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ABSTRACT

Datacenter disaggregation provides numerous benefits to
both the datacenter operator and the application designer.
However switching from the server-centric model to a dis-
aggregated model requires developing new programming
abstractions that can achieve high performance while ben-
efiting from the greater elasticity. To explore the limits of
datacenter disaggregation, we study an application area that
near-maximally benefits from current server-centric datacen-
ters: dense linear algebra. We build NumPyWren, a system
for linear algebra built on a disaggregated serverless pro-
gramming model, and LAmbdaPACK, a companion domain-
specific language designed for serverless execution of highly
parallel linear algebra algorithms. We show that, for a num-
ber of linear algebra algorithms such as matrix multiply,
singular value decomposition, Cholesky decomposition, and
QR decomposition, NumPyWren'’s performance (completion
time) is within a factor of 2 of optimized server-centric MPI
implementations, and has up to 15 % greater compute effi-
ciency (total CPU-hours), while providing fault tolerance.
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1 INTRODUCTION

As cloud providers push for datacenter disaggregation [18],
we see a shift in distributed computing towards greater elas-
ticity. Datacenter disaggregation provides benefits to both
the datacenter operator and application designer. By decou-
pling resources (CPU, RAM, SSD), datacenter operators can
perform efficient bin-packing and maintain high utilization
regardless of application logic (e.g., an application using all
the cores on a machine & using only 5% of RAM). Similarly
the application designer has the flexibility to provision and
deprovision resources on demand during application runtime
(e.g., asking for many cores only during an embarassingly
parallel stage of the application). Furthermore, decoupling
resources allows each resource technology to evolve inde-
pendently by side-stepping constraints imposed by current
server-centric systems (e.g., the memory-capacity wall mak-
ing CPU-memory co-location unsustainable) [18, 41]. Cur-
rent distributed programming abstractions such as MPI and
MapReduce rely on the tightly integrated resources in a
collection of individual servers. Thus, in order to write appli-
cations for a disaggrated datacenter, the datacenter operator
must expose a new programming abstraction.

Serverless computing (e.g., AWS Lambda, Google Cloud
Functions, Azure Functions) is a programming model in
which the cloud provider manages the servers, and also dy-
namically manages the allocation of resources. Typically
these services expose a time limited, stateless, function-as-
a-service API for execution of program logic, and an object
storage system to manage program state. For application
designers who can cleanly separate program state and logic,
serverless platforms provide instant access to large compute
capability without the overhead of managing a complex clus-
ter deployment. The design constraints of serverless comput-
ing is natural fit for disaggregated datacenters, but imposes
severe challenges for many performance critical applications,
as they close off traditional avenues for performance opti-
mization such as exploiting data locality or hierarchical com-
munication. As a direct consequence, serverless platforms are
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mostly used for simple event-driven applications like [oT au-
tomation, front-end web serving, and log processing. Recent
work has exploited them for broader applications like parallel
data analysis [25] and distributed video encoding [17]. These
workloads, however, are either embarrassingly parallel or use
simple communication patterns across functions. Whether
and how complex communication patterns and workloads
can be efficiently fit in a serverless application remains an
active research question.

We study an application area that near-maximally benefits
from current server-centric datacenters: dense linear alge-
bra. State of the art distributed linear algebra frameworks
[8, 11, 15] achieve high performance by exploiting locality,
network topology, and the tight integration of resources
within single servers. Given a static cluster of resources,
frameworks such as ScaLAPACK and LINPACK lead in com-
petitions like Top 500 that measure the peak FLOPs that can
be achieved for large scale linear algebra tasks. Thus we ask
the question: Can these algorithms can be successfully ported
to a disaggrated datacenter? That is, can we achieve compara-
ble performance to an MPI-based distributed linear algebra
framework, but running under the constraints imposed by
the serverless programming model?

We find that disaggregation can in fact provide benefits to
linear algebra tasks as these workloads have large dynamic
range in memory and computation requirements over the
course of their execution. For example, performing Cholesky
decomposition [5] on a large matrix—one of the most popular
methods for solving systems of linear equations—generates
computation phases with oscillating parallelism and decreas-
ing working set size. Further, we find that for many linear
algebra operations, regardless of their complex structure,
computation time often dominates communication for large
problem sizes (e.g., O(n*) compute and O(n*) communication
for Cholesky decomposition). Thus, with appropriate block-
ing, it is possible to use high-bandwidth but high-latency
distributed storage as a substitute for large-scale distributed
memoary.

Based on these insights, we design NumPyWren, a sys-
tem for linear algebra workloads on serverless architectures.
NumPyWren executes programs written using LAmbdaPACK,
a high level DSL we built that can succinctly express arbi-
trary tile-based linear algebra algorithms. NumPyWren ana-
lyzes the data dependencies in LAmbdaPACK and extracts
a task graph for parallel execution. NumPyWren then runs
parallel computations as stateless functions while storing
intermediate state in a distributed object store. One of the
main challenges we see is that operating on large matrices
at fine granularity can lead to very large task graphs (16M
nodes for a 1IMx1M matrix with a block size of 4096). We
address this by using ideas from the literature of loop op-
timization to infer task dependencies on-demand from the
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Figure 1: Aggregate S3 Read/Write Bandwidth as a
function of number of lambdas. Achieved bandwidth
nearly saturates the 25 Gigabit data center network up
to at least 10k cores.

original looping program rather than unrolling it, and show
that the LAmbdaPACK runtime can scale to large matrix
sizes while generating programs of constant size.

We evaluate NumPyWren using a representative set of
distributed linear algebra algorithms and compare with MPI-
based implementations found in ScaLAPACK. Our experi-
ments show that, for commonly used linear algebra routines
(e.g., Cholesky decomposition, matrix multiply, SVD, QR)
NumPyWren can come within a factor of 2 in wall-clock
time of ScaLAPACK running on a dedicated cluster with the
same hardware and number of cores, while using up to 15%
less total CPU-hours and providing fault tolerance.

In summary, we make the following contributions:

(1) We provide the first concrete evidence that large scale
linear algebra algorithms can be efficiently executed
using stateless functions and disaggregated storage.

(2) We design LAmbdaPACK, a domain specific language
for linear algebra algorithms that captures fine grained
dependencies and can express state of the art communi-
cation avoiding linear algebra algorithms in a succinct
and readable manner.

(3) We show that NumPyWren can scale to run Cholesky
decomposition on a 1M? matrix, and is within a fac-
tor of 2 in terms of the completion time compared to
ScaLAPACK while using 15% fewer CPU-hours.

2 BACKGROUND

2.1 Serverless Landscape

In the serverless computing model, cloud providers offer the
ability to execute functions on demand, hiding cluster con-
figuration and management overheads from end users. In
addition to the usability benefits, this model also improves
efficiency: the cloud provider can multiplex resources at a
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much finer granularity than what is possible with traditional
cluster computing, and the user is not charged for idle re-
sources. However, in order to efficiently manage resources,
cloud providers place limits on the use of each resource. We
next discuss how these constraints affect the design of our
system.

Computation. Computation resources offered in serverless
platforms are typically restricted to a single CPU core and
a short window of computation. For example AWS Lambda
provides 900 seconds of compute on a single AVX core with
access to up to 3 GB of memory and 512 MB of disk storage.
Users can execute a number of parallel functions, and, the
aggregate compute performance of these executions scales
almost linearly.

The linear scalability in function execution is only useful

for embarrassingly parallel computations when there is no
communication between the individual workers. Unfortu-
nately, as individual workers are transient and as their start-
up times could be staggered, a traditional MPI-like model
of peer-to-peer communication will not work in this en-
vironment. This encourages us to leverage storage, which
can be used as an indirect communication channel between
workers.
Storage. Cloud providers offer a number of storage options
ranging from key-value stores to relational databases. Some
services are not purely elastic in the sense that they require
resources to be provisioned beforehand. However distributed
object storage systems like Amazon S3 or Google Cloud Stor-
age offer unbounded storage where users are only charged
for the amount of data stored. From the study done in [25]
we see that AWS Lambda function invocations can read and
write to Amazon S3 at an aggregate bandwidth of 800 GB/s or
more as shown in Figure 1, roughly saturating the datacenter
network bandwidth into each core. This means that we can
potentially store intermediate state during computation in a
distributed object store and still achieve the same bandwidth
as if it were accessed from other nodes’ RAM.

Finally, the cost of data storage in an object storage sys-
tem is often orders of magnitude lower when compared to
instance memory. For example on Amazon S3 the price of
data storage is $0.04 per TB-hour; in contrast the cheapest
large memory instances are priced at $6 per TB-hour. This
means that using a storage system could be cheaper if the
access pattern does not require instance memory. S3 request
are also charged at $4e-6 per read request and $5e-6 per write
requests. However in our experiments we found that if the
storage granularity is coarse enough the per request cost
is marginal when compared to the total storage cost.
Control Plane In addition to storage services, cloud providers
also offer publish-subscribe services like Amazon SQS or
Google Task Queue. These services typically do not support
high data access bandwidth but offer consistency guarantees
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like at least once delivery, and can be used for “control plane”
state like a task queue shared between all serverless function
invocations. Cloud vendors also offer consistent key-value
stores (e.g., DynamoDB) that can be used for storing and
manipulating control plane state across serverless function
invocations.

2.2 Linear Algebra Algorithms

In this work, we broadly focus on the case of large-scale
dense linear algebra. This domain has a rich literature of
parallel communication-avoiding algorithms and existing
high performance implementations [2, 5, 6, 19].

To motivate the design decisions in the subsequent sec-

tions we briefly review the communication and computa-
tion patterns of a core subroutine in solving a linear system,
Cholesky factorization.
Case study: Cholesky factorization is one of the most pop-
ular algorithms for solving linear equations, and it is widely
used in applications such as matrix inversion, partial differ-
ential equations, and Monte Carlo simulations. To illustrate
the use of Cholesky decomposition, consider the problem of
solving a linear equation Ax = b, where A is a symmetric
positive definite matrix. One can first perform a Cholesky
decomposition of A into two triangular matrices A = LLT
(O(n*)), then solve two relatively simpler equations of Ly = b
(O(n?) via forward substitution) and L x = y (O(n?) via back
substitution) to obtain the solution x. From this process, we
can see that the decomposition is the most expensive step.

Communication-Avoiding Cholesky [5] is a well-studied
routine to compute a Cholesky decomposition. The algo-
rithm divides the matrix into blocks and derives a computa-
tion order that minimizes total data transfer. We pick this
routine not only because it is one of the most performant,
but also because it showcases the structure of computation
found in many linear algebra algorithms.

The pseudo-code for communication-avoiding Cholesky
decomposition is shown in Algorithm 1. At each step of the
outer loop (j), the algorithm first computes Cholesky decom-
position of a single block A;; (Fig. 2(a)). This result is used
to update the “panel” consisting of the column blocks below
Ajj (Fig. 2(b)). Finally all blocks to the right of column j are
updated by indexing the panel according to their respective
positions (Fig. 2(c)). This process is repeated by moving down
the diagonal (Fig. 2(d)).

We make two key observations from analyzing the com-
putational structure of Algorithm 1. First, we see that the
algorithm exhibits dynamic parallelism during execution.
The outer loop consists of three distinct steps with different
amounts of parallelism, from O(1), O(K) to O(K?), where K
is the enclosing sub-matrix size at each step. In addition, as
K decreases at each iteration, overall parallelism available
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Figure 2: First 4 time steps of parallel Cholesky decomposition: 0) Diagonal block Cholesky decomposition 1)
Parallel column update 2) Parallel submatrix update 3) (subsequent) Diagonal block Cholesky decomposition

Algorithm 1 Communication-Avoiding Cholesky [5]
Input:
A - Positive Semidefinite Symmetric Matrix
B - block size
N - number of rows in A
Blocking:
Ajj - the ij-th block of A
Output:
L - Cholesky Decomposition of A

1: forje {0[%]} do
2. Ljj < cholesky(Aj;)
3. forallie {j+1...|'%]}doinparallel
4 L < LJTJ.]A, j
5. end for
6
7
8
9

forallk € {j+ 1[%']} do in parallel
foralll e {k[%]} do in parallel
Apl &= Apl — LZ}.LU

end for
10: end for
11: end for

for each iteration decreases from O(K?) to O(1). Our second
observation is that the algorithm has fine-grained dependen-
cies between the three steps, both within an iteration and
across iterations. For example, Ay, in step 3 can be computed
as long as Li; and L;; are available (line 8). Similarly, the
next iteration can start as soon as A(j41)(j+1) is updated. Such
fine-grained dependencies are hard to exploit in single pro-
gram multiple data (SPMD) or bulk synchronous parallel
(BSP) systems such as MapReduce or Apache Spark, where
global synchronous barriers are enforced between steps.

2.3 NumPyWren Overview

We design NumPyWren to target linear algebra workloads
that have execution patterns similar to Cholesky decompo-
sition described above. Our goal is to adapt to the amount
of parallelism when available and we approach this by de-
composing programs into fine-grained execution units that
can be run in parallel. To achieve this at scale in a stateless
setting, we propose performing dependency analysis in a de-
centralized fashion. We distribute a global dependency graph
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describing the control flow of the program to every worker.
Each worker then locally reasons about its down stream de-
pendencies based on its current position in the global task
graph. In the next two sections we will describe LAmbda-
PACK the DSL that allows for compact representations of
these global dependency graphs, and the NumPyWren exe-
cution engine that runs the distributed program.

3 PROGRAMMING MODEL

In this section we present an overview of LAmbdaPACK, our
domain specific language for specifying parallel linear alge-
bra algorithms. Classical algorithms for high performance
linear algebra are difficult to map directly to a serverless
environment as they rely heavily on peer-to-peer communi-
cation and exploit locality of data and computation — luxuries
absent in a serverless computing cluster. Furthermore, most
existing implementations of linear algebra algorithms like
ScalaPACK are explicitly designed for stateful HPC clusters.

We thus design LAmbdaPACK to adapt ideas from re-
cent advances in the numerical linear algebra community
on expressing algorithms as directed acyclic graph (DAG)
based computation [1, 11]. Particularly LAmbdaPACK bor-
rows techniques from Dague [12] a DAG execution frame-
work aimed at HPC environments, though we differ in our
analysis methods and target computational platform. Further
unlike Dague, LAmbdaPACK does not require the user to
pre-specify a DAG of linear algebra kernels, but rather infers
the program DAG from an imperative program. By allowing
the algorithm to be specified as an imperative program we
gain the ability to express intricate communication avoiding
algorithms such as those found in [14] that often require
hundreds of lines of MPI code, in a succinct and readable
manner. All algorithms we implemented in LAmbdaPACK
were less than 40 lines of code, and this was often due to the
high complexity of the underlying algorithm.

We design LAmbdaPACK to allow users to succinctly ex-
press tiled linear algebra algorithms. These routines express
their computations as operations on matrix tiles, small sub-
matrices that can fit in local memory. The main distinction
between tiled algorithms and the classical algorithms found
in libraries like ScaLAPACK is that the algorithm itself is ag-
nostic to machine layout, connectivity, etc., and only defines
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a computational graph on the block indices of the matrices.
This uniform, machine independent abstraction for defining
complex algorithms allows us to adapt most standard linear
algebra routines to a stateless execution engine.

3.1 Language Design

LAmbdaPACK programs are simple imperative routines which
produce and consume tiled matrices. These programs can
perform basic arithmetic and logical operations on scalar
values. They cannot directly read or write matrix values;
instead, all substantive computation is performed by calling
native kernels on matrix tiles. Matrix tiles are referenced by
index, and the primary role of the LAmbdaPACK program
is to sequence kernel calls, and compute the tile indices for
each call.

LAmbdaPACK programs include simple for loops and if
statements, but there is no recursion, only a single level
of function calls, from the LAmbdaPACK routine to kernels.
Each matrix tile index can be written to only once, a common
design principle in many functional languages !. Capturing
index expressions as symbolic objects in this program is key
to the dependence analysis we perform.

These simple primitives are powerful enough to concisely
implement algorithms such as Tall Skinny QR (TSQR), LU,
Cholesky, and Singular Value decompositions. A descrip-
tion of LAmbdaPACK is shown in Figure 3, and examples of
LAmbdaPACK implementations of Cholesky and TSQR are
shown in Figure 5.

3.2 Program Analysis

Our program analysis runs in two stages. Naively the uncom-
pressed dag is too large to unroll completely, as the number
of nodes in the dag can grows cubically with the input size
for algorithm such as Cholesky or QR. Thus, the first stage
analyzes a program and extracts a compressed DAG of tasks.
Each task in the DAG corresponds to an array write, we
also extract the kernel computation and array reads that
are necessary to execute this task. This process is tractable
since each array read has a unique upstream write task. The
second analysis stage occurs at runtime when, after a task is
executed, the downstream tasks are dynamically discovered.
We use information of the current loop variable bindings
to query the compressed DAG for downstream tasks. Our
compressed DAG representation takes constant space, and
supports querying node-edge relationships efficiently. Figure
5 and 4 illustrates an example LAmbdaPACK program and
dag respectively.

There are no parallel primitives in LAmbdaPACK, but
rather the LAmbdaPACK runtime deduces the underlying

! Arbitrary programs can be easily translated into this static single assign-
ment form, but we have found it natural to program directly in this style
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Uop = Neg Not Log Ceiling Floor Log2
Bop = Add Sub Mul Div Mod And Or
Cop = EQ NE LT GT LE GE

IdxExpr = IndexExpr(Str matrix_name
Expr[ ] indices)

Expr = BinOp(Bop op, Expr left Expr right)
CmpOp (Cop op. Expr left, Expr right)

UnOp(Uop op Expr e)
Ref(Str name)
FloatConst(float val)
IntConst(int val)

Stmt = KernelCall(Str fn_name

IdxExpr[ ] outputs
IdxExpr[ ] matrix_inputs
Expr[ ] scalar_inputs)
Assign(Ref ref, Expr val)
Block (Stmt* body)
If(Expr cond, Stmt body, Stmt? else)
For(Str var Expr min
Expr max, Expr step Stmt body)

Figure 3: A description of the LAmbdaPACK lan-
guage.

dependency graph by statically analyzing the program. In
order to execute a program in parallel, we construct a DAG
ofkernel calls from the dependency structure induced by the
program. Naively converting the program into an executable
graph will lead to a DAG explosion as the size of the data
structure required to represent the program will scale with
the size of the input data, which can lead to intractable com-
pilation times. Most linear algebra algorithms of interest are
O(N?), and even fast symbolic enumeration of O(N?) oper-
ations at runtime as used by systems like MadLINQ [33] can
lead to intractable compute times and overheads for large
problems.

In contrast, we borrow and extend techniques from the
loop optimization community to convert a LAmbdaPACK
program into an implicit directed acyclic graph [16].

We represent each node N in the program’s DAG as a
tuple of (line_number loop_indices). With this infor-
mation any statement in the program’s iteration space can
be executed. The challenge now lies in deducing the down-
stream dependencies given a particular node in the DAG.
Our approach is to handle dependency analysis at at run-
time: whenever a storage location is being written to, we
determine expressions in NV (all lines, all loop indices) that
read from the same storage location.

We solve the problem of determining downstream depen-
dencies for a particular node by modeling the constraints as
a system of equations. We assume that the number of lines
in a single linear algebra algorithm will be necessarily small.
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However, the iteration space of the program can often be
far too large to enumerate directly (as mentioned above, this
is often as large as O(n?)). Fortunately the pattern of data
accesses in linear algebra algorithms is highly structured.
Particularly when arrays are indexed solely by affine func-
tions of loop variables—that is functions of the form ai + b,
where i is a loop variable and a and b are constants known at
compile time—standard techniques from loop optimization
can be employed to efficiently find the dependencies of a
particular node. These techniques often involve solving a
small system of integer-valued linear equations, where the
number of variables in the system depends on the number
of nested loop variables in the program.

Example of linear analysis. Consider the Cholesky pro-
gram in Figure 5. If at runtime a worker is executing line
7 of the program with i = 0, j = 1 and k = 1, to find the
downstream dependencies, the analyzer will scan each of
the 7 lines of the program and calculate whether there exists
a valid set of loop indices such that S[1, 1, 1] can be read
from at that point in the program. If so then the tuple of
(1ine_number, loop_indices) defines the downstream de-
pendency of such task, and becomes a child of the current
task. All index expressions in this program contain only
affine indices, thus each system can be solved exactly. In this
case the only child is the node (2, {i: 1,j: 1,k : 1}). Note
that this procedure only depends on the size of the program
and not the size of the data being processed.
Nonlinearites and Reductions. Certain common algorith-
mic patterns—particularly reductions—involve nonlinear loop
bounds and array indices. Unlike traditional compilers, since
all our analysis occurs at runtime, all loop boundaries have
been determined. Thus we can solve the system of linear
and nonlinear equations by first solving the linear equations
and using that solution to solve the remaining nonlinear
equations.

Example of nonlinear analysis. Consider the TSQR pro-
gram in Figure 5. Suppose at runtime a worker is executing
line 6 with level = 0 and i = 6, then we want to solve for the
loop variable assignments for R[i + 2/¢“¢!, level] = R[6,1]
(line 7). In this case one of the expressions contains a nonlin-
ear term involving i and level and thus we cannot solve for
both variables directly. However we can solve for level easily
and obtain the value 1. We then plug in the resulting value
into the nonlinear expression to get a linear equation only
involving i. Then we can solve for i and arrive at the solu-
tion (6, {i : 4, level : 1}). We note that the for loop structures
defined by Figure 5 define a tree reduction with branching
factor of 2. Using this approach we can capture the nonlinear
array indices induced by tree reductions in algorithms such
as Tall-Skinny QR (TSQR), Communication Avoiding QR
(CAQR), Tournament Pivoting LU (TSLU), and Bidiagonal
Factorization (BDFAC). The full pseudo code for our analysis

286

V.Shankar, K.Krauth, KVodrahalli, Q.Pu, B.Recht, |.Stoica, ).Ragan-Kelley, E.Jonas, S Venkataraman

chol (i=0)

T

trsm (i=0, j=1) trsm (i=0, j=2)

— r— 1

syrk syrk syrk
(i=0j=1k=2) (i=0,j=2k=3) (i=0,j=3 k=3)

I N

Figure 4: Eexample of a partially unrolled dag for
Cholesky decomposition

trsm (i=0, j=3)

syrk
(i=0,j=1,k=1)

1 def cholesky(O BigMatrix,S BigMatrix N int)
2 for i in range(@,N)

3 O[i i] = chol(S[i, i, i])

4 for j in range(i+1,N)

5 0[j,i] = trsm(O[i,6i], S[i, j, i])

6 for k in range(i+l j+1)

7 S[i+1,3,k] = syrk(

8 S[i,j k1, 0[j,i], O[k,i])

1 def tsqr(A BigMatrix, R BigMatrix N Int)

2 for i in range(@,N)

3 R[i @] = gr_factor(A[i])

4 for level in range(@,log2(N))
5 for i in range(@,N,2*x(level+1))
6 R[i, level+1] = gr_factor(

7 R[i, level], R[i+2x*level, level])

Figure 5: LAmbdaPACK code for Cholesky and Tall-

Skinny QR decompositions

algorithm can be found in Algorithm 2. The SOLVE call in
the algorithm refers to a general purpose symbolic nonlinear
equation solver. Our implementation uses the Sympy solver
(39]

Implementation. To allow for accessibility and ease of de-
velopment we embed our language in Python. Since most
LAmbdaPACK call into optimized BLAS and LAPACK ker-
nels, the performance penalty of using a high level inter-
preted language is small.

4 SYSTEM DESIGN

We next present the system architecture of NumPyWren. We
begin by introducing the high level components in NumPy-
Wren and trace the execution flow for a computation. Fol-
lowing that we describe techniques to achieve fault tolerance
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Figure 6: The architecture of the execution framework of NumPyWren showing the runtime state during a 6 X 6
cholesky decomposition. The first block cholesky instruction has been executed as well as a single column update.

Algorithm 2 LAmbdaPACK Analysis
Input:
P - The source of a LAmbdaPACK program
A - a concrete array that is written to
idx - the concrete array index of A writen to
Output:
O = {Ny, ..., Ni.} - A concrete set of program nodes that

read from Alidx]

1: 0= {}

2: for line € P do

3 for M € line.read_matrices do

4 if M = A then

5: S = SOLVEM.symbolic_idx — idx = 0)
6 O0O=0US

7 end if

8 end for

9: end for

and mitigate stragglers. Finally we discuss the dynamic opti-
mizations that are enabled by our design. To fully leverage
the elasticity and ease-of-management of the cloud, we build
NumPyWren entirely upon existing cloud services while
ensuring that we can achieve the performance and fault-
tolerance goals for high performance computing workloads.
Our system design consists of five major components that are
independently scalable: a runtime state store, a task queue,
a lightweight global task scheduler, a serverless compute
runtime, and a distributed object store. Figure 6 illustrates
the components of our system.
The execution proceeds in the following steps:

1. Task Enqueue: The client process enqueues the first task
that needs to be executed into the task queue. The task queue
is a publish-subscribe style queue that contains all the nodes
in the DAG whose input dependencies have been met and
are ready to execute.

2. Executor Provisioning: The length of the task queue is
monitored by a provisioner that manages compute resources
to match the dynamic parallelism during execution. After the
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first task is enqueued, the provisioner launches an executor,
and maintains the number of active executors based on task
queue size. As the provisioner’s role is only lightweight it can
also be executed periodically as a “serverless” cloud function.
3. Task Execution: Executors manage executing and sched-
uling NumPyWren tasks. Once an executor is ready, it polls
the task queue to fetch a task available and executes the
instructions encoded in the task. Most tasks involve reading
input from and writing output to the object store, and execut-
ing BLAS/LAPACK functions. The object store is assumed
to be a distributed, persistent storage system that supports
read-after-write consistency for individual keys. Using a per-
sistent object store with a single static assignment language
is helpful in designing our fault tolerance protocol. Executors
self terminate when they near the runtime limit imposed
by many serverless systems (900s for AWS Lambda). The
provisioner is then left in charge of launching new workers
if necessary. As long as we choose the coarsness of tasks
such that many tasks can be successfully completed in the
allocated time interval, we do not see too large of a per-
formance penalty for timely worker termination. Our fault
tolerance protocol keeps running programs in a valid state
even if workers exceed the runtime limit and are killed mid-
execution by the cloud provider.

4. Runtime State Update: Once the task execution is com-
plete and the output has been persisted, the executor updates
the task status in the runtime state store. The runtime state
store tracks the control state of the entire execution and
needs to support fast, atomic updates for each task. If a com-
pleted task has children that are “ready” to be executed the
executor adds the child tasks to the task queue. The atomicity
of the state store guarantees every child will be scheduled.
We would like to emphasize that we only need transactional
semantics within the runtime state store, we do not need the
runtime state store and the child task enqueuing to occur
atomically. We discuss this further in Section 4. This process
of using executors to perform scheduling results in efficient,
decentralized, fine grained scheduling of tasks.
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Fault tolerance in NumPyWren is much simpler to achieve
due to the disaggregation of compute and storage. Because
all writes to the object store are made durable, no recomputa-
tion is needed after a task is finished. Thus fault tolerance in
NumPyWren is reduced to the problem of recovering failed
tasks, in contrast to many systems where all un-checkpointed
tasks have to be re-executed [33]. In NumPyWren we re-
execute failed tasks via a lease mechanism [21], which al-
lows the system to track task status without a scheduler
periodically communicating with executors.

Task Lease: In NumPyWren, all the pending and executable
tasks are stored in a task queue. We maintain a invariant
that a task can only be deleted from the queue once it is
completed (i.e., the runtime state store has been updated
and the output persisted to the object store). When a task is
fetched by a worker, the worker obtains a lease on the task.
For the duration of the lease, the task is marked invisible
to prevent other workers from fetching the same task. As
the lease length is often set to a value that is smaller than
task execution time, e.g., 10 seconds, a worker is responsible
for renewing the lease and keeping a task invisible when
executing the task.

Failure Detection and Recovery: During normal opera-
tion, the worker will renew lease of the task using a back-
ground thread until the task is completed. If the task com-
pletes, the worker deletes the task from the queue. If the
worker fails, it can no longer renew the lease and the task
will become visible to any available workers. Thus, failure
detection happens through lease expiration and recovery
latency is determined by lease length.

Garbage Collection: Since NumPyWren stores all interme-
diate state to a persistent object store, it is imperative we
clear the state when it is no longer necessary. However due
to the extremely low cost of storing bytes in an object store ($
0.04 per TB-hour), compared to the compute cost for working
on problems with terabytes of intermediate state, it suffices
to do garbage collection at the end of the program. We tag all
allocations in the object store for a single program execution
with a unique id associated with the program. After the pro-
gram execution terminates, NumPyWren asynchronously
cleans the object store by launching a set of parallel server-
less tasks to clean up all objects associated with a given
program id.

Autoscaling: In contrast to the traditional serverless com-
puting model where each new task is assigned a new con-
tainer, task scheduling and worker management is decou-
pled in NumPyWren. This decoupling allows auto-scaling of
computing resources for a better cost-performance trade-off.
Historically many auto-scaling policies have been explored
[36]. In NumPyWren, we adopt a simple auto-scaling heuris-
tic and find it achieves good utilization while keeping job
completion time low.
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MPI NumPyWren Slow

Algorithm

gort (sec) (sec) down
SVD 5.8e4 4.8e4 N/A
OR 9.9e3 1.4e4 1.5x
GEMM 5.0e3 8.1e3 1.6x
Cholesky 1.7e3 2.5e3 1.5x

Table 1: A comparison of MPI vs NumPyWren execu-
tion time across algorithms when run on a square ma-
trix with N=256K on a cluster with 512 virtual cores.
Median performance of 3 runs reported.

For scaling up, NumPyWren’s auto-scaling framework tracks
the number of pending tasks and periodically increases the
number of running workers to match thetasks with a scal-
ing factor sf. For instance, let sf = 0.5, when there are
100 pending tasks, 40 running workers, we launch another
100 * 0.5 — 40 = 10 workers. For scaling down, each worker
shuts down itself if no task has been found for the last
Ttimeoutr seconds. At equilibrium, the number of running
workers is sf times the number of pending tasks. All of the
auto-scaling logic is handled by the “provisioner" in Figure
6.

5 EVALUATION

We evaluate NumPyWren on 4 linear algebra algorithms
Matrix Multiply (GEMM), QR Decomposition (QR) , Singu-
lar Value Decomposition (SVD) ? and Cholesky Decomposi-
tion (Cholesky). All of the algorithms have computational
complexity of O(N?) but differ in their data access patterns.
For all four algorithms we compare to state of the art MPI
implementations. For Cholesky, GEMM and SVD*we use
ScaLAPACK, an industrial strength Fortran library designed
for high performance, distributed dense linear algebra. For
QR decomposition we use an optimized implementation of a
communication-avoiding QR decomposition [14] algorithm,
specifically the implementation found in [13]. We also do a
detailed analysis of the scalability and fault tolerance of our
system using the Cholesky decomposition.

5.1 Setup

Implementation. Our implementation of NumPyWren is
around 6000 lines of Python code and we build on the Ama-
zon Web Service (AWS) platform. For our runtime state
store we use Redis, a key-value store offered by ElasticCache.
Though ElasticCache is a provisioned (not “serverless”) ser-
vice we find that using a single instance suffices for all our

20nly the reduction to banded form is done in parallel for the SVD
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Figure 7: Network traffic for GEMM and QR

Algorithm MPI NumPyWren Reso'urce
(core-secs)  (core-secs) saving
SVD 2.1e7 6.2e6 3.4x
OR 2.6e6 2.2e6 1.15x
GEMM 1.2e6 1.9e6 0.63x
Cholesky 4.5e5 3.9e5 1.14x

Table 2: A comparison of MPI vs NumPyWren total
CPU time (in core-secs) across algorithms run on a
256K size square matrix. Resource saving is defined as

MPI core-secs “ s el
NumPyWren core-56¢s We compute “active” core-secs for

NumPyWren as a 10 second window around a job exe-
cution to account for startup & teardown latency.

workloads. We found that we could replace Redis with a man-
aged vendor provided key value store such as DynamoDB,
with a slight performance degradation. We used Amazon'’s
simple queue service (SQS) for the task queue, Lambda or
EC2. We use Amazon S3 as our remote object store.
Simulating AWS Lambda. Since we cannot easily control
the number of concurrent Lambda executions or the type of
hardware provided by AWS, for experimental control rea-
sons, we do the bulk of our evaluations by mimicking a
serverless runtime on EC2 for all experiments that compare
to other systems. Our Lambda simulation was based on “stan-
dalone mode” in the PyWren framework [25]. PyWren uses
a separate SQS queue to simulate the Lambda job queue,
and time limited processes to simulate short function invoca-
tions. Using SQS induces nondeterminism while controlling
for the underlying hardware (AVX, NIC, etc.). Additionally
the current pricing of Lambda is 10x more expensive than
EC2 spot instances, making the large-scale experiments in
this paper unaffordable on Lambda. As shown in Table 3 we
found minimal performance differences from running on a
simulated serverless environment on EC2 vs AWS Lambda.
The simulated environment also lets us modify certain sys-
tem parameters that are out of the users control in modern
serverless environments such as function timeout, which we
study in Figure 10.
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5.2 System Comparisons

We first present end-to-end comparison of NumPyWren to
MPI on four widely used dense linear algebra methods in
Table 1. We compare MPI to NumPyWren when operating
on square matrices of size 256k (262144) while having access
to the exact same hardware (256 physical cores across 8
r4.16xlar ge instances).

In Table 1 we see that the constraints imposed by the
serverless environment lead to a performance penalty be-
tween 1.4x to 1.6x in terms of wall clock time. To under-
stand the overheads, in Figure 7 we compare the number
of bytes read over the network by a single machine for two
algorithms: GEMM and QR decomposition. We see that the
amount of bytes read by NumPyWren is always greater than
MPI. This is a direct consequence of each task being stateless,
thus all its arguments must be read from a remote object
store (Amazon S3 in our experiments). Moreover we see that
for QR decomposition and GEMM, MPI reads 21x and 6x
less data respectively than NumPyWren. However we note
that even though NumPyWren reads more than 21x bytes
over the network when compared to MPL, our end to end
completion time is only 47% slower.

In Table 2 we compare the total core-seconds used by
NumPyWren and MPL. For MPI the core-seconds is the total
amount of cores multiplied by the wall clock runtime. For
NumPyWren we wish to only account for “active cores" in
our core-second calculation, as the free cores can be utilized
by other tasks.

We calculate total core seconds by adding a startup latency
of y to the total compute time for each of the kernels exe-
cuted in the course of computation to account for startup and
cooldown of the serverless cores. We calculate y based on the
serverless startup latency measured in [40]. The measured
cold-startup latency in is under 10 seconds for all but one of
the serverless function providers. For our core second mea-
surement we use y = 20s to get a conservative performance
measurement of our system.

For algorithms such as QR and Cholesky that have variable
parallelism, while our wall clock time is comparable (within
a factor of 2), we find that NumPyWren uses 1.15x less core-
seconds. For SVD we see a resource savings of over 3x, but
this difference is partially due to difference in SVD algorithms
used’. However for algorithms that have a fixed amount
of parallelism (e.g., GEMM), the excess communication in
NumPyWren leads to higher resource consumption.

*We used a different SVD algorithm in ScaLAPACK as the baseline (2 step
factorization), as the MPI implementation of the algorithm used in NumPy-
Wren (3 step factorization) did not terminate over a period of 2 days, and
after personal correspondence with the author we were informed that the
implementation was not designed for high performance.
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Figure 8: a) Completion time on various problem sizes when NumPyWren is run on same setup as ScaLAPACK.
b) Total execution core-seconds for Cholesky when the NumPyWren and ScaLAPACK are optimized for utiliza-
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NumPyWren with 128 core single node machine running Cholesky decompositions of various sizes

5.3 Scalability

We next look at scalability of NumPyWren and use the
Cholesky decomposition study performance and utilization
as we scale. For MPI we start with 2 instances for the smallest
problem size. We scale the number of instances by 4x for
a 2x increase in matrix dimension to ensure that the prob-
lem fits in cluster memory. For this experiment we used the
c4.8xlarge instance type. Figure 8a shows the completion
time when running Cholesky decomposition on each frame-
work, as we increase the problem size. Similar to NumPy-
Wren, MPI has a configurable block size that affects the
coarseness of local computation. We report completion time
for two different block sizes (4096 and 512) for MPI in Fig-
ure 8a. We use a block size of 4096 for NumPyWren. To get an
idea of the communication overheads, we also plot a lower
bound on completion time based on the clock-rate of the
CPUs used.

From the figure we see that NumPyWren is 20 to 25%

faster than MPI-4096 and 40 to 60% slower than MPI-512.
Compared to MPI-4K, we perform more communication due
to the stateless nature of our execution. MPI-512 on the
other hand has 64x more parallelism but correspondingly
the blocks are only 2MB in size.
Weak Scaling. In Figure 8c we focus on the weak-scaling
behavior of NumPyWren. Cholesky decomposition has an
algorithmic complexity of O(N?*) and a maximum parallelism
of O(N?), so we increase our core count quadratically from
57 to 1800 as we scale the problem from 64k to 512k. We
expect our ideal curve (shown by the green line in Figure 8c)
to be a diagonal line. We see that our performance tracks the
ideal behavior quite well despite the extra communication
overheads incurred.
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Utilization. We next look at how resource utilization varies
with scale. We compare aggregate core-seconds in Figure 8b
for different problem sizes. In this experiment we configured
MPI and NumPyWren to minimize total resources consumed.
We note that for MPI this is often the minimum number
of machines needed to fit the problem in memory. Com-
pared to MPI-512 we find that NumPyWren uses 20% to 33%
lower core seconds. Disaggregated storage allows NumPy-
Wren to have the flexibility to run with 4x less cores but
increases completion time by 3x. In contrast to NumPyWren,
MPI frameworks need a minimum resource allocation to fit
the problem in memory, thus such a performance/resource
consumption trade-off is not possible on MPL

Single Node Comparisons. Cloud providers now offer many-
core high memory machines that can fit large problem in-
stances in memory. We use parallel MKL code to run a se-
quence of Cholesky decompositions on series of exponen-
tially spaced problem sizes on the largest single node offered
by AWS: an x1.32xlarge. This instance type has 2 TB of RAM
and the largest problem size we try on this machine is a 256k
Cholesky decomposition (working set of 1.2 TB). In Figure 8d,
we compare the performance of a Cholesky decomposition
running on a single x1.32xlarge with NumPyWren which
will use as many cores as necessary to solve the problem. We
see that after a problem size of 128k, NumPyWren begins
to overtake the single machine performance. This is simply
because NumPyWren can summon far more cores than are
available to the single node. For the maximally parallel stage
of the 512k problem instance, NumPyWren uses up to 10,000
lambdas. The 512k problem instance however does not fit in
memory of the x1.32xlarge and thus cannot run successfully.
This shows that NumPyWren can provide good performance
even for problems that fit on a single machine, while also
scaling to larger problem sizes.
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Figure 9: a) Effect of block size on completion time b) Our auto-scaling policy in action. The number of workers
increases as the task queue builds up, decreases as the queue is being cleared c) Cost performance trade-off when
varying auto-scaling factor (as labeled next to the data points) d) Graceful degradation and recovery of system

performance with failure of 80% of workers

Problem Lambda Simulated
Size Time (s) Lambda
Time (s)
64k 414s 420s
128k 820s 840s
256k 2180s 2533s

Table 3: Runtime of a 256k Cholesky on actual AWS
Lambda versus a simulated variant on EC2. (both with
access to a maximum of 512 virtual cpus)

5.4 System Ablations

We next study certain ablations of NumPyWren to see how
our system performs in a variety of conditions.

Fault Recovery. We measure performance of NumPyWren
under intermittent failures of the cloud functions. Failures
can be common in this setting as cloud functions can get pre-
empted or slow down due to contention. In the experiment
in Figure 9d we start with 180 workers and after 150 seconds,
we inject failures in 80% of the workers. The disaggregation
of resources and the fine grained computation performed by
our execution engine leads to a performance penalty linear
in the amount of workers that fail. Using the autoscaling
technique discussed in ??, Figure 9d also shows that we can
replenish the worker pool to the original size in 20 seconds.
We find there is an extra 20 second delay before the compu-
tation picks back up due the the startup communication cost
of reading program arguments from the object store.
Auto-scaling. Figure 9b shows our auto-scaling policy in
action. We ran the first 5000 instructions of a 256k Cholesky
solve on AWS Lambda with sf = 1.0 (as mentioned in sub-
section 4). We see that NumPyWren adapts to the dynamic
parallelism of the workload. Another important question is
how to set the parameters, i.e., scaling factor s f and T4imeout-
We use simple heuristics and empirical experiments to decide
these two parameters and leave more rigorous investigation
for future work. We set T} me0u: = 10s, which is the average
start-up latency of a worker. For sf, we want to make sure
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that when a new worker (started during scaling up) becomes
ready, the task queue should not be completely empty, so the
worker can be utilized. Figure 9c shows the trade-off between
cost-vs-completion time as we vary s f. From the figure we
see that as s f decreases we waste fewer resources but the
completion time becomes worse. At higher values of s f the
job finishes faster but costs more. Finally we see that there
are a range of values of sf (1/4, 1/3, 1/2, 1) that balance the
cost and execution time. Outside of the range, either there
are always tasks in the queue, or overly-aggressive scaling
spawns workers that do not execute any tasks. The balanced
range is determined by worker start-up latency, task graph,
and execution time.

Blocksize Sensitivity A parameter that is of interest in per-
formance tuning of distributed linear algebra algorithms is
the block size which defines the coarseness of computation.
Blocksize provides the programmer between arithmetic in-
tensity and parallelism. A larger blocksize will allow each of
the tasks to have a greater arithmetic intensity but reduces
the total parallelism of the program. The maximal block-
size is also limited by the memory of each of the individual
workers.

We evaluate the effect of block size on completion time
in Figure 9a. We run the same workload (a 256K Cholesky
decomposition) at two levels of parallelism, 180 cores and
1800 cores. We see that in the 180 core case, larger block
size leads to significantly faster completion time as each task
performs more computation and can hide communication
overheads. With higher parallelism, we see that the largest
block size is slowest as it has the least opportunity to ex-
ploit the parallelism available. However, we also see that the
smallest block size (2048) is affected by latency overheads in
both regimes.

For our main experimental results in Figure 8a and Table 1
we swept the blocksize parameter for both MPI and NumPy-
Wren and found optimal settings of 512 and 4096 for MPI
and NumPyWren respectively.



SoCC 20, October 19-21, 2020, Virtual Event, USA

2800

N
~
o
S

2600

Completion Time

2500

50 100 300

Function Timeout

600 900

Figure 10: Effect of function time out on end to end
completion time of a 256k Cholesky decomposition

5.5 Timeout Sensitvity

Often serverless runtimes impose a limitation of maximum
execution time for a function. Figure 10 plots the effect of this
maximum execution time on performance of a 256k Cholesky
Decomposition. After the timeout the underlying serverless
framework (PyWren) releases control of the core, and the
cloud provider is free to schedule other work at that loca-
tion. However in figure 10 we see that though performance
degrades with a short timeout, we only pay an execution
penalty of 20% in completion time for the shortest timeout

studied.

6 RELATED WORK

Distributed Linear Algebra Building distributed systems
for linear algebra has long been an active area of research.
Initially, this was studied in the context of High Performance
Computing (HPC), where frameworks like ScaLAPACK (8],

DPLASMA [11] and Elemental [32] run on statically-provisioned

clusters. However, many users do not have access to HPC
clusters. While one can run ScaLAPACK or DPLASMA in the
cloud, but they lack fault tolerance and require static cluster
provisioning,.

On the other hand, with the wide adoption of MapReduce
or BSP-style data analytics in the cloud, a number of systems
have implemented linear algebra libraries [10, 22, 26, 29, 37].
However, BSP programming models are ill-suited for ex-
pressing the fine-grained dependencies in linear algebra al-
gorithms, and imposing global synchronous barriers often
greatly slows down a job. As a result, none of these sys-
tems [10, 22, 26, 29] have an implementation of distributed
Cholesky decomposition that can compare with NumPyWren
or ScaLAPACK.

Dataflow-based linear algebra libraries, such as MadLINQ [33]

and Dask, support fine grained dependencies. We could not
find an opensource implementation of MadLINQ, and could
not get Dask to complete for large problem instances.
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SystemML [10] takes a similar approach to LAmbdaPACK
in providing a high level framework for numerical computa-
tion, but it targets a BSP backend and focuses on machine
learning algorithms as opposed to linear algebra primitives.
In Sec. 3 we delve into the differences between DAGUE, a
distributed execution engine for linear algebra libraries, and
LAmbdaPACK. Execution Templates [28] explores similar
ideas to our decentralized DAG execution (Sec. 4), where
each worker maintains a full copy of the program and only
receives small messages for each task. However, it focuses
on eliminating scheduling overheads, which is less relevant
to high arithmetic intensity linear algebra workloads.

Halide [34] is a DSL for writing optimized array processing
algorithms. It uses dependency analysis techniques similar
to LAmbdaPACK, but more restricted for linear algebra algo-
rithms. Halide is designed for dense local computation on a
single machine, whereas the main design of LAmbdaPACK
is to orchestrate computation on thousands of decentralized
cores. The languages are complementary: the local kernels
that LAmbdaPACK calls could be optimized Halide kernels.
Serverless Frameworks The paradigm shift to serverless
computing has brought new innovations to many traditional
applications. One predominant example is SQL processing,
which is now offered in a serverless mode by many cloud
providers [3, 7, 20, 35]. Serverless general computing plat-
forms (OpenLambda [23], AWS Lambda, Google Cloud Func-
tions, Azure Functions, etc.) have led to new computing
frameworks [4, 17, 25]. Even a complex analytics system such
as Apache Spark has been ported to run on AWS Lambda [38].
However, none of the previous frameworks deal with com-
plex communication patterns across stateless workers. NumPy-
Wren is, to our knowledge, the first large-scale linear algebra
library that runs on a serverless architecture.
Auto-Scaling and Fault Tolerance Efforts that add fault
tolerance to ScaLAPACK has so far demonstrated to incur
significant performance overhead [9]. For almost all BSP
and dataflow systems[24, 30, 31], recomputation is required
to restore stateful workers or datasets that have not been
checkpointed. MadLINQ [33] also uses dependency tracking
to minimize recomputation for its pipelined execution. In
contrast, NumPyWren uses a serverless computing model
where fault tolerance only requires re-executing failed tasks
and no recomputation is required. NumPyWren’s failure de-
tection is also different and we use a lease-based mechanism.
The problem of auto-scaling cluster size to fit dynamic work-
load demand has been both studied [27] and deployed by
many cloud vendors. However, due to the relatively high
start-up latency of virtual machines, its cost-saving capac-
ity has been limited. NumPyWren exploits the elasticity of
serverless computing to achieve better cost-performance
trade-off.
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7 CONCLUSION & FUTURE WORK

NumPyWren is a distributed system for executing large-scale
dense linear algebra programs via stateless function execu-
tions. It shows that the disaggregated serverless computing
model can be used for computationally intensive programs
with complex communication routines through analysis of
the intermediate LAmbdaPACK language. Furthermore, the
elasticity provided by serverless computing allows the sys-
tem to dynamically adapt to the inherent parallelism of com-
mon linear algebra algorithms. As datacenters continue their
push towards disaggregation, platforms like NumPyWren
open up a fruitful area of research for applications that have
long been dominated by traditional HPC.
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