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Abstract—Recent years have seen an increased interest to-
wards strong security primitives for encrypted databases
(such as oblivious protocols), that hide the access patterns of
query execution, and reveal only the volume of results. How-
ever, recent work has shown that even volume leakage can
enable the reconstruction of entire columns in the database.
Yet, existing attacks rely on a set of assumptions that are
unrealistic in practice: for example, they (i) require a large
number of queries to be issued by the user, or (ii) assume
certain distributions on the queries or underlying data (e.g.,
that the queries are distributed uniformly at random, or that
the database does not contain missing values).

In this work, we present new attacks for recovering the
content of individual user queries, assuming no leakage from
the system except the number of results and avoiding the
limiting assumptions above. Unlike prior attacks, our attacks
require only a single query to be issued by the user for
recovering the keyword. Furthermore, our attacks make no
assumptions about the distribution of issued queries or the
underlying data. Instead, our key insight is to exploit the
behavior of real-world applications.

We start by surveying 11 applications to identify two
key characteristics that can be exploited by attackers—
(i) file injection, and (ii) automatic query replay. We present
attacks that leverage these two properties in concert with
volume leakage, independent of the details of any encrypted
database system. Subsequently, we perform an attack on the
real Gmail web client by simulating a server-side adversary.
Our attack on Gmail completes within a matter of minutes,
demonstrating the feasibility of our techniques. We also
present three ancillary attacks for situations when certain
mitigation strategies are employed.

1. Introduction

In recent years, there has been a tremendous increase
in interest towards encrypted database systems that en-
able queries over encrypted data, because they provide
privacy guarantees against a compromised database server.
A number of practical systems have been proposed by
academia as well as industry [1]-[11], typically relying
on techniques such as property-preserving encryption [12]—
[16] or searchable encryption [2], [17]-[27].

Most of these schemes leak query access patterns.
Consider the example of an email application: a user
issues a search query for a keyword over their emails.
To facilitate such queries, the mail server typically stores
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an inverted index (also called a secondary index) for each
user’s mailbox, which maps each keyword to the list of
emails it appears in. When fetching the results of a queried
keyword, a compromised server can observe the set of
email identifiers that match the keyword (i.e., the access
patterns of the query), even though the email bodies remain
encrypted. A set of recent works [28]-[42] has shown that
such access patterns leak significant information to the
attacker, enabling the identification of keywords that users
search for as well as email contents.

Many of these works discuss oblivious protocols such
as ORAM (Oblivious RAM) [43], [44] or PIR (Private
Information Retrieval) [45] as a solution to this leakage.
Even an attacker eavesdropping at the server is unable
to identify which documents were returned in response
to a query (ie., the access patterns of queries remain
hidden). Instead, the attacker can only observe the volume
of results. Consequently, these schemes are often regarded
as conferring a very strong security guarantee, the main
downside largely being their slow performance.

However, in seminal work, Kellaris et al. [37] showed
that even schemes that provably conceal access patterns
allow attackers to reconstruct the database counts, i.e.,
the number of documents in the database containing each
particular value. The attacker neither knows the content
of individual queries (which are encrypted), nor which
documents were returned in response. Instead, he only
observes the volume of results given a set of range queries.
Kellaris et al. showed that volume-based attacks were
possible, even if not yet practical. Their techniques required
the attacker to observe the result volumes of O(N* log N)
range queries, for a domain of size /N. Furthermore, they
also assumed that the range queries were drawn at random
from a uniform distribution, thus severely limiting the
applicability of the attack in practice. Grubbs et al. [46]
and (more recently) Gui et al. [47] improved upon the
results of Kellaris ef al. by presenting attacks that do
not require a uniformity assumption for queries as long as
other assumptions hold—e.g., that queries with all possible
volumes (within a certain bound) are observed at least once;
or that the underlying database is dense (i.e., all N values
occur in the database).

In this work, we explore an alternative design point in
the space of attacks, and show that volume-based attacks
are practical without making any assumptions about the
distribution of queries or the underlying data. Our aim is
to recover the content of individual queries that search for
a specific keyword in the database. We note that as long
as a query for each keyword is issued at least once, our
attack enables an adversary to reconstruct the list of all



the keywords that appear in the database.

In particular, we focus on the behavior of applications
that allow users to search for keywords over a secondary
index, a common data structure in database systems that
maps keys to a set of matching records. In the encrypted
database literature, this corresponds to the model of
searchable encryption schemes [2], [17]-[27].

Our key insight is that by exploiting the behavior of
specific real-world applications, we can avoid assumptions
made by prior volume attacks about the distribution of
queries or the underlying data. Furthermore, it allows our
attack to be eminently practical, requiring only a single
query to be issued by the user for recovering the keyword.

As such, even though real-world applications today
leak far more information than just the volume of results,
the importance of volume attacks will only grow in the
future. Privacy-conscious services have begun deploying
sophisticated schemes to plug traditional sources of leakage,
including access patterns (e.g., the Signal messaging
service [48], [49]). The takeaway of our work is that
as practitioners take steps towards enhancing the privacy
guarantees of their applications, they must also account
for the leakage of result volumes. Application-specific
behavior that facilitates easy exploitation of this leakage
should be revised.

1.1. Techniques and contributions

We start by examining 11 representative applications
that enable search queries over a secondary index (e.g.,
Gmail, Twitter, and Facebook) to identify realistic attacker
capabilities that can be leveraged in concert with volume
leakage. We find that many of these applications satisfy two
key characteristics that enable us to mount efficient volume-
based attacks, even if they are built atop a cryptographic
backend (such as ORAM or PIR) that plugs traditional
sources of leakage, and only leaks the volume of results.

First, we find that many applications inherently allow
other users o inject application data into a victim user’s
index. This property of applications has also been noted
in prior work [2], [30], [31]. In our setting, it allows
the attacker to potentially influence the volume of results
returned by a query.

However, it is not clear how to leverage file injection
alone when the only information available is the number
of results. File-injection attacks have been studied in
the searchable encryption literature [2], [30], [31], but
these attacks rely crucially on the attacker knowing the
query access patterns—namely, the set of files matching
the keyword. The key idea is that the attacker injects
special files /7, ..., F), constructed so that each keyword
is contained in a unique subset of files. When the victim
queries for a keyword, the attacker learns the exact set of
files returned and hence the keyword. In our model, though,
the attacker only leamns the number of files returned, not the
exact set. Ensuring that each keyword has a unique number
of files means injecting D files, where D is the dictionary
space. For the English dictionary (~200K words), this
attack would only be feasible on a small subset. Moreover,
given a set of files, there may be many different keywords
that are present in the same number of files, precluding
these attacks in our setting.

Instead, our strategy is to leverage a second property
we observed in the real applications surveyed, which is key
for making an injection attack feasible with only volume
leakage: the ability to replay queries issued by a user
without further user intervention. While this seems at first
glance to be a strong assumption, we find that several
applications display this behavior as a built-in feature,
ostensibly to hide transient application errors.

As an example, Gmail inbox search fits our setting
secamlessly, and satisfies both the aforementioned properties.
The user can search for a keyword in their emails, an
attacker can inject data by simply sending the user an
email with a specific keyword, and the user’s query is
automatically replayed by the application when the server’s
response is delayed without relying on user intervention.
In §2.2, we define these abilities formally, demonstrate how
they appear more generally in a wide range of applications,
and explain why they are hard to avoid.

Given these attacker abilities, we present attack algo-
rithms that are able to reconstruct user queries on secondary
indices. Our high-level strategy, described in §3, is twofold:

1) Inject: the attacker injects k specially crafted files
that alter the number of results for a candidate query.

2) Replay: the attacker causes the client to automatically
replay the query without user intervention.

The process repeats to narrow the search space, without
the user’s knowledge. This base attack succeeds with
100% probability in identifying words in the attacker’s
dictionary. Specifically, given a dictionary of keywords D
that represents the attacker’s domain of interest, the attack
recovers a queried keyword in only O(log, D ) replays
of the query (e.g., < 5 for the English dictionary).

Subsequently, we build upon our base attack to present
three ancillary attacks. The ancillary attacks show that
our strategy remains feasible, albeit more expensive or
less accurate, even when certain mitigation techniques are
employed (§5).

« No replay attack: We provide an extension to our
base attack that works even when query replay is
not possible (§3.2). While the detection accuracy
decreases in this case due to the mentioned shared
cardinality, the attack still succeeds with significant
probability on a smaller dictionary.

« Attack with padding: We further demonstrate that
our attack remains possible even when padding is used
to hide result counts (§3.3), through an extension to
our base attack that requires more injected data but
with proven effectiveness.

« Attack with noise: We finally show an extension of
the base attack with noisy data when the attacker does
not know the result count precisely (§3.4).

In §A, we also discuss extensions to the attack for
recovering keywords in conjunctive queries.

Finally, we demonstrate the feasibility of our techniques
and attack the real Gmail web client by simulating a
server-side adversary (§4.5). The characteristics of real
applications poses a number of constraints on the attack,
e.g., based on the behavior of replays, or the time it takes
to inject files into the secondary index. Despite these
constraints, we show that our attack completes within
a matter of minutes for the Gmail application. We also
analyze the theoretical complexity of our attacks, and



experimentally evaluate their overheads and accuracy in a
variety of settings.

While there are ways to mitigate the attack, the
vulnerability from result count leakage is difficult to
eradicate from a system completely. Padding to the worst-
case count theoretically prevents leakage, but in many
applications, this results in unaffordable overheads. Rather
than trying to reduce system leakage, we believe that the
most effective mitigation is actually on the application side,
although these techniques too may be burdensome because
they interfere with application-specific functionality (e.g.,
disallowing users from sending email). In §5, we discuss
these mitigations, but we note that in general, it is difficult
to protect against the attack completely because it relies
on very little from the system model, and instead exploits
features inherent to the application model.

2. Attack model

In this section, we discuss the generic system
model (§2.1) and the application model (§2.2) that is
vulnerable to our attacks. We present the three key attack
assumptions: 1) that the system leaks volume, 2) that the
application allows data injection, and 3) that the applica-
tions automatically replays queries under certain scenarios.
We then demonstrate the validity of our assumptions by
studying a number of concrete instances for both the system
and application models. In particular, we examine 11
popular web applications that allow users to issue keyword
search queries over an inverted index—we find that (i) all
11 applications allow attackers to inject data into the victim
user’s index; and (ii) 5 of the 11 applications also replay
queries automatically without user intervention.

2.1. System Model

We consider systems in which an untrusted server (the
adversary in our setting) maintains a secondary index in
an encrypted database. The index maps a keyword to a
list of documents or database rows (referred to as files,
henceforth) that the keyword appears in and is stored on
the server for query efficiency. Whenever the application
proxy or the client queries the index for a keyword, the
user receives the corresponding list of files containing the
keyword. We assume that the query’s execution reveals no
information to the adversary except the number of results.

More formally, we define a database D as a set of
records that associates keywords with the files from a
collection F that the keywords appear in:

D={(w, f) we f, feF}

A query for word w is a function g, (where w is
private) that maps D to a list of matching files in F:

qw(D) ={f : (w, f) € D}.

An implementation of such a database may internally
use one layer of indirection, so that the first query returns
a list of file pointers, or indices into F, and the subsequent
queries are used to fetch the file contents from F.

The adversary’s goal is to identify the keyword w using
only the size of the result set q,(D) .

Clients App. ORAM Server Server
server proxy Glient
N E-E-a
ANIIGRF-
HE-m

Figure 1. (Left) ORAM model: the server and a subset of the clients are
untrusted (shaded). (Right) PIR model: the server is untrusted.

Examples. We now illustrate the relevance of volume-
based attacks by discussing concrete examples of crypto-
graphic systems that leak the volume of results to attackers.
We consider a client-server model where the database
stored at the server is encrypted using sophisticated
techniques that also hide access patterns, and the server
maintains a secondary index over the encrypted data. As
we'll see in the following examples, content encryption is
not sufficient to prevent volume leakage.

ORAM-based systems. In the ORAM model (Fig. 1,
left), the database administrator additionally backs the
database with ORAM, hiding access patterns from the
server in addition to the result contents. However, even
with a guarantee of this strength, volume leakage is possible
for a passive attacker because the size of the result contents
is not hidden. In addition, even if a layer of indirection
is used, so that the first query only returns a list of file
pointers, the number of files returned can still be measured
by recording the number of subsequent queries made.

PIR-based systems. In the PIR model (Fig. 1, right),
an untrusted server owns the database and maintains a
secondary index on it for fast access. In this case, the
server sees all the data, as its role is to maintain and
serve publicly available data. The untrusted server answers
user queries in which the key requested is private [45].
However, since the data is publicly available, the untrusted
server can casily learn the size of the query results.

2.2. Application model

We assume an application model based on the behavior
of actual applications that rely on a secondary index. The
model consists of two key assumptions: the ability to inject
data into a user’s index and the ability to replay a user
query without the involvement of the user. We argue that
these two assumptions are in fact often inherent to the
application. As evidence, we survey a variety of popular
web applications that rely on a secondary index and find
that both assumptions hold in 5 out of the 11 surveyed.
Finally, we describe how these assumptions together make
it difficult to detect our attack.

2.2.1. File injection. First, we consider the assumption
that the attacker can inject data into a user’s index. For
applications that involve interactions between multiple
users, injection by other users is often necessary for
application functionality. For example, to inject into Gmail
inbox search, the attacker sends the victim user an email.
Injection is especially easy if there is a secondary index
that is shared. To inject an entry for a hashtag in Twiltter,
the attacker uploads a post with that hashtag; in Slack, the
attacker simply sends a message. The ability of the attacker
to inject in such applications is fundamental because these



Number of replays

Application Type of queries File injection strategy in 10 minutes
Gmail Email keywords Send emails to victim 6
Facebook Names, post keywords Create posts in a group page 4
Dropbox File keywords Upload files to a shared folder 1
Google Doc File keywords Upload files to a shared folder 1
iCloud Mail Email keywords Send emails to victim 1
Twitter Hashtags Post tweets with hashtags 0
Piazza Post keywords Create posts in a class 0
Slack Names, message keywords Send messages to a group channel 0
Skype Names, message keywords ~ Send messages to victim 0
Yahoo Mail Email keywords Send emails to victim 0
0

Outlook Mail (Hotmail)

Email keywords

Send emails to victim

Figure 2. An empirical assessment of 11 popular web applications. In each case, we list the type of query made by the user, how the attacker can
influence the result of this query by application-specific injection, and the number of replays observed. To measure replay, all server responses are

dropped for 10 minutes, and we report the number of duplicate queries made within 10 minutes.

applications are inherently designed for multiple users and
contain shared data.

2.2.2. Query replay. Second, we assume that the attacker

can replay a user’'s query a finite number of times.

While this assumption is certainly not universal across
applications that rely on a secondary index, we find
that it is surprisingly common, with many applications
replaying queries automatically in the background without
any user intervention. This is because many applications
are written to handle transient errors transparently, to put
as little burden on the user as possible. In particular, an
application that wants to provide a secamless experience
when network connectivity is spotty may retry a query
automatically if the response is too slow. Indeed, the
HTTP/1.1 REC [50] specifies that “When an inbound
connection is closed prematurely, a client MAY open a
new connection and automatically retransmit an aborted
sequence of [idempotent] requests.” A compromised server
can force this behavior by simply dropping its HTTPS
responses, triggering an automatic replay.

Examples. To show that these assumptions are realistic,
we surveyed 11 applications, including Gmail, Twiltter,
and Facebook, and tested for the ability to inject data
and replay queries for a target user (Fig. 2). To test for
injection, we examined the application functionality to
determine whether the attacker could inject data into an
index searchable by the user. To measure the number of
query replays, we drop responses from the server, record
all network traffic from the application client, and count
the number of duplicate queries that appear within 10
minutes. We find that for all applications, injection is
possible, although sometimes only if the attacker and the
user share some index (e.g., they are both members of
a public Facebook group). We also find that 5 of these
applications have query replay.

On further investigation of these 5 applications, we
find that all retry queries automatically, though the rate
of retries varies. Two applications, Gmail and Facebook,
retry the query repeatedly. The remaining three—Dropbox,
Google Drive, and iCloud Mail—retry the query once. The
number of retries is important because more retries make
it easier for the attacker to identify the query. Nevertheless,
as we show in §4.2, even a single replay is sufficient for

significantly pruning the space of query possibilities, and,
in many cases, for mounting the attack feasibly.

Some applications do not replay a query automatically,
as is the case with Twitter or Slack. In §3.2 we provide
a single-round version of our attack that does not require
queries to be replayed at all. This version of our attack
is predictably less effective than the base attack with the
ability to replay, but as we show in §4.3, it is practical for
small attacker dictionaries.

Avoiding detection. Because the attack relies on injection
visible to the user, one practical concern in launching the
attack is avoiding detection. Fortunately, in many settings,
our attack is difficult to detect before it completes. This
is because once the user issues a query, the attacker can
continue to drop / block the responses to the client, causing
the application to retry queries until the attack completes.

We verified this behavior with Gmail: no results are
returned to the user during the attack, and to the user it
simply appears that they have a bad network connection.
That is, once the user initiates the query, the attack will
complete without further actions from the victim user.

It is possible that the user later sees the injected emails
and realizes from the synthetic content that they are under
attack, but this happens only after the attack completes.
Further, we note that although services like Gmail may strip
suspicious HTML elements during email preprocessing,
we can still use style formatting to avoid showing the
injected content to the user, to reduce suspicion. The rest
of the email could show content that is more user-friendly,
e.g., an ad. It is further unlikely for spam filters to detect
the injected emails, since the attack targets a specific user.
This is just one example, but it illustrates the numerous
ways that an attacker could inject data in a way that is
difficult to detect before the query is reconstructed.

3. Attacks

Given the attacker abilities discussed in §2, we present
and analyze a file-injection attack to recover a user’s query
on a secondary index. We show that this attack can be
launched on the generic database described in §2.1, as long
as the attacker can view the number of results returned.
This is true even if the result content is encrypted and a
model like ORAM is used to hide access patterns.



The general attack (§3.1) can recover a user’s query
with 100% accuracy, by leveraging the three assumptions
presented in §2. One may attempt to weaken the attacker’s
abilities by making it more difficult to replay a user’s
query, or padding the result sets. We discuss extensions
to the attack in §3.2-§3.4 and show that it is still feasible
even when various countermeasures are employed, albeit
at higher overheads and possibly imperfect accuracy. Fig. 4
summarizes the overheads of the base attack and its
extensions. In §A, we describe further extensions to the
attack for recovering keywords in conjunctive queries.

3.1. Base Attack

At a high level, the base attack works by searching on
the keyword universe through multiple rounds of user query
replay. By recording the result counts between rounds, the
attacker can narrow down the keyword search space by a
constant factor per round.

The attacker uses file injection to influence the result
count between rounds. During each round, the attacker
constructs files from the keyword search space and injects
the files into the user’s index. The response for each
round will then contain some number of injected files.
The attacker can use the new result count to determine
the number of files injected after the previous round. In
this way, the attacker can determine which subset of the
search space contains the user’s query.

The setup of the attack is as follows: A user queries
qw on a database D, as defined in §2. The response is the
set of matching file contents, g, (D) = {f1,..., fu}- The
goal of the attack is to recover w, using only n = ¢,(D) ,
the number of files returned.

Algorithm 1 provides pseudocode for the base attack
RECOVERQUERY. In more detail, the attacker first records
the user query’s g, and the number of files returned, ny.
ng is the number of files that already matched to w prior
to the attack. This enables the attacker to differentiate
user-uploaded files from injected ones.

Next, the attacker proceeds in rounds to reduce the
keyword search space. He chooses an initial dictionary
Dy, a set of words that might contain w, and a parameter
k. During each round j, the attacker divides D; into k
equal partitions. He injects £ files into the database and
distributes the words among them as follows: If a word
appears in the i-th partition, he adds the word to exactly
i out of the k files. Hence, if a word appears in the k-th
partition, the attacker adds this word to all k files.

The attacker then replays the user’s query g, on the
updated database and records the number of files returned,
nj. Assuming that the attacker can block updates to the
secondary index, the number of files injected since the
previous round is then i* = n; —n;_;. Thus, w must have
been assigned to the *-th partition during round j. The
attacker repeats this in rounds, each time using the i*-th
partition as the new dictionary, until D = 1.

The complete overheads for the attack are summarized
in Fig. 4. This attack converges in a bounded number
of rounds since each round is guaranteed to reduce the
dictionary size. Furthermore, for a high enough k£ and a
small enough D, the number of rounds, i.e., the number of
times the attacker has to replay the user’s query, is quite
low. We formalize this in the following claim:

Algorithm 1 Pseudocode for the base attack. g, is a private
query for a word w on a database D. Each round of the
attack partitions the search space by k.

1: procedure RECOVERQUERY(q,,, k)

2: D < the initial database

3: D <+ keyword universe

4: n 4+ quw(D)

5: while D > 1 do

6: for iin [1,... k] do

7: F; < an empty file

8: D; <+ an empty dictionary
9: end for

10: for index in [1,.... D] do
11: w 4+ Dlindex]

12: i+ |%J

13: Append w 1o 7 unique files in F'
14: Add w to dictionary D;
15: end for

16: D « INJECTFILES(D, F)

17: n' + qu(D)

18: i+mn'—n

19: D+ Di

20: n+n'

21: end while

22: return D|0]
23: end procedure

Claim 1. For any dictionary D and for any word w € D,
let q,, be a private query for w, and k be the number of
partitions. Then, RECOVERQUERY (q,,, k) returns w after
[log;. D | rounds.

Proof. Consider the j-th round of the attack, which
searches a dictionary D; that contains w. w is guaranteed
to match to a partition of the dictionary that has size
< Dj [k. Thus, round j + 1 of the attack will search
a dictionary of size at most D; /k that also contains w.
The algorithm repeats until the dictionary has size one. At
this point, RECOVERQUERY returns the only word in the
dictionary, w. Thus, it takes [log;, D ] rounds to complete
the attack, where D is the initial dictionary. O

The attacker must also inject a significant number of
files. We show that the number of files, along with the file
size, measured in number of words, is not too large.

Claim 2. For any dictionary D and for any word w € D,
let q,, be a private query for w and k be the number
of partitions. Then, the total number of files injected by
RECOVERQUERY(qy, k) is k [log, D .

Proof. During a single round of the attack, the words in the
i-th partition of the dictionary must be distributed among ¢
unique files, so that the number of results for the query g,
during the next round will be increased by 7 if w was in
that partition. The maximum value for ¢ is k, the number of
partitions. Therefore, each round requires injecting at least
k files. There are [log, D | rounds according to Claim 1,
so we require a total of k [log;, D | file injections. [

Claim 3. For any dictionary D and for any word w € D,
let q,, be a private query for w and k be the number of
partitions. Then, the total number of words injected by
RECOVERQUERY(qy, k) is O(k D).



Notation  Definition
D The database, a secondary index mapping
words to the files they are associated with.
Qu A query for the word w, where w is hidden.
D The dictionary, a set of words probed by the
attacker.
k The number of partitions to search during

each round. A higher k£ means more files
injected per round, but fewer rounds total.

n; quw(D) , or the number of file results for
the query on round j. For j = 0, this is the
user’s initial query dictionary.

m A parameter for the single-round attack. A
higher m means more files injected, but
higher expected accuracy.

s A parameter for the noisy data attack. A
higher s means more files injected, but a
greater possible amount of noise tolerated.

Figure 3. Notation used in the described attacks.

Proof. A dictionary D; is searched during round j of
the attack. Each word in partition 7 of the dictionary
achars 7 times during round j. Each partition has size

7~ Therefore, the total file size injected during this round

is DL (142+---+k)=O0(k Dy ).

K
Each round reduces the size of the dictionary searched
by a factor of k, so Dj;; = Iij . According to Claim 1,

there are [log, D | many rounds. Then, if the initial
dictionary has size D, the total file size injected across
all rounds is:

D D D

<kD (1+l+l+ .):0(kD)

ctet
a

The attack presented can recover a user’s query on a
generic secondary index with perfect accuracy, even when
the file contents and metadata, except result counts, are
hidden. The number of results returned is indeed the only
information we assume, and we do not require knowledge
of the distribution of the query dictionary.

3.2. Single-round Attack

The base attack relies heavily on the ability to replay
the user’s query. Without the ability to replay, it is difficult
to recover the query with total accuracy without some

knowledge of the distribution of words in the database.

This is a fundamental limitation of the attack—since we
assume that the attacker cannot read any file metadata
other than the total number of results, the attacker cannot
differentiate between user-uploaded files and injected files
during just a single round of the user’s query.

We now present a version of our attack that does not
require the attacker to replay queries. We show that the
attacker can guess the user’s query in a single round with
some degree of accuracy if he can inject a larger number

Algorithm 2 Pseudocode for the single-round attack.
Input m represents the tradeoff between file injection and
accuracy.

1: procedure SINGLEROUNDINIT(m)

2 D < the initial database

3 D + keyword universe

4: foriin [1,...,m x D] do

5: F; + an empty file

6: end for

7 for index in [1,.... D] do

8: w 4 Dlindex]

9: Append w to m x index unique files in F’
10: end for

11: D + INJECTFILES(D, F)

12: end procedure

13: procedure SINGLEROUNDRECOVERQUERY (g, m)
14: n 4 q,(D)

15: if n < m then

16: w' 4 null

17: else

18: index +— %J
19: w' < Dlindex]
20: end if

21: return w’

22: end procedure

of files. Moreover, if the universe of possible keywords is
smaller in size, then the attacker can identify the query
with high probability. For example, consider an attacker
who knows that Alice is sick, and wants to identify what
disease she has by recovering her queries. The attacker
can use the set of common diseases as the dictionary of
possible keywords, the size of which is on the order of
tens. Note that using this dictionary still does not require
knowledge of Alice’s query distribution. In fact, our attack
will also permit the attacker to identify that the query of
the victim is not in his query set.

The key idea is as follows. Because the attacker has
only one round to complete the attack, he must inject
enough files before the user sends his query such that the
attacker can still recover the query with some accuracy.
Although he cannot inject files multiple times as in the
base attack, he may still be able to inject a large enough
quantity of files so as to filter out the noise from user-
uploaded files that match the query. And, as we will see
from the analysis, this can actually be done in such a way
that multiple queries can be recovered without requiring
the attacker to execute the attack repeatedly per query, in
contrast to the base attack.

We describe the attack formally in Algorithm 2. First,
the attacker initializes the attack using SINGLEROUNDINIT.
The attacker starts with a dictionary D of candidate words,
and chooses a constant m. Before the user sends his query
quw, the attacker injects m D files into the database D,
such that the i-th word in the dictionary appears in mi
files. Thus, each word appears a unique number of times
and is spaced apart by at least m files.

Then, when the user queries g, the attacker estimates
w using SINGLEROUNDRECOVERQUERY (Algorithm 2).
The attacker first reads the result set size n = q,(D) . If
n < m, then w is not in the attacker’s dictionary, and no
more information can be gained for this particular query.
If n > m, then the attacker guesses w’, the i-th word in



Attack type

Number of replays

Total files injected Total words injected

Base attack [log, D]
Single-round attack 1

File padding (base-2 tiers) k[log, D]
Noisy data [log, D]

k[log, D1 O(k D)
m D O(m D?)

O (nok D "% %) O(no D)
sk [log, D] O(sk D)

Figure 4. The overheads of each type of attack, in terms of the number of query replays, files injected, and words injected.

the dictionary, where i = | 2 |. With some probability, the
attacker’s guess is correct and w' = w.

The question, then, is how to choose m such that we
maximize the probability that w’ = w. Clearly, the larger
m is, the better, since a larger m can filter out more noise
from the user’s uploaded files. Given some underlying
distributions of word and query frequency, we can write
the precise probability of the attack’s success.

Formally, let ) be a probability distribution over the
universe of words where Q(w) is the probability that the
user will query gq,,. Let Dy be the initial database, before
any file injections. Then, ¢, (Dy) equals the number of
user-uploaded files that would have been returned for w.

Claim 4. For any query q,, and any m > 1, the
probability that SINGLEROUNDRECOVER QUERY/( q,,, m)
outputs an incorrect w' is:

Pr(w’ # w) = Z

w, quw(Do) Zm

Qw)

Proof. Consider a user query q,,. If q,,(Dy) < m, then
there are two cases for the result set size, either w is in
the dictionary probed by the attacker or w is not. If w
is not in the dictionary, then the current database D is
unchanged, so the count observed is still g, (Dy) . Since
this is less than m, the attacker will not output a guess
w’, so we can ignore this case. Otherwise, suppose that
w is the i-th word in the attacker’s dictionary. Then, the
number of injected files for w is mi. The attacker will then
guess the word at index | "‘“,E;D) | =1 "“’(D":L) tmi |
so w' = w.

The remaining case is when q,,(Dy) > m. Then, it
is guaranteed that w’ # w, whether or not w is actually
in the dictionary probed by the attacker. If w is the i-th
word in the dictionary, then the attacker will guess w’ with
a dictionary index greater than 7. Otherwise, the attacker
will incorrectly guess that the user queried for a word
in the dictionary. Thus, the probability that the attacker
guesses an incorrect w' is the probability that the user
will query for a word w such that ¢, (Dy) > m. This is

zw' qw (Do) >2m Q(“’)- 0

This claim implies that if a large enough m is chosen,
then the attacker will be able to perfectly recover all user
queries. For instance, if m is greater than max,, ¢, (Dp) ,
then the probability of an incorrect guess is 0. There-
fore, the better the attacker can estimate the distribution
qw(Dy) and @, the more he can increase his probability
of recovering the user’s query correctly. Otherwise, he will
have to guess a large enough m to ensure accurate query
recovery, at the cost of more file injection.

The query’s success rate is also dependent on the
dictionary of words chosen by the attacker. If Q(w) =0
for all w € D, for example, the attacker will not be

=1,

able to output a correct guess. Ideally, the attacker would
insert the entire universe of words, but this is infeasible
since the total number of words injected is given by:
m+2m+---+ D m = O(m D 2). However, even if the
attacker can only afford to probe a small dictionary, he
can still increase his chance of success if he has some
knowledge of ); he can then choose to probe words that
the user is more likely to query.

There are two key advantages of this approach over
the base scheme presented in §3.1. First, the initial round
of file injections can be reused to recover multiple user
queries over a long period of time. As long as the attacker
chooses a large enough m, the noise due to files that may
be added by the user later on can still be filtered out. The
attacker can launch a long-running attack in which he
continuously probes for the same dictionary of words by
gradually increasing m to match the rate at which real
files are added. Then, at any point in the future when the
user queries for a word in the dictionary, the attacker will
be able to discover the word.

The second advantage is that this variation of the
attack is mostly passive, in that the attacker actively injects
files once and then passively reads file responses for the
remaining duration. This is in contrast to the base attack,
in which the attacker must actively inject new files with
every query response. Thus, although the file injection
overhead becomes higher and the success rate is reduced,
an attack without the ability to replay a user’s query is
still both possible and practical.

3.3. Attack Against File Padding

An obvious countermeasure to the attack outlined in
§3.1 is to use a cryptographic scheme that pads query
responses to hide the number of files returned. Note that
padding might not always be possible because it potentially
adds nontrivial bandwidth overheads and hence increases
costs for a system operator.

Padding interferes with the attacker’s ability to deter-
mine the number of files returned for a query. However, as
we show in this section, the attacker can still learn some
information. The common issue in all of the following
schemes is that the attacker retains the ability to inject
files. Thus, even if the attacker can no longer determine a
user’s query, he can still inflate the bandwidth overhead
by injecting large enough files.

The simplest scheme would be to always pad to the
worst case. Formally, the largest possible response is
mat, q,(D) . The scheme must then pad every result
set to this count, which is potentially very expensive. The
attacker can aggravate the problem by simply injecting
a large number of files that all contain the same word,
forcing the system to send that many files in response to
all requests.



A more practical scheme is to use tiered padding.

In this case, each response is padded to one of several
predefined sizes, or tiers. For example, one could choose
to use base-2 exponential padding, so that each response
size is rounded up to the nearest power of 2.

Tiered padding can deter the base attack, but comes
at the cost of expensive bandwidth overheads. Here,
we analyze the number of files that the attacker must
inject and the bandwidth overhead for the server. We use
exponential tiered padding for the analysis, but a similar
analysis applies to any padding scheme. Recent works [51],
[52] propose more efficient padding schemes that add
probabilistic noise to the result set size; in §3.4 we describe
an extension of our attack that applies to such scenarios.

Recall that on every round, the attacker records nj_; =
qw(D) , the number of files returned to the user’s query at
the end of the previous round. Under this padding scheme,
nj_1 = 27 for some p. The actual number of files is then
in the range (*4=*,n;|. In the next round, the attacker
must inject enough files to ensure that the query will be
padded to the next highest tier, so that there is a measurable
difference in the query’s number of results. This is at least
2L files.

In a direct translation of the base attack, the attacker has
to inject k partitions of the dictionary in such a way that he
can differentiate between the partitions. Then, the attacker
would have to inject “4 files for the first partition, "4+ x
2 for the second, and so on. This leads to nj_12’“‘2 files
injected for a single round. Even worse, n; =n;_;28=2,
so the next round will also require an exponentially larger
number of files to be injected.

The number of files injected can be reduced by injecting

the partitions one at a time, with “4-* files per partition.

After all of the files for a partition are injected, the attacker
can replay the query to measure if the user’s query matched
that partition. This way, the attacker can inject k—"-{—' files
per round. However, this requires increasing the number
of query replays by a factor of k, since each round now
requires k replays instead of one.

Claim 5. Consider a database that uses base-2 exponential
tiers to pad query responses. For any user query q,,, let
ng = quw(D), the query response on the initial database.
For any attacker dictionary D and any number of partitions
k used during the search, the total number of file injections
necessary to recover the query is O(nok D '98x2).

Proof. During round j of the attack, where n;_; is the
observed number of files returned by ¢, during the
previous round, the attacker must inject "jz" files for each
of the k partitions. Then, the attacker must inject kﬁz’—'
files during round j. Each round doubles the number of files
returned, so that n; = 2n;_,. There are [log;, D | rounds
by the same analysis as in Claim 1. Then, the attacker
must inject a total of O(ngk2'%x ) = O(ngk D °&x2)
files to recover gq,,. O

Claim 6. For any query q,, the total size of files injected,
measured in number of words, is O(ng D ).

Proof. To compute the total number of words injected, we

first consider the number of words injected during round j.

The number of files injected is % Each file contains a

copy of a single partition of the current dictionary. Since

the dictionary size is reduced by a factor of k£ with each

round, the current dictionary has size D Then, the total

Zh
.. . . )
number of words injected during a single round is ’—‘é—kj'q—

n; = no2?, so the number of words injected during a single
round is O (no D (%)]_]). With k£ > 2, this gives us a
total of O (ng D ) words injected across all rounds. [J

While the overhead for the attacker is significant,
this analysis does not take into account the substantial
bandwidth costs for the client. Every query may require
nearly doubling the query’s number of results. To answer
the attacker’s replayed queries, the cryptographic scheme
needs to pad the files with approximately as much data
as the attacker must inject, to hide the number of files
returned. This can be prohibitively expensive for a database
system.

In the PIR setting, an even more effective version of
our attack is possible: the server has the ability to also
delete data in addition to injecting it. So the attacker can
toggle the number of results for a keyword over multiple
padding sizes, instead of just increasing it.

3.4. Attack with Noisy Data

In §3.1, we assume that the attacker can identify precise
result counts. That is, we assume that the observed number
of results is exactly equal to g, (D), to the number of
files that matched w in the database D. This allows the
attacker to precisely measure the change in query result
sets between rounds due to injected files.

However, the change measured may not exactly equal
the number of injected files. For example, if the crypto-
graphic scheme adds some noise to the result sets, then
the attacker cannot precisely identify the change in result
counts due to file injection. Another example appears in
some searchable encryption schemes, where the results are
batched together in blocks (say m results per block), or
when using ORAMs [53] that attempt to hide the number
of results within an ORAM Path. For the first, the attacker
observes the number of blocks so it can estimate the
actual number of results within an error of ~m. For the
second, we discuss in §6 that such ORAMs still reveal an
approximate number of results in some realistic settings.

In this section, we show that our attack still has a
significant chance of success even if there is some noise in
the volume measurements. Formally, if the attacker expects
a noise of at most s files in some time interval, this means
that for each word w, the database system can add up to
s elements to the database D. Each of these elements is
of the form (w, f), where f is a dummy file. If a user
queries g, on every interval, he can expect an increase of
at most s files with each new query.

Similar to ideas presented in the above scenarios, the
attacker can still recover a query g, if he can inject more
files to filter out noise in the database. In particular, with
an expected noise of s in between rounds of an attack,
he can repeat a word in the i-th partition si times instead
of just 7. If the user’s query word w falls in partition ¢
during round j, then the number of results observed will be
n; < nj_1+si+s. Then, to determine the partition that the
user’s query belonged in, he can compute | —2=1 | = i.
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Figure 5. (Base attack) Number of rounds
required to identify a keyword with varying
choices of k and different dictionary sizes.

Thus, assuming that the attacker can correctly guess
the maximum noise that will be added during any round,
the attacker can still recover the user’s query with perfect
accuracy. The attacker can estimate s with some knowledge
of the application. For instance, he can record the rate
of incoming email for an average user, for example.
Furthermore, if the attacker underestimates s and guesses
a wrong partition, he will quickly discover his error since
the query’s result set size is unlikely to match any partition
during the following round.

The overhead to overcome noise is quite low; a factor
of s to the number of files and words injected. Thus, even
if the attacker is unable to perfectly measure the number
of results and/or block network traffic, he can still recover
the user’s query with near-perfect accuracy.

3.5. Queries with multiple keywords

Our attacks so far focus on queries with single key-
words. However, applications may allow clients to issue
queries with multiple keywords as well. One way in which
applications may handle such queries is by expressing
the queries as a conjunction of the different keywords.
For such cases, we describe an extension to our afttack
in Appendix A. We present two attacks for conjunctive
queries—the first optimizes the number of required replays
while the second reduces the number of files injected.

Applications may alternatively express multi-keyword
queries as disjunctions of the different keywords instead.
We leave attacks on disjunctive queries to future work.

4. Evaluation

In this section, we evaluate the overheads and accuracy
for the base attack (§4.2) and its extensions. We simulate
various application settings and degrees of attacker ability,
including an attacker that cannot replay the query (§4.3),
and a storage system with file padding (§4.4). Second, we
present a case study on Gmail to evaluate the feasibility
of the attacker’s abilities assumed in the base attack in a
real-world application (§4.5). We demonstrate successful
attacks on Gmail by simulating a server-side adversary,
that complete within a few minutes across a variety of
dictionary sizes.

4.1. Setup

In all experiments, we use the entire corpus of emails
from the Enron email dataset [54] as the queried documents,

Figure 6. (Base attack) Total number of
files injected with varying choices of k,
across different dictionary sizes.

Figure 7. (Base attack) Number of bytes injected for varying
choices of k, across different dictionary sizes: (left) average
bytes per round; (right) maximum bytes across rounds.

consisting of ~500K emails belonging to 151 users and
~2.5GB in size. We extracted keywords from this dataset
by first stemming the words [55], and then removing 675
stopwords. We next filtered out any words that contained
non-alphabetic characters, or were > 20 or < 3 characters
long. This gave us a total of ~259K keywords. In our
experiments, we only used the top ~123K keywords (i.e.,
those that appeared in > 3 documents) in order to remove
noise from the dataset.

Since an attacker’s dictionary may contain words that
do not exist in the queried documents, we supplemented
the Enron keywords with a corpus of English words [56].
Preprocessing the English words in a similar manner
yielded a total of ~257K keywords. The union of both
datasets resulted in a universe of ~342K keywords.

4.2. Base Attack

Assuming that the queried word is in the initial
dictionary chosen by the attacker, the base attack achieves
perfect query recovery, with strict bounds on the overheads
necessary in number of query replays and data injected
(as described in Fig. 4). Our simulation of the attack in
Figs. 5 and 6 confirms the theoretical guarantees.

In this experiment, we build the attacker’s dictionary
D by randomly sampling keywords from the keyword
universe. We pick the keyword queried by the user at
random from D in order to stress test the effort required
by the attacker—a keyword not in the D would be trivially
detected at the end of a single round without requiring
further replays. We then report the number of rounds
required to guess the keyword with 100% accuracy for
different choices of k in Fig. 5, and the total number of
files injected across rounds in Fig. 6. Recall from §3.1
that any instance of the attack converges after exactly
[log;. D | replays and k [log;, D | files injected, where k
is an integer chosen by the attacker. Thus, with a dictionary
of fixed size D , the parameter k represents a tradeoff
between the number of query replays required vs. the
number of file injections required. The attacker’s choice
of k then depends on the attacker’s ability to replay the
query and the rate at which files can be injected for the
target application.

We explore this tradeoff with fixed-size dictionaries
in Fig. 7, which demonstrates how the average number
of bytes injected per round increases with k (while the
number of rounds decreases). In the worst case where
the dictionary comprises the entire keyword universe and
k = 24, the bytes injected per round is still less than 10MB,



demonstrating the feasibility of the attack. We also show
the maximum number of bytes injected across any round
in Fig. 7, equivalent to the number of bytes injected during
the first round. The number of bytes that the attacker can
inject during a single round must be at least as large as
this number. We find that even in the worst case, this is
approximately 5S0MB.

Takeaway. The attack can be mounted easily even when
queries are replayed at most once, i.e., the attacker can
recover the keyword in merely two rounds without having
to inject more than several tens of MBs of data. As an
example, Gmail limits the size of emails to a comfortable
25MB [57], and the attacker need only send 3-4 emails to
the victim’s inbox in order to identify the query.

4.3. Single-round Attack

In the single-round variation of the attack, we sacrifice
some accuracy but do not require the ability to replay the
user’s query. This variation of the attack is also stronger
in that it can be used to identify multiple queries over
a long period of time, whereas the base attack must be
instantiated once for every query of interest. Also, this
variation is a mostly passive attack, since the bulk of the
attack is spent reading query responses, rather than also
injecting files in an online fashion.

We evaluate this attack by measuring its accuracy while
varying the parameter m chosen by the attacker. Recall
that m represents the tradeoff between the file injection
overhead and the number of files injected (§3.2). In this
experiment, we only query keywords that exist in the Enron
dataset, since keywords that do not exist in the dataset
will always be accurately detected for any choice of m.

For each value of m, we measure the attack’s accuracy
in two scenarios: (i) when the queried keyword is in the
attacker’s dictionary and the attacker guesses the keyword;
and (ii) the keyword is not in the dictionary, and the
attacker determines that the keyword is not of interest. In
each scenario, we first fix the dictionary, and then inject
a single round of files at the beginning of the simulation
for a chosen value of m. We then query 1000 randomly
selected keywords and measure the percentage of accurate
guesses. Fig. 8 plots the accuracy of guesses as m increases,
averaged over different dictionary sizes.

Predictably, the accuracy of the attack improves with m,

while the number of file injections required also increases.

For m = 5, we need only inject 5 D files, but achieve
an accuracy rate of only ~14% for words that belong
to the attacker’s dictionary. For m = 1000, we achieve
an accuracy of ~96%, but must inject 1000 D files. In
practice, a lower value of m might not only suffice but
also be feasible: for m = 20 we achieve an accuracy of
~64%, while the number of bytes injected for a dictionary
of size 10K is ~7GB.

Takeaway. The barrier to mount an attack is higher in
the absence of replays, and the attacker needs to inject
several GBs of data to identify a keyword with reasonable
confidence. However, in scenarios where the attacker’s
dictionary contains a small number of words (when the
attack knows a candidate list of queries, as discussed in

§3.2), the feasibility of the attack increases proportionately.

For example, an attacker who wishes to identify the discase

that a victim might have only needs a dictionary of ~950
keywords [58]. If the attacker is interested only in sexually
transmitted infections (STIs), then the size of the dictionary
drops to ~27 keywords [59], increasing the feasibility of
the attack manifold.

4.4. Attack Against File Padding

We assess the feasibility of the attack when the server
pads query responses to one of several predefined sizes.
In such cases, though it is still possible for the attacker to
guess the queried keyword, it also requires greater effort.
As described in §3.3, the attacker can choose to either
minimize the number of rounds, or minimize the number
of files injected. In this experiment, we evaluate the latter
strategy. Specifically, we measure the overhead incurred
by the attacker when the server pads responses to powers
of 2 and 10, and compare it with a baseline where the
responses are unpadded.

We build the attacker’s dictionary by randomly select-
ing keywords from the Enron dataset, and then measure
the overhead for each keyword in the dictionary. We use
this setup to stress the number of files the attacker will
have to inject, since responses for non-existent keywords
will get padded to a size of 1 by the server.

Fig. 9 illustrates the attacker’s overhead in terms of
the total number of bytes injected with varying dictionary
sizes. When responses are padded to a power of 2, the
attacker has to inject a feasible ~35MB on average to
mount the attack, with a large dictionary size of 10K
keywords. Though the overhead increases dramatically
when the responses are padded to a power of 10, a small
dictionary size of 100 keywords still requires only ~45MB
of injected data to pinpoint the keyword.

Takeaway. Padding responses is a viable defense only if
the following conditions hold simultancously: (i) the quan-
tum of padding is high, and (ii) the attacker’s dictionary of
interest is large. In all other situations, the attack remains
feasible as demonstrated above.

4.5. Case Study: Gmail Inbox Search

So far, we have experimentally validated the theoreti-
cal performance of our attacks across various parameter
choices. We now demonstrate the practical feasibility of
our attack in real-world applications by attacking Gmail’s
inbox search feature. We attack the real Gmail web client,
assuming that the server maintains a secondary index over
the user’s (encrypted) emails and only learns the volume of
query results. Note that this is not currently the case, and
Gmail’s servers have access to far more leakage than simply
the volume of results. However, our aim is to demonstrate
that even if Gmail (and other real-world applications) were
to deploy sophisticated privacy-preserving mechanisms at
the server such as ORAM or PIR, the volume of query
results remains a potent source of leakage. Therefore, in
this experiment, we attack the real Gmail web client by
simulating such a server-side adversary using a man-in-
the-middle proxy; we simulate the adversary because we
don’t have actual control over Gmail servers.

We first show that the attacker can indeed meet the
two key requirements of file injection and automatic query
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varying m across different dictionary sizes.

D k No. of replays Total Attack

injected  duration
Theoretical Actual  gmails

10 10 1 1 10 Imin
100 10 2 2 20 2min 5s
IK 32 2 2 63-64 2min 5s
10K 22 3 3 64 S5min 6s
100K 18 4 5 71 7min 10s

Figure 11. Attack parameters and duration for Gmail across various

dictionary sizes.

replay. Subsequently, we perform an exhaustive experiment
across a wide range of dictionary sizes (10 to 100K)
to determine the minimum amount of time required to
mount a successful attack on Gmail. The parameters of
our attack are governed by the following constraints: (i) the
periodicity of replays in the Gmail client; (ii) the time
it takes to inject files into a user’s inbox: and (iii) the
pagination limit in Gmail (which upper bounds the total
number of injections). We find that for a small dictionary
of size 10, a successful attack can be mounted within
I minute from start to end; for a large dictionary with
100K words, an attack completes successfully in around 7
minutes (see Fig. 11).
We now describe our methodology in more detail.

Setup. Since we don’t have control over Gmail servers,
we simulate a server-side adversary using a man-in-the-
middle (MITM) HTTPS proxy [60]. Specifically, we launch
the Gmail web client on a browser within a guest virtual
machine, and launch the MITM proxy on the host. We
reroute all host network traffic through the MITM proxy.
Subsequently, we install the proxy’s certificate at the client
browser in order to simulate a server-side adversary. At
this point, all TLS network traffic to and from the client
browser passes through the MITM proxy, which it can
then examine and manipulate.

Query replay. Once a user issues a query, we use the
MITM proxy to stimulate automatic query replay by simply
dropping the HTTP responses returned by the server. After
a period of time, the Gmail web client retries the query
automatically, without user intervention. Specifically, we
find that the client replays the query every 1-3 minutes in
the absence of a response. To the user, it simply appears
as if the client has a bad network connection.

File injection. File injection in Gmail is simple; the
attacker requires a separate Gmail account to send emails
to the victim. For the base attack, the attacker must send
k emails in each round and also be sure that they are

attacker when query responses are padded.

takes to inject files into the index for Gmail.

all indexed by the next replay (i.e., at least 60s). We
determined the rate at which emails could be injected
(Fig. 10) to show that it is feasible to index a sufficient
number of emails. We found that after injecting 40 emails
of size 10KB each, 36 were visible in the user’s mailbox
60 seconds later, shown in Fig. 10. Thus, within a time
window of 60s, the attacker can pick any value less than
36 as a safe option for k.

Volume leakage. In this experiment we assume that the
proxy directly obtains the exact result set size from the
server, since we simulate a server-side adversary. However,
we find that Gmail has a maximum pagination limit of
100, i.e., the server returns at most 100 results in response
to a query. The pagination limit constrains the parameter
regime of our attack, in that it upper bounds the total
number of files that can be injected by the attacker over
the duration of the attack.

End-to-end attack. The aim of the experiment is to
minimize the time it takes to launch a successful attack.
However, the constraints discussed above—the periodicity
of replays, the time it takes to inject files, and the pagi-
nation limit—restrict the parameter regime within which
an attacker can operate. Therefore, we start by computing
the optimal parameters required for mounting a successful
attack within the space of possible parameters. Next, we
attack Gmail using the computed parameters and report
the end-to-end duration of the attack.

Since the Gmail application has a fixed periodicity of
replays, the attack duration is directly governed by the
number of replays required for the attack. Hence, given a
dictionary size D , our aim is to minimize log; D, where
k refers to the number of files that need to be injected per
round. However, given the pagination limit of £ = 100, we
require that the total number of injected files k& x log; D
be less than /. At the same time, k should be less than 36
given the time it takes to inject files.

We therefore solve the following optimization problem:

minimize log; D
subject to  k x log; D < 100
and k< 36

Fig. 11 summarizes our findings for varying sizes of the
attacker’s dictionary, 10 to 100K. Note that the total number
of injected emails is sometimes marginally less than &
log; D . This is because log;. D is not always an integer,
and therefore files of interest across subsequent rounds
may sometimes contain less than £ keywords. Additionally,
for D = 100K, our attack requires an extra round of
replay because the size of the injected files in the first



round were large, increasing the time it took for files to
get sent and indexed.

Overall, our experiment demonstrates the feasibility of
volume-based attacks on Gmail, which can be successfully
completed within a matter of minutes depending on the
size of the attacker’s dictionary. In addition, the attack is
difficult to detect because during the course of the attack,
the user only sees a suspended connection. The user only
makes a single query, and the Gmail client automatically
replays the query in the background. During this time,
emails injected by the attacker are not delivered to the
user’s web client, and only modify the server-side index.
The user may later see the injected emails, but only after
the attack successfully completes.

5. Mitigations

In this section, we discuss mitigations of our attack.
Overall, we believe it is difficult to eradicate our attack in
all settings. Injection is often fundamental to application
functionality, worst-case padding is too expensive, and
replay could be a legitimate user or application action, as
discussed in §2.2. Nevertheless, based on our evaluation in
§4, we believe that the mitigations proposed below could
significantly reduce the extent of the attack by limiting
the attacker’s abilities (§2.2) or making the attack too
expensive to mount. However, with enough resources, it is
possible for the attacker to defeat some of these through
the attack extensions described in §3.

Preventing volume leakage. Strategies that reduce the
attacker’s ability to measure the number of files contained
in a response can be effective in preventing volume-based
attacks. As discussed in Sections 3.3 and 4.4, padding query
results to an upper bound might help mitigate the attack
by increasing the attacker’s burden, and can be effective
in hiding the response size. At the same time, it results in
unaffordable overheads for many applications [61], as also
demonstrated by our analysis in §4.4. We believe that to
varying degrees, this is a property of all padding schemes.

A more practical way to hinder the attacker is to inject
some noise in the responses. This requires little overhead
in server-client bandwidth compared to the attacker’s
overhead: an additive factor of k£ per query compared to a
multiplicative factor of k per attack. This countermeasure
is also simple to implement: add a random number of
dummy files to every response and have the client filter
them out. Note that while this increases the attacker’s
overhead, it does not wholly preclude the attack, as we
described in §3.4.

Another method is to limit the number of results that

can be fetched at a time. The user must explicitly request
further results if needed. While stricter limits on the number
of results lowers the feasible dictionary size for the attack
(thereby increasing the attacker’s burden), it might also
have an adverse impact on user experience.
Preventing file injection. File injection is arguably the
most difficult to defend against, since it is often a part
of the target application’s functionality. For example, an
email inbox search feature is not much use if it can only
search for keywords within emails that were sent by the
user, and not to the user.

Thus, we believe that the main defense here is rate-
limiting and detection. In the email application (§2.1), this

would require the server to actively filter out suspicious
emails. As we found in §4.5, applications such as Gmail
already rate-limit emails; however, this was not enough to
defeat the attack.

Preventing query replay. The most effective way to
prevent the base attack is to block query replays. Query
replays are a feature of applications such as Gmail that pro-
duce the illusion of a seamless connection during limited
network connectivity (§4.5). A possible countermeasure is
to include a unique query ID for each request, so that the
server can detect and filter out duplicate requests.

The main disadvantage of such an approach is that the
server would then have to record and replay past responses
in order to both prevent the attack and keep the application
available. Long-running user sessions would have to be
garbage-collected, potentially sacrificing correctness. More
crucially, web servers are often replicated for performance
and fault tolerance. Ensuring consistency for duplicate
queries in such settings is well-known to be expensive, if
even possible [62]. Finally, this countermeasure does not
prevent against the single-round attack described in §3.2.

6. Related Work

To compute on encrypted data, the community has de-
veloped a rich set of cryptographic schemes and protocols,
as well as encrypted database systems. A recent set of
attack papers study the information an attacker can obtain
from these schemes and systems, termed leakage-abuse
attacks by Cash et al. [20]. Many attacks in this category
leverage leakage from data relations or access patterns, and
few works target oblivious schemes and systems relying
only on volume leakage, as our work does.

We now briefly discuss cryptographic schemes and
systems that leak result volumes, followed by related
attacks on these systems.

Cryptographic schemes and systems. There are a multi-
tude of ways to access or compute on encrypted data, such
as property-preserving/ property-revealing encryption [12]-
[16] or searchable encryption [2], [17]-[27]. For a com-
prehensive survey, see [63]. Here we focus on systems
leveraging ORAM or PIR that leak the volume of results
(and are thus vulnerable to our attacks).

ORAM techniques [43], [44] and PIR schemes [45]
enable a client to access data items stored at the server
without the server knowing the query requested. These two
types of schemes consider different models and employ
different techniques, but ultimately, the goal of both is to
hide the contents of the query from the server.

Many works leverage ORAM for different purposes.
For example, ObliviStore [64] and CURIOUS [65] show
how to use ORAM for cloud storage. TaoStore [66] shows
how to support asynchronicity in multi-user cases. These
systems leak the volume of results to the server. Oblix [67]
builds a search index over ORAM and pads or truncates
the set of results to a fixed size. Roche et al. [53] propose
an ORAM scheme (called VORAM) that supports variable-
sized data blocks by including them within an ORAM node
(or bucket) on the same path, but our attack with noisy
data in §3.4 can still work on these schemes. While such a
scheme hides the result volume to some extent, it limits the
amount of data that can be included on a path in this way



(say, L files). Since the attacker can see how many ORAM
paths are fetched on a query, he can estimate the number of
results with an error margin of L. In the database setting,
this error margin can be made relatively small because the
database fetches the rows that match the keyword (not just
the row identifiers), and these cannot all be stored on the
same path. Moreover, Naveed [61] demonstrates that, in
general, extending ORAM schemes to hide the volume of
results is (for a large fraction of queries) actually slower
than streaming the database through the client.

Some works [68]-[70] build SQL databases or keyword

indices on top of PIR. For example, to perform an index
search for a keyword k, the client performs PIR retrievals
to traverse the index and select every value in the index.
The server does not know which data items were fetched,
but it still sees the number of results.
Related attacks. When considering the amount of leakage
attacks exploit, there are at least three categories: attacks
exploiting data relations, attacks exploiting access patterns,
and attacks exploiting result set size but not access patterns
or data relations. The last category is the most challenging
because the attacker needs to work with the least amount
of information. At the same time, this category is also the
least studied. Our attack is in this last category, and we
now discuss other volume-based attacks.

Cash et al. [2] point out that if an attacker knows the
exact number of times a keyword appears in a victim's
documents, and if that result size is unique to this keyword,
the attacker can identify the keyword when seeing the
result size. In comparison, our attack does not assume the
attacker knows the frequency of each keyword in a victim’s
index—indeed, when attacking a specific user in the email
application, the attacker often does not have access to
the victim’s mailbox and does not know these counts.
Moreover, many keywords don’t have unique counts (e.g.,
99% words in the Enron dataset, §4), in which case the
attack of Cash et al. does not work. Our attacks do not
suffer from this limitation.

In seminal work, Kellaris et al. [37] showed how an
attacker can reconstruct the contents of a field in the
database given only the volume of results. However, their
attack relies on a set of assumptions that are arguably not
realistic in practice. In particular, Kellaris er al. assume
that (1) the user makes range queries that are uniformly
distributed on that column, a property on which their algo-
rithm relies crucially; and (2) the user makes O(N*log N)
queries where N is the size of the domain. Such a large
number of queries is infeasible for the attacker to observe
in many settings. Grubbs et al. [46] improved upon the
results of Kellaris et al. by demonstrating attacks that do
not make assumptions on the distribution of queries, as
long as all possible O(N?) range queries are issued. As
a result, for queries drawn from a uniform distribution,
their attack requires O(N?2log N) queries to be issued.
In recent work, Gui et al. [47] further improved upon
the result of Grubbs et al. by demonstrating attacks that
require an order of magnitude fewer queries. However, their
attack still assumes that the adversary is able to observe
all possible queries that produce a bounded number of
results, and that the database is dense (i.e., all possible
values occur in the database).

Our attacks differ from the attacks described above
in assumptions as well as target. In contrast to existing

attacks, our attack requires only a single query to be
issued by the user, followed by O(log D ) replays (which,
concretely, is often less than 10 in number; §4). Our attack
also makes no assumptions about the query distribution.
On the other hand, unlike the aforementioned works, our
attack requires the ability to inject and sometimes replay
queries, though we demonstrate realistic scenarios in which
this can be achieved (§2.2). Another difference is that
the aforementioned attacks reconstruct the database using
range queries, but not individual query keywords; we
reconstruct queries, but do not target the overall database.
However, we note that reconstruction follows as a direct
consequence of our attack, where the original counts
for each keyword could be determined if queries for all
possible keywords are issued.

In concurrent work, Blackstone et al. [71] also propose
a suite of volume-based attacks, some of which passively
analyze the volume of query results based on some known
data (similar to prior work), while two additional attacks
rely on injecting files into the database, similar to ours.
In particular, their file injection attacks are conceptually
similar to our base attack in §3.1. The primary difference
is that our attacks leverage query replay—we study the
real behavior of many applications, and crucially, we
find automatic query replay to be a common property;
by leveraging this property, we are able to substantially
improve the efficiency of our attacks. The attacks of
Blackstone et al. do not require queries to be replayed. As
a consequence, however, their attacks rely on an alternate
set of assumptions. First, they require the adversary to
know the baseline volumes for all keywords in the dic-
tionary, before the attack can be launched. Second, for
correctness, their binary search based attack requires the
targeted keyword to have a unique volume in the baseline
volumes. Our attacks do not have such requirements, and
our algorithm allows us to prune the search space faster,
drastically decreasing the overall duration of the attack. We
also describe multiple extensions to the attack, including
settings where the results are padded (§3.3) or noisy (§3.4).

7. Conclusion

We demonstrated a generic attack on encrypted
databases that only leverages result size leakage. We
showed that our attack can reconstruct queries in a range of
realistic settings, weakening the security of these systems.
Our attack is resistant to various mitigation strategies, and
can reconstruct sensitive information even in situations
where the result volumes are padded, the volume measure-
ment is noisy, or the client application lacks the ability to
replay queries. We showed the effectiveness of our attack
via both theoretical bounds and an empirical evaluation,
including a demonstration on the Gmail web application.
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Appendix A.
Extensions for conjunctive queries

In this section, we describe extensions to our base
attack for identifying keywords in conjunctive queries.
The extensions are based on attacks described by Zhang et
al. [30]. Zhang et al. consider powerful attackers who can
observe file access patterns and thereby uniquely identify
documents in the result set. Instead, we adapt the attacks
for our setting in which the attacker observes nothing more
than the size of the result set. We present two attacks—the
first optimizes the number of required replays while the
second reduces the number of files injected.

A.1. Reducing the number of required replays

Zhang et al. [30] present a general attack for conjunc-
tive queries with d keywords. The attacker injects n files
into the database, each containing L randomly chosen
keywords from the dictionary D. They claim that for
properly chosen n and L, the intersection of the returned
files will contain exactly the d queried keywords and no
others with a very large probability. The authors prove the
claim for L= 1"/* D and n = (24 €)dlog D (where
€ > () and show that the probability of success in this
case is =1/ D)*,

We extend the above attack as follows. The attacker
creates the 7 files as before, but injects 2¢ copies of the
i-th file into the database (for ¢ € |0, n — 1]). The number
of files returned is thus sufficient to uniquely identify the
exact subset of files whose copies were returned in the
result.

The attack only requires a single replay of the query,
but the total number of files injected by the attacker in this
case is equal to 20 + 2! + ... 4271 x 27 = D (2+e)d
The attack is thus more suited for situations with small
dictionaries.

A.2. Reducing the number of files injected

Zhang et al. also present an adaptive attack for conjunc-
tive queries with d keywords, which reduces the number
of files the attacker needs to inject. The core idea is



to first perform a binary search in order to identify the
lexicographically largest keyword w in the query. Once w
is identified, the attacker performs another binary search
to identify the next keyword in the query, but with w
present in all the injected files. The attacker proceeds in
this manner until all the keywords are identified.

Specifically, the attacker orders all keywords in the
dictionary lexicographically, and then injects a single file
containing the first D /2 keywords. If the size of the result
set increases by one (i.e., the response includes the injected
file), then he repeats the attack by injecting another file
containing the first D /4 keywords; on the other hand,
if the response does not include the file, then he injects
a file containing the first 3 D /4 keywords instead. The
attacker repeats the process log D times, until the first
(lexicographically largest) keyword is identified. The attack
applies straightforwardly in our setting.

For this variant of the attack, both the number of
required replays and the total number of files injected are
equal to dlog D . Compared to the attack in previous
section, this variant drastically reduces the number of files
that need to be injected, but also increases the number of
required replays.



