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Abstract— Robotic manipulation of deformable 1D objects
such as ropes, cables, and hoses is challenging due to the lack
of high-fidelity analytic models and large configuration spaces.
Furthermore, learning end-to-end manipulation policies directly
from images and physical interaction requires significant time
on a robot and can fail to generalize across tasks. We address
these challenges using interpretable deep visual representations
for rope, extending recent work on dense object descriptors for
robot manipulation. This facilitates the design of interpretable
and transferable geometric policies built on top of the learned
representations, decoupling visual reasoning and control. We
present an approach that learns point-pair correspondences
between initial and goal rope configurations, which implic-
itly encodes geometric structure, entirely in simulation from
synthetic depth images. We demonstrate that the learned
representation — dense depth object descriptors (DDODs) —
can be used to manipulate a real rope into a variety of different
arrangements either by learning from demonstrations or using
interpretable geometric policies. In 50 trials of a knot-tying
task with the ABB YuMi Robot, the system achieves a 66%
knot-tying success rate from previously unseen configurations.
See https://tinyurl.com/rope-learning for supple-
mentary material and videos.

I. INTRODUCTION

Manipulating deformable objects is valuable for a wide
variety of applications from surgery and manufacturing to
household robotics [2, 8, 11, 14, 15, 19, 26, 37-39]. We
specifically consider manipulation of rope, whose infinite
dimensional configuration space objects makes it difficult
to build accurate dynamical models. Rope manipulation is
also difficult because of significant perception challenges
due to self occlusions, loops, and self-similarity [5]. There
has been prior work successfully utilizing finite element
models [13] and hard-coded representations for deformable
manipulation [18, 25, 27, 40], but these techniques can fail
to generalize to novel configurations.

These perception and modeling challenges motivate
learning-based strategies. Past learning-based approaches
have achieved impressive results on a variety of rope manip-
ulation tasks, but require many hours of real-world data col-
lection to learn action-conditioned visual dynamics models of
the rope [28, 30, 41]. We address these issues by decoupling
perception from planning and control. We learn abstract
visual representations of rope by extending the techniques
from [11, 34] to learn descriptors for the rope that are
invariant across different configurations (Figure 2). We then
demonstrate that these representations can be leveraged to
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Fig. 1: The robot uses dense depth object descriptors (DDODs), learned from
synthetic depth images, to compare its current depth observation to a depth
image of the desired configuration and plan actions to guide the rope to the
goal configuration. We use this strategy to track video demonstrations of
rope manipulation tasks and to define a geometric algorithm that ties knots
from previously unseen starting configurations. A ball is added to the rope to
break symmetry and enable consistent correspondence mapping. Although
we exclusively use depth images for training and recording observations
during manipulation, we show color images of the workspace for visual
clarity.

create both interpretable (visually intuitive and geometrically
structured) and transferable polices (task agnostic, learned
from synthetic images, deployed on real images) for achiev-
ing various planar and non-planar rope configurations (Figure
1). Shifting the representational load from the control policy
to a separate perception module enables learning to encode
information about rope geometry in simulation without real
data. Furthermore, because the object descriptors are trained
only on images of the rope in different configurations and are
agnostic to the actions that generated them, accurate dynamic
simulation of the rope is unnecessary.

This paper provides four contributions: (1) a novel ap-
proach to achieve complex planar and non-planar rope
configurations with a single video demonstration of the
task by tracking the learned dense depth object descriptors
(DDODs); (2) experiments suggesting that the dense object
descriptors from Florence et al. [11] and Schmidt et al.
[34], previously applied to learn representations for rigid
bodies and slightly deformable objects using real data, can
be extended to learning representations for highly deformable
objects such as rope using only synthetic depth images; (3) a
geometrically-motivated algorithm using DDODs to tie knots
from unseen rope configurations; and (4) experiments with an
ABB YuMi robot suggesting the learned DDODs can be used
to achieve a set of planar/non-planar rope configurations and
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successful knot-tying in 33/50 trials from previously unseen
states.

II. BACKGROUND AND RELATED WORK

There is recent work on tracking deformable objects in
videos such as [8, 10, 29, 32, 34, 35]. There is also extensive
literature on deformable manipulation [18, 25, 27, 36, 40].
We primarily focus on learning-based methods, which have
been shown to generalize to a variety of tasks [28, 30,
41]. Due to the challenge of designing accurate analytical
models for deformable objects, [28, 30, 41] provide effective
learning-based algorithms for rope manipulation by either
generating a visual plan or using an existing one from
demonstrations, and then executing the plan by generating
controls using learned dynamics models given a single
video demonstration. However, these methods require tens of
hours of real data collection to learn rope dynamics. These
approaches also do not impose any geometric structure on
the learned visual representations, limiting the interpretability
of the learned policies. In contrast, we impose geometric
structure on the learned visual representations via DDODs,
learn them in simulation, and decouple them from robot
actions. This accelerates training time substantially, and
makes it easier to transfer the learned visual representation
across domains.

We learn geometrically meaningful visual representations
for rope by using dense object descriptors, introduced in the
context of robotic manipulation by [11]. While task agnostic
manipulation requires geometric understanding of the objects
being manipulated, fine-grained understanding of the object
configuration is often unnecessary to effectively grasp or
push an object [7, 15, 19, 22-24]. We leverage dense de-
scriptors for task-oriented manipulation, which often requires
detailed geometric understanding to manipulate objects in the
specific ways needed to achieve task success [9, 11]. There
exists extensive literature on generating descriptors for key-
points in images [6, 20], but these approaches rely on image
intensity gradients, which will not provide much signal in
images where the pixel intensities and textures are largely
homogeneous such as for a rope. This motivates a deep
learning-based approach to utilize global information about
the rope to generate descriptors and correspondences [4, 11,
16, 34].

Schmidt ef al. [34] propose a deep learning approach to
learn a function that maps pixels corresponding to the same
point on an object to the same descriptor and pixels corre-
sponding to different points to different descriptors. Florence
et al. [11] use these dense object descriptors for task-oriented
manipulation of rigid and slightly deformable objects such
as stuffed animals. In contrast to prior work, we demonstrate
that similar descriptors can be learned and leveraged for
manipulation of very deformable 1D structures such as rope.
We also learn descriptors from While [11, 16, 34] learn
descriptors using color image input, we use synthetic depth
input, which facilitates sim-to-real transfer of the learned
representations [22, 37] and richly encodes the geometric
structure of ropes in knotted configurations.

Fig. 2: A visualization of learned descriptors, where the right column
images display predicted pixel correspondences (red cursors) relative to
the left image source pixels (green cursors) and predicted best match
regions (darkened) [11]. This is )g{enerated by applying the learned descriptor
mapping: y : RY >t RW*HK jndependently to both synthetic depth
images, computing the pixelwise norm differences in descriptor space, and
scaling these differences linearly € [0, 255]. The darkened regions can be
interpreted as a measure of uncertainty in predicted correspondences. Note
that the predicted correspondences are sensitive to self-intersections.

III. SIMULATOR

We use Blender 2.8 [33] — an open-source 3D graph-
ics, animation, and rendering suite — to model the rope
in simulation and generate synthetic depth training data.
Hyperparameter details for the simulation environment are
provided in Section IX (Table III). The simulated rope is
modelled by twisting four thin cylindrical meshes to produce
a realistic braided twine appearance as in [3]. A sphere
mesh was added on one end to break the symmetry of the
rope, which was experimentally shown to reduce ambiguity
in descriptor learning. This rope representation consists of
a mesh with over fifty thousand ordered vertices of known
global coordinates and an underlying Bezier curve with M =
12 control points, Py, ...,Py (Figure 3). A larger M value en-
ables higher manipulation fidelity and a larger configuration
space for the rope. Simple configurations consist of purely
planar deformations, formed by picking random points along
the rope and pulling arbitrarily along the x and y directions.
Complex configurations include planar deformations in ad-
dition to randomized overlap, loops, and knots. Producing
varied synthetic depth training data requires simulating the
rope in a variety of configurations and exporting the relevant
ground truth data and rendered image. For the first step, we
randomize the positions of a subset of the Bezier control
points to produce varied deformations. Next, for a given
scene, we export a depth image from the scene’s Z-Buffer
output and a mapping i — (u;,v;),i € (1,...,N). This repre-
sents the projection of N vertex world coordinates to pixel
coordinates in the synthetic camera frame. The parameter
N specifies how many pixels to annotate on the image, so a
higher value of N produces more dense pixel match sampling
between images during training. This raw projection mapping
fails to account for complex rope geometries, since multiple
mesh vertices can project to the same pixel coordinate at
regions of self-intersection or occlusion. Thus, we reparent
all pixels in a given region to the top-most mesh vertex in that
region using a k-nearest neighbor algorithm with k = 4. That
is, given (u;,v;) and (ug,vg) such that ||(u;,v;) — (u,vi)||2
<7, we compare the z-coordinates of the corresponding
mesh vertex world coordinates, p; = (x;,y;,z;) and p =
(Xk, Yi, 2k ), respectively. If z; > z;, the exported mapping will
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Fig. 3: Rope simulation design. 1) The underlying representation of the rope is a set of M=12 Bezier control points (visualized as black points with orange
handles). These nodes can be randomly displaced along x, y, or z axes to produce arbitrary deformation or can be fixed according to a control polygon
to produce structured deformation such as loops, overlaps, and knots. The Bezier curve is of variable length while the rope mesh is of fixed length. The
Bezier nodes may become unequally spaced during displacement, as shown in sub-figure 1 when only 7 of the 12 nodes are visible after deformation. 2)
The wireframe rope mesh with ordered vertices of known coordinates. 3) A rendered depth map. 4) A visualization of the densely annotated scene with
N=1,465 pixels corresponding to N vertices sampled from the rope mesh in 3). The pixels are colored in a stream to demonstrate the ordering of the dense

ground truth annotations in simulation.

sl - INER

Fig. 4: A visualization of trained, normalized rope descriptors applied to syn-
thetic depth images unseen during training. The first and third images show
examples of synthetic depth images of a rope in different configurations. The
second and fourth represent the output of the dense correspondence network,
where for each pixel on the rope mask, the normalized 3D descriptor
vector is visualized as a RGB tuple. The visualizations suggest descriptor
consistency across deformations.

assign both [(uk, i), (uj,v;)] to k instead of j. Pixel matches
can be sampled across images of varying configurations by
pairing pixels by corresponding mesh vertex.

IV. DENSE DESCRIPTOR LEARNING

Here we describe the training procedure for training dense
object descriptors for rope manipulation from synthetic depth
data. Hyperparameters for descriptor learning are specified in
Appendix IX (Table IV).

A. Preliminaries

We consider an environment which consists of a static flat
plane and a braided rope and learn policies to achieve specific
planar and non-planar configurations. We do this by learning
a structured visual representation of the rope to estimate
point-pair correspondences between an overhead depth image
of the rope and a subgoal image. These correspondences are
then used to generate interpretable geometric policies which
move the rope to better align it with the subgoal. For more
details on how the policies are defined, see Section V.

For visual representation learning, we build on the work
in [11, 34] by learning descriptors from depth images in
addition to RGB and extending the framework to a highly
deformable object. In Florence et al. [11], representation
learning is done by first sampling a variety of points on
the surface a given object. The camera pose is changed via a
randomly sampled rigid body transformation and the sampled
points are associated with corresponding points in the new
view using standard static scene reconstruction techniques.
These correspondences are then used to train a Siamese
network [17] with pixelwise contrastive loss to learn the
desired embedding space. See [11] for more details. Florence
et al. [11] demonstrate that these descriptors can be used
to pick up rigid and slightly deformable objects at specific
grasp points from multiple views, even when the target grasp

is only identified in one view. Unlike [11], since the rope is
not rigid, it is insufficient to simply change the pose of the
camera to learn object descriptors for manipulation. Thus,
the rope must be manipulated into a variety of different
possible configurations to generate useful correspondences.
Since ground truth correspondences are difficult to obtain
for a real rope, we leverage simulation to obtain point-
pair correspondences, which are then used to learn DDODs.
Unlike [11], which train descriptors on RGB images, we train
on synthetic depth [11].

B. Descriptor Learning from Synthetic Depth Images

The training procedure involves sampling a random initial
configuration of the rope &; in simulation and applying some
transformation ¢ to yield a new configuration &. As in
Florence et al. [11], the goal is to learn a mapping to a
descriptor space in which corresponding points on &; and &,
are encouraged to be close together while non-corresponding
points are encouraged to be further apart.

We generate planar transforms by randomly translating
the coordinates of a subsample of the rope’s Bezier knots
Py,...,Pym along the x and y axes to simulate pulling the
rope arbitrarily along different directions. We also generate
transforms that simulate more complex rope configurations
including overlap, loops, and knots by geometrically arrang-
ing Py, ...,Py into the respective control polygons for these
configurations as in [21], and then slightly perturbing knot
coordinate positions for variation.

We sample a set of N corresponding point pairs p =
(p1i, pzi)f’: , on the rope between configurations &; and &,.
This allows us to sample a wide variety of possible rope
deformations, making it easier to generalize to different tasks
at test-time. Learning in simulation also makes it possible
to inject noise to enable robustness to varying experimental
conditions as described in Section IX-A.3. Then, we utilize
the same training procedure as in [11] to learn K-dimensional
DDODs, where K is a hyperparameter that we experimentally
vary between 3 and 16.

V. PoLICY DESIGN

Given the learned descriptors, we design interpretable
geometric policies defined over the learned DDODs. We
assume that the rope manipulation tasks considered can be
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Rope Manipulation Policy Experiments
Robot Robot

Human Human

Fig. 5: Three examples of rope manipulation action sequences the YuMi
robot performed by one-shot visual imitation of a demonstrated sequence
of observations. Each demonstrated sequence consists of a starting configu-
ration followed by pick-and-place actions performed by a human supervisor
to produce a different final state. For each step in the demonstration, the
YuMi is given a fixed number of pick-and-place attempts (1 for non-
planar sequences, 3 for planar sequences) to produce the next sequential
state, unless the IoU of the current workspace image and the goal state is
below a hand-tuned threshold (0.67). We allow fewer attempts for the non-
planar case because we observed that it is more difficult for the robot to
recover from poor nonplanar actions since these often produce entanglement
or particularly pathological configurations, whereas missteps in the planar
actions sequence are typically less costly since the rope is likely to remain
planar and correspondences can be resampled. For a single action, the YuMi
executes a greedy policy by grasping the correspondence on the rope in the
current image that is farthest from its pixelwise match in the goal image
and placing it at that point. Qualitative results suggest the efficacy of the
geometric policy defined over the learned descriptors.

performed by a sequence of pick and place actions by a
single robotic arm as in prior work [28, 30]. Hyperparameter
details regarding manipulation policies are specified in Ap-
pendix IX (Table V). We consider two algorithmic policies

for rope manipulation tasks:

A. Algorithm 1: One-Shot Visual Imitation

In this setting, a human demonstrator makes sequential
pick and place actions to arrange the physical rope into a
desired configuration. The robot observes one demonstration
as a sequence of images from an overhead depth camera,
then takes actions based on a greedy geometric policy.

Actions, defined by a start point (grasp) p; € R? and an
end point (drop) p. € R?, are generated by using the frames
in the provided demonstration as subgoals and using the
descriptors to sparsely estimate point-pair correspondences
between points on the current depth image of the rope at time
¢t and the current subgoal, given by a demonstration frame
(Figure 5). To find correspondences, we sparsely sample a
set of roughly evenly spaced pixels on the rope mask in

1. Grasp loop 2. Pull endpoint

Reference Knot-Tying through loop .

2. Align loop over
. ;
endpoint ’
™
Sequence

>

~ v ’

Knot-Tying Sequence .
(Perturbed Initil Confguration)

Fig. 6: To perform knot-tying, we label the centered loop point and endpoint
of the rope in a reference image, and define two geometric pick-and-place
actions in terms of the relative spacing of these points to generate a knot.
To generalize to a new initial loop configuration, we recompute loop and
endpoint correspondences and execute the sequence.

the current depth image by enforcing the constraint that
the inter-pixel distance between any two points should be
above a margin o = 50. For each of the sparsely sampled
pixels, we compute their correspondence on the goal image
by computing the 100 nearest neighbors in descriptor space
and taking the best match to be the median of the associated
100 pixels. We choose the median correspondence due to its
robustness to outliers.

Then, we find the pair of corresponding points with the
highest discrepancy (largest distance in R? between them),
and take the following action to align these points in 3D
space: the point-pair correspondence (p;, p») with the maxi-
mum discrepancy is computed and the robot grasps the rope
at point p; and places the rope at point p; to align the furthest
points in the image. This process is repeated up to k times for
each subgoal image or until the intersection-over-union (IoU)
of the current and goal state image masks is below a hand-
tuned threshold of 0.67. The IoU is a standardized metric
across segmentation tasks [12] and provides an indication of
the degree of alignment between two masks, which we use
to judge the similarity of two rope configurations. We found
the IoU to be a noisy measurement for alignment of current
and subgoal rope masks, and use a relatively low threshold
to account for this. This is likely caused by the long, thin
geometry of the rope, which complicates pixelwise alignment
of two otherwise very similar rope configurations.

B. Algorithm 2: Descriptor Parameterized Knot-Tying

In this setting, we use a two-action sequence of a knot-
tying task from a human demonstrator to parameterize a
sequence of motion primitives for knot-tying that generalizes
to unseen rope configurations. As in [28], we assume the rope
contains a single loop initially. The sequence is annotated
with the two pick and place actions used to execute the task
(Figure 6).

The first action involves picking the side of the loop close
to the end of the rope without the ball and placing it around
the endpoint of the rope. We record the descriptor vectors for
the grasp point and the end of the rope and use it to define an
action in terms of DDODs. When faced with a new, unseen
rope configuration with a loop, the robot grasps the closest
point in descriptor space to the grasp point in the reference
image and pulls it in the direction of the end of the rope,
which is also found by matching with the closest descriptor
in the reference frame.
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The next step involves grasping the end of the rope in
the loop and pulling it to tighten the knot. To define this
primitive, we record the descriptor vector for the end of the
rope in the reference image. When executing this maneuver
in a new configuration, the robot detects the end of the rope
by finding the closest pixel in descriptor space to the end
of the rope in the reference image. The robot grasps at this
point and pulls to tighten the knot.

VI. EXPERIMENTS

A. Baseline

We propose an analytical method for acquiring rope corre-
spondences and performing manipulation which we compare
against the dense correspondence method. This analytical
method is detailed in the Appendix (Section IX) and relies
on following the pixel intensity gradient of the rope at local
crops to collect annotations along the rope geometry. This
method is largely hand-tuned to the rope images observed by
the depth camera and lacks robustness to small irregularities
in the rope such as fraying and non-uniform thickness. It
is also currently unsupported for the non-planar case, as
following the gradient of the rope is nontrivial when the
rope overlaps on itself. These challenges with designing an
analytical baseline motivate the DDOD-based approach.

B. Experimental Setup

We use a 4 ft. by 1/2 in. braided white nylon rope
with a punctured tennis ball attached to one end to resolve
ambiguity between the ends of the rope and to match the
appearance of the rope in simulation. We assume access
to observations from a overhead depth camera (Photoneo
Phoxi 3D Scanner) and visibility of the rope in its entirety
(including endpoints) throughout the duration of the task.
We further assume a relatively flat background with no
distractor objects. In this experimental setup, it is infeasible
for the robot to do one shot visual imitation of the human
demonstrator in sequence, since the rope state is changed
from its initial configuration by the end of the demonstration.
Thus, we also assume that the robot can start from the
last recorded demonstration frame and do one shot visual
imitation in reverse to restore the original configuration of
the rope. Additional details about the experimental setup are
provided in the Appendix (Section IX).

C. Simulated Experiments

In simulation, we train the deep network used in Florence
et al. [11] to learn point-pair correspondences for a variety
of rope deformations as described in Section IV, for both
simple and complex tier configurations. For each network,
we train on a set of 3,600 generated synthetic depth and
RGB images ( 1 hr. data generation time) and evaluate
on a held-out test set of 100 pairs of previously unseen
images. Descriptor quality is measured in terms of pixel-
match error on the held-out test set as in [11]. Experiments
suggest that the learned descriptors are consistent and able
to accurately locate correspondences in images of rope in
unseen configurations. Figure 4 shows a few qualitative
examples.

In Figure 7, we evaluate the quality of the learned
descriptors when we vary the sensing modality (synthetic
RGB/synthetic depth), the descriptor dimension, the number
of annotated correspondences, and when we ignore/account
for occlusions in the nonplanar datasets using the method
described in Section III. We see that the descriptor quality
is largely invariant to small changes in descriptor dimension,
sensing modality, annotation density, and occlusion handling.
For non-planar deformations, the gap in the pixelwise error
for descriptors trained on RGB and depth data is observed
to be significantly lower than for planar deformations. Given
the greater depth variation in images, depth data is likely
more rich and useful in the nonplanar case. We also observe
the benefit of the added ball for breaking symmetry.

I Type [[ Subgoal [[ Trials w/ Improvement [[ Med. % Improvement [|
Baseline (P) 0 9/9 56
Baseline (P) 0 4/9 -4
Baseline (P) 0 6/9 42
DDOD (P) 0 28/32 58
DDOD (P) T 28732 )
DDOD (P) 2 23/32 33
DDOD (NP) 0 14/21 30
BDOD (NP) T 3721 3

TABLE I: Physical Experiment Results (Visual Imitation): We report the
number of trials that improve with respect to the subgoal-based loss defined
in Section VI-D.1 for planar (P) and non-planar (NP) visual imitation
experiments. We find that even in the non-planar case, the robot makes
positive progress in most trials, but note that performance decreases as the
task progresses. We also report the median percent improvement of the loss
over each subgoal’s starting configuration. We report the median, because
failures cause large negative outlier loss values, skewing the mean. We find
that the visual imitation policy using dense object descriptors is able to drive
the rope to configurations closer to the target configurations. We observe
that performance deteriorates in later subgoals, which we hypothesize is due
to compounding errors over time. We observe that non-planar manipulation
is more challenging.

TABLE II: Classification of the 33% Failures for Physical Knot Tying

[[ Mode [[ Explanation [[ Count ]|
A wrong endpoint correspondence 4
B wrong loop point correspondence 6
C endpoint occluded after pull 3
D loop pulled misaligned 3

D. Physical Experiments

We evaluate the learned representations for designing rope
manipulation policies with an ABB YuMi robot equipped
with one parallel jaw gripper. For planar physical experi-
ments, we use a 3-dimensional DDOD network trained on
simulated planar configurations with 1,400 labeled corre-
spondences per rendering. For nonplanar manipulation, we
use a 16-dimensional DDOD network trained on simulated
nonplanar configurations with 557 annotations per rendering.
Both networks are trained on noise-injected simulation im-
ages (Appendix, Section IX-A.3) to enable transfer to the real
rope. We use the networks to perform manipulation using the
geometric policies from Section V.

1) Alg 1: We evaluate Algorithm 1 on its ability to
track and repeat video sequences of both planar and non-
planar rope manipulation as shown in Figure 5 and Table
I. Each planar and non-planar sequence consists of three or
four frames respectively, including a starting configuration.
For each of the subgoals, the robot executes up to 3 or 1
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Ablations: Simulated Planar Deformation
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Fig. 7: Ablations measuring pixel-match error for the learned descriptors in simulation when descriptor dimension, sensing modality, number of
correspondences used for training, and occlusion handling method are varied. Results suggest that the learned representations are largely insensitive
to small changes in these parameters, with the exception of adding a ball to the end of the rope. Asymmetry is critical for good performance, as removing
the ball results in a significant deterioration in performance as expected. Furthermore, we note that depth input performs nearly identical to RGB for
non-planar configurations, which is consistent with the increased depth variation in non-planar settings.

actions for planar and non-planar experiments respectively,
and proceeds early to the next subgoal if the IoU threshold
in Section V-A is met.

a) Evaluation Metric: To evaluate the agent’s ability to
track the subgoals in the video sequence, we define a loss
function that takes in the realized image I, and the goal
image Igou1: L(Ireat;Igoar). For each image I, a sequence of
points along the rope is manually annotated, and a parametric
piecewise linear function p; (i) is fit to the points for i € [0, 1].
Then, the sum of squared errors is computed for a range
of shifts and rotations of I,,, for 100 evenly spaced points
on the curve and the minimum is returned by L. For each
subgoal in the demonstration trajectory, L is computed for
all frames in the segment corresponding to it in the robot
trajectory and report the percent improvement of the best
frame over the segment’s starting configuration (Figure VI-
D.1, Table I).

2) Alg 2: We evaluate the method in Section V-B on
a knot-tying task from 50 previously unseen configurations
with the rope starting in a loop. As in prior work [28, 30],
we report the success rate of the task by visually inspecting
whether a knot was successfully tied. Figure 6 illustrates
the knot-tying procedure used. The robot successfully ties a
knot in 33 /50 trials (66%). This rate is higher than the knot-
tying accuracy reported in [28] (38%) and [30] (60%), and
requires weaker supervision, although we do not provide a
direct comparison due to differences in experimental setup.
Failure modes include when the robot fails to accurately
identify the loop and endpoint correspondences, fails to align

the loop over the endpoint, or occludes the endpoint during
alignment, preventing task completion (Table II).

VII. DISCUSSION AND FUTURE WORK

This work presents a new method for designing inter-
pretable and transferable policies for rope manipulation
by learning a geometrically structured visual representation
(DDOD) entirely in simulation by building on the tech-
niques from Florence et al. [11]. The visual correspondence-
driven manipulation policies demonstrated allow for ease
of interpretation and understanding of robotic actions in
both a one-shot visual imitation framework and a descriptor-
parameterized task setting. We use this representation to
design intuitive geometric policies to track planar and non-
planar rope deformations from demonstrations and to design
a geometric algorithm for knot tying which achieves a 66%
success rate. In future work, we will explore learning more
complex manipulation primitives in descriptor space such
as suturing. We will also investigate whether the learned
descriptors provide appropriate representations for reinforce-
ment learning and for manipulation of 2D deformable objects
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