Session 1: Full Paper Presentation

PPMLP 20, November 9, 2020, Virtual Event, USA

DerpHi: A Cryptographic Inference Service for Neural Networks

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan

Wenting Zheng, Raluca Ada Popa
UC Berkeley

Abstract

Many companies provide neural network prediction services to
users for a wide range of applications. However, current prediction
systems compromise one party’s privacy: either the user has to
send sensitive inputs to the service provider for classification, or
the service provider must store its proprietary neural networks
on the user’s device. The former harms the personal privacy of
the user, while the latter reveals the service provider's proprietary
model.

We design, implement, and evaluate DELPH]I, a secure prediction
system that allows two parties to execute neural network infer-
ence without revealing either party’s data. DELPHI approaches the
problem by simultaneously co-designing cryptography and ma-
chine learning. We first design a hybrid cryptographic protocol that
improves upon the communication and computation costs over
prior work. Second, we develop a planner that automatically gener-
ates neural network architecture configurations that navigate the
performance-accuracy trade-offs of our hybrid protocol. Together,
these techniques allow us to achieve a 22X improvement in online
prediction latency compared to the state-of-the-art prior work.

ACM Reference Format:

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan and Wenting
Zheng, Raluca Ada Popa. 2020. DELpaL: A Cryptographic Inference Ser-
vice for Neural Networks. In 2020 Workshop on Privacy-Preserving Machine
Learning in Pructice (PPMLP 20), Novemnber 9, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3411501.3419418

1 Introduction

Recent advances in machine learning have driven increasing de-
ployment of neural network inference in popular applications like
voice assistants [3] and image classification [19]. However, the use
of inference in many such applications raises privacy concerns. For
example, home monitoring systems (HMS) such as Kuna [17] and
Wyze [27] use proprietary neural networks to classify objects in
video streams of users’ homes such as cars parked near the user’s
house, or faces of visitors to the house. These models are core to
these companies’ business and are expensive to train.

To make use of these models, either the user has to upload their
streams to the servers of the HMS (which then evaluate the model
over the stream), or the HMS has to store its model on the user’s
monitoring device (which then performs the classification). Both
of these approaches are unsatisfactory: the first requires users to

O

This work is licensed under a Creative Commons Attribution International 4.0 License.

PPMLP'20, November 9, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACMISBN 978-1-4503-8088-1/20/11.
https://doi.org/10.1145/3411501.3419418

27

P— . Cloud

Client ! Cryptographic
" Protocol |2
............................ ~~
NN Model
Prediction

Figure 1: Cryptographic neural network inference. The lock indi-
cates data provided in encrypted form.

upload video streams containing sensitive information about their
daily activities to another party, while the second requires the
HMS to store its model on every device, thus allowing users and
competitors to steal the proprietary model.

To alleviate these privacy concerns, a number of recent works
have proposed protocols for cryptographic prediction over (convo-
lutional) neural networks [12, 20, 18, 16] by utilizing specialized
secure multi-party computation (MPC) [28, 13]. At a high level,
these protocols proceed by encrypting the user’s input and the
service provider’s neural network, and then tailor techniques for
computing over encrypted data (like homomorphic encryption or
secret sharing) to run inference over the user’'s input. At the end of
the protocol execution, the intended party(-ies) learn the inference
result; neither party learns anything else about the other’s input.
Fig. 1 illustrates this protocol flow.

Unfortunately, these cryptographic prediction protocols are still
unsuitable for deployment in real world applications as they re-
quire the use of heavy cryptographic tools during the online execu-
tion. These tools are computationally intensive and often require a
large amount of communication between the user and the service
provider. Furthermore, this cost grows with the complexity of the
model, making these protocols unsuitable for use with state-of-
the-art neural network architectures used in practice today. For
example, using a state-of-the-art protocol like GAZELLE [16] to
perform inference for state-of-the-art deep neural networks like
ResNet-32 [15] requires ~ 82 seconds and results in over 560 MB
communication.

Our contribution. In this paper, we present DELPHI, a crypto-
graphic prediction system for realistic neural network architectures.
DEeLpHI achieves its performance via a careful co-design of cryp-
tography and machine learning. DELPHI contributes a novel hybrid
cryptographic prediction protocol, as well as a planner that can
adjust the machine learning algorithm to take advantage of the
performance-accuracy trade-offs of our protocol. Our techniques
enable us to perform cryptographic prediction on more realistic
network architectures than those considered in prior work. For
example, using DELPHI for cryptographic prediction on ResNet-32
requires just 3.8 seconds and 60 MB communication in the online
phase, improving upon GAZELLE by 22X and 9X respectively.

Session 1: Full Paper Presentation

1.1 Techniques

We now describe at a high level the techniques underlying DELPHI's
excellent performance.

Performance goals. Modern convolutional neural networks con-
sist of a number of layers, each of which contains one sub-layer
for linear operations, and one sub-layer for non-linear operations.
Common linear operations include convolutions, matrix multiplica-
tion, and average pooling. Non-linear operations include activation
functions such as the popular ReLU (Rectified Linear Unit) function.

Achieving cryptographic prediction for realistic neural networks
thus entails (a) constructing efficient subprotocols for evaluating
linear and non-linear layers, and (b) linking the results of these
subprotocols with each other.

Prior work. Almost all prior protocols for cryptographic predic-
tion utilize heavyweight cryptographic tools to implement these
subprotocols, which results in computation and communication
costs that are much higher than the equivalent plaintext costs.
Even worse, many protocols utilize these tools during the latency-
sensitive online phase of the protocol, i.e., when the user acquires
their input and wishes to obtain a classification for it. (This is op-
posed to the less latency-sensitive preprocessing phase that occurs
before the user’s input becomes available).

For example, the online phase of the state-of-the-art GAZELLE
protocol uses heavy cryptography like linearly homomorphic en-
cryption and garbled circuits. This results in heavy preprocessing
and online costs: for the popular network architecture ResNet-32
trained over CIFAR-100, GAZELLE requires ~ 158 seconds and 8 GB
of communication during the preprocessing phase, and ~ 50 sec-
onds and 5 GB of communication during the preprocessing phase,
and ~ 82 seconds and 600 MB of communication during the online
phase.

DEeLPHTI's protocol. To achieve good performance on realistic
neural networks, DELPHI builds upon techniques from GAZELLE to
develop new protocols for evaluating linear and non-linear layers
that minimize the use of heavy cryptographic tools, and thus mini-
mizes communication and computation costs in the preprocessing
and online phases. We begin with a short overview of GAZELLE’s
protocol as it is the basis for DELPHT's protocols.

Starting point: GAZELLE. GAZELLE [16] is a state-of-the-art
cryptographic prediction system for convolutional neural networks.

GAZELLE computes linear layers using an optimized linearly-homomorphic

encryption (LHE) scheme [6, 21, 22, 8] that enables one to perform
linear operations directly on ciphertexts. To compute non-linear
layers, GAZELLE uses garbled circuits [28] to compute the bitwise
operations required by ReLU. Finally, because each layer in a neu-
ral network consists of alternating linear and non-linear layers,
GAZELLE also describes how to efficiently switch back-and-forth
between the two aforementioned primitives via a technique based
on additive secret sharing.

As noted above, GAZELLE's use of heavy cryptography in the
online phase leads to efficiency and communication overheads. To
reduce these overheads, we proceed as follows.

Reducing the cost of linear operations. To reduce the online
cost of computing the linear operations, we adapt GAZELLE to move
the heavy cryptographic operations over LHE ciphertexts to the

28

PPMLP 20, November 9, 2020, Virtual Event, USA

preprocessing phase. Our key insight is that the service provider’s
input M to the linear layer (i.e. the model weights for that layer)
is known before user’s input is available, and so we can use LHE
to create secret shares of M during preprocessing. Later, when the
user’s input becomes available in the online phase, all linear oper-
ations can be performed directly over secret-shared data without
invoking heavy cryptographic tools like LHE, and without requiring
interactions to perform matrix-vector multiplications.

The benefits of this technique are two-fold. First, the online
phase only requires transmitting secret shares instead of cipher-
texts, which immediately results in an 8X reduction in online
communication for linear layers. Second, since the online phase
only performs computations over elements of prime fields, and
since our system uses concretely small 32-bit primes for this pur-
pose, our system can take advantage of state-of-the-art CPU and
GPU libraries for computing linear layers; see the full version for

details.

Reducing the cost of non-linear operations. While the above
technique already significantly reduces computation time and com-
munication cost, the primary bottleneck for both remains the cost
of evaluating garbled circuits for the ReLU activation function. To
minimize this cost, we use an alternate approach [12, 18, 20, 5] that
is better suited to our setting of computing over finite field elements:
computing polynomials. In more detail, DELPHI replaces ReLU acti-
vations with polynomial (specifically, quadratic) approximations.
These can be computed securely and efficiently via standard proto-
cols [4].

Because these protocols only require communicating a small con-
stant number of field elements per multiplication, using quadratic
approximations significantly reduces the communication overhead
per activation, without introducing additional rounds of communi-
cation. Similarly, since the underlying multiplication protocol only
requires a few cheap finite field operations, the computation cost is
also reduced by several orders of magnitude. Concretely, the online
communication and computation costs of securely computing qua-
dratic approximations are 192X and 10000x smaller (respectively)
than the corresponding costs for garbled circuits.

However, this performance improvement comes at the cost of
accuracy and trainability of the underlying neural network. Prior
work has already established that quadratic approximations provide
good accuracy in some settings [20, 18, 11, 5]. At the same time,
both prior work [20] and our own experiments indicate that in
many settings simply replacing ReLU activations with quadratic
approximations results in severely degraded accuracy, and can
increase training time by orders of magnitude (if training converges
at all). To overcome this, we develop a hybrid cryptographic protocol
that uses ReLUs and quadratic approximations to achieve good
accuracy and good efficiency.

Planning an efficient usage of the hybrid cryptographic pro-
tocol. It turns out that it is not straightforward to determine which
ReLU activations should be replaced with quadratic approximations.
Simply replacing arbitrary ReLU activations with quadratic approx-
imations can degrade the accuracy of the resulting network, and
can even cause the network to fail to train.

So, to find an appropriate placement or network configuration,
we design a planner that automatically discovers which ReLUs

Session 1: Full Paper Presentation

Service Provider

@ Architectural search

PP P

98% 94% | 92%

@ Preprocessing

™ @ Online prediction

Figure 2: DELPHI's architecture. Orange layers represent quadratic
approximations while blue ones represent ReLUs.

to replace with quadratic approximations so as to maximize the
number of approximations used while still ensuring that accuracy
remains above a specified threshold.

The insight behind our planner is to adapt techniques for neural
architecture search (NAS) and hyperparameter optimization (see [7,
25] for in-depth surveys of these areas) to our setting. Namely, we
adapt these techniques to discover which layers to approximate
within a given neural network architecture, and to optimize the
hyperparameters for the discovered network.

The overall system. DELPHI combines the above insights into
a cohesive system that service providers can use to automatically
generate cryptographic prediction protocols meeting performance
and accuracy criteria specified by the provider. In more detail, the
service provider invokes DELPHI's planner with acceptable accu-
racy and performance thresholds. The planner outputs an optimized
architecture that meets this goal, which DELPHI then uses to instan-
tiate a concrete cryptographic prediction protocol that utilizes our
cryptographic techniques from above.

This co-design of cryptography and machine learning enables
DEeLpHI to efficiently provide cryptographic prediction for networks
deeper than any considered in prior work. For example, using
DELPHI to provide inference for the popular ResNet-32 architecture
requires only 60 MB communication and 3.8 seconds.

2 System overview

2.1 System setup

There are two parties in the system setup: the client and the service
provider (or server). In the plaintext version of our system, the
service provider provides prediction as a service using its internal
models via an APL The client uses this API to run prediction on its
own data by transferring its data to the service provider. The service
provider runs prediction using the appropriate neural network, then
sends the prediction result back to the client. In DELPHI, the two
parties execute a secure prediction together by providing their own
inputs. The service provider’s input is the neural network, while
the client’s input is its private input used for prediction.

2.2 Threat model

DELPHI's threat model is similar to that of prior secure prediction
works such as GAZELLE [16] and MiniONN [18]. More specifically,
DELpHI is designed for the two-party semi-honest setting, where

PPMLP 20, November 9, 2020, Virtual Event, USA

only one of the parties is corrupted by an adversary. Furthermore,
this adversary never deviates from the protocol, but it will try to
learn information about the other parties’ private inputs from the
messages it receives.

2.3 Privacy goals

DELPHI's goal is to enable the client to learn only two pieces of
information: the architecture of the neural network, and the result
of the inference; all other information about the client’s private
inputs and the parameters of the server’s neural network model
should be hidden. Concretely, we aim to achieve a strong simulation-
based definition of security.

Like all prior work, DELPHI does not hide information about the
architecture of the network, such as the dimensions and type of
each layer in the network. For prior work, this is usually not an
issue because the architecture is independent of the training data.
However, because DELPHI's planner uses training data to optimally
place quadratic approximations, revealing the network architecture
reveals some information about the data. Concretely, in optimizing
an {-layer network, the planner makes ¢ binary choices, thus reveals
at most ¢ bits of information about the training data. Because f is
concretely small for actual networks (for example, £ = 32 for ResNet-
32), this leakage is negligible. This leakage can be further mitigated
by using differentially private training algorithms [23, 1]

DEevpHI, like most prior systems for cryptographic prediction,
does not hide information that is revealed by the result of the
prediction. In our opinion, protecting against attacks that exploit
this leakage is a complementary problem to that solved by DELPHI.
Indeed, such attacks have been successfully carried out even against
systems that “perfectly” hide the model parameters by requiring the
client to upload its input to the server [10, 2, 9, 26, 24]. Furthermore,
popular mitigations for these attacks, such as differential privacy,
can be combined with DELPHTI's protocol. We discuss these attacks
and possible mitigations in more detail in the full version.

2.4 System architecture and workflow

DELPHI's architecture consists of two components: a hybrid cryp-
tographic protocol for evaluating neural networks, and a neural
network configuration planner that optimizes a given neural net-
work for use with our protocol. Below we provide an overview of
these components, and then demonstrate how one would use these
in practice by describing an end-to-end workflow for cryptographic
prediction in home monitoring systems (HMS).

Hybrid cryptographic protocol. DELPHI's protocol for crypto-
graphic prediction consists of two phases: an offline preprocessing
phase, and an online inference phase. The offline preprocessing
phase is independent of the client’s input (which regularly changes),
but assumes that the server’s model is static; if this model changes,
then both parties would have to re-run the preprocessing phase.
After preprocesing, during the online inference phase, the client
provides its input to our specialized secure two-party computation
protocol, and eventually learns the inference result. We note that
our protocol provides two different methods of evaluating non-
linear layers: the first offers better accuracy at the cost of worse
offline and online efficiency, while the other degrades accuracy, but
offers much improved offline and online efficiency.

Session 1: Full Paper Presentation

Planner. To help service providers navigate the trade off between
performance and accuracy offered by these two complementary
methods to evaluate non-linear layers, DELPHI adopts a principled
approach by designing a planner that generates neural networks
that mix these two methods to maximize efficiency while still achiev-
ing the accuracy desired by the service provider. Our planner applies
neural architecture search (NAS) to the cryptographic setting in a
novel way in order to automatically discover the right architectures.

Example 2.1 (HMS workflow). As explained in Section 1, a home
monitoring system (HMS) enables users to surveil activity inside
and outside their houses. Recent HMSes [17, 27] use neural net-
works to decide whether a given activity is malicious or not. If it is,
they alert the user. In this setting privacy is important for both the
user and the HMS provider, which makes DELPHI an ideal fit. To
use DELPHI to provide strong privacy, the HMS provider proceeds
as follows.

The HMS provider first invokes DELPHI's planner to optimize
its baseline all-ReLU neural network model. Then, during the HMS
device’s idle periods, the device and the HMS server run the pre-
processing phase for this model. If the device detects suspicious
activity locally, it can run the online inference phase to obtain a
classification. On the basis of this result, it can decide whether to
alert the user or not.

Remark 2.2 (applications suitable for use with DELPHI). Exam-
ple 2.1 indicates that DELPHI is best suited for applications where
there is ample computational power available for preprocessing,
and where inference is latency-sensitive, but is not performed fre-
quently enough to deplete the reserve of preprocessed material.
Other examples of such applications include image classification in
systems like Google Lens [14].

References

[1] M. Abadi, A. Chu,L]. Goodfellow, H. B. McMahan, . Mironov,
K. Talwar, and L. Zhang. “Deep Learning with Differential
Privacy”. In: CCS '16.

G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vi-
tali, and G. Felici. “Hacking smart machines with smarter
ones: How to extract meaningful data from machine learning
classifiers”. In: IJSN (2015).

B. Barrett. “The year Alexa grew up”. https://www.wired.
com/story/amazon-alexa- 2018-machine-learning/.

D. Beaver. “Precomputing Oblivious Transfer”. In: CRYPTO "95.
E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei. “Faster CryptoNets: Leveraging Sparsity for Real-World
Encrypted Inference”. ArXiV, cs.CR 1811.09953.

T. Elgamal. “A public key cryptosystem and a signature sch-
eme based on discrete logarithms”. In: IEEE Trans. on Inf.
Theory (1985).

T. Elsken, J. H. Metzen, and F. Hutter. “Neural Architecture
Search: A Survey”. In: JMLR (2019).

J. Fan and F. Vercauteren. “Somewhat Practical Fully Homo-
morphic Encryption”. ePrint Report 2012/144.

M. Fredrikson, S. Jha, and T. Ristenpart. “Model Inversion
Attacks that Exploit Confidence Information and Basic Coun-
termeasures”. In: CCS ’15.

2]

(3]
4]
(5]
(6]

(7]
(8]
9]

30

[10]

(11]

(12]

[13]
[14]
[15]

[16]

(17]

(18]

(19]

[20]
[21]
[22]
(23]

[24]

[25]
[26]
[27]

(28]

PPMLP 20, November 9, 2020, Virtual Event, USA

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ris-
tenpart. “Privacy in Pharmacogenetics: An End-to-End Case
Study of Personalized Warfarin Dosing”. In: USENIX Secu-
rity 14,

Z. Ghodsi, T. Gu, and S. Garg. “SafetyNets: Verifiable Execu-
tion of Deep Neural Networks on an Untrusted Cloud”. In:
NIPS °17.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing. “CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy”.
In: ICML "16.

0. Goldreich, S. Micali, and A. Wigderson. “How to Play
any Mental Game or A Completeness Theorem for Protocols
with Honest Majority”. In: STOC "87.

Google. “Google Lens”. https://lens.google.com/.

K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning
for Image Recognition”. In: CVPR "16.

C.Juvekar, V. Vaikuntanathan, and A. Chandrakasan. “GAZELLE:

A Low Latency Framework for Secure Neural Network In-
ference”. In: USENIX "18.

Kuna. “Kuna AT”". https://getkuna.com/blogs/news/2017-05-
24-introducing-kuna-ai.

J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivious Neural
Network Predictions via MiniONN Transformations”. In:
CCS '17.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi.
“A survey of deep neural network architectures and their
applications”. In: Neurocomputing (2017).

P. Mohassel and Y. Zhang. “SecureML: A System for Scalable
Privacy-Preserving Machine Learning”. In: IEEE S&P "17.

P. Paillier. “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes”. In: EUROCRYPT '99.

0. Regev. “On lattices, learning with errors, random linear
codes, and cryptography”. In: JACM (2009).

R. Shokri and V. Shmatikov. “Privacy-Preserving Deep Learn-
ing”. In: CCS ’15.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
“Stealing Machine Learning Models via Prediction APIs”. In:
USENIX Security "16.

M. Wistuba, A. Rawat, and T. Pedapati. “A Survey on Neural
Architecture Search”. ArXiV, ¢s.LL.G 1905.01392.

X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. “A Method-
ology for Formalizing Model-Inversion Attacks”. In: CSF "16.
“Wyze: Contact and Motion Sensors for Your Home”. https:
[Iwww.wyze.com/.

A. C.Yao. “How to Generate and Exchange Secrets (Extended
Abstract)”. In: FOCS ’86.

