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Abstract— The field of soft robotics is grounded on the
idea that, due to their inherent compliance, soft robots can
safely interact with the environment. Thus, the development of
effective planning and control pipelines for soft robots should
incorporate reliable robot-environment interaction models. This
strategy enables soft robots to effectively exploit contacts to au-
tonomously navigate and accomplish tasks in the environment.
However, for a class of soft robots, namely vine-inspired, tip-
extending or “vine” robots, such interaction models and the
resulting planning and control strategies do not exist. In this
paper, we analyze the behavior of vine robots interacting with
their environment and propose an obstacle-interaction model
that characterizes the bending and wrinkling deformation
induced by the environment. Starting from this, we devise a
novel obstacle-interaction planning method for these robots.
We show how obstacle interactions can be effectively leveraged
to enlarge the set of reachable workspace for the robot tip, and
verify our findings with both simulated and real experiments.
Our work improves the capabilities of this new class of soft
robot, helping to advance the field of soft robotics.

I. INTRODUCTION
Thanks to their continuum bodies, soft robots can exhibit

large-scale deformations and high compliance. Compared to
their traditional rigid-bodied counterparts, soft robots bring
benefits in constrained environment applications, requiring
unavoidable interaction with the surroundings [1]. For exam-
ple, the advantages of soft bodies have been shown for con-
tinuum manipulators [2], [3], [4], soft grippers [5], [6], [7],
medical robots [8], [9], [10], [11], and mobile robots [12],
[13]. Soft robots introduced a paradigm shift in the way
obstacles are considered in robotic applications: interaction
and exploitation of the environment may be advantageously
used for navigation [14] and control [15], [16].

However, the interaction with the environment causes the
robot to significantly change its shape, thus modifying and
complicating its response to actuation commands. This must
be accounted for to properly plan and execute effective
movements with interacting soft robots. The above challenge
has not yet been tackled for a new class of soft robot, vine-
inspired, tip-extending, or “vine” robots [17], [18], [19].
When actuated, vine robots are capable of extension from
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Fig. 1. Leveraging the proposed obstacle-interaction planner, a vine robot
is steered toward a goal pose by means of pneumatic artificial muscles while
exploiting environmental contacts with a set of obstacles.

the tip and steering with a variety of mechanisms that
enables the realization of various geometrical shapes with
the body [20], [21], [22]. This class of robots has been
used to design proof-of-concept soft catheters for low-force
interactions in constrained surgery [23], re-configurable and
deployable antennas [24], and inspection devices deployed
in archaeological sites in South America [25].

To reliably accomplish tasks with vine robots, teleop-
eration was used in [26]; only very recently, interaction
modeling and motion planning algorithms have started to
be devised: in [14] the authors used obstacles interaction
inside a cluttered environment to perform navigation with
a non-steerable robot while in [27] they added a passive
turning mechanisms. However, these models did not consider
environmental forces and did not incorporate active steering.

To fill this gap in the literature, the main contribution of
this paper is the development and the experimental veri-
fication of an obstacle interaction model that incorporates
environmental forces and its use for interaction planning.
As such, we extend the methods presented in [14], [27] by
replacing the lumped parameter model with a more accurate
deformation model of the robot and including the active
steering capabilities, introduced in [22], to develop a novel
planner for actuated vine robots (Fig. 1). Additionally, we
analytically characterize the vine robot reachable workspace
and propose algorithms for efficient implementation.

This paper is organized as follows. In Section II, we
present the kinematic and interaction models as well as the
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Fig. 2. (2a) Planar vine-robot steered in free space by two Pneumatic
Artificial Muscles (PAMs) which create a constant curvature deformation.
(2b) Kinematic representation of the robot. Two local frames, Fb and Fe,
are placed at the two ends of the robot backbone. The robot length is l,
while r represents its curvature radius.

workspace analysis. In Section III, we describe our novel
planning method. Section IV shows the experimental setup
and achieved results while Section V concludes the paper.

II. MODELING

In this section, we briefly describe our vine robot, develop
a description of the kinematics (Sect. II-A), the obstacle
interaction model (Sect. II-B), and analyze the reachable
workspace (Sect. II-C).

The vine robot used in this work is composed of an
inflated fabric backbone and two Pneumatic Artificial Mus-
cles (PAMs) glued lengthwise along the backbone (Fig. 2a).
While two PAMs are used here for planar motion, three
PAMs could be used for full 3-D movement. The underlying
working mechanism is largely described in [17], [22], [28].
When pressurized, the backbone can lengthen at its tip by
everting new material that is unspooled from a reel at the
base. The lengthening occurs in the direction that the tip is
pointing. Independently, the PAMs can be made to contract.
This causes the whole robot to bend reversibly, and the
position and orientation of the tip to change, accordingly.
Because of the axially uniform nature of the robot, it is
reasonable to assume a constant contraction of the PAMs
along the entire length in free space. Assuming negligible
frictional loss and neglecting the gravitational energy, this
results in a nearly Constant Curvature Deformation (CCD)
of the backbone.

A. Kinematics

The above-introduced CCD assumption allows reducing
the dimension of the configuration space from infinite to
finite. In this case, the robot kinematics can be expressed
using two concatenate mappings [29], [30], i.e., (i) the
mapping from actuator space (air pressure) to configuration
space (length and curvature), and (ii) the mapping between
the configuration space and the task space (tip position and
orientation). In this section, we focus on the latter. The planar
robot configuration is fully described through the vector of
arc parameters q = [, l]T, where  = 1/r 2 R denotes the
robot curvature and l 2 R

+ its current length (Fig. 2b). We

denote by Fb = {Ob; x̂, ŷ, ẑ} and Fe = {Oe; x̂, ŷ, ẑ} right-
handed reference frames attached to the robot base and tip,
respectively. The pose of Fe can be expressed in Fb through
the homogeneous matrix1 bT e(bRe,

bte) 2 SE (2)

bT e

⇣
bRe,

bte
⌘
= T (Rẑ (�✓/2) , 0)T (I, t)T (Rẑ (�✓/2) , 0) ,

(1)
where Rẑ (·) 2 SO (2) denotes the rotation matrix around
the ẑ axis, t = [0, 2l/✓ sin (✓/2)]T 2 R

2 and I 2 R
2⇥2

denotes the identity matrix (Fig. 2b). Given any point in
the configuration space, one can calculate the corresponding
task space position of the tip bte = [x, y]T 2 R

2 through
the forward kinematics mapping (1), where x and y are
coordinates of the robot tip in the base reference frame.
The tip orientation ✓ 2 [�⇡,⇡] can be trivially calculated
considering the relation between the arc parameters l = r✓.

As for the inverse kinematics, we found the following
closed-form relationship exploiting the CCD assumption

q = IK
⇣
bte

⌘
=


2y/(x2 + y2)

(x2 + y2)(n⇡ + atan(y, x))/y

�
. (2)

While infinite solutions exist to the IK problem (correspond-
ing to periodic lengths, parametrized by n 2 Z

+), choosing
n = 0 retrieves the shortest length solution. Moreover,
singularities occur for x

2 + y
2 = 0 and y = 0. The former

condition corresponds to the zero length solution (l = 0),
while the latter to the zero curvature (r = 1) of the straight
configuration.

B. Obstacle interaction model

When a soft robot interacts with the environment, the
interaction force modifies the robot shape. Accurate (non-
linear) models, accounting for such deformation, include
Cosserat rod theory and the finite-element method [31], [32].
However, the complexity and the computational burden of
these methods have limited their use in real-time planning
and control strategies for soft robots.

In this work, we adopt the analytic solutions for a loaded
cantilever beam derived through Cosserat rod theory under
small displacements in the SE(2) assumption [33], [34].
Denoting by s the material abscissa which parametrizes a
straight beam (Fig. 3a), by a the distance along s at which
the contact occurs, by bt (s) and ✓ (s) the generic position
and orientation of the cross section at s, we can express the
mapping 8s 2 R

+
7!

bT (s)
�
bR (✓ (s)) , bt (s)

�
as

bt (s) =

"
s

fs2(3a� s)
6EI

#
, ✓ (s) =


fs(2a� s)

2EI

�
, s  a,

(3)

bt (s) =

"
s

fa2(3s� a)
6EI

#
, ✓ (s) =


fa2

2EI

�
, s > a, (4)

where EI is the flexural rigidity while f denotes the intensity
of the interaction force applied to the robot orthogonal to its
centerline. f can be computed by resorting to the geometric
model of the robot-obstacle interaction. In this model, the

1Here we use aT b (aRb, atb) to express the pose of b in a where aRb 2

SO (2) denotes the rotation matrix and atb 2 R
2 the translation vector.
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Fig. 3. Vine robot obstacle interaction model. (3a) Undeformed robot configuration; (3b) the robot interacts with the obstacle O and it is split into two
sections: one having length l1 which deforms according to a point-loaded cantilever beam model, and one having length l2 exhibiting constant rotation.
(3c) If the deflection caused by the obstacle interaction is greater the maximum deflection the robot wrinkles about the base; (3d) when actuated the
unconstrained part continues to behave according to the CCD model.

robot can be decomposed into two parts r1 and r2: r1 is
the portion at s  a, with length l1 and constitutes the
part undergoing deformations induced by the interaction;
r2 is the portion at s > a between the contact point and
robot tip, with length l2, exhibiting constant rotation of the
cross-section (Fig. 3b). We assume that, when deformed,
the former portion of the robot is fully described by the
deformation model (3)-(4), while the latter part can be still
freely actuated, thus behaving according to the CCD model
(Fig. 3d) [35]. This assumption is introduced to simplify
the reachable workspace calculation and the solution to the
planning problem described later in Sect. III.

The interaction force f produces an internal moment m

in the robot body. For thin-walled pressurized beams, there
exists a threshold value for the internal moment mc after
which a roughly constant moment bends the robot through an
arbitrary angle by wrinkling the beam at the point of highest
moment (the base for a point-loaded cantilever beam) [36];
mc is function of the radius, the area moment of inertia and
the internal pressure of the beam. When interacting with an
obstacle, if the moment about the base (m) is lower than the
critical one (mc) the robot bends according to (3)-(4), while
if the moment is higher, it also wrinkles (Fig. 3c).

The geometric reasoning applied to calculate the bend-
ing/wrinkling amount is as follows: the contact point along
the robot curvilinear abscissa a can be retrieved by projecting
the obstacle on the undeformed robot; for each a there
is a unique critical force causing wrinkling at the base
fc = mc/a. Denoting by bt0(a) and btc(a) the position
of the cross section in the undeformed and the critically
deformed configurations, respectively, bto the position of
the obstacle, we can calculate tc(a) = ||

btc(a) � bt0(a)||,
i.e. the amount of deflection induced by fc at s = a, and
d = ||

bto � bt0(a)||, i.e. the displacement the robot should
undergo at a to steer around the obstacle. If d  tc, the
robot only bends when interacting with the obstacle and the
value of f is calculated by inverting (3) substituting bt(s =
a) = bto; otherwise tc is considered as bending deflection
produced by fc and the wrinkling rotation is calculated as
' = arctan((d � tc)/a). The forward kinematics model is
then updated accordingly by pre-multiplying the bT e in (1)
by a matrix 0T b (Rz (') , 0) expressing the base frame pose
into the inertial frame.

We note that the deformation model given in (3) and (4)
is valid when the undeformed robot is in the straight config-
uration. However, a vine robot can interact with an obstacle
when already curved by the PAMs actuation. In this case,
each point in the curved configuration can be uniquely
mapped through a rigid transformation to its corresponding
pose in the straight configuration and vice versa. Thus strain-
producing deformations can be computed at the local level
in the straight configuration and mapped back to the curved
one. At the kinematic level, this method is known in literature
as co-rotational approach [37].

C. Workspace analysis

The tip of a PAMs-actuated vine robot moving into a
planar Cartesian space can reach a set of poses given by
the physical limits of the length and curvature (Fig. 4).
Mathematically, the reachable workspace W ⇢ R

2 when no
obstacles are present can be described by the set

W = {t = FK(q) : q 2 [q�, q+]}, (5)

where q� and q+ are vectors of configuration space lower
and upper limits, respectively, and FK(·) is the analyti-
cal forward kinematics function for the position (derived
from (1)). Obviously, W is not dexterous since every position
t 2 W can be reached only with a unique orientation ✓ (t).

Next, let us consider the presence of a set of obstacles
{O1, . . . ,On} fixed to the workspace. The workspace rep-
resentation of obstacles is the set

O =
n[

i=1

Oi, Oi = {t(s) : t(s) \Oi 6= ? 8 s}, (6)

i.e., the union of workspace regions in which the robot body
is forbidden to enter. In this work, we consider cylindrical
obstacles with radius ro << r, and we neglect the robot body
radius such that we can assume that the contact area reduces
to a point at the mid-line of the backbone. By interacting
with the i-th (sub)set of obstacles, the robot can change
its shape, and thus reach a new set of positions Wi with
a unique orientation (possibly different from the previous).
In view of the assumption made in Sect. II-B, Wi can be
easily calculated by applying the definition (5) to the last
unconstrained portion of the robot (recalculating physical
limits after the interaction occurs).
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Fig. 4. Workspaces with different number of possible orientations for vine
robots with length l 2 [0, 2] m, curvature  2 [�2, 2] 1/m and two obstacles
(red circles) placed at [0.4, 0.1]T and [0.85,�0.2]T, respectively. (4a) Zero
obstacle interaction case: one orientation is achievable for each position in
the set W1. (4b) One obstacle interaction cases: W2 and W

3 denote the
sets of poses reachable with two and three orientations, respectively.

By opportunely considering the union and intersections be-
tween Wi and W , one can recursively calculate workspaces
with increasing number of possible orientations p. Denoting
by W

p the workspace with number of possible orientations
equal to p, the recursion writes as follows

W
1 = W \O

W
2 =

o[

i=1

W
2
i W

2
i = Wi \W

1,

W
3 =

o[

i=1

W
3
i W

3
i =

o[

j=i+1

W
2
i \W

2
j ,

...
...

W
o =

o[

i=1

W
o
i W

o
i =

o[

j=i+1

W
o�1
i \W

o�1
j ,

(7)

where o denotes the number of sequences in which it is
possible to exploit the (sub)set of obstacles (Fig. 4 contains
the workspaces representation up to W

3).
To calculate the maximum number of possible orientations

o = max(p) for a given pose t 2 W
o and n obstacles, we

begin with zero, one, and two obstacles (Fig. 5a–5c), then
construct the abstract graph representation of the obstacles,
i.e., a complete graph with n nodes (Fig. 5d), and consider
the number of possible paths with no node repetitions given
by

o = 1 +
nX

k=1

2k
n!

(n� k)!
(8)

where 1 denotes the base solution (position reachable with-
out interacting with any obstacle), 2k represents the fact
the robot can steer around an obstacle in a clockwise or
counterclockwise direction, the fraction gives the number of
possible paths visiting k nodes (obstacles), the summation
accounts for paths consisting of any number of segments
between 1 and n [38].

Obviously, not all the possible orientations are realizable
given the physical robot limits, such as total robot length,
minimum achievable curvature, and self-intersections. In the
following section, we devise a method to calculate obstacle-
interaction solutions and check their feasibility.

III. PLANNING
Generally, given a desired pose to accomplish a task and

the current state of the robot, the planning problem reduces
to finding a free set of poses that brings the robot from the
initial to the final configuration (if such a set exists). This set
of poses is traditionally found such that the poses avoid any
obstacle in the workspace [39]. In this paper, we are instead
interested in finding the path, intended as the sequence and
the number of obstacles to be exploited, that navigates the
robot to the desired position with minimal orientation error
(as described in Sect. II-C, only discrete orientations are
achievable at the desired position). To accomplish this, we
devise a planner that generates paths leveraging obstacle
interactions for navigating the soft growing robot to its
destination. Given a desired pose T d 2 SE(2), the proposed
planner solves for all the possible paths that brings the robot
tip to td ⇢ R

2 and returns the path with minimal orientation
error in that point. The planner is guaranteed to return an
optimal solution whenever a solution exists.

As explained in Sect. II-C, there are o ways to reach
td 2 W

o. The base case is simply calculated resorting to
the inverse kinematics routine (2). The other solutions are
generated by encoding the permutations of obstacles as a
matrix P in which each row represents a different sequence
of n obstacles. The solutions involving k < n obstacles
are calculated by storing the solutions corresponding to
k columns of the matrix row Pi according to a dynamic
programming approach. For each obstacle j in the sequence
Pi, given the current robot state, we compute the solution
of the interaction as explained in Sect. II-B. Thanks to the
assumption made in Sect. II, the solution at j is not influ-
enced by the one computed in the previous j� 1 interaction
steps. In favor of speed, we avoid calculating self-intersecting
paths at the obstacle j by applying the following reasoning:
the steering modality around the obstacle j is uniquely
determined by the successive target position (desired position
or next obstacle j+1). This is simply done by calculating the
inverse kinematic solutions for reaching the obstacle j and
j+1 (or the target position) and comparing the corresponding
curvatures (Fig. 6).

At this point, from the obstacle j we compute the inverse
kinematics to the target, check path feasibility and store
it in a look up table. When the next permutation Pi+1 is
considered, all the partial solutions computed up to Pi are
possibly reused. Once all the solutions are computed, the
planner ranks them evaluating the cost k✓d � ✓k (mod2⇡)
and returns the optimal solution. Algorithms 1 and 2 contain
the described procedures.

IV. EXPERIMENTS AND RESULTS
In this section, we briefly describe the experimental setup

used to validate our model/algorithms (Sect. IV-A) and
present the experimental results achieved (Sect. IV-B).

A. Experimental methods

To validate our findings and algorithms we carried out
experiments using a self-contained muscle-actuated vine-
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Fig. 5. Illustration of the possible paths realizable by the robot given an increasing number of obstacles n. (5a) The robot reaches the desired target with
the unique possible orientation (n = 0); (5b) 3 possible paths to the target are sketched given 1 obstacle (n = 1); (5c) 13 possible paths to the target
are sketched given two obstacles (n = 2); (5d) contains the graph abstracting the generic n obstacles case. The number of paths is given by (8).

Fig. 6. Excluding self-intersecting paths at the j-th obstacle involves
calculating the curvature to reach the j-th and the j + 1-th obstacle (or
the target) from j� 1: if j+1 > j the robot steers around the obstacle j
in the counterclockwise direction (pathj ). For each obstacle j the solution
to reach the target is also computed (pathj,d).

robot (Fig. 2a). This is composed of a 0.064 m diameter, 2 m
long robot backbone equipped with two 0.024 m diameter
radially attached muscles. The robot body is wrapped on
a reel in the base station that controllably spools out the
material to allow growth from the robot tip. The air pressure
in the backbone, which causes growth, and in the two
radially attached muscles, which causes bending, is manually
controlled by means of three pressure regulators.

The procedure to identify the vine robot flexural rigidity
consisted in incrementally applying known displacements to
the robot tip while measuring the applied force through a
force sensor (MARK-10 Series 3). The wrinkling point was
evaluated as the point at which the applied force started
flattening. The critical moment was calculated as the moment
after wrinkling occurred (Fig. (8)).

All the methods introduced in Sect. II and III were imple-
mented in MATLAB. Reachability of the target points was
tested at each calculation step by encoding the workspaces

Algorithm 1: Compute all feasible paths given a set of
obstacles and return the optimal path

1 path = optimalPath(T d)
Data: obstacle set O, robot limits q+, q�

Result: optimal path
2 base  computeIK(td);
3 P  permutations(O);
4 for (every row Pi in P ) do
5 for (every obj j in Pi) do
6 if (!solutionExists(j,Pi))
7 path  plan(tj�1, tj , td);
8 if (isFeasible(path, q+

, q�
))

9 paths = storeSolution(path)

10 path = argMinOrientationError(T d, paths, base)

Fig. 7. Experimental validation of the CCD assumption: the shape of the
robot’s free section is accurately described by a circular arc.

Fig. 8. Example force-displacement test for flexural rigidity evaluation.
Bending/wrinkling areas are separated by the red line. Beam flexural rigidity
was calculated from the derivative of the mean curve in the bending area.

as a polyshape and using the in-built MATLAB methods.
The experimental setup for testing navigation is shown

in Fig. 1 and in Fig. 9. It contains two obstacles placed at
O1,t = [0.7, 0.2]T m and O2,t = [1.2,�0.4]T m with respect
to the robot base frame. The obstacles are steel shafts with
diameter equal to 0.005 m taped to the ground through a
0.04⇥ 0.04⇥ 0.005 m acrylic base. The target location is at
td = [1.7,�0.7]T m and the desired orientation is chosen as
✓d = 0 rad.

B. Results and discussion

In this section, we present the results of experiments
carried out to characterize our vine robot, validate the kine-
matic and deformation models, and test the planning method
developed in this work.

Algorithm 2: Calculate paths though obstacle Pj (Fig. 6)
1 path = plan(tj�1, tj , td)

Result: paths through j: pathj , pathj,d

2 j , j+1, d  computeCurvatures(tj , tj+1, td);
3 mode  compare(j , d);
4 pathj  computeInteraction(Pj , mode);
5 pathj,d  computeIK(td);
6 mode  compare(j ,j+1);
7 pathj  computeInteraction(Pj , mode);
8 r1  updateRobot(pathj)
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Fig. 9. Paths realizable by the vine robot given a set of two obstacles O = {O1,O2} and a desired pose Fd. (9e),(9a) Base solution (inverse kinematics);
(9f),(9b) one obstacle interaction (O1); (9g),(9c) one obstacle interaction (O2); (9h),(9d) two obstacles interaction.

The CCD in free space assumption made in Sect. II-
B was validated by evaluating the error between a best-fit
(least-square) 7 order polynomial curve and a circular arc
fitting points of the backbone in a calibrated image setup
(see Fig. 7). The mean error was em = 0.024 m while its
standard deviation was es = 0.032 m on a r ⇡ 0.6 m radius
of curvature robot. This result validates our assumption.

The flexural rigidity value (EI) was evaluated from the
force-displacement test through inversion of (4). A plot
showing the results from a series of force-displacement tests
for a 6.89 kPa inflated vine robot backbone is given in
Fig. 8. The mean value between 0 and 20 deg (wrinkling
point) of the EI parameter was adopted in the following
planning experiments, i.e., EI = 0.1 Nm2. The critical
moment attained a value of mc = 0.32 Nm. The accuracy of
the static identification procedure is critical to obtain reliable
planning results. In our experiments, we noticed that the
static friction between the robot body and the ground greatly
influences the measurements and thus must be minimized.
However, better static and dynamic characterization of vine
robots would be beneficial for future work.

In the environment for testing navigation (Sect. IV-A), the
planning algorithm found the four feasible plans depicted in
Fig. 9. There is one solution with no obstacle interactions
(Fig. 9a), two with one obstacle interaction (Fig. 9b and
Fig. 9c), and one with the two obstacles interaction (Fig. 9d).
The solutions were ranked evaluating the orientation error
cost proposed in Sect. III. The minimum orientation error
was found for the two obstacles interaction case: only
thanks to the simultaneous interaction with two obstacles,
the robot can assume a complex shape which allows it to
accomplish the reaching task successfully. This strengthens
the motivation behind this work. The planned paths were
then validated using the real vine robot: as it is possible to

see in Fig. 9e–9h, the planned paths are able to correctly
predict the robot shape. During the tests, interaction forces
between the vine robot and the obstacles were also measured
and compared to the planned ones. The planner is able to
accurately predict interaction forces, the discrepancy to be
attributed to static friction and stiffening phenomenon caused
by PAMs inflation.

Finally, we briefly discuss our results. As it is possible to
notice, the assumption made in Sect. II-B influences the accu-
racy of the planned paths: when the free portion of the robot
is steered, the whole robot changes its shape. This causes
the robot cross section at the interaction to rotate hinged
at the contact point. Moreover, the variation of air pressure
in the muscle actuators changes the robot’s flexural rigidity
and possibly transforms wrinkling into bending or vice versa.
However, removing our assumptions will require solving the
deformation, and thus the planning problem, iteratively, thus
dramatically slowing down the solution search.

V. CONCLUSION
In this work, we presented an obstacle-interaction planning

method suitable for navigation of soft-growing robots within
cluttered environments. First, the robot kinematic and the
static deformation models including wrinkling were derived.
Then, these models were used to characterize how the
vine robot behaves when interacting with obstacles in the
workspace. The interaction with obstacles was shown to
enlarge the robot workspace, allowing it to reach a set
of positions with multiple orientations. Finally a planning
algorithm was devised which finds the sequence of obstacles
that brings the vine robot to a desired position with a
minimal orientation error. Experiments performed in the real
environment are in accordance with the theoretical findings
and provides us with guidelines for future works.
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