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Abstract— Soft, tip-extending devices, or “vine robots,” are a
promising new paradigm for navigating cluttered and confined
environments. Because they lengthen from their tips, there is
little relative movement of the body with the environment,
and the compressible nature of the device allows it to pass
through orifices smaller than its diameter. However, the inter-
action between these devices and the environment is not well
characterized. Here we present a comprehensive mathematical
model that describes vine robot behavior during environmental
interaction that provides a basis from which informed designs
can be generated in future works. The model incorporates
transverse and axial buckling modes that result from growing
into obstacles with varying surface normals, as well as internal
path-dependent and independent resistances to growth. Accord-
ingly, the model is able to predict the pressure required to grow
through a given environment due to the interaction forces it
experiences. We experimentally validate both the individual
components and the full model. Finally, we present three
design insights from the model and demonstrate how they each
improve performance in confined space navigation. Our work
helps advance the understanding of tip-extending, vine robots
through quantifying their interactions with the environment,
opening the door for new designs and impactful applications
in the realms of healthcare, research, search and rescue, and
space exploration.

I. INTRODUCTION

In contrast to traditional rigid robots, which are well
suited for strength, precision, and repeatability, soft robots
easily adapt to changing environments without complex
mechanisms and control schemes [1,2]. Tip-extending, vine-
inspired robots, or “vine robots,” are a particularly exciting
new class of soft robots that can lengthen like a vine
to navigate challenging environments. Various skin-eversion
robots have been presented [3]–[7], with the most recent
showing the ability to lengthen by thousands of percent,
steer autonomously, and move at rates comparable to animal
locomotion [8]. These pneumatic robots are composed of a
thin-walled membrane, inverted inside itself, such that when
pressurized, new material passes out through the tip, allowing
it to “grow.” This characteristic behavior eliminates the need
for friction between the robot body and its environment in
order to progress along its path. Further, because the tube
remains largely stationary with respect to its surroundings,
there is little sliding with respect to the environment, and
the robot can squeeze through tight spaces. Finally, it is able
to passively buckle around difficult obstacles with minimal
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Fig. 1. Characterization of the environmental interactions of a soft tip-
extending robot. Top: Sequence of photos showing the extending “vine”
robot navigating a constrained, tortuous path. Bottom: The required pressure
to cause growth as a function of position along path. Letters correspond to
positions shown in images.

force applied to the environment, avoiding the control com-
plexity of other continuum robots while ensuring the safety
of both the device and its surroundings [9]–[11]. These
advantages have led to further work on vine robots including
active steering [12], medical applications [13], archaeology
[14], and burrowing [15].

While these demonstrations show the potential of vine
robots, a systematic and rigorous formalization of the prin-
ciples underlying vine robot behavior is lacking. Toward this
goal, the contributions of this paper are: i) a refinement
of the model for vine robots moving in free space as
initially presented by Blumenschein et al. [16], ii) a new
model of vine robots moving in constrained spaces that
characterizes environmental interaction forces on the robot,
and iii) implementations of design insights derived from this
model that show substantially improved performance over
previous vine robot designs.

What follows is a description of the analytical model
we developed, followed by a results section that validates
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the model. We then present three design implications in
real systems inspired by our analysis. We conclude with
a discussion of the strengths and limitations of the current
investigation, as well as the planned next steps.

II. MODELING

The goal of this section is to present our mathematical
models describing the individual components governing the
behavior of vine robots as they move through unconstrained
and constrained environments. The modeling will provide the
required pressure to extend based off the varying interaction
forces produced by contact with its environment, dictated
by the morphology and materials of the robot body and the
shape of the path through which it is passing. We begin with
a description of the device moving through an unconstrained
environment, where we refine the model previously presented
by Blumenschein et al. [16]. We then build upon this to
develop a new model that considers the constrained case
where sharp turns and obstacles are present.

A. Extension in an Unconstrained Environment

The physics governing the growth of pressure-driven,
tip-everting devices in unconstrained environments can be
described by two basic components: a path dependent term
and a path independent term. This mathematical description
was introduced in Blumenschein et al. [16], inspired by
the Lockart-Ortega equation describing plant cell growth.
The contribution of this section is to better characterize the
effect of large amounts of total curvature on required growth
pressure.

The basic equations from Blumenschein et al. [16] can be
expressed as follows:

(PA)evert = (PA)ind +(PA)dep

where : (PA)ind = YA+(
1
f

v)
1
n A,

(PA)dep = µswL+Â
i

Ce

µcLi
Ri ,

(1)

where the subscripts evert, ind, and dep indicate eversion
pressure (i.e. pressure required to grow from the tip), the
path-independent terms, and the path-dependent terms, re-
spectively. P is the internal pressure, Y is the yield pressure
required to evert body material, A is the device’s cross-
sectional area, f is the material extensibility, v is the tip
velocity, n is a power term close to unity, µs is the length
dependent friction coefficient, w is the normal force exerted
per unit length by the internal robot tail (i.e. the length of
robot body inverted inside itself), L is the length of the soft
robot body, C is a curve-fit constant, µc is the curvature
dependent friction coefficient, Li is the length of robot tail
experiencing the ith instance of curvature, and Ri is the radius
of said curvature.

For this work, we are interested in paths less than 5 m long
and average growth speeds less than 0.05 m/s. Accordingly,
certain terms dominate in both the path independent and path
dependent equations in (1), rendering others negligible. In the
path dependent case, the curvature component exponentially

increases, overpowering the linear length dependent friction
force, allowing us to neglect it. Further, with a growth
velocity under 0.05 m/s, the velocity term constitutes roughly
5% of the yield term in the path independent equation,
allowing us to also neglect it. As such, the general solution
in (1) simplifies to:

(PA)evert = YA+Â
i

Ce

µcLi
Ri . (2)

To add to this work, we characterize the C coefficient
in the path dependent term. Blumenschein et al. used an
experimental setup that required a multi-parameter best fit
that found values for both C and µ simultaneously. Unfortu-
nately, this resulted in nonphysically large variations in µ and
accordingly inaccurate values of C. To address this challenge,
we note that the curvature dependence term is based on the
capstan equation,

Tout = Thold e
µq , (3)

where Tout is the output tension after a curve, Thold is
the input tension before the curve, and q is the angle of
the curvature experienced. The C coefficient corresponds to
Thold , but is not readily measurable in the case of normal
extension of the robot, given its very small magnitude. This
tension is due to the frictional force of the tail inside the
body of the device before the curve. In order to estimate this
capstan coefficient, we systematically vary this input tension
with known loads and yield values, determine the exponential
parameter, then solve for the capstan coefficient when no load
is applied. Section III-A describes our experimental setup for
this characterization.

B. Extension in a Constrained Environment

Fundamental to the operation of vine robots is movement
through constrained environments where movement is im-
peded by obstacles. Due to the axial stiffness of the materials
generally comprising vine robots, body buckling becomes the
only appreciable form of reconfiguration around obstacles or
in paths with turns. Self-buckling, or buckling caused by
the forces the growing robot applies to the environment,
occurs in two modes: axial and transverse. The pressure
required to cause these self-buckling modes can be much
higher than during growth in unconstrained environments,
meaning we must consider an additional, higher pressure
when the device is required to pass through a tight curve or
around an obstacle. We present an appropriate model here.

The simplest buckling mode is that of the transverse case,
where buckling occurs due to loading perpendicular to the
direction of growth. These deflections have been shown
to be predictable [12], however in a kinematic model the
internal pressure of the robot and the forces applied to the
environment were not considered. Hammond et al. [17],
among others [18,19], have shown that this restorative in-
ternal moment is simply

Mint = pPR
3 = FtrL, (4)
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Fig. 2. Illustration of free body diagram used to determine relationship in
(6).

where Mint is the restorative moment due to internal pressure,
r is the device radius, P is the internal pressure, Ftr is the
transverse load applied, and L is the unconstrained length. In
the case of a vine robot navigating a closed path, the force
Ftr is produced by internal pressure and its magnitude is
a function of the angle of incidence with its path boundary.
Taking a moment balance about the nearest constrained point
along the body of the robot, illustrated by Figure 2, and
assuming quasi-equilibrium just prior to the point of buckling
yields:

Mint = NLsinq �µNLcosq , (5)

where N is the normal force generated by an interaction
with the path and L is the unsupported length. Realizing
N is a function of internal pressure, (5) reduces to a simple
geometric relationship:

R

L
=

sinq �µcosq
cosq +µsinq

, (6)

where q is taken to be the angle of incidence with respect
to the surface normal and µ is the coefficient of friction
between the device and its boundary.

However, this relation simply represents the smallest value
of the ratio of radius to unsupported length at a given
angle, and as such can be treated as a lower angle bound.
This allows for a conditional requirement to be developed:
for a given robot radius and unsupported length, transverse
buckling will occur at any angle of incidence larger than that
which satisfies the equality in (6), denoted qmin.

The other mode of buckling encountered in constrained
paths is axial buckling. Axial buckling mechanics for soft,
inflated bodies differ markedly from those of traditional, rigid
beams. While rigid body axial buckling is easily expressed
through the Euler equation, the compressibility of air and
the large ratio of tensile to compressive strength of polymer
films is not captured in this model.

Here we invoke the work of Fichter [20], who presents a
Euler-inspired, linearized axial buckling model for inflatable

beams derived from a virtual work approach. This theory
characterizes the inflatable beam critical load Fcr (i.e., the
load that causes a complete loss of tension in one side of
the beam and thus wrinkling) as the ratio product of beam
stiffnesses (Euler buckling stiffness and shear stiffness, P+
Gprt) to the sum of beam stiffnesses in a purely axial loading
condition, expressed as:

Fcr =
EI

p2

L2 (P+GpRt)

EI
p2

L2 +P+GpRt

, (7)

where, E is Young’s Modulus, I is the second moment of
area of the inflatable beam, L is the unconstrained length of
the member, P is the force due to internal pressure, G is
the shear modulus, r is the radius of the cylinder, and t is
the wall thickness. When the everting robot extends into an
obstacle, there is not an external load applied to the beam,
but rather there is an interaction force produced by the robot
attempting to lengthen. Thus the critical load becomes the
force produced by internal pressure:

PcrA =
EI

p2

L2 (PcrA+GpRt)

EI
p2

L2 +PcrA+GpRt

where Fcr = PcrA (8)

Solving this equation for critical buckling pressure, Pcr,
generates a second degree polynomial. Isolating Pcr via the
quadratic equation and taking the right-half plane solutions
yields

Pcr =
1
2

2

4
s✓

GpRt

A

◆2
+

4EGIp3Rt

A2L2

3

5� GpRt

2A
.

(9)

From this equation, we immediately see that resistance to
buckling decreases with larger unsupported free lengths and
lower elastic and shear moduli. As well, while not as readily
apparent, upon plotting Pcr with varying R, we see smaller
device diameters similarly lower resistance to buckling.
Experimental validation of this relationship is presented in
Section III-B.

C. Full Model for Tortuous Path with Self-buckling

With the models from Sections II-A and II-B, we are
prepared to write a single equation for the case of a tortuous
path with turns that produce both axial and transverse self-
buckling. To form this full model, we estimate the direction
of the contact normal between the tip of the device and the
path. At larger contact angles, transverse buckling occurs
and the device will follow the obstacle with it’s tip [12].
When the angle between the surface normal and the direction
of growth, S, falls below qmin (see (6)) axial self-buckling
occurs instead. When axial buckling occurs, we add the self-
buckling pressure from (9) to the predicted pressure on a
smooth path from (2):
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Pevert =
Fy

Acs

+Â
i

Ce

µLi
Ri +

⇢
Pcr,i for S < qmin,
0 otherwise. (10)

Here the effect of curvature is applied based on the sum-
mation of curvatures experienced by the remaining inverted
tail, and buckling pressure only influences growth pressure at
the leading instance of curvature producing a surface normal
contact angle less than qmin.

Tracking the remaining inverted tail is completed by
creating a piecewise relationship between total device length
and starting device length, knowing for each increment in
robot body length there is a corresponding increment or
decrement in tail length (for example, as the robot grows
the tail length will first increase, matching the length of
grown robot until half the material is deployed, and then will
decrease until no tail remains inside the robot). While this
composite model is only an approximation, future sections
will show it usefully captures the observed basic behavior of
the device (see Section III-C).

III. RESULTS

This section presents experiments verifying both the in-
dividual elements of the model ((10)) as well as the model
as a whole, which predicts growth pressure as a function of
device materials and morphology, and the shape of the path
traversed.

A. Characterization of Capstan Coefficient

To characterize the capstan coefficient and expand upon
the model presented by Blumenschein et al. in (2), we
first determined the yield pressure inherent in our robot.
Blumenschein et al. showed that yield force (force required
to evert material from the tip), while dynamically complex,
is a constant dependent on material, with yield pressure a
function of cross sectional area. As such, multiple devices
were tested with varying tail lengths, with pressure slowly
increased until the device sustained tip growth.

These values were recorded using a Dwyer Instruments
626 Series pressure transmitter (0-205 kPa range, 0.25% full
scale accuracy), and the minimum, maximum, and mean
values were found to be 2.301, 4.036, and 3.210 kPa, respec-
tively, based on 27 trials with a standard deviation of 0.509.
These tests were conducted in both horizontal and vertical
orientations with little variation, likely due to tail weight
contributing negligibly to the relatively high-force required
to unfurl the tip material; rather, the range of values measured
appeared to be mainly dependent on material condition at the
tip. Thus, both vertical and horizontal orientation test values
were used in averaging the yield pressure.

Next, we tested the pressure required to grow with various
resisting tensions applied to the tail of the device. Two values
of Thold which were expected to dominate the latent tension
produced by the loose tail were chosen. These values were
produced by two masses (15 g and 20 g) suspended from
the tail. A 9.25 cm rigid cylinder was cantilevered from a
table with its axis parallel to the ground. The masses (first

Wrapped Vine Robot

Internal tail experiencing
capstan friction

Rigid Cylinder

F
grav

Fig. 3. Illustration of capstan coefficient experimental setup. In this
drawing, the suspended mass would be found in the lower left of the sketch
noted as Fgrav.

TABLE I
WRAP TEST RESULTS (KPA)

Wrap Angle (rad) p 2p 3p 4p

20 g mass 5.882 9.145 14.917 20.106
15 g mass 4.615 5.828 8.543 13.101
0 g mass 3.552 4.900 6.387 9.076

15 g then 20 g) were adhered to the fully everted tip of the
device, which was then completely inverted. With the axis
of the device vertically oriented, such that the mass would
produce a pure tension in the tail, wrap angles, in radians,
between p and 4p , incremented by p , were tested (see Figure
3 for an illustration of the experimental setup). In each case,
the pressure was slowly increased to the point of sustained
tip growth, with pressure measurements recorded using the
same Dwyer Instruments 626 Series pressure transmitter.

Four tests for each mass, at each wrap angle, were
conducted, followed by the same regimen for a device with
zero added mass. Figure 4 shows these results graphically,
alongside the model presented in (10), while Table I presents
the average value of each trial.

The exponential parameter, µc in (10) was determined in
the first two cases by using the known values of Thold and Y

via curve fit in Matlab. This produced a value for µc of 0.222
in the 15 g case, 0.245 for 20 g, producing a mean value of
0.234 and a 9.25% difference between the two. Using this
average value for µc and the measured values for Y , the value
of Thold was the subsequently determined to be 0.0824 N.

B. Validation of Self-buckling Model

Transverse buckling in vine robots occurs when a trans-
verse interaction force produces a moment about the nearest
supported point that exceeds that produced by internal pres-
sure, as expressed in (4). Knowing that this force is similarly
produced by internal pressure, no additional pressurization

3338

Authorized licensed use limited to: Stanford University. Downloaded on April 11,2021 at 23:25:20 UTC from IEEE Xplore.  Restrictions apply. 



0 2 4 6 8 10 12

Wrap angle (radians)

0

5

10

15

P
re

ss
u

re
 (

kP
a

)

15g Tail Mass

c
 = 0.222

0 2 4 6 8 10 12

Wrap angle (radians)

0

10

20

P
re

ss
u

re
 (

kP
a

)

20g Tail Mass

c
 = 0.245

0 2 4 6 8 10 12

Wrap angle (radians)

0

5

10

P
re

ss
u

re
 (

kP
a

)

0g Tail Mass
T

hold
 = 0.0824N

Fig. 4. Three wrap tests, conducted with varying tail weights, with wrap
angles ranging from p radians to 4p radians. Top and middle: Here, known
tail masses give a known Thold , allowing a single parameter fitting to yield
values for µc. Bottom: Using the average value of µc found from the two
cases above, we perform a single parameter fitting to yield the value of
Thold for no tail mass.

is expected to produce a transverse buckle, but instead the
geometric relation shown in (6) need be satisfied. To verify
this, a robot with a diameter of 2.4 cm was grown into
a barrier at four different unsupported lengths across four
different angles.

In each case, the robot was secured at the specified buckle
lengths (15.24, 22.86, 30.48, and 38.10 cm) oriented to the
test angle with respect to the surface normal. Pressure was
increased to just above the yield point and the robot was
allowed to grow into a barrier. A success was recorded
in the event of a natural buckle at no increased pressure,
and a failure when no buckle occured. These results are
presented in Fig. 5, alongside the theoretical minimum angle
as predicted by (6).

The predicted axial buckling pressure in (9) depends on
the Young’s and shear moduli of the material, the device
diameter, and the the length of the buckle section. The
literature value of Young’s modulus of LDPE used in this
model was 303 MPa, alongside a shear modulus of 206 MPa
[21,22].

Inserting these measured quantities into (8), and formu-
lating (10) with zero curvature, expected values for critical
pressure, Pcr, were developed for body lengths ranging from
25 cm to 76 cm and a device diameter of 2.4 cm. The robot
body was inverted, constrained at the buckle length in ques-
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Fig. 5. Experimental results of geometric conditions required to achieve
transverse buckling. Unsupported length increases from right to left. The
model from (6) is shown as the blue line.

TABLE II
CRITICAL BUCKLING PRESSURE (KPA)

Buckle Length (cm) 25.4 38.1 50.8 63.5 76.2

Pcr,ave, measured 27.689 15.763 9.993 6.170 4.654
Pcr , predicted 29.418 14.738 9.472 7.011 5.668

tion, pressurized to the point of slow, sustained growth, and
allowed to grow into a barrier perpendicular to the direction
of growth. Pressure was then slowly increased until the point
of buckling, with measurements recorded using the pressure
transmitter introduced in Sec. III-A. This test was repeated
four times for each length.

The results of these tests are displayed graphically in
Figure 6, alongside the modeled behavior curve from (10),
and average values are presented in Table II. As seen in
Figure 6, at large body lengths the device tracks closely with
modeled values, however, at small body lengths the observed
quantities begin to show higher variation.
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Fig. 6. Experimental results of pressure required for axial buckling versus
free length. The model from (10) is shown as a blue line.

C. Validation of Composite Model in a Constrained Path

The outcomes of Sections III-A and III-B were then
combined to create a discretized path traversal model. Using
(10) as the governing equation for the behavior of our device,
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a script was developed in Matlab to predict behavior. The
shape of the path was discretized into a series of nominally
straight sections interrupted by short curved sections. The
instances of curvature were treated as point sources with
known wrap angle. To track the amount of tail experiencing
curvature, a simple linear relationship was developed relating
initial device length to tail length reduction, knowing each
unit increase in device length produces a unit decrease
in remaining inverted tail (note: the vine robots in this
investigation utilized a loose inverted tail, as opposed to the
tail reel some vine robots employ [17]). The free length of
the device, required for the critical buckling pressure in (10)
and the transverse condition in (6), was estimated by the
distance between curves. This composite model produced a
tip location-specific pressure estimate to traverse the entire
path. The value of S from (10) was estimated by estimating
the obstacle tangent at the point of contact and measuring
the resulting contact angle.

A rigid path was created for evaluation out of foam-core
board. An arbitrary path was designed to include both axial
and transverse buckling events, as well as to accumulate
curvature. Using foam-core board as the substrate, 7.5 cm
tall sections of foam-core was then used to form the outline
of the path, and a clear acrylic sheet was used to enclose it.
After construction, physical measurements for the path were
input into the discrete model, and four tests were conducted
to validate its accuracy. The device was inserted into one
end of the physical model, and pressure was slowly increased
until the point of sustained growth. Measurements were taken
along straight lengths approximately every 20 cm, and peak
pressure was recorded in instances of buckling. Fig. 7 shows
the outcomes of each of these trials, overlaid on the predicted
values created by the discrete model from (10) across the
course presented in Fig. 1.
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Fig. 7. Experimental validation of the composite model, as also shown in
Figure 1. The expected pressure produced by the composite model is shown
by the blue line.

IV. DESIGN IMPLICATIONS

The model presented in (10) provides insights on how
different design parameters of a vine robot affect its ability to
navigate a given path. Below, we examine three such insights,
as well as provide comparative tests for each.

A. Increased Membrane Compliance

The effect of membrane compliance on pressure reduction
has as of yet not been investigated. To date, vine robots
have been designed using a membrane material for which
the modulus was selected to be high enough that negligi-
ble axial extension would occur while in operation. Such
stiffness similarly meant that negligible bending occurred
before buckling. While these materials are useful for creating
free-standing structures [8], we see from the results of Sec.
II, that decreasing this modulus can have advantages when
navigating a tortuous path. Examining (9), we see that
the modulus of elasticity of the membrane increases the
required pressure to buckle. Further, a lower modulus allows
additional bending to occur in the body before buckling.

Such bending changes the tip contact angle, and can enable
transverse buckling to occur in a situation that initially would
have resulted in axial buckling. Critically, as can be seen
in (6), transverse buckling requires no additional pressure
to initiate, provided its geometric condition is met. We thus
constructed two robot bodies out of anisotropic ripstop nylon
- one with increased compliance, one traditionally rigid - and
compared their ability to navigate the same tortuous path.

Each robot was constructed out of 50 µm thick, silicone
impregnated ripstop nylon fabric. By varying the thread
orientation, compliance can be built in to the robot body. In
the rigid case, the grid pattern was arranged parallel to the
longitudinal axis, and at 45� to take advantage of the fabric
bias [23] in the compliant case; this modification allows for
variable strains when subjected to the same forces. As can be
seen in Figure 8, the device built from axially elastic fabric
performs significantly better than the inelastic, reducing the
maximum pressure required to navigate the same path by a
factor of nearly 7.

While these results are exciting, they are only preliminary
and there is yet work to be done to fully characterize their
behavior. Specifically, measuring their mechanical properties
and verifying their behavior with the model presented are
the immediate next steps, as the effect of a low material
modulus may eliminate the axial consideration in (10) due
to the significant bending produced prior to axial buckling.
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Fig. 8. Effect of membrane compliance for traversing a path consisting of
all axial buckling events. The solid lines denote the mean value for each
case.
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B. Decreased Scale

The effect of scale on a vine robot’s ability to navigate
a constrained environment has not been previously inves-
tigated. Accordingly, we examine (10) and note that the
diameter of the robot body has conflicting effects on different
terms. A smaller diameter increases the internal pressure
required to evert [16], however, a smaller diameter decreases
the angle required for a transverse buckle to occur and,
while not immediately clear in (9), a small diameter similarly
reduces the pressure required to create an axial buckle. From
this insight we conclude that, for a given path, the design
objective should be to minimize device radius to the furthest
extent possible, informed by maximum allowable pressures
within the path. To investigate this, three different diameter
devices were subjected to the same path and their traversal
pressures were recorded, with results found in Figure 9. What
was found is a balance exists between growth pressure and
buckle pressure, wherein an optimal scale can be found.
Specifically, growth pressure goes with r

2 whereas buckle
pressure goes with r, and burst pressure goes with 1/r (as
hoop stress goes with r). The 4.86 cm robot exceeded its
burst pressure at the first buckle, while the 1.62 and 2.4 cm
robot were both successful, and the 2.4 cm variant traversed
at the lowest gauge pressure. It is similarly worth noting
the 1.62 and 2.4 cm robot completed the path at roughly the
same percentage of burst pressure (⇠65%).
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Fig. 9. Effect of diametral scaling for traversing a path consisting of all
axial buckling events. Solid lines denote the mean value for each case. Note:
the 4.86 cm scale burst at the first buckle.

C. Decreased Internal Tail Length

The most pernicious element of the model provided in (10)
for navigating closed, tortuous paths is the pressure required
to overcome capstan friction. The exponential nature of the
capstan component quickly approaches the burst pressure of
these devices, and as such puts a strict limit on the lengths of
tortuous paths accessible. Figure 4 verifies this relationship.
As such, we investigate the impacts of eliminating this tail
friction by rolling the inverted material into a tight wind,
allowing it to ‘ride’ along with the tip of the device as
it grows, illustrated in Figure 10. While there are many
conceivable methods to store this tail material, such as S-
folds, bellows, or simply stuffing the material at the tip, the

rolled configuration was chosen for its ease in preparation
using mechanical means.

Figure 11 highlights the effect of eliminating the tail for
navigating tortuous paths. Two vine robots traversed a path
constrained between concentric cylinders. The first robot was
tested with a traditionally inverted tail, wherein the robot
body is forced through the core of its body. In the second
case, the robot body was first tightly rolled up, and the
remaining 15 cm were inverted over the rolled material. As
the body was inflated, the roll unwound at the tip of the
device as it grew.

The traditional vine robot exhibited an exponential in-
crease in growth pressure and burst after three complete
revolutions, while the rolled tail robot extended through its
full length to six revolutions with near constant pressure.
It must be noted, however, that having the rolled tail ride
along at the tip affects the dynamics of tip eversion and
growth, thereby increasing the pressure required to do so.
These results are exciting, and continued exploration can
commence in this area.

V. DISCUSSION AND CONCLUSION

Vine robots are an exciting new paradigm in the field of
soft robotics, as their unique growth modality opens the door
to a wide array of applications. The aim of this work was
to better understand their various passive behaviors and lay
a foundation upon which future work towards active and
autonomous operation and control can be built.

The characterization of the two buckling conditions, as
well as the effects of scale, compliance, and capstan fric-
tion elimination will allow for more than traversal pressure
prediction - it will inform the design as these robots are
deployed across the applications introduced in Section I.
Further, the fundamental understanding of the forces at
play in creating body deflections offers insight into design
requirements for creating mechanical components capable of
manipulating, articulating, and shape locking these robots,
from which unique active/passive hybrid system can be
designed.

While our initial results are promising for predicting
the macroscopic behavior of these robots in constrained
environments, the model presented fails to capture some
modes, such as the coupling between buckles in close
proximity. Future investigations can be conducted to refine
our generalized model to capture these behaviors. Further,
to date the working fluid examined has been exclusively air,
and the question of using water to drive growth is another
open topic for inquiry.

In this work, we presented a mathematical model of the
interaction between a soft, tip-extending vine robot and its
environment. Our experimental results confirm this model
and show that it can predict the effect of environmental
contact forces on the behavior of the robot. Importantly, the
model can inform the design of robots tailored to specific
environments. The model suggests that increasing membrane
compliance, containing the tail in the tip, and intelligently
choosing the diameter of the robot will allow it to most easily
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Fig. 10. Illustration of method used to evaluate effect of reducing internal tail length. The Side View shows how the unfurling “pulls” the tail roll along,
and the Rear View expresses the rolling method.

Fig. 11. Wrap test showing effect of reduced internal tail length.

navigate constrained environments. This work contributes to
the field by providing a more fundamental and informed
starting point for the development of new soft, tip-extending
vine robots for navigating difficult environments with varied
requirements, ranging from navigating through rubble during
search and rescue missions to more delicate applications such
as medical endoscopy.
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