose 90 degrees apart, and
four grasps from 90 degrees camera poses, with each pose
90 degrees apart. In total, we end up having a dataset with
360 different grasps. From this dataset, we choose the best
grasp of each object based on point cloud data quality, Q
value, and grasp location. In the cases where a top-down view
depth image cannot reveal enough geometric information, the
generated grasps on those objects are not physically robust.
Generally, when one view limits geometric information from
view, the planned grasp is possibly bad, despite being the
best grasp from that view. Therefore, viewing it from other
directions such as 90 degrees or 45 degrees is likely to reveal
more geometry of the objects, thus generating grasps with
higher robustness.

In Fig 4, the grasps planned on Obj 2, Obj 3, and Obj 7
are not based on top-down view depth maps. In contrast, Obj
2’s grasp is based on 45 degrees view orientation, and Obj 3
and 7’s grasps are based on 90 degrees view orientation. The
resulting grasps have better qualities than traditional grasps
based on top-down view depth maps and are inaccessible

(a) Without constraint (b) With constraint (c) Physical grasp

Fig. 5. The usage of constraint functions prevents GQ-CNN from grasping
ground noise on Object 3. When the ground noise exists, we set the
constraint function such that the gripper will not grasp any point near the
ground surface

from top-down views.
Good point cloud quality is an essential element to

satisfactory grasps. It is infeasible for Dex-Net to plan
grasps on the point clouds without cleaning because of the
sheer amount of noise. When the cleaning process is not
sufficiently aggressive, some noise on the ground plane fails
to be removed. In such a case, GQ-CNN is likely to grasp
noisy points on the ground plane. We resolve this problem by
using the RANSAC procedure with higher threshold values
and decreasing ε in the kNN-based outliers removal method.
Meanwhile, we try to add in and fine-tune the constraint
function that we create in order to prevent the parallel jaws
from grasping any point on the ground plane surface or
interfering with the ground plane. In most cases, when the
parallel jaws do not collide with the ground plane, they
are less likely to grasp noises. Hence, making use of and
adjusting the constraint functions also alleviates the noise
problem if we are planning grasps on a point cloud with bad
quality. Fig. 5 shows a failure case when planning a grasp
on Obj 3 from a 90 degrees view orientation that without a
constraint function, GQ-CNN is planning to grasp the ground
noise when it persists after RANSAC, and with a constraint
function that keeps the gripper from grasping any point near
the ground surface, even though the noise remains the same,
the gripper now tries to grasp the object instead.

The pipeline takes approximately 3 minutes for an object

Objects
Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9 Total

Success Rate (%) 100 100 90 100 90 100 80 100 N/A 95
Processing Time (sec) 25 37 49 30 28 48 33 24 N/A 34.25

Fig. 6. Physical experiments result on 8 different objects, that were successfully recorded by SFM. Ten trials on each object.

to plan a grasp from any angle. The majority of the time
is allocated to the data collecting part of the pipeline. In
order to sufficiently collect the geometry of the object, we
need to carefully scan each facet three to four times, and
we also need to reduce the speed of movement in order to
keep the drifting minimal and stable. Therefore, the scanning
process takes 2 minutes, and we fix this amount of time to
all objects. Cleaning a recorded point cloud using RANSAC
and Algorithm 1 typically takes 30 seconds, and converting
the point cloud into a depth image and feeding the resulting
depth image to GQ-CNN to plan a grasp takes less than 10
seconds.

B. Physical Experiments

To test Dex-Net AR on a physical robot, we execute it
on an ABB YuMi robot. We reroute YuMi robot’s input
from depth images taken from a PhoXi depth camera to the
artificial depth map converted from the point clouds recorded
by an iPhone. For each object, we run the algorithm on 5
depth maps converted from 5 point clouds in the orientations
that have the highest Q scores. For each depth map, we grasp
the corresponding object twice. Therefore, we grasp each
object 10 times in total. To measure the performance, we
use metrics in [1]:

1) Success Rate: as the percentage of grasps that we were
able to lift, transport, and hold a desired object without
collision when approaching the object.

2) Processing Time: as the amount of time spent to clean
up the point cloud using RANSAC and Algorithm 1.

Since we keep the scanning time for all objects identical
(2 minutes), the major difference of running time for the
objects comes from the cleaning process. As the geometric
complexity of the object increases, the number of points
that are recorded by SfM also increases correspondingly, so
the running time of Algorithm 1 on the point cloud also
increases. For example, Obj 8 in Fig 4 has the simplest
geometry among all objects, so it requires the least cleaning
time as shown in Fig 6.

From Fig 6, the average success rate for all eight objects
(we have excluded Obj 9 whose point cloud failed to be
recorded) is 95%.

In another notable experiment, as shown in Fig. 7, the
robot attempts to grasp Object 3 using a standard top-down
view depth image from a fixed PhoXi camera. Note that
Object 3 is an adversarial object which is difficult to grasp
from a top-down view. The planned grasp on this top-down
view is not optimal since the parallel jaw grippers collide
with the object’s ears area due to the complex shape of Object
3. In contrast, based on an artificial depth map of sideways

(a) Object 3 geometry (b) Top-down grasp us-
ing PhoXi depth map

(c) Sideways grasp using
AR depth map

Fig. 7. The depth map converted from AR point cloud reveals more
geometric information, thus facilitating better grasp.

orientation converted from the AR point cloud, Dex-Net AR
successfully grasps the object by its neck area. Thus, even
the converted depth map has lower quality and resolution,
the generated grasp is superior in this case.

VI. CONCLUSION

We present Dex-Net AR: a pipeline to plan grasps from
data taken from commodity smartphones. With appropriate
post-processing and cleaning methods, the point clouds col-
lected by a smartphone can be used to plan robust grasps
from different view orientations using Dex-Net, and used as
input to pass into a physical robot to grasp the objects.

However, the time spent on data collection is exceedingly
high: one needs to spend at least 120 seconds to scan the
object in order to record sufficient data. Therefore, one
potential improvement is that we can try to bring down
the amount of time in video capturing using a learning-
based method to augment and complete the point cloud data
given that only limited data are available. Alternatively, we
might train a network to learn depth from the motion of
smartphone cameras [30]. Emerging smartphones may also
have depth cameras [31], which could directly collect cleaner
point clouds.

ACKNOWLEDGEMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep
Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and
the CITRIS ”People and Robots” (CPAR) Initiative. This research was
supported in part by: the Scalable Collaborative Human-Robot Learning
(SCHooL) Project, NSF National Robotics Initiative Award 1734633 and by
a Google Cloud Focused Research Award for the Mechanical Search Project
jointly to UC Berkeley’s AUTOLAB and the Stanford Vision Learning Lab.
The authors were supported in part by donations from Siemens, Google,
Toyota Research Institute, Autodesk, Honda, Intel, Hewlett-Packard and by
equipment grants from PhotoNeo, NVidia, and Intuitive Surgical. We thank
our colleagues who provided helpful feedback and suggestions, in particular
Priya Sundaresan, Jackson Chui, Michael Danielczuk, Kate Sanders, and
Ajay Tanwani.

REFERENCES

[1] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” 2017.

[2] (2019) ARKit: Apple Developer Documentation. [On-
line]. Available: https://web.archive.org/web/20190912200131/
https://developer.apple.com/documentation/arkit

[3] L. B. Rosenberg, “The use of virtual fixtures as perceptual overlays
to enhance operator performance in remote environments.” Stanford
Univ Ca Center for Design Research, Tech. Rep., 1992.

[4] P. Nowacki and M. Woda, “Capabilities of arcore and arkit platforms
for ar/vr applications,” in International Conference on Dependability
and Complex Systems. Springer, 2019, pp. 358–370.

[5] T. Lee and T. Hollerer, “Handy ar: Markerless inspection of augmented
reality objects using fingertip tracking,” in 2007 11th IEEE Interna-
tional Symposium on Wearable Computers. IEEE, 2007, pp. 83–90.

[6] M. Billinghurst, A. Clark, G. Lee et al., “A survey of augmented
reality,” Foundations and Trends R© in Human–Computer Interaction,
vol. 8, no. 2-3, pp. 73–272, 2015.

[7] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch,
R. W. Picard, and A. Pentland, “Augmented reality through wearable
computing,” Presence: Teleoperators & Virtual Environments, vol. 6,
no. 4, pp. 386–398, 1997.

[8] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[9] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A survey of
structure from motion*.” Acta Numerica, vol. 26, pp. 305–364, 2017.

[10] A. Chandrashekar, J. Papadakis, A. Willis, and J. Gantert, “Structure-
from-motion and rgbd depth fusion,” in SoutheastCon 2018. IEEE,
2018, pp. 1–8.

[11] X. Ning, F. Li, G. Tian, and Y. Wang, “An efficient outlier removal
method for scattered point cloud data,” PloS one, vol. 13, no. 8, p.
e0201280, 2018.

[12] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and
M. Ovsjanikov, “Pointcleannet: Learning to denoise and remove out-
liers from dense point clouds,” in Computer Graphics Forum. Wiley
Online Library, 2019.

[13] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp.
886–900, 2012.

[14] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in 2009 IEEE International Conference on Robotics
and Automation. IEEE, 2009, pp. 1710–1716.

[15] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner et al., “Opengrasp: a
toolkit for robot grasping simulation,” in International Conference
on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 2010, pp. 109–120.

[16] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[17] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep
networks,” IEEE Robotics and Automation Letters, 2019.

[18] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp planning
with multiple object representations,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 2851–
2858.

[19] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Şucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics. Springer, 2014, pp. 241–
252.

[20] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[21] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Gold-
berg, “Cloud-based robot grasping with the google object recognition
engine,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 4263–4270.

[22] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in 2011
international conference on computer vision. IEEE, 2011, pp. 858–
865.

[23] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[24] D. Wang, D. Tseng, P. Li, Y. Jiang, M. Guo, M. Danielczuk, J. Mahler,
J. Ichnowski, and K. Goldberg, “Adversarial grasp objects.”

[25] J. Mahler and K. Goldberg, “Learning deep policies for robot bin pick-
ing by simulating robust grasping sequences,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 515–524.

[26] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[27] M. Y. Yang and W. Förstner, “Plane detection in point cloud data,” in
Proceedings of the 2nd int conf on machine control guidance, Bonn,
vol. 1, 2010, pp. 95–104.

[28] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
inpainting,” in Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 417–424.

[29] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[30] J. Valentin, A. Kowdle, J. T. Barron, N. Wadhwa, M. Dzitsiuk,
M. Schoenberg, V. Verma, A. Csaszar, E. Turner, I. Dryanovski
et al., “Depth from motion for smartphone ar,” ACM Transactions
on Graphics (TOG), vol. 37, no. 6, pp. 1–19, 2018.

[31] (2019) Samsung Galaxy S10. [Online]. Available:
https://www.samsung.com/us/mobile/galaxy-s10/camera/

