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We show that concept of parity-time (PT) symmetry can be expanded to include mixed photon-exciton modes by
demonstrating that eigenmodes of active (pumped) strongly coupled cavity polaritons with population inversion exhibit
characteristics that are remarkably akin to those of coupled photonic structures with parity-time symmetry. The excep-
tional point occurs when the Rabi splitting of polariton branches inherent in passive polaritonic systems decreases
with increase in pumping, leading to population inversion, and eventually two polaritonic modes merge into a single
mode, thus manifesting the frequency pulling effect inherent to all lasers. But, remarkably, this exceptional point occurs
below the lasing threshold. Furthermore, unlike most manifestations of PT symmetry in optics, which are observed in
the interaction between two analogous photonic modes in waveguides or cavities, in this work the exceptional point is
found in interaction between two very dissimilar modes—one photonic and one material excitation (exciton). Aside
from fundamentally noteworthy expansion of the concept of PT symmetry to new systems, there is a prospect of using
the exceptional point in polaritons for practical applications, such as sensing. © 2020 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Every student of quantum mechanics is familiar with the postulate
that the Hamiltonian of the physical system must be Hermitian
in order to make certain that the eigenvalues are real. This notion,
however, has been challenged in last few decades, when it has been
shown that a system described by a non-Hermitian Hamiltonian
can also have real eigenvalues as long as that Hamiltonian satisfies
the combined conditions of parity-time (PT) symmetry [1]. Thus,
the field of non-Hermitian quantum mechanics was born, and
from that point it has been the focus of attention of many theorists
[2—4]. In particular the interest has been aroused by the existence of
the exceptional points (EPs) at the boundary between the regions
where PT symmetry is preserved and broken [5] and where the
eigenfunctions of the Hamiltonian become degenerate. While the
theoretical progress of PT studies has been spectacular, experimen-
tal observation of non-Hermitian but PT symmetric properties
in Nature has remained elusive. But the phenomena related to PT
symmetry have been manifested in other branches of physics, most
prominently in photonics. This development was in a certain way
inevitable, as the wave equations governing quantum mechanics
and optics are closely related, and hence a photonic system can be
an excellent simulator of a quantum mechanical one [6] as has been
exploited by finding optical counterparts to such condensed matter
concepts as band theory [7], Anderson localization [8], and topo-
logical phenomena [9], among others. An entire cottage industry
of replicating quantum mechanical phenomena in optics [10] has
since sprung up and blossomed. Hence, it was only a matter of time
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until first the theoretical works [11-14] and then reports of obser-
vation of PT-like phenomena in photonics, including EPs, started
appearing [15,16] in the literature. From there on, PT symmetry
has been demonstrated in large variety of photonic structures—
coupled waveguides, coupled resonators, lasers [17], Bragg grating
[18], etc. as described in a number of excellent reviews [19-21].
In particular, the EPs [22] where the phase transitions occur have
been observed, and, most encouragingly, it was shown that in the
vicinity of EPs the sensitivity of various sensors [23-25] can be
enhanced, which may potentially lead to practical applications,
although, given the inherent instability of any system near phase
transitions [26], there are still a lot of obstacles on the path to
widespread application of PT-symmetric photonics.

A couple of general observations can be made about all the
photonic structures in which PT symmetry and EPs have been
observed or theoretically shown to exist. First, in all cases the cou-
pled modes comprising the PT system are of the same photonic
nature—typically, the modes in coupled waveguides, coupled
microresonators, or forward and backward modes in ring res-
onators or gratings. Second, the structures are specifically designed
to satisfy PT symmetry conditions, which is usually done be
carefully adjusting the loss and gain in them. It is somewhat
disappointing to note that the vast majority of PT symmetry exper-
iments use structures that have almost no reason for their existence
other than demonstrating PT symmetry with perhaps some added
functionality. That includes all the works on PT symmetry in lasers
[17,27-29], where specially designed multimode or coupled lasers
with alternating gain and loss regions needed to be employed.
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Needless to say, it would be intriguing to identify a photonic struc-
ture that is ubiquitous and is extensively used in many photonics
systems today, and in which the PT symmetry properties and in
particular EPs can be observed “as is” and considered as an added
functionality. Furthermore, from the fundamental physics point of
view, it would be instructive to consider a PT-symmetric structure
in which the coupled modes that comprise it are of very differ-
ent physical origins [30]. In this work we demonstrate that such
system exists and that PT symmetry and EPs can be observed in a
well-known system comprised by the ensemble of two-level atoms
(or exciton) placed in a microcavity and pumped (optically or
electrically) but below the lasing threshold. So one can think of this
system schematically shown in Fig. 1 as either an active polariton in
a Fabry—Perot microcavity [31] or as a subthreshold vertical cavity
surface emitting laser (VCSEL) [32]. We show that two kinds of
conditions for EPs can be identified in this system—one below
and one above the transparency. Of course these structures have
been extensively studied, and the phenomena occurring near EPs,
namely, polaritonic Rabi splitting in the regime of strong coupling
on one hand [33,34] and frequency pulling in the lasers [35] on
the other, are obviously familiar to most students of photonics.
Still, in our view, it is worthwhile to look at familiar structures
from a different angle and to discover that the most fundamental
phenomenon of coupling between matter and light can produce
EPs as has been shown in [30], and that by changing pumping,
the system can be tuned to be either at an EP or encircle it. Besides
being a scientific curiosity, this study may even lead to practical
applications in sensing, but in that respect we shall try to refrain
from being carried away and try to remain concentrated on science.

2. COUPLED LIGHT-MATTER EQUATIONS

As mentioned above, we study a Fabry—Perot microcavity [30],
shown in Figs. 1(a) and 1(b) with an optically active resonant
medium in it. For the purpose of generality, the active medium is
described as a two-level ensemble of atoms with transition energy
ha;) and the dephasing rate y,; whose density is V(7). In prac-
tice, the active medium is typically a semiconductor or an organic
medium in which the transition is an excitonic one, but one can
always describe it using a two-level model. For example, if the active
medium is a multiple quantum well (MQW) structure [37,38],
shown in Fig. 1(c), the density of equivalent two-level atoms can
be found as N(7) = 2|, (0)|? Zf,va 8(z — z,), where @, (0) is
the value of excitonic wavefunction at the origin and z,, is the plane
of one of the Now quantum wells. The active medium can then be
described by a set of density matrix equations for the population of
lower and upper levels p11, 022 and coherences pz1, p12:
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Fig. 1.  Polaritonic system comprised by a Fabry—Perot cavity with
a resonant medium pumped (a) below and (b) above transparency.
(c) Specific implementation of this system with semiconductor multiple
quantum wells placed in cavity comprised by two distributed Bragg
reflectors (DBRs).

dANT) Moy - E(7)
A =—(Ap—2Ap,) /T + 7" (2 — p12),
dt h
d -E
5;1 = —y21p21(7) —/wzlpzl(r)+/—ﬂ21 5 ) Ap,

p21(r) = pi,(7),
1)

where Ap = p11 — p22, Ap, is the equilibrium value of Ap main-
tained by pumping, 7; is the population relaxation rate, ft,; is the
matrix element of the dipole transition, and E(#) is the optical
field inside the cavity;

E(r,t) = A(®) f(r)e 7" + c.c., )

where f(6f7) is the normalized shape of the mode that satisfies
[ £*(r)dV = 1 and the Helmholtz equation

sz—I—nzw—?f—O (3)
2t

and w, is the cavity resonance frequency. Note that we can intro-
duce the effective volume of the cavity as Veg= 1/ £2,, and then
|A]?(2) = |EmaX|2/chf. We assume that the optical field is weak so
we can neglect the saturation phenomena, the population density
is uniform, and there is constant Ap(z, 7) = Ap,. Pumping can
be accomplished optically via a four-level pumping scheme or
electrically by carrier injection. In the ensemble of two-level atoms
(o1, equivalently, in Frenkel exciton) the change in Ap means that
some of the atoms are in the excited state. For a Wannier exciton,
the situation is more complex, and change Ap means a combi-
nation of state filling and screening of Coulomb interaction by
the carriers [39]. Introducing the rotating wave approximation
p21 = e /¥ 0y and substituting it into Eq. (1), one obtains the
expression for the coherence:

d
‘721(") =—ynou(r) — j(@y — w)ox(r)
¢
A
4 ’;_;21 - f(r)Ap. “)

Next we can introduce the collective dipole excited in the
medium by the optical field as

p= [ ma PN 5
and integrate equation over the volume to obtain
d AN
d_l;z_VZIP_j(Q)ZI —w)p +j%1veff. (©)

Here 42; is a projection of the atomic dipole onto the direction
of the optical field, and Ner= f N(r) f2(r)dV is the effective
density of atoms. For the case of excitons in a MQW structure,
where the quantum wells are inserted in the Bragg reflector,
Negr = 2| D, (0) |2NQW /Lt where L g is the effective width of the
mode. The optical field is governed by the wave equation

V2E( ) n? 9% EG.7) = 1 8% Pz, r)
T c2 012 ’r_c23t2 g

@)

where material polarization P(r) = f,,071 () N(r). Substituting
and using the eigenmode condition, one obtains
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Multiplication of by f(7) and integration over the volume then
yields

04 ?
2jiw— = (w2 — 0?) A— — p, 9
AP (wf =) sosp ©)
close to resonance w? — * & 2w(w, — w). Multiplying by - j and

adding some dissipation, we obtain in combination with

A ) )

vl —jlw. —w)A —y. A+ jr1p,

d

d_i =—yup — jlwyn —w)p+ jikr A, (10)

where the coupling coefficients are k; =w/2gpe and
2 =3, ApNg/h. Now we introduce k2 =rk1ky=kiAp,
where the coupling coefficient for the ground state (unpumped)
polariton is

2

Ner= fo1 ——— Netg = f} /4, (11)

2
2 nyw e
4mO808,

07 2e0e, R

K

/1 being an oscillator strength of the transition and @, plasma
frequency, which indicates that the whole phenomenon can be
treated classically as well as quantum mechanically. Note that when
the population inversion condition Ap < 0 is reached, k% becomes
negative, meaning that coupling coefficient ¥ becomes imaginary
and the Hamiltonian becomes non-Hermitian even in the absence
of damping.
Finally, we introduce dimensionless variables

[2€0€, 12808, Vo
= A = Emax:
“ hw hw

? [ N(r)ou(r) f(r)dV

b= = , (12)
NG 80 [np [ NG f(0dV
and obtain coupled-mode equations
0
ja—i =(w, —w— jy.)a—kKb,
db
jEZ(wm—w—szl)b—Kﬂ, (13)

where « is the photon amplitude, or, essentially a photon cre-
ation operator, and 4 is the amplitude of a collective dipole
(or exciton), i.e., an exciton creation operator. The latter can
be seen by assuming uniform field distribution in the active
region and then obtaining & & Ntlo/tzam/ Ap, where N,y is the
total number of atoms inside the cavity (for excitons in MQW
Nt & Ny = 2|d>ex(0)|2NQwS, where § is the resonator area).
This fact indicates coherent addition of all the individual dipoles.
Normalization to Ap becomes important when Ap ~0. Of
course, |#|% and |4|? are the Hopfield coefficients representing rela-
tive weights of photon and matter (exciton) in the polariton. Note
that since the total number of atoms inside the cavity N, is large
and |6| <1, the magnitude of the off-diagonal matrix element

|p21| ~ Ame:l/2|b| <« 1, and therefore, according to the Rabi
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oscillations of polarization, do not affect the population inversion,
which remains Ap ~ Ap,.

3. FROM RABI SPLITTING TO LASING
THRESHOLD

The characteristic equation of Eq. (13) ofis

=0, (14)

W, —w—jy. —K
—K w21 — W — JY2

and the solutions for the complex frequencies @1, = w12 — jY1.2
are

67)1,22(1_)—]')7:&\/(Aw—jAy)2+/<§Ap, (15)

where @ = (wc + (1)21)/2, )7 = (Vc + VZI)/Z» Aw= (a)[ -
®21)/2,and Ay = (¥, — ¥21)/2. The EP occurs when the expres-
sion under the square root is equal to zero. And exactly when EP
occurs depends on the sign of Ap. For positive Ap, the EP can only
appear if the two-level atom (or exciton) is resonant with the cavity,

so that
o= w. — 7 £\ JK3 0D — (Ap)2, (16)

and the pair of EPs occurs when Ay = =|ic| = £koAp'/2. These
two EPs designated as EP1 are shown in Fig. 2 in normalized coor-
dinatesdw = Aw/|k|and §y = Ay /|k]|.

For the negative Ap, i.e., under population inversion condi-
tion, the EP occurs when the decay rates of the exciton and photon
areequal Y21 = ¥, so that

@12 =0~ j7 £/ (Aw) — ki |Ap], (17)

and the pair of EPs, designated as EP2 and also shown in Fig. 2,
appear when Aw = |k | = £k| Ap|'/?. Note that when popula-
tion inversion is present at EP2, the Hamiltonian of the system has
arather interesting form with real diagonal elements and imaginary
but not conjugated off-diagonal ones:

[ Aw jk
H_<].K _Aw>. (18)
v I\JSV I
16 Ep1
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vl e\:d Istart L
EP2 w [EP2 s
_t 0 startl 6w
m I
I
-1e EP1

Fig. 2. Exceptional points in the cavity—matter system without (EP1)
and with (EP2) population inversion. Frequency detuning w and the
difference of damping constants between the cavity and exciton §y are
normalized to the absolute value of coupling strength. Also shown are the
encirclement pathways discussed in Section 5.
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Fig. 3.  Dolaritonic modes of the cavity—matter system with

w, =wy =0,y =0.7,y, = 0.4, and kg = 2.0: (a) resonant frequencies
w12, (b) damping rates —y; 5, (c) Hopfield coefficients |a|* (photon)
and |b|*> (material excitation) versus population inversion —Ap. EP,
exceptional point (of the first kind); LT, laser threshold. The tinted region
is inaccessible due to gain saturation and clamping at the threshold value.
Numbers 1-5 correspond to the reflectivity spectra in Fig. 5.

The characteristics of the cavity—exciton system without and
with population inversion are illustrated in Figs. 3 and 4, respec-
tively. In Fig. 3 the first case is considered, i.e., w, =wy =0
(relative to the cavity resonance), ¥, =1.0, y.=0.1, and
ko =2.0, all in relative units. The real (i.e., resonant frequency)
and imaginary (i.e., net loss or gain) part of frequency is plotted
versus population inversion, i.e., —Ap. As one can see, in the
absence of pumping —Ap = —1, two distinct solutions with
equal Hopfield coefficients (50:50 mixture of photon and mat-
ter excitation) and equal damping rates y are present, but at EP
Apgp =|Ay|/ky these two solutions become fully degenerate,
and following that point, both solutions have the same resonant
frequency but different damping rates and different Hopfield
coefficients. Once Ap becomes negative, i.e., population inversion
is reached, the damping rate of one of the solutions (the one that
contains mostly photons) decreases, and eventually reaches zero at
the laser threshold (LT). At this point lasing commences, and fur-
ther increase of population inversion becomes impossible—hence,
the region beyond LT is tinted in Fig. 3.

In Fig. 4 we consider a different situation, when the damp-
ing rates of photons in the cavity and in the matter are equal
(y: = y21 = 0), but the frequencies are detuned (wy; = —w, = 1),
while coupling is kept at kg = 2.0. For this case we consider only
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Fig. 4. DPolaritonic modes of the cavity—matter system with
Wy =—w, =1,y =¥ =1.0, ¥, =0.1,and ky = 2.0 pumped into the
population inversion region: (a) resonant frequencies w ,, (b) damping
rates —¥1.2, (c) Hopfield coefficients |2|* (photon) and |4|* (material
excitation) versus population inversion —Ap. EB exceptional point (of
the second kind); LT, laser threshold. The tinted region is inaccessible
due to gain saturation and clamping at the threshold value. Numbers 1-5
correspond to the reflectivity spectra in Fig. 6.

the region with population inversion —Ap > 0. As one can see at
zero population inversion there are two uncoupled modes, but as
population inversion increases, the two modes start mixing, and
at the EP become fully degenerate. Then, as population inversion
increases, even further one of the coupled modes (symmetric)
becomes less and less lossy until the LT is reached at which point
population inversion becomes clamped. The fact that above laser
threshold the frequency of the lasing mode is pulled towards gain
maximum is well known [40], but that it happens below threshold
and that EP is reached below the threshold are less familiar and
quite important from both fundamental and practical points
of view.

4. HOW TO OBSERVE THE EP?

The next question is how the evolution of the polariton system
can be observed. Obviously one should monitor the transmission
and reflection of the cavity while population inversion changes.
The measurement is easier if the cavity has one of the mirrors
close to 100% as shown in Fig. 1(c), ie., it is a Gires—Tornois
interferometer (GTI) [41], since absorption and reflection
are complementary, and therefore only either one of these
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characteristics needs to be monitored. The reflectivity of the

GTTis

fjcp—?’ :
R=|—% (19)

where 7 is the amplitude reflection coefficient of the front mir-
ror, and the round-trip phase shift in the vicinity of order cavity
resonance is

Sn(w)
O (w) =2mm + 1,; |:wa + (w — a)[)} , (20)

where 7,, is the cavity round-trip time, w, T,, = 2mn is the refrac-
tive index in the absence of resonant medium, and §7z(w) is the
change of index caused by the resonant medium, which can be
found as

. 1 Naguz, Ap
2n gohl(w21 — w) — jyaul

kg Ap
=n s
wl(wz1 — ) — jyal

1)

and where Eq. (11) has been used. Using and relating the cavity
damping rate to the front mirror reflectivity as » = exp(—y,T,,),
the reflectivity can be found as

. 2
J® /e —
R/ 22)
1—e/®
where the complex phase is
- ZA
®(w) ~ 2mm + 1, [L — (o~ jm)} .
(w1 —w) — JY2
(23)

It is clear that the resonances occur when ®(w) = 2m, and
equating the term in the square brackets to zero leads us to precisely
the characteristic equation. Also, this equation can be used to find
the laser threshold condition by postulating that the solution of the
characteristic equation is real, i.e., that the imaginary part of the
determinantiszero, i.e., ¥, (w31 — w) = — Y121 (0, — w), and

= Vew21 + V210,

(24)
Ve + v

which is of course the textbook case of frequency pulling [40].
With that, the threshold condition is

(021 — @)
—kg AP =Y,y [—Jrl] (25)
0 = a1 +7)°

Let us now look at the reflectivity spectra of the first polaritonic
system at five different values of population inversion all shown by
red circles in Fig. 3. The results are shown in Fig. 5(a).

Indeed, one can observe how two distinct Rabi split modes (1,2)
gradually get closer to each other until they merge at EP (3), where
Ap = (Ay)?*/k¢, while reflectivity at the resonance decreases
until it reaches 0 at point 4, where Ap = y,y21/k¢, where the
perfect absorption (or, more prosaically, impedance matching,
is achieved). Once population inversion takes place, the reflec-
tivity exceeds unity meaning that reflected light gets amplified
inside the cavity, and near threshold the reflectivity approaches

Reflection

0
5 -4 3 -2 -1 0 1 2 3 4 5
Frequency
,| ©) |
(1)
(]
Q
8o
o
1F R

5 -4 -3 -2 - 0 1 2 3 4 5
Frequency
Fig. 5.
phase shift Re®(w) at five different values of population inversion for the
polaritonic system of Fig. 3.

Spectra of (a) reflectivity R and (b) real part of the round-trip

infinity, meaning that amplification turns into self-sustained oscil-
lations. Note that the threshold is reached when Ap = —y, 21 /3,
i.e., at the value equal in magnitude and opposite in sign to the
population inversion at perfect absorption. This truism flows
naturally out of the reciprocity principle, and it lends a degree of
credence to the mundane act of impedance matching being newly
looked upon as a novel and somewhat esoteric phenomenon of
“antilasing” [42].

In Fig. 5(b) the spectra of the real part of the phase & (w) — 27tm
is plotted. As one can see, for the unpumped, or weakly pumped,
cases (1) and (2), the phase curve has an N-shaped region in the
vicinity of cavity resonance, so the phase curve intersects the
horizontal axis three times, leading to three solutions, of which
the middle one can be shown to be unstable and the other two
correspond to two polariton branches. But as one approaches EP,
the negative slope region slowly disappears, and only one solution
remains. Obviously, for the medium with inversion, the N shape
turns upside down, and only one solution is possible. In other
words, the lasing can only take place at one frequency near the exci-
ton transition and not at one of the two polariton branches. (Note
that here we are talking about the conventional “photon” lasing
with population inversion, which should not be confused with an
entirely different “polaritonic lasing” phenomenon occurring at far
lower pump powers [43,44]).

Next we take a look at the reflectivity and phase spectra for the
EP of the second kind (Fig. 4), with EP occurring with the positive
inversion. The reflectivity spectra are shown in Fig. 6(a), and one
can see how at relatively low values of inversion and gain the cavity
acts as a regenerative amplifier at two polariton modes, but then
these two modes merge near EP. Thus, regenerative amplification is
possible at polariton frequencies, but not lasing. The phase spectra
of Fig. 6(b) confirm this fact. Note that in case of amplification,
even if the real part of phase indicates resonance in the vicinity of
71, it does not mean that resonance can be exploited for lasing.
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5. EP ENCIRCLEMENT

The narrative of the EP would not be complete unless we also
probed the possibility and observability of the encirclement around
EP and associated with it “Hipping” of the eigenstates. Adiabatic
encirclement of the EPs has been first studied in Refs. [45,46], and
it was predicted that each time the adiabatic encirclement took
place it will cause a flip of eigenstates. That has been confirmed in
a number of “quasi-static” experiments where the eigenstates were
monitored while slowly and discretely changing the parameters
of the system [47-49]. But later on it was shown, theoretically,
that when the encirclement occurs dynamically the fact that the
Hamiltonian of the system is non-Hermitian (i.e., in optics it
involves loss and gain) prevents one from applying the adiabatic
theorem, and the encirclement of the EP results in a different
final state that depends only on the direction (helicity) of the
encirclement and not on the initial state [50-53]. The dynamic
encirclement was first experimentally demonstrated in coupled
microwave waveguides in 2016 [54].

We have performed the parametric study of encirclement
of the EPs in a cavity—matter arrangement. First we have con-
sidered the EP of the fist kind, in a system without inversion
around the exceptional point of the first kind EP1 occurring at
Ye=0.1,y1=1,k>= .45 Aw=0 as shown in Fig. 2, blue
contour. The results of the encirclement are shown in Fig. 7.
At the start of the encirclement (point I), one can observe two
identical Rabi-split modes with their eigenfrequencies [Fig. 7(a)]
well separated and decay rates, plotted relative to the mean decay
rate ¥ [Fig. 7(b)], equal to each other. The Hopfield coefficients
[Fig. 7(c)] of both modes are equal to Y, indicating that each
mode contains equal contributions from the photon and matter
(exciton). The reflectivity spectrum [Fig. 7(d)] shows two dis-
tinct reflectivity dips corresponding to two modes. Then, as the
detuning Aw increases, the modes are pulled apart (point IT). The
higher frequency mode (blue) has photon-like character and lower
loss—hence, in the reflectivity spectrum of Fig. 7(d) this mode has
a sharper dip. As the difference in decay rates Ay starts growing
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(point IT), the splitting gets reduced and the asymmetry between
two deeps increases, then as detuning Aw decreases further (point
IV), the frequencies of two modes become equal, but one of the
modes is about 80% pure photon character, and therefore the
observed dip is due to that mode. Once the sign of Aw changes,
that low-loss mode moves to lower frequencies, eventually splits
from the other mode (point V), and then grows sharper (point VI)
as the loss is further decreased. Finally, upon completion of full
circle (point VII), the mode becomes the lower frequency mode in
full accord, thus accomplishing a state flip.

Next consider encirclement in system with inversion, around
the exceptional point of the second kind EP2 occurring at
Ye=v21=04,k*=—.15Aw=1 as shown in Fig. 2, red
contour. The results of the encirclement are shown in Fig. 8. At the
start of the encirclement (pointI), one can observe two modes with
their eigenfrequencies [Fig. 8(a)] well separated and decay rates,
plotted relative to the mean decay rate y [Fig. 8(b)], equal to each
other, even though the Hopfield coefficients [Fig. 8(c)] of both
modes are different. The reflectivity spectrum [Fig. 8(d)] shows
two distinct reflectivity (gain) peaks corresponding to two modes.
Then, as the decay rate of the higher frequency (photon-like) mode
gets smaller (point IT), that mode (shown in blue) shows a higher
peak in the reflectivity spectrum. The two peaks then get closer
(point III) as the detuning Aw decreases. Then, as the decay rates
of the two modes become equal (point IV), the peaks merge (even
though the frequencies of the uncoupled cavity and exciton are
very different), and the reflectivity grows as the laser approaches
the threshold but never gets there. Note that the reflectivity at
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rates (relative to the mean), (c) Hopfield coefficients, and (d) evolution of
the reflectivity spectrum.

this point exceeds 50, i.c., the system acts as a regenerative optical
amplifier with a large gain. Once the decay rate of the exciton
becomes less then the decay rate of photon, it is the exciton-like
mode that shows a stronger peak (points V,VI), and eventually
that mode is on the low-frequency side of the reflectivity spectrum,
which thus completes the state flip (point VII).

While the results of our quasi-static analysis indicate fully
symmetric state flip, it is rather obvious that in the fully dynamic
case the symmetry would be broken. No matter whether one
approaches the crossover point IV from the left or from the right,
the low-loss and thus close-to-laser threshold state will be the one
that gets excited. Then, its further evolution will result in either a
photonic or excitonic state depending on the direction of encir-
clement and would have nothing to do with the original state in
full agreement with predictions made in Refs. [50-52] and closely
related to seminal works of Michael Berry [55,56]. Obviously,
implementing dynamic encirclement in polaritonic system would
be more difficult than in the case of two modes in the waveguide
[54], but if one can rapidly change cavity parameters, the time
evolution would follow the path described in recent work [57].

6. DISCUSSION AND CONCLUSIONS

Before concluding, it would be worthwhile to speculate
about potential applications of this work. Quite obviously,
in the vicinity of the EP, the eigenfrequencies of the two
modes diverge rapidly, as has been noted and exploited in
Refs. [23-26,58]. For example, in the vicinity of EP2, differ-
entiating over w, immediately yields for the split between two
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Fig. 9. Reflectivity spectrum of the cavity—exciton system pumped
above transparency in the vicinity of the EP: (a) at the EP, (b) cavity
frequency shifted by 0.05, and (c) cavity resonant frequency shifted
by0.1.

resonances w; — wy = Awd(w.)/v/ (Aw)* — k2, and the large

change in reflectivity spectrum could be observed as shown in
Fig. 9 under the assumption of narrow linewidth (i.e., strong cou-
pling) y21 = y. = 0.1; Aw = 1; k? = —1. As the cavity resonance
changes from w, to w, + 0.05 and then to w, 4 0.1, the resonance
splits and the difference becomes 0.6 and then 0.8, indicating
that one can get a “gain” by factor of 10. Bug, realistically, the
measurement would be greatly impeded by the noise coming from
amplified spontaneous emission and by the fact that the intensity
of the reflected light also changes by more than an order of mag-
nitude. So, while the sensitivity will be improved, the detectivity
(which is what really matters) not necessarily so. Furthermore, the
fact that the response is nonlinear will greatly limit the dynamic
range of the measurement setup. Therefore, at this point, specula-
tion of practical applications should remain just that—speculation
in anticipation of further research and ensuing breakthroughs.

The real (if modest) significance of the work described here
is in showing that in order to observe PT symmetry and EDs it is
absolutely not necessary to contrive a special apparatus with two
or more coupled modes for the sole purpose of observation and
ensuing knowledge dissemination in publications as is customarily
being done. Far from that, a well-studied (one may even say studied
to the point of exhaustion) cavity—exciton system, widely known as
either cavity polariton or optically pumped VCSEL, when looked
upon from a different angle, offers an opportunity to study all the
PT phenomena including enhanced sensitivity near the EP and
dynamic effects associated with EP encirclement. Two different
kinds of EPs can be observed, depending on whether the system is
pumped below or above transparency (but below laser threshold).
The most intriguing feature uncovered by this work is that EP can
be observed in the system where two coupled modes have strikingly
different physical origins and that one can use PT symmetry to
adiabatically transform the photons to excitons and vice versa. This
work expands the scope of physical systems in which PT symmetry
and EP phenomena can be observed and will hopefully further
stimulate research in this fecund field.
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