

Design, modeling, control, and application of evertng vine robots

Laura H. Blumenschein^{1,*}, Margaret M. Coad², David A. Haggerty³,

Allison M. Okamura², and Elliot W. Hawkes³

¹ *Purdue University, Mechanical Engineering, West Lafayette, IN, USA*

² *Stanford University, Mechanical Engineering, Stanford, CA, USA*

³ *University of California, Santa Barbara, Mechanical Engineering, Santa Barbara, CA, USA*

Correspondence*:

Laura H. Blumenschein
lhblumen@purdue.edu

2 ABSTRACT

3 In nature, tip-localized growth allows navigation in tightly confined environments and creation of
4 structures. Recently, this form of movement has been artificially realized through pressure-driven
5 eversion of flexible, thin-walled tubes. Here we review recent work on robots that “grow” via
6 pressure-driven eversion, referred to as “evertng vine robots,” due to a movement pattern that is
7 similar to that of natural vines. We break this work into four categories. First, we examine the
8 design of evertng vine robots, highlighting tradeoffs in material selection, actuation methods, and
9 placement of sensors and tools. These tradeoffs have led to application-specific implementations.
10 Second, we describe the state of and need for modeling evertng vine robots. Quasi-static models
11 of growth and retraction and kinematic and force-balance models of steering and environment
12 interaction have been developed that use simplifying assumptions and limit the involved degrees
13 of freedom. Third, we report on evertng vine robot control and planning techniques that have
14 been developed to move the robot tip to a target, using a variety of modalities to provide reference
15 inputs to the robot. Fourth, we highlight the benefits and challenges of using this paradigm of
16 movement for various applications. Evertng vine robot applications to date include deploying and
17 reconfiguring structures, navigating confined spaces, and applying forces on the environment.
18 We conclude by identifying gaps in the state of the art and discussing opportunities for future
19 research to advance evertng vine robots and their usefulness in the field.

20 **Keywords:** Tip-Extending Robot, Vine Robot, Evertng Robot, Soft Robot, Soft Actuator, Mechanism Design, Continuum Robot

1 INTRODUCTION

21 Word Count: 11138

22 Growth via tip extension is a form of movement seen in nature across scales and kingdoms, from
23 single-cell pollen tubes (Steer and Steer (1989)) and micro-scale hyphae (Lew (2011)) to creeping vines
24 (Weigel and Jürgens (2002)) and the proboscises of certain worms (Zuckerkandl (1950), Gibson (1977)).
25 Tip growth has recently been replicated in a variety of robotic systems, referred to as “growing robots”
26 or “vine robots,” using a range of techniques. In addition to tip extension, vine robots are characterized
27 by length change of many thousands of percent and control of their growth direction. We have worked

28 extensively with one method for creating tip extension: pressure-driven “eversion” (i.e., turning inside out)
29 of flexible, thin-walled material. We refer to robots that move in this way as “evertng vine robots.”

30 In this paper, we review much of the existing work on evertng vine robots. We discuss the tradeoffs
31 in evertng vine robot designs, including materials, actuation, and payloads. We describe the existing
32 quasi-static, kinematic, and force-balance models of growth and steering, and the range of control strategies,
33 from autonomous to teleoperated, that have been implemented. We also describe the important functions
34 and wide range of application of evertng vine robots. We conclude by identifying gaps in existing evertng
35 vine robot research and highlighting important opportunities for future research. While this paper focuses
36 primarily on our research groups’ work on evertng vine robots, other groups have contributed to the
37 evertng vine robot literature, and their work is referenced throughout the paper where appropriate. Our
38 website, www.vinerobots.org, shares evertng vine robot designs and maintains a repository of
39 relevant research.

2 GROWTH AND EVERNSION

40 Vine robots move via tip extension, which is similar to some forms of biological growth and distinct from
41 locomotion or other animal-like whole body movements. Whereas movement strategies like locomotion
42 are defined by translation of the body from one location to another (Alexander (2003)), movement by tip
43 extension functions by lengthening the body (Goriely (2017)), reducing or completely eliminating the need
44 to translate relative to the environment.

45 2.1 Bioinspiration

46 The term “growth” refers to a variety of phenomena found in nature, where organisms add mass to their
47 forms. Depending on the exact function, this growth can be an increase in volume (bulk growth), in surface
48 area (accretive growth), or in length (tip growth) (Goriely (2017)). Tip growth (Figure Ia) is often used by
49 systems with non-deterministic body forms to explore their environments and react to changing stimuli.
50 This form of growth is used in nature by a wide variety of plants, animals, and cells to connect locations,
51 deliver payloads, support construction, and more (Sanati Nezhad and Geitmann (2013)). During tip growth,
52 new material is added only in a small region at the tip of a filament (Goriely (2017)). Neurons grow through
53 constrained tissue to create structures that act as signal pathways (Dent and Gertler (2003)). Pollen tubes
54 grow through pistil tissue to build conduits to deliver sperm to the ovary (Palanivelu and Preuss (2000)).
55 Sclerenchyma cells grow within the xylem and phloem to create supporting structures (Sanati Nezhad and
56 Geitmann (2013)). Tip growth is utilized across scales, ranging from the micron scale of fungal hyphae
57 (Lew (2011)), to the millimeter scale of invertebrates that deploy invaginated appendages (Zuckerkandl
58 (1950)), to the centimeter scale of vines and plant roots (Weigel and Jürgens (2002); Vaughn et al. (2011);
59 Manca (2018); Gerbode et al. (2012)). Through tip growth, these organisms rely minimally on their past
60 states, and instead can pursue evolving nutrient gradients without reconfiguring their bodies.

61 Such a mechanism for movement is a potentially rich source of bioinspiration in the field of robotics, due to
62 its inherent ability to adapt to complex situations. While traditional robots are effective in controlled settings,
63 and soft end-effectors enhance their ability to interact with a variety of objects, leveraging embodied
64 intelligence for exploration and interaction with dynamic environments remains an open challenge.

65 2.2 Growth in Robots

66 Replicating elements of biological tip growth, henceforward referred to as “growth,” in robotic systems,
67 i.e., vine robots, has two main benefits (Figure I^b). First, because only the tip moves, there is no relative
68 movement of the body with respect to the environment. This means growth allows for easy movement
69 through constrained environments. Second, as the tip moves, the body forms into a structure in the shape
70 of the tip’s path, which can be used for payload delivery, force transfer or self-support, and physical
71 construction. Unlike locomotion, which depends on the reaction forces and mechanical properties of the
72 environment, growth allows vine robots to transfer forces through their bodies, back to their fixed base.
73 Therefore forces can be generated independent of the contact conditions between the robot tip and the local
74 environment.

75 Several methods of creating vine robots have been explored thus far. Nested flexible continuum arms
76 have been extended to resemble growth of thin filament structures without concentrating the growth to the
77 tip (Wooten and Walker (2015)). Tip-localized 3D printing has been demonstrated to irreversibly build a
78 robot structure much like in a plant root (Sadeghi et al. (2017)). Stored material can be reversibly extended
79 in a variety of ways to replicate the natural behavior of growth, including pulling a chain of rigid links from
80 base to tip (Yan et al. (2019)), pulling flexible material from base to tip (Tsukagoshi et al. (2011), Talas
81 et al. (2020)), and unreeling flexible material stored at the tip (Dehghani et al. (2017); Satake et al. (2020)).
82 Eversion is a particularly elegant method of imitating growth, and it is inspired by mechanisms found in
83 some animals, like the extendable proboscises of certain worms (Zuckerkandl (1950), Gibson (1977)).

84 2.3 Eversion Growth

85 Eversion, the opposite of inversion, is the process by which the material internal to a structure turns inside
86 out and becomes part of the outside of the structure. Eversion has been used in toroidal robots to create
87 whole skin locomotion (Hong et al. (2009)), imitating cytoplasmic streaming in amoebas, as well as to
88 create a grasping behavior during inversion (Li et al. (2020), Zhu et al. (2016)). Evertng vine robots achieve
89 growth through pressure-driven eversion of flexible, thin-walled material (Figure I^c). Unlike toroidal
90 robots, which continuously recycle material, an evertng vine robot holds one end of its body fixed, while
91 internal pressure effectively pulls the material through the body to the other end. This material everts at the
92 robot tip, resulting in an increase in length. By using pressure-driven eversion of pre-manufactured material,
93 evertng vine robots are able to achieve movement by growth to arbitrary lengths, at speeds equivalent to
94 animal locomotion. Additionally, evertng vine robots can continue moving even when encountering gaps
95 smaller than their body diameter.

3 DESIGN

96 While the underlying principle of growth through pressure-driven eversion is shared by all evertng vine
97 robot designs, the implementation varies. These differences in design, produced by the choice of materials,
98 growth and steering actuation methods, and payload deployment systems, result in different behaviors that
99 must be carefully considered given a desired application.

100 3.1 Materials and Manufacturing

101 The materials available to manufacture the main body tube of an evertng vine robot are confined to
102 those that are inextensible enough to produce eversion as opposed to radial expansion upon pressurization
103 and that are both fluid impermeable and sealable, such that a closed pressure vessel can be developed.

104 Evertng vine robot manufacturing techniques are largely material and configuration dependent. While
105 specific designs can necessitate complex and labor intensive manufacturing processes, most evertng vine
106 robots are constructed in few steps. In the simplest of cases, an evertng vine robot can be constructed by
107 sealing one end of a tube and inverting this sealed end inside the rest of the body (detailed instructions
108 can be found at www.vinerobots.org). This section describes a variety of materials often employed
109 in evertng vine robot research and presents the manufacturing methods for each. A summary of these
110 considerations is presented in Table 1.

111 3.1.1 Materials Overview

112 *Thermoplastics*: Thermoplastics are the easiest materials with which to prototype evertng vine robots.
113 These off-the-shelf films come manufactured in sheets or tubes, and the two main films used in evertng vine
114 robot construction have been low density polyethylene (LDPE) (Hawkes et al. (2017)) and thermoplastic
115 polyurethane (TPU). LDPE has an elastic strain limit on the order of 5% (Xu et al. (2016)), while the elastic
116 strain limit of TPU is on the order of 50% (Lee et al. (2009)). These materials are lightweight, airtight, and
117 inert with respect to most liquids. However, LDPE fatigues easily, often failing after a moderate number of
118 repeated eversions (on the order of 10-50). LDPE is generally purchased in rolls of preshaped tube, and
119 devices are constructed by simply cutting this tube to length and heat sealing the distal end. TPU, however,
120 is often available only as a film, so the film needs to be formed into a tube first, generally through heat
121 sealing. Depending on the application, TPU may also need to be sheathed in a strain-limiting fabric to
122 control radial expansion.

123 *Thermosets*: Some thermosets, like latex and silicone, can be used, though whether they primarily grow
124 or strain depends on their modulus of elasticity and thickness. These materials are difficult to prototype
125 with, often requiring a strain-limiting layer to evert properly. However, they do have very low hysteresis,
126 and the burst pressure can be controlled by choosing the material stiffness. Thermoset evertng vine robots
127 can be manufactured from sheets of thermoset using latex or silicone adhesives or they can be directly cast
128 from liquid silicone into the needed shape.

129 *Coated fabrics (thermoplastic and thermoset)*: More robust evertng vine robots can be built from a
130 variety of fabrics, the most common of which are fabrics coated to be airtight. Evertng vine robots
131 constructed from these fabrics can often withstand higher pressures and therefore loads, and they do not
132 fatigue as easily as their plastic counterparts. The woven structure of fabrics also prevents the propagation
133 of holes, thereby reducing the potential for catastrophic failure and allowing for continued operation,
134 assuming the pressure source can provide sufficient airflow to overcome leaks. Thermoplastic-coated
135 fabrics, like TPU-coated ripstop nylon (Coad et al. (2020a)), improve the durability of evertng vine robots
136 over thermoplastics alone. However, they can suffer from delamination of the thermoplastic layer from the
137 fabric at stress concentrations, resulting in leaks. Other coated fabrics used in evertng vine robots include
138 thermoset-coated fabrics, like the silicone-infused ripstop nylon used by Haggerty et al. (2019) and Naclerio
139 and Hawkes (2020). These fabrics do not suffer from delamination but do require different manufacturing
140 techniques than thermoplastics. Silicone-infused ripstop nylon additionally has a low self-friction and,
141 therefore, a much lower required pressure to evert (Section 4.1) compared to TPU-coated ripstop nylon,
142 making it desirable for long or very small robots.

143 Evertng vine robots made from coated fabrics are generally manufactured using adhesion methods
144 specific to the coating. For thermoplastic-coated fabrics (e.g., TPU-coated ripstop nylon), the coating is
145 generally on a single side, so the fabric is joined into a tube using an “abutted” joint, i.e., a joint where

146 the single coated side of the material contacts itself. This joint can then be heat-sealed as described above
147 for thermoplastics. For thermoset-coated fabrics (e.g., silicone-infused ripstop nylon), the fabric coating
148 is double-sided, so a tube can be formed using the stronger “lap” joint, i.e., a joint where the opposite
149 sides of the material touch, as described in Naclerio and Hawkes (2020). This joint can be sealed using
150 silicone-based adhesives with light pressure application to ensure a continuous bead of adhesive between
151 the two layers of fabric. The end of the tube can be sealed using a similar method or knotted closed.

152 *Uncoated fabric:* Uncoated fabrics, like ballistic nylon, are not airtight, but they have many of the
153 desirable properties of coated fabrics and can be used as a shell for thermoplastic evertng vine robots to
154 greatly increase their structural strength. Ballistic nylon was demonstrated in this form-factor for a soft
155 robot without growth in Usevitch et al. (2020). To manufacture an evertng vine robot with an uncoated
156 fabric layer, matching tubes of fabric and and an airtight layer like thermoplastic (TPU or LDPE) are
157 manufactured. The fabric does not need to be airtight, so it can be sewn together with an abutted seam.
158 An additional seam sewn at the distal end of the robot, passing through the fabric and through the airtight
159 bladder beyond the end seal, can be used to join the two layers. While not necessary, spray adhesive can
160 also be used to form a bond between the two layers along the full length.

161 3.1.2 Material Extensibility

162 In addition to the specific class of material, an important design consideration across material type is
163 material extensibility. Soft robotics generally is concerned with using selective strain to produce a specified
164 behavior; soft grippers and crawlers are prime examples of this (Lee et al. (2017); Rus and Tolley (2015)).
165 While early work on evertng vine robots exclusively used nearly inextensible materials (Hawkes et al.
166 (2017)), later work has investigated the novel behaviors and challenges that come with varying the strain
167 properties of evertng vine robot material.

168 Inextensible materials produce relatively high axial stiffness in evertng vine robots, enabling evertng vine
169 robots to create self-supporting structures and carry payloads. Evertng vine robots made with inextensible
170 materials have been used for reconfigurable antennas (Blumenschein et al. (2018a)), haptic wearables
171 (Agharese et al. (2018)), and manipulators (Stroppa et al. (2020)). As shown in Hammond et al. (2017) and
172 Haggerty et al. (2019), assuming inextensibility can simplify modeling (Section 4.1). However, high axial
173 stiffness also means that relatively high forces must be applied to bend or buckle the robot body. This can
174 limit the applicability of these evertng vine robots in navigation tasks where environmental contact aids in
175 steering but applied forces must be minimized.

176 Using body materials with directional extensibility allows evertng vine robot stiffness to be varied along
177 different axes. Directional extensibility can be created in thermosets using strain limiting layers, and woven
178 fabrics naturally have a “bias,” i.e., unequal strain along different axes relative to the fabric weave or
179 “grain.” Ripstop nylon in particular has nearly no strain in the direction of the fibers but can strain up to 20%
180 along the 45°-axis (Naclerio and Hawkes (2020)). Evertng vine robots made out of silicone-infused ripstop
181 nylon exchange high axial stiffness, when the fabric grain is along the robot body’s axis (the “unbiased”
182 orientation), for high torsional stiffness, when the fabric bias is along the robot body’s axis (the “biased”
183 orientation). However, the fact that extensible materials reduce evertng vine robot stiffness along at least
184 one axis limits the ability of such robots to create self-supporting structures and apply force in certain
185 directions.

186 **3.2 Actuating Length Change**

187 Actuation of length change can be considered in two parts: growth, or increasing in length, and retraction,
188 or decreasing in length, both from the tip. Designs for actuating length change are shown in Figure 2.

189 **3.2.1 Growth**

190 Evertng vine robot growth is driven by a higher fluid pressure inside the robot body relative to the outside.
191 As growth occurs, the "tail" material travels within the robot body, everts at the robot tip, and becomes part
192 of the robot body wall, i.e., the outer part that moves neither away from nor towards the base.

193 Depending on the amount of length change that is desired in an evertng vine robot, there are two common
194 methods of storing the robot body material before it is everted at the tip. An evertng vine robot that doubles
195 in length can be achieved by creating a closed tube of robot body material with a pressure inlet at one end.
196 The tube can be inverted on itself and shortened to half its original length while storing the tail straight
197 inside.

198 When length change of more than 100% is desired, the robot tail must either be stored in a more
199 compact form or outside the pressurized area of the robot body. Thus far, evertng vine robots that store
200 their tail material outside the pressurized area have not been demonstrated in the literature, due to the
201 difficulty of developing an airtight seal through which the tail material can slide during growth, but several
202 evertng vine robots have been demonstrated that store the robot tail rolled up on a reel, allowing growth to
203 arbitrary lengths, only limited by the amount of material stored. [Hawkes et al. \(2017\)](#) demonstrated one
204 implementation of this reeled evertng vine robot design, where a pressure chamber, the base, was used
205 as a rigid grounding point to attach the robot body wall and a reel of tail material (Figure 2a). Using this
206 design, the robot was demonstrated to grow from a package the size of the base (28 cm) to 72 meters long.
207 Provided the base is able to hold pressure needed to grow, the robot length can be scaled arbitrarily.

208 **3.2.2 Retraction**

209 In contrast to growth, in most cases retracting an evertng vine robot cannot be accomplished by simply
210 decreasing the relative pressure between the inside and the outside of the robot body. To achieve retraction
211 of the robot body, a force must be exerted on the tail to pull it towards the base while a moderate level of
212 pressure is maintained in the body. [Luong et al. \(2019\)](#) and [Coad et al. \(2020a\)](#) implemented evertng vine
213 robot versions where a motor drives the reel in the base, allowing not only control of the material release
214 for growth but also reeling in the material for retraction (Figure 2b).

215 While this method of retraction works well in a highly constrained environment, evertng vine robots
216 retracted in free space tend to bend or buckle into an uncontrollable shape before shortening in length. This
217 uncontrolled behavior, studied in [Coad et al. \(2020b\)](#), is due to the discrepancy between the critical loads
218 for bending or buckling, which are dependent on length, and the force required to invert the material, which
219 is independent of length (see Section 4.1 for more discussion of these forces). Thus, above a certain length,
220 an evertng vine robot will always bend or buckle rather than retract in a controlled manner. To avoid this
221 problem, [Coad et al. \(2020b\)](#) developed a retraction device (Figure 2c), which sits inside the robot tip
222 and applies the force required to retract the robot body directly to the robot tip, thus making bending or
223 buckling during retraction effectively impossible. When using a retraction device, a motorized reel in the
224 base is still useful to keep slack from building up in the tail and to store the robot body, but the amount of
225 tension on the robot tail can be kept to a minimum (see Section 5.1.1).

226 **3.3 Actuating Growth Direction**

227 Achieving a desired task with an evert vine robot is often dependent on the ability to dictate the growth
228 direction and the robot shape as it grows and retracts. Here we summarize the different designs investigated
229 to achieve this, while control aspects of evert vine robot steering are discussed in Section 5.1.2.

230 Steering the evert vine robot body presents a design challenge, since the robot body can grow arbitrarily
231 long. For some applications, the grown length may be less than a meter, while for others, the evert vine
232 robot will be over ten meters in length when in use. Specific design considerations include: the number
233 of actuation inputs needed to sufficiently control the robot shape, the acceptability of uncontrolled robot
234 movements, the scaling of actuator magnitude and speed with the length of the system, and the use of the
235 environment to decrease the required actuation inputs. These design considerations do not have universal
236 answers and often result in application-specific solutions. Generally, actuating growth direction functions
237 by changing the relative length of material on opposite sides of the flexible, thin-walled tube, i.e. shortening
238 or lengthening a side of the tube. Figure 3 shows four different methods of steering evert vine robots, all
239 of which locally shorten or lengthen the robot body material on one side compared to its original length.

240 **3.3.1 Distributed Strain Actuation**

241 One actuation method for steering evert vine robots uses actuators that contract uniformly along their
242 length, so that a single input can uniformly curve the entire robot body. Soft pneumatic actuators are
243 the primary examples of this type of actuation, since the actuator can be long enough to match the full
244 robot length and its compliance allows them to evert with the robot (Figure 3a). All the distributed strain
245 actuators used thus far have been limited in their maximum strain. We quantify this strain using the metric
246 of contraction ratio, defined as the ratio of the difference between shortened and fully extended length to
247 the fully extended length.

248 Inverse pneumatic artificial muscles (IPAMs), first demonstrated in Hawkes et al. (2016) and used in Zhu
249 et al. (2020) to create fabric muscle sheets, are constructed using a cylindrical rubber bladder enclosed by a
250 strain limiting layer. This layer forces the bladder to expand lengthwise, not radially, when pressurized.
251 IPAMs have been attached to evert vine robots by sewing them into the fabric of the body. Because
252 IPAMs extend at high pressure and contract at low pressure, the robot body needs to be shortened when
253 attaching the IPAMs. Blumenschein et al. (2018a) and Blumenschein et al. (2018b) used IPAMs to create
254 helical actuation. Even though these actuators have relatively high maximum contraction ratio (75% was
255 reported in Hawkes et al. (2016)), it is difficult to attach IPAMs to an evert vine robot in a way that
256 distributes the strain equally, leading to unpredictable robot shapes.

257 Unlike IPAMs, both series pneumatic artificial muscles (sPAMs) and series pouch motors (SPMs) shorten
258 when pressurized, making them easy to attach uniformly to an evert vine robot in their unactuated
259 state. These actuators are constructed by creating either radial (sPAMs) or flat (SPMs) constrictions at
260 regular intervals along the length of a tube of airtight, inextensible material. A small space for airflow is
261 allowed through the constriction, yielding a series of small interconnected bubbles or pouches (Niiyama
262 et al. (2015)), which shorten lengthwise as they balloon out radially during pressurization. SPMs have a
263 lower maximum contraction ratio than sPAMs (20% versus 40% respectively (Greer et al. (2017))), but they
264 are easier to construct and attach to evert vine robots, making them more practical for very long systems.
265 Greer et al. (2017, 2019) demonstrate an evert vine robot steering with 1-2 m long sPAMs, while Coad
266 et al. (2020a) shows steering with 7-10 m long SPMs in a system deployed in the field. The constrictions
267 inherent in these actuator designs can cause drawbacks. They result in high internal fluidic resistance,

268 leading to noticeable time delays in actuation of the more distal segments of a long robot, and they lead to
269 stress concentrations, making the actuators fatigue upon repeated pressurization and depressurization.

270 Fabric pneumatic artificial muscles (fPAMs) are similar to sPAMs and SPMs but remove the high fluidic
271 resistance. fPAMs are constructed using the bias stretching fabric described in Section 3.1.2 formed into a
272 tube with the bias direction oriented along the length of the actuator. When pressurized, fPAMs expand
273 radially and shorten in length, similar to a McKibben actuator (Gaylord (1958); Geddes et al. (1959)).
274 fPAMs were demonstrated in Nacleario and Hawkes (2020) and Selvaggio et al. (2020) to steer evertng
275 vine robots. They have a slightly lower maximum contraction ratio (30% was reported in Nacleario and
276 Hawkes (2020)) than sPAMs, but also show very little hysteresis.

277 3.3.2 Concentrated Strain Actuation

278 An alternative to distributed strain actuation is concentrated strain actuation. In this category, the actuation
279 comes entirely from the base of the robot instead of distributed along the length, and the actuators are
280 attached only at discrete points on the robot. Generally, concentrated strain actuation has been achieved
281 through tendons routed along the surface of the pressurized tube and pulled by DC motors.

282 Unlike the pneumatic artificial muscles described in the previous section, actuation using tendons is not
283 inherently strain limited, so tendons can achieve much more dramatic steering. However, the decrease in
284 local stiffness that comes after the onset of local wrinkling of the robot body material (He and Chen (2014)),
285 in addition to the friction that exists in the tendons, means bending due to tendon actuation will concentrate
286 in a single location. This type of actuation was used in Stroppa et al. (2020) to create an approximation of a
287 spherical joint at the base of a growing robot manipulator.

288 Having all the bending concentrated at a single point can limit the usable actuation scenarios, so other
289 tendon actuation designs include a limit on the local bending. In Blumenschein et al. (2018a), Blumenschein
290 et al. (2018b), Gan et al. (2020), and Wang et al. (2020) this was accomplished through physical hard
291 stops placed along the tendon's routed path on the surface of the tube (Figure 3b). This feature creates a
292 "traveling wave" of bending, with the point most proximal to the base bending first, followed by more distal
293 points as the hard stops connect. While actuating from the base in this way is not generally a better method
294 for steering the tip compared to distributed curvatures from pneumatic artificial muscles, tendon actuation
295 with hard-stops has been used to create complex, well-defined shapes like helices (Blumenschein et al.
296 (2018b)) and self-knotting paths (Blumenschein et al. (2020)).

297 3.3.3 Tip-Localized Strain Actuation

298 The previous two actuation methods show the ability to steer the evertng vine robot body independent
299 of growth, so the robot shape can be changed either while at a set length or while growing. However, in
300 these previous methods, more distal portions of the robot body can only be actuated if more proximal
301 sections of the body are as well, limiting the shapes that can be produced. Adding more independently
302 actuated segments along the length of the robot body is possible, but this increases control and design
303 complexity and does not scale well with length. If independent steering control along the full length of the
304 robot as it grows is desired, the robot can instead be actuated by coupling the steering to the growth through
305 tip-localized strain actuation. This has been previously accomplished using preloaded strain that can be
306 released only at the tip, as demonstrated in Hawkes et al. (2017). Mechanical latches hold preloaded strain
307 and can be unlatched when they reach the tip by pressurizing pockets that run along the entire length of the

308 robot (Figure 3c). This couples the steering to the growth, and, as a result, minimizes the actuation signals
309 needed to achieve complex shapes. In 2D, two pressure signals are sufficient to fully shape the robot. A
310 more recent implementation of this actuation method used tensioned strings to preload the actuation and
311 servos mounted at the tip to cut the strings as the evertng vine robot grew (Cinquemani et al. (2020)).

312 3.3.4 Preformed Actuation

313 While all the previous actuation strategies created actively controlled robot shapes, active shape change
314 is not needed for some applications. In these cases, the robot body can be preformed into the desired final
315 shape before it grows. Two methods have been developed for preforming evertng vine robots. In Agharese
316 et al. (2018) and Slade et al. (2017), the robot was shaped by heating the thermoplastic body material
317 (LDPE) while it was stretched over molds of the desired shape. This allowed the material to be heat-set
318 and maintain the shape of the mold once removed, creating smoothly varying shapes. Pinching the body
319 material at discrete points and holding the pinches with pieces of tape creates a similar effect but with
320 discrete turns (Hawkes et al. (2017)), which can be seen in Figure 3d.

321 3.3.5 Passive Environment Steering

322 In addition to creating steering actuation, there are various methods to modify existing actuation, one
323 of which is using the environment to help steer the robot. Evertng vine robots can passively adapt to
324 their environment, reaching different final shapes than they would have without environment constraint.
325 Early results of this effect are shown in Hawkes et al. (2017). The compliance and growth behavior of
326 evertng vine robots allow them to easily deform around obstacles and follow natural pathways in their
327 environment. Passive steering using the environment was further demonstrated, with heuristic modeling,
328 in Greer et al. (2018). This model was used to design for intentional passive deformations of preformed
329 evertng vine robots in Greer et al. (2020) (Figure 4a). The modeling and planning associated with using
330 passive deformation for steering, including using passive deformation with active distributed steering
331 (Selvaggio et al. (2020)), will be discussed in Sections 4.2 and 5.3.

332 3.3.6 Stiffness Change

333 Stiffness change gives a second method of modifying actuation of growth direction and robot shape.
334 As discussed for concentrated strain actuation (Section 3.3.2), the local stiffness of inflated tubes rapidly
335 decreases where local wrinkling occurs. Actively increasing the stiffness of the pneumatic tube has recently
336 been investigated to modify this behavior. These designs follow the same considerations as steering
337 actuation: design that minimize the number of control signals and while being scalable with length and
338 remaining flexible enough to allow growth.

339 Vacuum jamming, i.e., using the frictional forces between particles, lines, or sheets of material to increase
340 the apparent stiffness (Kim et al. (2013)), is one method to change stiffness in soft robotic systems. For
341 evertng vine robots, Do et al. (2020) showed an implementation of layer jamming that can be used to
342 modify the bending and buckling behavior under concentrated-strain actuation (Figure 4b-i). The passive
343 valves maintain the pressure state of the layer jamming sections and a device traveling inside the evertng
344 vine robot body switches the states of those valves (see Section 3.4.3 for more discussion of devices inside
345 the robot body).

346 Stiffness change can also be used to lock previous actuation as the evertng vine robot grows, allowing
347 complex robot body shapes to be actuated with only a few actuators. This behavior was achieved in 2D in

348 Wang et al. (2020) using channels on either side of the evertng vine robot. Smaller evertng vine robots
349 were grown and retracted within these side channels, locking the actuation state of the proximal section
350 of the robot body due to the added friction between the channels and smaller evertng vine robots. The
351 distal section of the robot remained steerable via concentrated-strain actuation (Figure 4b-ii). This stiffness
352 change design produces behavior similar to that of tip-localized strain actuation, but with the additional
353 ability to reversibly actuate the movement of the distal portion of the robot body.

354 3.4 Mounting Sensors and Tools

355 Many applications of evertng vine robots are made possible by mounting sensors and tools on the robot
356 body and using the robot's movement to transport them through the environment or to reconfigure their
357 shape. Five locations for mounting sensors and tools have been explored thus far and are shown in Figure 5.
358 For some mounting locations, the sensors and tools are fixed to the material of the robot body, and for
359 others, they move in a way that is linked to the robot's movement, but they are not fixed to its material.
360 Key considerations when choosing a mounting location include: how and where sensors and tools need to
361 interact with the environment and how placement will encumber the movement of the evertng vine robot.

362 3.4.1 At the Tip

363 Because the tip of an evertng vine robot is often the first point to enter a new space, this is an important
364 area to mount sensors and tools that interact with the environment (Figure 5a). Sensors mounted at the
365 robot tip, such as a camera (Hawkes et al. (2017); Greer et al. (2019); Coad et al. (2020a); Luong et al.
366 (2019)), can be used to sense properties of the environment and to provide feedback of the robot state during
367 navigation and exploration. Meanwhile, tip-mounted tools, such as a gripper (Stroppa et al. (2020); Jeong
368 et al. (2020)), enable environment interactions such as picking up objects and pulling on the environment.

369 Mounting to the robot tip is challenging, since the specific section of robot body material at the tip
370 continually changes during eversion and inversion. Thus, a tip mount must move relative to the robot body
371 material, not merely be adhered to the material. Jeong et al. (2020) analyzed the various tip mount designs
372 that have been developed and defined design principles for successful tip mounts. The methods by which
373 sensors and tools have been attached to the tip include: cables inside the tail (Hawkes et al. (2017); Greer
374 et al. (2019); Mishima et al. (2006)), friction with the wall (Coad et al. (2020a)), magnets (Luong et al.
375 (2019); Stroppa et al. (2020)), and rolling interlocks (Jeong et al. (2020)). Many of these tip mount designs
376 use parts both outside the robot body and inside the pressurized area at the robot tip to stay attached. Wire
377 management is also a challenge because wires must move relative to the robot's body. Luong et al. (2019)
378 showed a wireless tip mount, but previous solutions to manage wired connections have consisted of wires
379 inside the robot tail (Hawkes et al. (2017) and Greer et al. (2019)) and external wires with a self-sealing
380 zipper pocket to avoid snagging on the environment (Coad et al. (2020a)). Mounting at the tip involves a
381 tradeoff between reliable attachment and encumbrance of the evertng vine robot's natural ability move
382 through confined spaces. The sensors, tools, and mounting methods can also add large or heavy elements
383 at the robot tip, limiting the evertng vine robot's ability to support its own weight, pass through small
384 apertures, and move relative to the environment without friction.

385 3.4.2 Fixed to the Wall

386 Another method to directly place sensors and tools in contact with the environment is fixing them to
387 the robot body wall (Figure 5b). This location is well suited for mounting items that are deployed during
388 growth or that need to interact with the environment along the entire length of the robot body, although
389 anything mounted must be flexible enough or small enough to be everted and inverted along with the robot
390 body material. While this location can be useful for some sensing applications, many of the demonstrated
391 designs have mounted nontraditional robot payloads to the robot body wall. Adhesive patches attached
392 to the outside of the body can be used to grip the environment, in one case to provide additional support
393 when climbing vertically (Hawkes et al. (2017)) and in another to takes samples of the environment (Coad
394 et al. (2020b)). Items attached to the body can also be deployed and shaped by the robot. Agharese et al.
395 (2018) shows deployment of soft haptic actuators and Blumenschein et al. (2018a); Gan et al. (2020) show
396 deploying and shaping segmented antenna pieces in order to form functional devices.

397 3.4.3 Inside the Pressurized Area

398 Items that do not need to interact physically with the environment can be mounted inside the pressurized
399 area of the robot body (Figure 5c). The structure of the robot body acts as a pathway which can be traveled
400 independent of the growth of the robot and without contacting the environment. The physical separation
401 from the environment means mounting inside the pressurized area is best suited for sensors and tools used
402 to interact with the robot body itself, or those that can interact with the environment in a non-contact fashion.
403 This mounting location was used in Coad et al. (2020b) to attach the retraction device (Section 3.2.2),
404 which applies force to the robot tail to retract the robot body after growth. Similarly, Do et al. (2020)
405 demonstrated a motorized carriage device moving internal to the robot to carry an electromagnet. Wired
406 transmission of power from the base helps reduce device weight. As with wires passed to tip mounts, these
407 wires must span a changing length as the device moves along the robot. so the wires should be managed
408 to keep them taut while reeling them in or out as needed. Mounting inside the pressurized area does not
409 require an active carriage device, as friction with the tail can passively keep devices at the tip during growth.
410 Watson and Morimoto (2020) used this method to keep a ring magnet at the tip of a millimeter-scale
411 evertng vine robot for tip-localization.

412 3.4.4 Fixed to the Tail

413 Due to eversion, the robot tail moves at twice the speed that the robot tip moves relative to the base.
414 Mounting sensors and tools to the robot's tail is therefore a useful way to transport items between the robot
415 base and the tip, using the growth and retraction of the robot itself (Figure 5d). Items fixed to the inside of
416 the tail can contact the environment once that portion of the tail reaches the robot tip; rather than becoming
417 part of the wall, the items may be deployed into the environment or reach the tip at the fully grown robot
418 length. Hawkes et al. (2017) used this mounting location to demonstrate delivery of items from the robot
419 base to the robot tip during growth through difficult environments. A sensor packaged safely inside the tail
420 was protected from environmental hazards until the very end of growth when it was deployed out into the
421 environment, and a wire was tied to the robot tail and pulled through the inside of the robot body, easily
422 routing the wire through a confined space. The main disadvantage of this mounting location is that the
423 robot length when the payloads will reach the tip is fixed at the time of manufacture. Either the desired final
424 robot length must be known before launching the robot or it must be determined through trial and error.

425 3.4.5 Inside the Tail

426 To overcome the disadvantages of fixing payloads to the tail, sensors and tools can be mounted inside,
427 but not fixed to, the robot tail (Figure 5e). Using this mounting location, items can be passed from the
428 base to the tip such that some part of them stays continually at the tip during growth and retraction. As
429 mentioned in the previous subsection, the robot tail and the robot tip move at different speeds relative to
430 the base, so the payload must slide within the robot tail to remain at a desired location. If the evertng
431 vine robot material is not stored on a reel, this can be achieved by leaving the end of the tail partially
432 unsealed so that items can pass from outside the base through the tail. However, the internal pressure used
433 to grow the robot will cause the tail to naturally squeeze anything inside it, so some way to balance the
434 pressure, like sending a steady stream of air through the tail, is needed to allow sliding of items inside the
435 tail. [Hawkes et al. \(2017\)](#) used this mounting location to pass a tool through the robot body from base to tip
436 in a demonstration of a medical procedure, while, [Naclerio et al. \(2018\)](#) passed a tube through the tail to
437 the robot tip to send compressed air to fluidize a granular environment and allow the robot to grow through
438 it with ease. While mounting inside the tail is good for passing items through the robot body to the outside
439 of the robot tip, also storing the robot body material on a reel in the base is impossible, because of the need
440 for relative movement between the tail material and the items inside the tail. This provides incentive to find
441 other methods of storing the robot body material compactly when not in use. Additionally, maintaining the
442 appropriate relative speed of movement between the tail material and the items inside such that part of the
443 items remains at the tip is challenging. The items inside the tail need to be pulled toward the base during
444 growth and pushed away from the base during retraction (not yet demonstrated in the literature).

4 MODELING

445 As with many soft robots, evertng vine robots present specific challenges for modeling, and even more so
446 because growth is such a unique form of movement. As a result, models for growth and steering of evertng
447 vine robots draw inspiration from a variety of sources, including models of other soft robotic systems and
448 models of naturally occurring growth and steering. Even though the method of growth through eversion
449 is unlike many natural systems, the mathematics of biological growth as seen in the literature ([Goriely 450 \(2017\)](#)) has a close link to the models of growth that describe evertng vine robots, and the principles
451 that describe how a plant shapes itself, for example, how a cucumber tendril forms a helix ([Gerbode et al. 452 \(2012\)](#)), closely relate to the understanding of how differential shortening allows evertng vine robots to
453 form similar shapes ([Blumenschein et al. \(2018b\)](#)). Section 4.1 outlines the quasi-static analyses conducted
454 to generate models of growth (Figure 6), as well as bending and buckling due to growth into obstacles and
455 due to retraction (Figure 7). Section 4.2 describes the kinematic and force-balance modeling employed to
456 predict robot shape due to both active and passive steering (Figure 8).

457 4.1 Modeling of Growth

458 An important portion of evertng vine robot modeling has focused on understanding evertng vine robot
459 growth and retraction, including the forces at play due to interaction with the environment. Thus far,
460 these models have all been limited to quasi-static analyses, i.e., those that neglect dynamics. Many of the
461 analyzed movements were slow enough that dynamics could be discounted, but faster growth movements
462 have also shown negligible inertial effects.

463 [Blumenschein et al. \(2017\)](#) showed a quasi-static model for growth via pressure-driven tip eversion based
464 on an equilibrium force balance (Figure 6). The model equates the driving force, i.e., the internal pressure
465 multiplied by the tip area, to internal losses. The losses break down into two categories: losses associated

466 with transporting material from the base to the tip, and losses associated with evertng new material at the
467 tip. Material transport is dominated by the frictional interaction of the evertng vine robot material with
468 itself, due to the weight of the tail material (Figure 6d), and the tension of the inner material being pulled
469 around curves (i.e., the capstan equation, see Lubarda (2014)) (Figure 6c). At the tip, Hawkes et al. (2017)
470 show experimentally that eversion losses closely match the viscoplastic behavior of other pressure-driven
471 growing systems (Figure 6a-b), like the expansion of plant cells (Green et al. (1971)) or deployment of
472 invertebrate proboscises (Zuckerkandl (1950)), with a yield force (i.e., a minimum driving force to begin
473 growth) and a viscous damping as a function of growth speed, with negligible inertial effects. This model
474 allows the user to predict whether growth will occur, and at what speed, given the pressure and robot
475 geometry.

476 Naclerio et al. (2018) and Haggerty et al. (2019) expand on this model by adding the effects of external
477 forces from the environment. In Naclerio et al. (2018), the model was specifically adjusted to account for
478 the resistive forces of the sand on growth during burrowing. Haggerty et al. (2019) focused more broadly
479 on the environmental interaction forces that passively steer an evertng vine robot while navigating a
480 cluttered environment through self-buckling or self-bending (Section 3.3.5). Simple geometric and pressure
481 dependent models predict bending and buckling for evertng vine robots (Figure 7a), largely informed by
482 existing bending and buckling models for inflated beams (Fichter (1966); Le-van and Wielgosz (2005);
483 Comer and Levy (1963)). Godaba et al. (2019) further considered the buckling and bending loads to
484 determine payload capabilities, and Putzu et al. (2018) looked into the relationship between force applied
485 to the robot tip in compression and the robot's growth speed.

486 These bending and buckling behaviors can also occur due to forces applied during retraction
487 (Section 3.2.2). Coad et al. (2020b) described the critical points for inversion-based buckling as a function
488 of curvature, length, and internal pressure (Figure 7b). The same length-independent yield force that must
489 be overcome to begin eversion is also required to begin inversion, while the forces required to bend and
490 buckle the robot body decrease with increasing length. This means that regardless of robot curvature and
491 internal pressure, above a certain length, the robot body will always bend or buckle instead of inverting.

492 4.2 Modeling of Steering

493 Kinematic and force-balance models have been employed to calculate the robot shape both due to
494 actuators and due to obstacle interaction. These models are highlighted in Figure 8.

495 Early models for evertng vine robot steering were inspired by constant curvature models used for flexible-
496 backbone continuum robots (Webster III and Jones (2010)). In Greer et al. (2017), constant curvature
497 kinematics are used to define the 3D shape of a flexible, thin-walled inflated backbone, without eversion,
498 steered by distributed strain actuators (Figure 8a). This model incorporates a force balance, taking into
499 account the backbone and actuator stiffnesses due to pressure. Greer et al. (2019) then incorporates the
500 effects of the changing body length when growing. While these effects are mainly accounted for using
501 control strategies (Section 5.1.2), it is noted that the change in body length also causes a reduction in
502 the frequency response of the actuators as they increase in length, due to the fluidic resistance of sPAMs
503 (Section 3.3.1). Greer et al. (2019) also showed that the mapping between internal actuator pressures
504 and instantaneous tip displacements is fairly consistent throughout the robot's workspace. This allowed
505 Coad et al. (2020a) to develop a simplified kinematic model assuming a linear relationship between
506 change in actuator pressure and instantaneous tip displacement. This model commands instantaneous tip
507 displacements, instead of absolute tip positions.

508 Adding shape-locking (Section 3.3.6) to a robot with constant curvature actuation allows for the creation
509 of complex compound curvatures, but this requires a modification of the constant curvature models as
510 a result. Wang et al. (2020) developed a steering model to determine the tip position of a shape-locking
511 evertng vine robot (Figure 8b). This method of shape-locking causes the more proximal sections to be
512 held in place while the most distal section, past the end of the locking bodies, can actuate into a constant
513 curvature shape. The full robot shape is a compound curve made of constant curvature segments. As the
514 locking bodies grow or retract along the robot, new static segments are added or removed from the curve,
515 and the tip position can be reconstructed by taking the kinematics of each curved segment in order.

516 These constant curvature models only apply to actuators mounted parallel to the backbone, i.e., parallel
517 to the growing direction of the evertng vine robot. Blumenschein et al. (2018b) expanded these steering
518 models to actuators attached to the evertng vine robot body in a helix (Figure 8a). The developed closed-
519 form kinematics for helical actuators relate the 3D actuator shape to the 3D deformed robot shape based only
520 on geometry. To model the kinematics of general actuator shapes on evertng vine robots, Blumenschein
521 et al. (2020) took this helical kinematics model and approximated general paths as piecewise helical. This
522 approximation accurately predicts the actuated shapes resulting from generally shaped actuators. The
523 kinematic modeling was also used to design the actuation to achieve a desired path, like a self-knotting
524 evertng vine robot (Figure 8a).

525 Steering can also result from obstacle interactions. A model presented in Greer et al. (2018) developed a
526 simple kinematic heuristic for a straight (unactuated) evertng vine robot as it grows into an obstacle in 2D:
527 the tip will slide along the obstacle in a direction determined by the initial contact angle, and the robot will
528 bend at the previous contact with the environment (Figure 8b). Given an environment including some set
529 of obstacles, this model predicts the robot's path based entirely on the obstacle locations and initial robot
530 state, keeping track of obstacle contact points on the evertng vine robot. In Greer et al. (2020), a slight
531 modification of the obstacle interaction model was used to account for preformed turns as well, and this
532 model was used to plan 2D paths through environments with known obstacles (Section 5.3).

533 Active steering and obstacle interaction models can be combined to model controlled evertng vine
534 robots moving through obstacle-filled environments. Selvaggio et al. (2020) shows a piecewise formulation
535 to calculate the robot shape during environment contact in 2D. The free length of the robot body (i.e.,
536 the section not constrained by the environment) takes on a constant curvature shape determined by the
537 pressures in the actuators, while the constrained length of the robot body is shaped based on the obstacle
538 contact locations (Figure 8b). A point-loaded cantilever inflated beam model determines the deflection and
539 moment of the constrained section of the body. This model can similarly be used for planning (Section 5.3).

5 CONTROL AND PLANNING

540 The unique properties and mechanisms of evertng vine robot movement provide new opportunities and
541 challenges for robot control and planning, both teleoperated and autonomous. Considerations include what
542 behaviors can be planned and how to bring a human operator into the control loop. The main evertng vine
543 robot control and planning topics studied thus far have been (1) robot-level control of growth, retraction,
544 and steering, (2) interface design to allow human operators to teleoperate evertng vine robots, and (3)
545 planning methods that consider obstacle interaction models of evertng vine robots.

546 5.1 Robot-Level Control

547 Robot-level control strategies are concerned with controlling the fundamental movements of the evert vine robot. Since growth and steering are generally actuated independently, the control strategies are
548 handled separately as well. Even when steering is coupled to growth, the control of steering is separate
549 and reactive to growth. Control schemes that have been demonstrated in the literature are diagrammed in
550 Figure 9.

552 5.1.1 Growth and Retraction Control

553 Due to the variability of length scales of evert vine robots, growth and retraction have been speed
554 controlled. Accurate control of the robot's length relies on being able to apply forces that both lengthen
555 and shorten the robot. Since internal pressure can only drive growth, an antagonistic actuator, like a motor
556 attached to the tail, is needed to have full control. Using the antagonistic combination of pressure to drive
557 growth and motor to resist growth, speed control has been achieved for limited length change (Greer et al.
558 (2019)) and arbitrary length change (Luong et al. (2019); Coad et al. (2020a)) robots.

559 The exact implementation of growth control differs between these systems. Luong et al. (2019) used a
560 continuously-running pump with a relief valve to maintain a constant pressure (20 kPa), while growth and
561 retraction speed were controlled via commands sent to a stepper motor. Care was needed to ensure that
562 the stepper motor did not introduce slack if obstacles or steering slowed the robot. Coad et al. (2020a)
563 used a backdrivable DC motor with an encoder and a closed-loop pressure regulator to make growth speed
564 control robust to these disturbances without sensing the true growth speed. By setting the motor to only
565 resist growth and allowing the pressure to backdrive the motor up to the desired speed, the speed could be
566 controlled without allowing slack in the tail.

567 While retraction can be accomplished with the architecture described above, controlled retraction has
568 been implemented with the addition of a retraction device (Coad et al. (2020b)) as discussed in Section 3.2.
569 With this device, the motor inputs of the base motor and the retraction device motor(s) must be synchronized
570 and their combination must balance the internal pressure. Jeong et al. (2020) presented an implementation
571 of growth and retraction control using a retraction device without an encoder. The retraction device motors
572 determined the speed of growth or retraction, while the base motor applied the forces necessary to maintain
573 material tension and reel material slack as it developed.

574 5.1.2 Steering Control

575 Unlike growth and retraction control, steering control methods are dependent on the actuation method
576 used. This section only discusses steering control when in free space; the steering behavior of evert vine
577 robots under environmental contact is treated as a planning problem instead.

578 Control for tip-localized strain actuation (Section 3.3.3) was demonstrated in Hawkes et al. (2017). Since
579 steering could only occur at discrete points when the robot grew, bang-bang control was used, where the
580 next command—left, right, or straight—was queued according to the target location relative to the tip. This
581 method could stably control the evert vine robot heading as long as the growth speed was sufficiently
582 slow, since actuation inputs occurred at discrete intervals and resulted in irreversible shape change of the
583 body.

584 Control of reversible steering was first demonstrated in Greer et al. (2017, 2019) with an evert vine
585 robot using distributed strain actuation. Since steering is completely decoupled from growth and retraction,

586 instantaneous movement of the robot tip in any direction is possible. For autonomous control, tip motion
587 from steering was commanded with a visual servo control law to keep tracked features centered in the
588 field of view. Even though an image-space Jacobian could be derived based on constant curvature models
589 (Section 4.2), the control instead used model-free approaches and calibrated an image-space Jacobian
590 approximation during startup. The Jacobian translated actuator pressures to image-space displacements.
591 The camera could spin relative to the robot, so an IMU attached to the camera was used to estimate the
592 relative rotation of the tip camera and update the Jacobian.

593 Coad et al. (2020a) also demonstrated steering control for distributed strain actuators, using a simplified
594 kinematic model of the robot instead of a model-free image-space Jacobian, and for the purposes of
595 teleoperation. This method controlled the robot body at relatively long lengths (7.5-10 m) for the first
596 time, demonstrating that constant curvature assumptions break down at long length. Only the most distal
597 meter long section of the robot body achieves a consistent curvature, so past that length, the kinematics
598 can be considered approximately independent of length. Since human-in-the-loop teleoperation was used
599 to provide reference inputs instead of feedback from a tip camera, the steering control was open-loop
600 and based on the inverse kinematics. This steering control method was also modified to be used with
601 concentrated strain actuation in Stroppa et al. (2020) and was demonstrated with retraction in Jeong et al.
602 (2020), and model-based control using beam bending models was shown in Ataka et al. (2020).

603 5.2 Input Modalities

604 Input modalities refer to the methods used to provide reference commands to the robot (Figure 10).
605 Evertng vine robots can be fully or semi-autonomous, relying only on high-level commands from operators
606 and feedback from sensing within their control loop, or they can be directly teleoperated, taking low-level
607 commands from a human operator.

608 5.2.1 Full and Shared Autonomy

609 Full and shared autonomy was demonstrated in Hawkes et al. (2017), Greer et al. (2017), and Greer
610 et al. (2019), using a camera and video processing to track image features that are selected by the operator
611 (Figure 10). Full autonomy is possible in cases where the tracked image feature is constant and always in
612 view, allowing the evertng vine robot to navigate towards a light in Hawkes et al. (2017) or to follow a
613 person's hand in Greer et al. (2017). When different features need to be tracked over time, either due to
614 changing goals or because the end goal is not in sight, humans can provide updates to the target object in a
615 shared autonomy setup. Shared autonomy was shown in Greer et al. (2017) to switch targets in a sequence,
616 and in Greer et al. (2019) to navigate towards a target hidden behind an obstacle in the workspace.

617 5.2.2 Direct Teleoperation

618 A variety of devices have been used to provide inputs for direct teleoperation, including off-the-shelf
619 input devices and custom-designed interfaces. Since growth is a degree of control not found in many
620 robots, a key early consideration for interface design was the intuitiveness of the control. El-Hussieny
621 et al. (2018) conducted a user study of teleoperation using a simulated evertng vine robot with first-person
622 view as though from a camera at the robot tip (Figure 10). Three off-the-shelf input devices (keyboard,
623 joystick, and Phantom Omni) were compared to a novel flexible joystick. Overall, the novel flexible joystick
624 outperformed the other input devices on all measured metrics and was found to have the lowest self-rated

625 mental workload. A similar flexible joystick was used in Coad et al. (2020a) for teleoperation of an evertng
626 vine robot within a previously unexplored rocky tunnel in an archaeological site. Joystick displacements
627 were mapped to robot tip displacements and the growth speed of the robot was input using a sliding
628 potentiometer embedded in the joystick. The human operator received feedback of the robot tip position by
629 viewing images from a camera at the robot tip. A different interface for direct teleoperation of evertng vine
630 robots was demonstrated in Stroppa et al. (2020) for a pick-and-place task (Figure 10). This interface used a
631 motion capture system with markers placed on the human operator's chest and arm, tracking the operator's
632 gestures to control the growth, retraction, and steering of the robot, while the human operator viewed the
633 entire robot body and its environment via direct line of sight. In a user study, participants teleoperated the
634 evertng vine robot to successfully transfer a cube from one platform to another in 95% of trials.

635 5.3 Planning

636 Evertng vine robots interact with their environment in ways desirable for navigation, creating
637 opportunities for planning methods that are unique to these types of robots. Thus far, the literature
638 has focused on defining and using heuristics for evertng vine robot interaction with a known, rigid
639 environment. These planning methods demonstrate that designs that use environmental contact have a
640 higher probability of reaching a target in the face of actuation uncertainty, and that the dexterous range of
641 evertng vine robots can be increased by contacting the environment. The planning methods that have been
642 demonstrated in the literature for evertng vine robots are shown in Figure 11.

643 Greer et al. (2020) used the obstacle interaction heuristics for an evertng vine robot with preformed
644 steering to develop a planning method for choosing the initial robot shape, i.e., the pinch locations and
645 pinch angles (Section 3.3.4). The planning method maximized the probability of reaching a desired target
646 given noise in the design parameters. This planning method uses the certainty of the robot tip position when
647 contacting obstacles to counteract the uncertainty in manufacturing the preformed evertng vine robot, as
648 well as offloading some of the manipulation of the robot shape to the environment, reducing the required
649 actuation. To find a plan, a sequence of waypoints overlaid on the known map and linking the start and
650 end while requiring the minimal amount of preformed actuation were identified. Then, from the possible
651 designs, the one that maximizes the probability of reaching each waypoint was selected.

652 Selvaggio et al. (2020) presents a similar planning method with the addition of active steering. A slightly
653 different model (detailed in Section 4.2) is used to describe the obstacle interaction of these robots. This
654 model can calculate the reachable workspace of the robot tip as a function of a sequence of obstacle
655 interactions; the more obstacles that can be used to manipulate the robot's path, the greater the possible
656 range of approach angles of a target location. For a desired approach angle, the planning problem iterates
657 through all possible permutations of obstacle contact states to find the sequence of obstacle contacts that
658 minimize the orientation error at the target.

6 APPLICATIONS

659 While the work discussed in previous sections has investigated methods to understand and expand the
660 capabilities of evertng vine robots, here we discuss the previously explored applications for these systems,
661 including the benefits and challenges of using evertng vine robots for a given application. Figure 12 shows
662 three main application areas of evertng vine robots: deploying and reconfiguring structures, navigating
663 constrained environments, and applying forces on the environment.

664 6.1 Deploying and Reconfiguring Structures

665 Because evertng vine robots create structures as they grow, one area of application has been to create
666 deployable and reconfigurable structures. As discussed in Section 3.4.2, sensors and tools can be fixed to
667 the wall of an evertng vine robot, allowing controlled deployment and reconfiguration during the growth
668 and steering of the body. In these applications, the shape change of the robot body allows the deployed
669 item to achieve its desired function.

670 Agharese et al. (2018) designed an evertng vine robot to create a deployable wearable haptic device.
671 Haptic devices that modify their surface area are easier to don and doff and can create variable contact
672 depending on the situation. This system begins in a wrist form factor and grows to cover the lower arm,
673 deploying soft pneumatic haptic actuators (Raitor et al. (2017)) that provide direction and intensity cues to
674 the wearer. Structure "programability" also allowed for the development of deployable and reconfigurable
675 antennas. In Blumenschein et al. (2018a), copper strips were attached to the robot body wall in an
676 overlapping fashion to form a monopole antenna. As the robot grew and retracted it changed the length of
677 the deployed monopole antenna. Deployment of more complex antenna shapes was shown in Gan et al.
678 (2020), where a handedness-reconfiguring helical antenna was deployed. Other applications that rely on
679 creation of deployable and reconfigurable structures could include deployment of structures in space and
680 the formation of structural metamaterials.

681 6.2 Navigating Constrained Environments

682 Evertng vine robots are well suited for navigation of constrained environments, especially in situations
683 where non-destructive sensing of the environment and/or delivery of items is needed. The requirements of
684 these applications vary; the goal may be to reach and inspect a particular target with the robot tip, or the
685 robot body itself may be used as a conduit to transport items from its proximal to distal ends, though there
686 is often the additional goal of minimizing the force applied to the environment.

687 Coad et al. (2020a) reported on the first field deployment of an evertng vine robot system in an
688 archaeology application. A portable evertng vine robot system was developed that could deliver a camera
689 to collect video inside spaces in an archaeological site that are too small for a human to enter. Due to its
690 ability to navigate tortuous paths, traverse rock blockages, and support its own body through vertical shafts,
691 the evertng vine robot was able to collect video in areas previously unobserved by the archaeology team.
692 A similar application area was proposed in Luong et al. (2019), using a water-filled evertng vine robot to
693 non-destructively monitor underwater ecosystems. In the field of medicine, preliminary demonstrations
694 have shown the ability of evertng vine robots to navigate tortuous paths similar to those encountered
695 inside the human body, with minimal force applied to the environment compared to standard catheters and
696 other medical tools pushed from the base (Slade et al. (2017)). Continued work on mounting items at the
697 robot tip without encumbering the robot's navigation ability will enable new capabilities for these types of
698 applications.

699 In addition to navigating constrained environments through existing paths, evertng vine robots can be
700 grown to create a path where no natural pathway already exists. Naclerio et al. (2018) investigated this
701 problem via the development of an evertng vine robot capable of burrowing through sand. To adapt the
702 evertng vine robot for burrowing, an air line internal to the tail was added to allow for granular fluidization,
703 after which the evertng vine robot grew into the sand, using its internal pressure to apply outward forces on
704 the sand to keep its body from being crushed. This combines the navigation and force application abilities
705 of evertng vine robots, and it could allow for soil monitoring, non-invasive underground installation, and

706 root-like foundation structures. Another related work (Ozkan-Aydin et al. (2019)) showed the benefits of
707 oscillating the evertng vine robot tip during navigation of an environment containing both free space and
708 rigid obstacles, similar to how plant roots oscillate their tips when burrowing through soil. This result has
709 also been seen in other growing robot mechanisms (Del Dottore et al. (2017)). These designs demonstrate
710 an interesting application of evertng vine robots and plant inspired robots in general: as model systems for
711 understanding bio-physical behaviors of plants, similar to how animal inspired robots have been used to
712 better understand animal biophysics (Li et al. (2013); Libby et al. (2012)).

713 6.3 Applying Forces

714 Several potential evertng vine robot applications center around applying force on the environment. For
715 example, the natural compliance of an evertng vine robot body makes it potentially safe for manipulation
716 around humans. Evertng vine robots may be especially useful in environments where a combination of the
717 ability to navigate confined spaces and the ability to apply forces to the environment is needed, such as
718 turning a valve in a disaster scenario (Hawkes et al. (2017)).

719 Moving payloads attached to the robot tip often relies on having sufficient stiffness to resist bending and
720 buckling loads on the evertng vine robot body, which depends on the internal pressure and the length of
721 the robot. Because evertng vine robots are hollow and filled with fluid, their critical bending and buckling
722 loads tend to be lower than those of traditional robots (Section 4.1). Greer et al. (2017) and Stroppa et al.
723 (2020) demonstrated that forces applied using transverse and compressive loading on the evertng vine
724 robot body are sufficient to move lightweight objects (200 g) around the robot's 3D workspace, and there
725 is ongoing work on methods to control stiffness (Section 3.3.6), which will increase the weight-bearing
726 capacity of evertng vine robots to allow the extension to more manipulation tasks.

727 The use of inextensible materials in many evertng vine robots means that, while they tend to be much
728 weaker than traditional robots in compression, they can be strong in tension, and this strength is not
729 dependent on the robot length. Jeong et al. (2020) demonstrated that, with the addition of a tip mount to
730 pull on the environment, evertng vine robots can support up to 7 kg of weight and lift up to 2.5 kg in
731 tension, only limited by the strength of the tip mount materials and the tip-mount motors. In a similar
732 application, evertng vine robots were used as tensile linear actuators (Abrar et al. (2019)).

733 Finally, evertng vine robots can apply forces through the everted body more efficiently than through the
734 evertng tip. Pressure has an impressive ability to produce high forces when multiplied by a large area, so,
735 by directly using the internal pressure to apply forces, Hawkes et al. (2017) demonstrated a pneumatic jack
736 capable of growing into a small gap and then lifting over 75 kg, with increasing force capability as the robot
737 grew. Nakamura and Tsukagoshi (2018) applied this lifting capability to design a tool that gently lifts and
738 turns people in bed. Wrapping around objects to grasp them is another common continuum robot behavior
739 that evertng vine robots can achieve. Preliminary work on this concept was presented in Blumenschein
740 et al. (2018b), which demonstrates helical grasping.

7 CONCLUSION

741 Evertng vine robots are characterized by their ability to achieve growth through pressure-driven eversion.
742 Within this category are a variety of designs, modeling techniques, control and planning strategies, and
743 application areas. In this review, we summarized and organized much of the recent work on evertng vine
744 robots. We highlighted the relative benefits and deficits of evertng vine robot design components, from
745 material choice to actuation strategy to sensor and tool delivery method. We also showed the uses for and

746 limitations of existing modeling and control strategies, and we explained application areas by the features
747 of evertng vine robots that facilitate them.

748 With the previous work in evertng vine robots in mind, there are a number of open questions in each
749 of the areas discussed. Evertng vine robot functionality could be increased through design methods. The
750 majority of evertng vine robot materials have been tested at the same scale, so investigation of how these
751 materials function within evertng vine robots at much smaller and larger scales is needed. Because the
752 materials are relatively cheap, future exploration of manufacturing methods for mass production of evertng
753 vine robots could support the development of vine robot swarms and multi-robot coordination. Within
754 actuation design, future work should include expanding methods for creating complex curves and 3D shapes
755 and investigating actuation strategies to facilitate force control in addition to position control. However, the
756 most pressing area of future research in design is the need to develop methods for attachment of sensors
757 and tools that do not encumber evertng vine robots' ability to move through constrained environments and
758 squeeze through gaps smaller than their body cross-section, since these beneficial behaviors are currently
759 difficult to achieve with many of the existing tip mounts described in Section 3.4.1.

760 The biggest gap in modeling for evertng vine robots is understanding their dynamic responses and
761 behaviors. A dynamic model could expand the capabilities of evertng vine robots, allowing for faster
762 movement and greater force application. Initial work in modeling dynamics for evertng vine robots
763 has been completed in simulation (El-Hussieny et al. (2019)). Part of developing dynamic models that
764 account for environment interaction involves incorporating more accurate kinematic models for the robots.
765 Continuum models like Kirchoff and Cosserat rod models have been applied successfully to many systems
766 with similar thin flexible form factors in robotics and in graphics (Bergou et al. (2008); Gazzola et al.
767 (2018); Zhang et al. (2019)), so adapting these models for evertng vine robots is an interesting area of
768 future research. As we continue to use evertng vine robots in constrained environments, another area of
769 research in modeling is expanding obstacle interaction models to include compliant obstacles, especially
770 since compliant environments are often the type that require delicate interaction.

771 Future steps within control and planning should focus on two goals: increasing the ease and functionality
772 of teleoperating evertng vine robots, and investigating shared or full autonomy for behaviors that are
773 difficult to achieve under teleoperation. For teleoperation, better robot-level control should be investigated
774 by integrating accurate model-based control methods. In autonomous control, evertng vine robot behaviors
775 could be greatly expanded by creating control and planning methods of the body shape and the applied
776 forces. These autonomous behaviors could take inspiration from the tropisms and control strategies seen in
777 natural growth. In all these cases, new sensors that can be incorporated in evertng vine robots are needed
778 to sense shape, orientation, or interaction force of the robot, or to measure additional properties of the
779 environment. These sensors may be located at the tip, distributed along the length, or actively re-positioned
780 along the robot. For incorporating these sensors for teleoperation, future studies should look at what sensing
781 modalities and displays give users the best sense of situational awareness. New human interfaces will be
782 needed to allow operators to easily and quickly command more complex, high-level evertng vine robot
783 behaviors in teleoperated or shared control.

784 Lastly, there are many exciting applicationa to explore in the future, many of which can be built based on
785 existing ones. In navigating constrained environments, animal burrows are a well suited environment to
786 explore using evertng vine robots. These burrows are difficult to navigate with existing technology, and
787 evertng vine robots could provide a tool to conduct minimally-intrusive population surveying of various
788 species, as well as to gather information on the structures and climates of these underground environments.
789 Evertng vine robots have also shown promise in creating or augmenting medical devices (Saxena et al.

790 (2020)). Many medical procedures, like colonoscopy and endoscopy, require moving medical devices
791 along existing pathways in the human body, and using evertng vine robots could cause reductions in
792 procedure time and reductions in unintended forces applied to the body. Evertng vine robots also show
793 great potential in creating tools to aid in search and rescue, due to their ability to move through constrained
794 environments and carry sensors and other payloads. Many other potential applications build into new
795 areas. A growing manipulator, for example, would be able to navigate cluttered human environments
796 while keeping a minimal form factor and then apply forces to pick up or move objects in the environment.
797 Future work for application of evertng vine robots will also look at incorporating more actuation and
798 control technologies to yield new behaviors. For example, robot applications that combine navigation of
799 constrained environments and force application through manipulation may require on-demand change of
800 evertng vine robot properties to allow low-force application during navigation and high force application
801 during manipulation.

802 Evertng vine robots are a technology still in their infancy. Yet, despite the relatively short time, diverse
803 and interesting applications have been unlocked by their unique abilities. There remain many more questions
804 to understand about their governing physics and how their behaviors can be leveraged and controlled to
805 produce useful technologies, but the work to date has shown that evertng vine robots provide a compelling
806 framework through which new soft robotic opportunities can arise.

CONFLICT OF INTEREST STATEMENT

807 LB, AO, and EH have a pending patent on the combination of growth and steering. All other authors
808 declare that the research was conducted in the absence of any commercial or financial relationships that
809 could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

810 LB defined the scope of this review. LB, MC, and DH wrote the first draft of the manuscript. All authors
811 contributed to manuscript revision and read and approved the submitted version.

FUNDING

812 This work was supported in part by the Air Force Office of Scientific Research under award FA2386-17-1-
813 4658, the National Science Foundation under Award 1637446, and Toyota Research Institute (TRI). TRI
814 provided funds to assist the authors with their research, but this article solely reflects the opinions and
815 conclusions of its authors and not TRI or any other Toyota entity.

ACKNOWLEDGMENTS

816 We thank our many collaborators on evertng vine robot research for discussions related to the topics
817 presented here. We especially thank Jee-Hwan Ryu, Sean Follmer, Sang-Goo Jeong, Nicholas Naclerio,
818 Nathan Usevitch, Nathaniel Agharese, Brian Do, and Rachel Thomasson.

REFERENCES

819 Abrar, T., Putzu, F., Konstantinova, J., and Althoefer, K. (2019). Epam: Eversive pneumatic artificial muscle.
820 In *IEEE International Conference on Soft Robotics*. 19–24. doi:[10.1109/ROBOSOFT.2019.8722787](https://doi.org/10.1109/ROBOSOFT.2019.8722787)

821 Agharese, N., Cloyd, T., Blumenschein, L. H., Raitor, M., Hawkes, E. W., Culbertson, H., et al. (2018).
822 Hapwrap: Soft growing wearable haptic device. In *IEEE International Conference on Robotics and
823 Automation*. 1–5. doi:[10.1109/ICRA.2018.8460891](https://doi.org/10.1109/ICRA.2018.8460891)

824 Alexander, R. M. (2003). *Principles of Animal Locomotion* (Princeton University Press).
825 doi:[10.1086/380060](https://doi.org/10.1086/380060)

826 Ataka, A., Abrar, T., Putzu, F., Godaba, H., and Althoefer, K. (2020). Model-based pose control of
827 inflatable eversion robot with variable stiffness. *IEEE Robotics and Automation Letters* 5, 3398–3405.
828 doi:[10.1109/LRA.2020.2976326](https://doi.org/10.1109/LRA.2020.2976326)

829 Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. (2008). Discrete elastic
830 rods. In *ACM SIGGRAPH* (New York, NY, USA: Association for Computing Machinery), 1–12.
831 doi:[10.1145/1399504.1360662](https://doi.org/10.1145/1399504.1360662)

832 Blumenschein, L. H., Gan, L., Fan, J., Okamura, A. M., and Hawkes, E. W. (2018a). A tip-extending
833 soft robot enables reconfigurable and deployable antennas. *IEEE Robotics and Automation Letters* 3,
834 949–956. doi:[10.1109/LRA.2018.2793303](https://doi.org/10.1109/LRA.2018.2793303)

835 Blumenschein, L. H., Koehler, M., Usevitch, N. S., Hawkes, E. W., Rucker, D. C., and Okamura, A. M.
836 (2020). Geometric solutions for general actuator routing on inflated beam soft growing robots. ArXiv
837 cs.RO [Preprint]. Accessible at <https://arxiv.org/abs/2006.06117> [Accessed August 30, 2020]

838 Blumenschein, L. H., Okamura, A. M., and Hawkes, E. W. (2017). Modeling of bioinspired apical
839 extension in a soft robot. In *Biomimetic and Biohybrid Systems*, eds. M. Mangan, M. Cutkosky, A. Mura,
840 P. F. Verschure, T. Prescott, and N. Lepora (Cham: Springer International Publishing), 522–531

841 Blumenschein, L. H., Usevitch, N. S., Do, B., Hawkes, E. W., and Okamura, A. M. (2018b). Helical
842 actuation on a soft inflated robot body. In *2018 IEEE International Conference on Soft Robotics* (IEEE),
843 245–252. doi:[10.1109/ROBOSOFT.2018.8404927](https://doi.org/10.1109/ROBOSOFT.2018.8404927)

844 Cinquemani, S., Bianchi, G., Antonacci, N., and Resta, F. (2020). Design of a soft pneumatic robot inspired
845 to plant roots' growth. In *Bioinspiration, Biomimetics, and Bioreplication X*, eds. M. Knez, A. Lakhtakia,
846 and R. J. Martín-Palma. International Society for Optics and Photonics (SPIE), vol. 11374, 100–109.
847 doi:[10.1117/12.2558554](https://doi.org/10.1117/12.2558554)

848 Coad, M. M., Blumenschein, L. H., Cutler, S., Zepeda, J. A. R., Naclerio, N. D., El-Hussieny, H., et al.
849 (2020a). Vine robots: Design, teleoperation, and deployment for navigation and exploration. *IEEE
850 Robotics and Automation Magazine* doi:[10.1109/MRA.2019.2947538](https://doi.org/10.1109/MRA.2019.2947538)

851 Coad, M. M., Thomasson, R. P., Blumenschein, L. H., Usevitch, N. S., Hawkes, E. W., and Okamura, A. M.
852 (2020b). Retraction of soft growing robots without buckling. *IEEE Robotics and Automation Letters* 5,
853 2115–2122. doi:[10.1109/LRA.2020.2970629](https://doi.org/10.1109/LRA.2020.2970629)

854 Comer, R. and Levy, S. (1963). Deflections of an inflated circular-cylindrical cantilever beam. *AIAA
855 Journal* 1, 1652–1655. doi:[10.2514/3.1873](https://doi.org/10.2514/3.1873)

856 Dehghani, H., Welch, C. R., Pourghodrat, A., Nelson, C. A., Oleynikov, D., Dasgupta, P., et al. (2017).
857 Design and preliminary evaluation of a self-steering, pneumatically driven colonoscopy robot. *Journal
858 of Medical Engineering & Technology* 41, 223–236. doi:[10.1080/03091902.2016.1275853](https://doi.org/10.1080/03091902.2016.1275853)

859 Del Dottore, E., Mondini, A., Sadeghi, A., Mattoli, V., and Mazzolai, B. (2017). An efficient soil penetration
860 strategy for explorative robots inspired by plant root circumnutiation movements. *Bioinspiration &
861 Biomimetics* 13, 015003. doi:[10.1088/1748-3190/aa9998](https://doi.org/10.1088/1748-3190/aa9998)

862 Dent, E. W. and Gertler, F. B. (2003). Cytoskeletal dynamics and transport in growth cone motility and
863 axon guidance. *Neuron* 40, 209–227

864 Do, B. H., Banashek, V., and Okamura, A. M. (2020). Dynamically reconfigurable discrete distributed
865 stiffness for inflated beam robots. In *IEEE International Conference on Robotics and Automation*.
866 9050–9056. Accessible at <https://arxiv.org/abs/2002.04728> [Accessed April 1, 2020]

867 El-Hussieny, H., Jeong, S.-G., and Ryu, J.-H. (2019). Dynamic modeling of a class of soft growing robots
868 using euler-lagrange formalism. In *Society of Instrument and Control Engineers 2019*

869 El-Hussieny, H., Mehmood, U., Mehdi, Z., Jeong, S.-G., Usman, M., Hawkes, E. W., et al.
870 (2018). Development and evaluation of an intuitive flexible interface for teleoperating soft growing
871 robots. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*. 4995–5002.
872 doi:[10.1109/IROS2018.8593896](https://doi.org/10.1109/IROS2018.8593896)

873 Fichter, W. (1966). A theory for inflated thin-wall cylindrical beams. *National Air and Space Administration*
874 (*NASA*) *Technical Note* 3466, 1–19

875 Gan, L. T., Blumenschein, L. H., Huang, Z., Okamura, A. M., Hawkes, E. W., and Fan, J. A. (2020). 3d
876 electromagnetic reconfiguration enabled by soft continuum robots. *IEEE Robotics and Automation*
877 *Letters* 5, 1704–1711. doi:[10.1109/LRA2020.2969922](https://doi.org/10.1109/LRA2020.2969922)

878 Gaylord, R. H. (1958). Fluid actuated motor system and stroking device. United States patent US 2,844,126

879 Gazzola, M., Dudte, L., McCormick, A., and Mahadevan, L. (2018). Forward and inverse problems in the
880 mechanics of soft filaments. *Royal Society open science* 5, 171628

881 Geddes, L., Moore, A., Spencer, W., and Hoff, H. (1959). Electropneumatic control of the mckibben
882 synthetic muscle. *Orthopedic and Prosthetic Appliance Journal* 13, 33–36

883 Gerbode, S. J., Puzey, J. R., McCormick, A. G., and Mahadevan, L. (2012). How the cucumber tendril
884 coils and overwinds. *Science* 337, 1087–1091

885 Gibson, R. (1977). A new genus and species of lineid heteronemertean from South Africa,
886 polybrachiorhynchus dayi (nemertea: Anopla), possessing a multibranched proboscis. *Bulletin of*
887 *Marine Science* 27, 552–571

888 Godaba, H., Putzu, F., Abrar, T., Konstantinova, J., and Althoefer, K. (2019). Payload capabilities and
889 operational limits of eversion robots. In *Annual Conference Towards Autonomous Robotic Systems*.
890 383–394. doi:[10.1007/978-3-030-25332-5_33](https://doi.org/10.1007/978-3-030-25332-5_33)

891 Goriely, A. (2017). *The mathematics and mechanics of biological growth*, vol. 45 (Springer)

892 Green, P., Erickson, R., and Buggy, J. (1971). Metabolic and physical control of cell elongation rate: in
893 vivo studies in nitella. *Plant Physiology* 47, 423–430. doi:[10.1104/pp.47.3.423](https://doi.org/10.1104/pp.47.3.423)

894 Greer, J. D., Blumenschein, L. H., Alterovitz, R., Hawkes, E. W., and Okamura, A. M. (2020). Robust
895 navigation of a soft growing robot by exploiting contact with the environment. *International Journal of*
896 *Robotics Research* doi:[10.1177/0278364920903774](https://doi.org/10.1177/0278364920903774)

897 Greer, J. D., Blumenschein, L. H., Okamura, A. M., and Hawkes, E. W. (2018). Obstacle-aided
898 navigation of a soft growing robot. In *IEEE International Conference on Robotics and Automation*. 1–8.
899 doi:[10.1109/ICRA2018.8460777](https://doi.org/10.1109/ICRA2018.8460777)

900 Greer, J. D., Morimoto, T. K., Okamura, A. M., and Hawkes, E. W. (2017). Series pneumatic artificial
901 muscles (sPAMs) and application to a soft continuum robot. In *IEEE International Conference on*
902 *Robotics and Automation*. 5503–5510. doi:[10.1109/ICRA2017.7989648](https://doi.org/10.1109/ICRA2017.7989648)

903 Greer, J. D., Morimoto, T. K., Okamura, A. M., and Hawkes, E. W. (2019). A soft, steerable continuum
904 robot that grows via tip extension. *Soft Robotics* 6, 95–108. doi:[10.1089/soro.2018.0034](https://doi.org/10.1089/soro.2018.0034)

905 Haggerty, D. A., Naclerio, N. D., and Hawkes, E. W. (2019). Characterizing environmental interactions
906 for soft growing robots. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*.
907 3335–3342. doi:[10.1109/IROS40897.2019.8968137](https://doi.org/10.1109/IROS40897.2019.8968137)

908 Hammond, Z. M., Usevitch, N. S., Hawkes, E. W., and Follmer, S. (2017). Pneumatic reel actuator:
909 Design, modeling, and implementation. In *IEEE International Conference on Robotics and Automation*.
910 626–633. doi:[10.1109/ICRA2017.7989078](https://doi.org/10.1109/ICRA2017.7989078)

911 Hawkes, E. W., Blumenschein, L. H., Greer, J. D., and Okamura, A. M. (2017). A soft robot that navigates
912 its environment through growth. *Science Robotics* 2. doi:[10.1126/scirobotics.aan3028](https://doi.org/10.1126/scirobotics.aan3028)

913 Hawkes, E. W., Christensen, D. L., and Okamura, A. M. (2016). Design and implementation of a 300%
914 strain soft artificial muscle. In *IEEE International Conference on Robotics and Automation*. 4022–4029.
915 doi:[10.1109/ICRA.2016.7487592](https://doi.org/10.1109/ICRA.2016.7487592)

916 He, Y. and Chen, W. (2014). Experiment and theoretical analysis study of etfe inflatable tubes. *International*
917 *Journal of Aerospace Engineering* 2014, 1–10. doi:[10.1155/2014/925428](https://doi.org/10.1155/2014/925428)

918 Hong, D. W., Ingram, M., and Lahr, D. (2009). Whole skin locomotion inspired by amoeboid motility
919 mechanisms. *Journal of Mechanisms and Robotics* 1, 1–7. doi:[10.1115/1.2976368](https://doi.org/10.1115/1.2976368)

920 Jeong, S., Coad, M. M., Blumenschein, L. H., Luo, M., Mehmood, U., Kim, J., et al. (2020). A tip mount
921 for transporting sensors and tools using soft growing robots. In *IEEE/RSJ International Conference on*
922 *Intelligent Robots and Systems*. (In Press). Accessible at <https://arxiv.org/abs/1912.08297> [Accessed
923 August 30, 2020]

924 Kim, Y.-J., Cheng, S., Kim, S., and Iagnemma, K. (2013). A novel layer jamming mechanism with tunable
925 stiffness capability for minimally invasive surgery. *IEEE Transactions on Robotics* 29, 1031–1042.
926 doi:[10.1109/TRO.2013.2256313](https://doi.org/10.1109/TRO.2013.2256313)

927 Le-van, A. and Wielgosz, C. (2005). Bending and buckling of inflatable beams: Some new theoretical
928 results. *Thin-Walled Structures* 43, 1166–1187. doi:[10.1016/j.tws.2005.03.005](https://doi.org/10.1016/j.tws.2005.03.005)

929 Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J., et al. (2017). Soft robot review. *International*
930 *Journal of Control, Automation and Systems* 15, 3–15. doi:[10.1007/s12555-016-0462-3](https://doi.org/10.1007/s12555-016-0462-3)

931 Lee, Y.-H., Kang, B.-K., Kim, H.-D., Yoo, H.-J., Kim, J.-S., Huh, J.-H., et al. (2009). Effect of hot
932 pressing/melt mixing on the properties of thermoplastic polyurethane. *Macromolecular Research* 17,
933 616–622. doi:[10.1007/BF03218918](https://doi.org/10.1007/BF03218918)

934 Lew, R. R. (2011). How does a hypha grow? the biophysics of pressurized growth in fungi. *Nature Reviews*
935 *Microbiology* 9, 509–518. doi:[10.1038/nrmicro2591](https://doi.org/10.1038/nrmicro2591)

936 Li, C., Zhang, T., and Goldman, D. I. (2013). A terradynamics of legged locomotion on granular media.
937 *science* 339, 1408–1412

938 Li, H., Yao, J., Liu, C., Zhou, P., Xu, Y., and Zhao, Y. (2020). A bioinspired soft swallowing robot based
939 on compliant guiding structure. *Soft Robotics* doi:[10.1089/soro.2018.0154](https://doi.org/10.1089/soro.2018.0154)

940 Libby, T., Moore, T. Y., Chang-Siu, E., Li, D., Cohen, D. J., Jusufi, A., et al. (2012). Tail-assisted pitch
941 control in lizards, robots and dinosaurs. *Nature* 481, 181–184

942 Lubarda, V. A. (2014). The mechanics of belt friction revisited. *International Journal of Mechanical*
943 *Engineering Education* 42, 97–112. doi:[10.7227/IJMEE.0002](https://doi.org/10.7227/IJMEE.0002)

944 Luong, J., Glick, P., Ong, A., deVries, M. S., Sandin, S., and Hawkes, E. W. and Tolley, M. T. (2019).
945 Eversion and retraction of a soft robot towards the exploration of coral reefs. In *IEEE International*
946 *Conference on Soft Robotics*. 801–807. doi:[10.1109/ROBOSOFT.2019.8722730](https://doi.org/10.1109/ROBOSOFT.2019.8722730)

947 Manca, J. (2018). Hampton court palace, gardens, great vine, detail

948 Mishima, D., Aoki, T., and Hirose, S. (2006). Development of pneumatically controlled expandable
949 arm for search in the environment with tight access. In *Field and Service Robotics*. 509–518.
950 doi:[10.1007/10991459_49](https://doi.org/10.1007/10991459_49)

951 Naclerio, N. and Hawkes, E. W. (2020). Simple, low-hysteresis, foldable, fabric pneumatic artificial muscle.
952 *IEEE Robotics and Automation Letters* 5, 3406–3413. doi:[10.1109/LRA.2020.2976309](https://doi.org/10.1109/LRA.2020.2976309)

953 Naclerio, N., Hubicki, C., Aydin, Y., Goldman, D., and Hawkes, E. W. (2018). Soft robotic burrowing
954 device with tip-extension and granular fluidization. In *IEEE/RSJ International Conference on Intelligent*
955 *Robots and Systems*. 5918–5923. doi:[10.1109/IROS.2018.8593530](https://doi.org/10.1109/IROS.2018.8593530)

956 Nakamura, T. and Tsukagoshi, H. (2018). Soft pneumatic manipulator capable of sliding under the human
957 body and its application to preventing bedsores. In *IEEE/ASME International Conference on Advanced*

958 *Intelligent Mechatronics*. 956–961. doi:[10.1109/AIM.2018.8452429](https://doi.org/10.1109/AIM.2018.8452429)

959 Niiyama, R., Sun, X., Sung, C., An, B., Rus, D., and Kim, S. (2015). Pouch motors: Printable soft actuators
960 integrated with computational design. *Soft Robotics* 2, 59–70. doi:[10.1089/soro.2014.0023](https://doi.org/10.1089/soro.2014.0023)

961 Ozkan-Aydin, Y., Murray-Cooper, M., Aydin, E., McCaskey, E. N., Naclerio, N., Hawkes, E. W., et al.
962 (2019). Nutation aids heterogeneous substrate exploration in a robophysical root. In *IEEE International
963 Conference on Soft Robotics*. 172–177. doi:[10.1109/ROBOSOFT.2019.8722717](https://doi.org/10.1109/ROBOSOFT.2019.8722717)

964 Palanivelu, R. and Preuss, D. (2000). Pollen tube targeting and axon guidance: parallels in tip growth
965 mechanisms. *Trends in cell biology* 10, 517–524

966 Putzu, F., Abrar, T., and Althoefer, K. (2018). Plant-inspired soft pneumatic eversion robot.
967 In *IEEE International Conference on Biomedical Robotics and Biomechatronics*. 1327–1332.
968 doi:[10.1109/BIOROB.2018.8487848](https://doi.org/10.1109/BIOROB.2018.8487848)

969 Raitor, M., Walker, J. M., Okamura, A. M., and Culbertson, H. (2017). WRAP: Wearable, restricted-
970 aperture pneumatics for haptic guidance. In *IEEE International Conference on Robotics and Automation*.
971 427–432. doi:[10.1109/ICRA.2017.7989055](https://doi.org/10.1109/ICRA.2017.7989055)

972 Rus, D. and Tolley, M. T. (2015). Design, fabrication and control of soft robots. *Nature* 521, 467–475.
973 doi:[10.1038/nature14543](https://doi.org/10.1038/nature14543)

974 Sadeghi, A., Mondini, A., and Mazzolai, B. (2017). Toward self-growing soft robots inspired
975 by plant roots and based on additive manufacturing technologies. *Soft Robotics* 4, 211–223.
976 doi:[10.1089/soro.2016.0080](https://doi.org/10.1089/soro.2016.0080)

977 Sanati Nezhad, A. and Geitmann, A. (2013). The cellular mechanics of an invasive lifestyle. *Journal of
978 experimental botany* 64, 4709–4728

979 Satake, Y., Takanishi, A., and Ishii, H. (2020). Novel growing robot with inflatable structure and
980 heat-welding rotation mechanism. *IEEE/ASME Transactions on Mechatronics* 25, 1869–1877.
981 doi:[10.1109/TMECH.2020.2999467](https://doi.org/10.1109/TMECH.2020.2999467)

982 Saxena, A., Pauli, E. M., Haluck, R. S., Fell, B., and Moore, J. (2020). Tubular locomotion and positioning
983 using tip eversion for endoscopy. *Journal of Medical Devices* 14. doi:[10.1115/1.4046433](https://doi.org/10.1115/1.4046433)

984 Selvaggio, M., Ramirez, L., Siciliano, B., and Hawkes, E. (2020). An obstacle interaction planning
985 method for navigation of actuated vine robots. In *International Conference on Robotics and Automation*.
986 3227–3233. Accessible at <http://wpage.unina.it/mario.selvaggio/papers/icra2020soft.pdf> [Accessed
987 April 1, 2020]

988 Slade, P., Gruebele, A., Hammond, Z., Raitor, M., Okamura, A. M., and Hawkes, E. W. (2017). Design of a
989 soft catheter for low-force and constrained surgery. In *IEEE/RSJ International Conference on Intelligent
990 Robots and Systems*. 174–180. doi:[10.1109/IROS.2017.8202154](https://doi.org/10.1109/IROS.2017.8202154)

991 Steer, M. W. and Steer, J. M. (1989). Pollen tube tip growth. *The New Phytologist* 111, 323–358

992 Stroppa, F., Luo, M., Yoshida, K., Coad, M. M., Blumenschein, L. H., and Okamura, A. M. (2020).
993 Human interface for teleoperated object manipulation with a soft growing robot. In *IEEE International
994 Conference on Robotics and Automation*. 726–732. Accessible at <https://arxiv.org/abs/1910.12998>
995 [Accessed April 1, 2020]

996 Talas, S. K., Baydere, B. A., Altinsoy, T., Tutcu, C., and Samur, E. (2020). Design and development of a
997 growing pneumatic soft robot. *Soft Robotics* doi:[10.1089/soro.2019.0083](https://doi.org/10.1089/soro.2019.0083)

998 Tsukagoshi, H., Arai, N., Kiryu, I., and Kitagawa, A. (2011). Tip growing actuator with the hose-like
999 structure aiming for inspection on narrow terrain. *International Journal of Automation Technology* 5,
1000 516–522. doi:[10.20965/ijat.2011.p0516](https://doi.org/10.20965/ijat.2011.p0516)

1001 Usevitch, N. S., Hammond, Z. M., Schwager, M., Okamura, A. M., Hawkes, E. W., and Follmer, S. (2020).
1002 An untethered isoperimetric soft robot. *Science Robotics* 5. doi:[10.1126/scirobotics.aaz0492](https://doi.org/10.1126/scirobotics.aaz0492)

1003 Vaughn, K. C., Bowling, A. J., et al. (2011). 1 biology and physiology of vines. *Horticultural reviews* 38,
1004 1

1005 Wang, S., Zhang, R., Haggerty, D., Naclerio, N., and Hawkes, E. (2020). A dexterous tip-extending robot
1006 with variable-length shape-locking. In *IEEE International Conference on Robotics and Automation*.
1007 9035–9041. Accessible at <https://arxiv.org/abs/2003.09113> [Accessed April 1, 2020]

1008 Watson, C. and Morimoto, T. K. (2020). Permanent magnet-based localization for growing robots in medical
1009 applications. *IEEE Robotics and Automation Letters* 5, 2666–2673. doi:[10.1109/LRA.2020.2972890](https://doi.org/10.1109/LRA.2020.2972890)

1010 Webster III, R. J. and Jones, B. A. (2010). Design and kinematic modeling of constant curvature
1011 continuum robots: A review. *The International Journal of Robotics Research* 29, 1661–1683.
1012 doi:[10.1177/0278364910368147](https://doi.org/10.1177/0278364910368147)

1013 Weigel, D. and Jürgens, G. (2002). Stem cells that make stems. *Nature* 415, 751–754. doi:[10.1038/415751a](https://doi.org/10.1038/415751a)

1014 Wooten, M. B. and Walker, I. D. (2015). A novel vine-like robot for in-orbit inspection. In *International
1015 Conference on Environmental Systems*. 1–11

1016 Xu, M.-M., Huang, G.-Y., Feng, S.-S., McShane, G. J., and Stronge, W. J. (2016). Static and dynamic
1017 properties of semi-crystalline polyethylene. *Polymers* 8, 77. doi:[10.3390/polym8040077](https://doi.org/10.3390/polym8040077)

1018 Yan, T., Teshigawara, S., and Asada, H. H. (2019). Design of a growing robot inspired by plant
1019 growth. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*. 8006–8011.
1020 doi:[10.1109/IROS40897.2019.8968200](https://doi.org/10.1109/IROS40897.2019.8968200)

1021 Zhang, X., Chan, F. K., Parthasarathy, T., and Gazzola, M. (2019). Modeling and simulation of complex
1022 dynamic musculoskeletal architectures. *Nature communications* 10, 1–12

1023 Zhu, M., Do, T. N., Hawkes, E., and Visell, Y. (2020). Fluidic fabric muscle sheets for wearable and soft
1024 robotics. *Soft Robotics* doi:[10.1089/soro.2019.0033](https://doi.org/10.1089/soro.2019.0033)

1025 Zhu, T., Yang, H., and Zhang, W. (2016). A spherical self-adaptive gripper with shrinking of an
1026 elastic membrane. In *International Conference on Advanced Robotics and Mechatronics*. 512–517.
1027 doi:[10.1109/ICARM.2016.7606973](https://doi.org/10.1109/ICARM.2016.7606973)

1028 Zuckerkandl, E. (1950). Coelomic pressures in *sipunculus nudus*. *The Biological bulletin* 98, 161–173.
1029 doi:[10.2307/1538578](https://doi.org/10.2307/1538578)

FIGURE CAPTIONS

Figure 1. The biological inspiration for and basic properties of tip growth, and our implementation of artificial growth via eversion. (a) Examples of biological systems that grow to navigate their environments. (b) Schematic representing growth by tip-extension. (c) Artificial growth created by pressure-driven eversion of a flexible, thin-walled tube. Modified from Hawkes et al. (2017). Reprinted with permission from AAAS.

Figure 2. Designs for actuating length change of evertng vine robots. (a) Storing robot body material on a spool in the base allows growth to arbitrary lengths. (b) Reversing the spool direction with a motor allows retraction after growth. (c) Adding a retraction device at the robot tip allows retraction without undesired bending or buckling of the robot body. Modified from Hawkes et al. (2017). Reprinted with permission from AAAS. Modified from Luong et al. (2019) © IEEE 2019, Coad et al. (2020a) © IEEE 2020, and Coad et al. (2020b) © IEEE 2020.

Figure 3. Methods of actuating evert vine robot growth direction and shape, including (top) actuation principles and (bottom) examples of implementation. (a) Distributed strain uses pneumatic artificial muscles to create strain along the length where they are attached. (b) Concentrated strain uses tendons actuated from the base to change the robot shape. (c) Tip-localized strain couples steering and growth to create responsive steering at the tip only. (d) Preformed steering shapes the robot for known tasks before deployment. Modified from Greer et al. (2019). The publisher for this copyrighted material is Mary Ann Liebert, Inc. publishers. Modified from Greer et al. (2017) © IEEE 2017, Blumenschein et al. (2018b) © IEEE 2018, and Gan et al. (2020) © IEEE 2020. Modified from Hawkes et al. (2017). Reprinted with permission from AAAS. Modified from Greer et al. (2020).

Figure 4. Methods for modifying steering and shape of evert vine robots apart from actuation. (a) Steering can be modified by obstacle interaction, where the robot passively conforms to its environment as it grows. (b) Steering can also be modified by changing the body stiffness. (b,i) Increasing the stiffness of sections through layer jamming allows control of the wrinkling point under tendon actuation. (b,ii) Side tubes can be used to shape-lock previous actuation, allowing steering of the tip only and formation of compound curves. Modified from Greer et al. (2020), Do et al. (2020) © IEEE 2020, and Wang et al. (2020) © IEEE 2020.

Figure 5. Five locations for mounting sensors and tools around the body of an evert vine robot: (a) at the tip, (b) fixed to the wall, (c) inside the pressurized area, (d) fixed to the tail, and (e) inside the tail. Modified from Hawkes et al. (2017). Reprinted with permission from AAAS. Modified from Greer et al. (2019). The publisher for this copyrighted material is Mary Ann Liebert, Inc. publishers. Modified from Coad et al. (2020a) © IEEE 2020, Luong et al. (2019) © IEEE 2019, Stroppa et al. (2020) © IEEE 2020, Jeong et al. (2020), Coad et al. (2020b) © IEEE 2020, Agharese et al. (2018) © IEEE 2018, Blumenschein et al. (2018a) © IEEE 2018, Gan et al. (2020) © IEEE 2020, Do et al. (2020) © IEEE 2020, and Naclerio et al. (2018) © IEEE 2018.

Figure 6. Quasi-static modeling of evert vine robot growth. Model relates the driving force (internal pressure times tip cross-sectional area) to the losses due to the robot state, including (a) static yield force (i.e., driving force required to begin growth), (b) viscoplastic loss due to evert material, (c) exponential friction for moving tail material around curves in path, and (d) linear friction as a function of length/weight of tail material being transported. Modified from Blumenschein et al. (2017). Reprinted with permission from Springer Nature.

Figure 7. Quasi-static modeling of evert vine robot bending and buckling during growth into obstacles, as well as retraction. (a) Modeling of bending and buckling based on environment interaction allows prediction of the pressure required to passively deform through an environment during growth. (b) Modeling of bending and buckling based on retraction forces allows prediction of when the robot will invert successfully. Modified from Haggerty et al. (2019) © IEEE 2019 and Coad et al. (2020b) © IEEE 2020.

Figure 8. Kinematic and force-balance modeling of evert vine robot shape/steering. (a) Modeling of robot shape in free space has included kinematic models based on constant curvature and piecewise constant curvature sections, some of which also consider forces, as well as kinematic models based on helical and piecewise helical actuator routings. (b) Modeling of robot shape during environment interaction has developed heuristics for both passively and actively steered growth based on kinematics and force-balance models. Modified from Greer et al. (2019). The publisher for this copyrighted material is Mary Ann Liebert, Inc. publishers. Modified from Wang et al. (2020) © IEEE 2020, Blumenschein et al. (2018b) © IEEE 2018, Blumenschein et al. (2020), Greer et al. (2018) © IEEE 2018, and Selvaggio et al. (2020) © IEEE 2020.

Figure 9. Control schemes for the growth/retraction and the steering degrees of freedom of robot tip movement. (*top*) Control of growth and retraction speed is achieved by balancing internal pressure with motor inputs to maintain the proper level of tension in the tail. (*bottom*) Steering control is achieved by mapping desired tip displacements to pressures in steering actuators.

Figure 10. Input modalities for evertng vine robot control on the spectrum from full autonomy to direct teleoperation. (*left*) Full autonomy has been demonstrated for simple tasks such as following a continuously visible stimulus in the robot's field of view. (*middle*) Shared autonomy has used a point-and-click interface for the human operator to direct the robot towards a set of waypoints in its camera view. (*right*) Direct teleoperation has used both off-the-shelf and custom-designed interfaces that are held or worn and used to complete navigation and pick-and-place tasks. Modified from [Hawkes et al. \(2017\)](#). Reprinted with permission from AAAS. Modified from [Greer et al. \(2019\)](#). The publisher for this copyrighted material is Mary Ann Liebert, Inc. publishers. Modified from [Greer et al. \(2017\)](#) © IEEE 2017, [El-Hussieny et al. \(2018\)](#) © IEEE 2018, and [Stroppa et al. \(2020\)](#) © IEEE 2020.

Figure 11. Planning methods for (*left*) a preformed evertng vine robot made of inextensible plastic and (*right*) an evertng vine robot steered with distributed strain actuators and made of extensible fabric. The planning methods leverage heuristics about robot shape and environment interaction to minimize actuation input or orientation error while reaching a target position. Modified from [Greer et al. \(2020\)](#) and [Selvaggio et al. \(2020\)](#) © IEEE 2020.

Figure 12. Evertng vine robot applications organized by the function of the robot in the application, including (*top left*) deploying and reconfiguring structures, (*bottom left*) navigating constrained environments without damaging the environment or the robot, and (*top right*) applying forces to the environment through squeezing, pushing, pulling, or expanding. (*bottom right*) Some applications, such as burrowing, incorporate multiple functions. Modified from [Hawkes et al. \(2017\)](#). Reprinted with permission from AAAS. Modified from [Blumenschein et al. \(2018a\)](#) © IEEE 2018, [Gan et al. \(2020\)](#) © IEEE 2020, [Agharese et al. \(2018\)](#) © IEEE 2018, [Blumenschein et al. \(2018b\)](#) © IEEE 2018, [Greer et al. \(2017\)](#) © IEEE 2017, [Jeong et al. \(2020\)](#), [Naclerio et al. \(2018\)](#) © IEEE 2018, [Coad et al. \(2020a\)](#) © IEEE 2020, [Slade et al. \(2017\)](#) © IEEE 2017, and [Luong et al. \(2019\)](#) © IEEE 2019.

Table 1. Various materials used in evertng vine robot designs, with their key behaviors and manufacturing methods. Material choice presents tradeoffs in ease of manufacture, strength, stiffness properties, and actuation pressure.

Material	Key Behaviors	Manufacturing Method
Thermoplastics (LDPE, TPU)	Fastest Prototyping Material Uniformity Low burst pressure	Heat sealing/preformed
Thermosets (latex, silicone)	Slow prototyping Variable burst pressure Low hysteresis	Casting/preformed
Thermoplastic-coated fabric (TPU-coated nylon)	Fast prototyping Moderate burst pressure Good structural characteristics	Heat sealing
Thermoset-coated fabric (silicone-infused nylon)	Slow prototyping High burst pressure Lowest eversion friction Extensible / inextensible	Adhesives
Uncoated fabric (ballistic nylon)	Slow prototyping High structural High eversion friction	Sewing with internal bladder Ultrasonic welding