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A truly one-way lane for surface plasmon 
polaritons
Unidirectional and topological surface plasmon polaritons are currently attracting substantial interest and intense 
debate. Realistic material models and energy conservation considerations are essential to correctly understand 
extreme wave effects in non-reciprocal plasmonics, and to assess their potential for novel devices.

Francesco Monticone

Research interest in non-reciprocal 
plasmonics is motivated by the  
many opportunities offered by 

combining the benefits of plasmonic 
structures, namely sub-diffractive 
light confinement and giant local-field 
enhancement, with the rich physics of 
non-reciprocal and topological materials. 
While the surface-wave propagation  
on non-reciprocal (magnetized)  
plasmas is a well-studied topic, with 
foundations dating back more than half 
a century1–3, the current wave of interest 
is focused on the investigation of truly 
unidirectional surface plasmon polaritons 
(SPPs), their non-trivial topological 
properties and their counterintuitive 
implications in certain peculiar 
configurations4–23.

Unidirectional SPPs on non-reciprocal 
plasmonic platforms represent a highly 
non-trivial regime of light propagation,  
with potential importance for realizing 
compact and robust devices for classical  
and quantum information processing, 
including compact non-reciprocal devices 
for Faraday rotation, isolation and 
circulation5,7,8, backscattering-immune 
wave propagation and light–matter 
interactions robust against disorder4,6,9–13, 
as well as non-reciprocal cavities exhibiting 
an apparent violation of the lifetime–
bandwidth constraints of resonant 
structures14. At the same time, a few 
recent studies have argued that some of 
these exciting opportunities are based on 
non-physical assumptions, disputing the 
existence of strictly unidirectional SPPs 
in certain configurations18,21, and ruling 
out the possibility of breaking the time–
bandwidth limit in linear, time-invariant, 
non-reciprocal plasmonics15,17,18.

This Comment seeks to give a concise 
overview of the current state of this dynamic 
and exciting area of research. I elucidate 
whether strictly unidirectional SPPs exist in 
non-reciprocal plasmonics, and clarify their 
behaviour and implications.

How to open a unidirectional frequency 
window
A direct consequence of time-reversal 
symmetry for wave propagation — 
equivalent to Lorentz reciprocity in the 
lossless case — is that the dispersion 
diagram of most conventional photonic 
structures is symmetrical, ω(k) = ω(−k), 
where ω and k are the frequency and 
wavevector, respectively, of a mode of the 
system. All isotropic dielectric or plasmonic 
materials are reciprocal, and so are all 
the anisotropic crystals used to make, 
for example, wave plates. The dispersion 
diagram may become asymmetrical only 
by breaking reciprocity, which requires 
biasing the system with a physical quantity 
that is odd upon time reversal — usually a 
static magnetic field — or by breaking the 
time-invariance of the system. However, 
non-reciprocity alone is not sufficient to 
obtain modal unidirectionality. The opening 
of a unidirectional frequency window, in 
which propagation is strictly forbidden in 
either the forward or backward direction, 
requires a ‘strong form’ of non-reciprocity, 
in which the asymmetry of the dispersion 
diagram is maximized by some other 
suitable effect.

Indeed, while a photonic band cannot 
simply disappear at a certain frequency, 
the mode may become evanescent, that is, 
with imaginary wavenumber, if it enters 
a photonic bandgap or if it exhibits a 
cut-off frequency. Considering the limit 
of vanishing loss, including radiation loss, 
for simplicity (the effect of dissipation is 
discussed below), the longitudinal modal 
wavenumber k is either purely imaginary 
or purely real. Hence, in a lossless system 
with continuous translational symmetry, 
the transition from propagating to 
evanescent waves can only happen, at a 
given frequency, if the modal wavenumber 
vanishes or diverges. This can be understood 
by considering a Riemann sphere 
representation of the extended complex 
plane of the longitudinal wavenumber 

(that is, the complex plane with the point 
at infinity attached, which can be mapped 
to a spherical surface, the Riemann sphere, 
by a stereographic projection). From 
this representation, one can see that it is 
necessary to either pass the point at k = 0 or 
the point at infinity to move, directly, from 
the real to the imaginary axis.

A frequency range in which propagation 
is strictly forbidden can therefore be 
accessed, in the lossless limit, in two cases. 
In the first case, the photonic band has 
a flat asymptote for k→±∞ (vanishing 
phase velocity). This is the behaviour, for 
instance, of conventional SPPs at the surface 
plasmon resonance for a lossless Drude 
plasma. In the second case, the band goes 
under cut-off at k = 0 (diverging phase 
velocity), as in the case of conventional 
non-transverse-electromagnetic waveguide 
modes at their cut-off frequency.

In order to open a unidirectional 
frequency window for a guided mode, 
the mechanism that breaks reciprocity, 
for example, a magnetic bias, should 
therefore act to introduce an asymmetry 
in the flat dispersion asymptotes or in 
the cut-off frequencies of backward- and 
forward-propagating waves. Depending on 
whether the unidirectionality originates 
from the dispersion behaviour at small or 
large wavenumbers, the impact of dissipative 
and non-local effects on a one-way guided 
mode may be markedly different, as 
discussed in the following.

Unidirectionality based on the  
dispersion behaviour for large k
In the classical case of SPPs at an interface 
between a plasmonic material and an 
isotropic dielectric, the application of a 
magnetic bias to the plasma makes the SPP 
dispersion strongly asymmetrical, with 
maximal asymmetry in the plane orthogonal 
to the bias (Voigt configuration), as the 
electrons moving in this plane feel the 
magnetization most strongly. In particular, 
the bias shifts the surface plasmon 
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resonance from its conventional value in 
the reciprocal case, ωSP, to different values 
for forward- and backward-propagating 
modes, ω±

SP  ±ωc=2þ ωSP

I
, where ωc is 

the cyclotron frequency, proportional to 
the bias intensity, assumed here to be much 
smaller than the plasma frequency ωp. 
Hence, a unidirectional frequency window is 
opened, with bandwidth equal to ωc, defined 
by the asymptotically flat bands at ω±

SP
I

, as 
illustrated in Fig. 1a.

This biased-induced asymmetry 
in the surface plasmon resonance is 
the conventional strategy to realize 
unidirectional surface magneto-plasmons, 
which have been studied since at least 
the 1970s3, and are at the basis of several 
counterintuitive effects, including the 
apparent violation of the time–bandwidth 
limit recently reported in ref. 14. However, 
it was recently argued in ref. 18 that the flat 
asymptotic dispersion that is at the very 
basis of this form of unidirectionality is 
non-physical. This can be understood from 
general thermodynamics considerations: a 
system supporting a mode with bounded 
dispersion, ω kð Þ 2 0;ωSP½ 

I
, over an 

unbounded wavenumber range, k 2 0½ ;1Þ
I

, 
would have infinite photonic states in the 
range [0, ωSP]. Thus, as discussed in ref. 18,  
the electromagnetic energy density of 

the system would be infinite at a finite 
temperature, which is clearly unphysical.

The problem arises from employing 
a local and lossless Drude model for the 
plasmonic material, which is too simplistic 
to make correct predictions in this scenario. 
The locality assumption, namely, the 
fact that the material response is a delta 
function in space (hence, independent 
of k), is inadequate when considering 
modes with large wavevector, for which 
non-local effects (spatial dispersion) 
tend to suppress the material response9,24. 
The non-local response of a plasmonic 
material is primarily due to the movement 
of free electrons during an optical cycle 
not caused by electric-field-induced drift, 
but by convection and diffusion, which 
act to homogenize any inhomogeneity in 
the electron density24. Different models 
of non-locality have been proposed in 
the literature, among which the so-called 
hydrodynamic model is arguably the 
most popular. This is based on treating 
the electron gas semi-classically as a 
hydrodynamic fluid with a pressure term 
whose intensity is proportional to the 
Fermi velocity (inversely proportional 
to the electron effective mass)24. 
Hydrodynamic non-locality affects the 
longitudinal part of the modal electric 

field, which becomes especially important 
for transverse-magnetic modes having flat 
asymptotic dispersion.

Indeed, when non-local effects are 
incorporated in the analysis of unidirec
tional surface magneto-plasmons on a non- 
reciprocal plasma, the unphysical flat asymp
totic dispersion is removed, as demonstrated 
in ref. 18, and further confirmed in ref. 21,  
using a hydrodynamic model for the 
non-locality of magnetized n-type InSb. 
The corrected SPP dispersion diagram is 
illustrated in Fig. 1a (dashed red curves): the 
unidirectional frequency window is closed 
by the upward bend of the right-going mode 
for large wavenumbers. Hence, SPPs are 
allowed, in principle, to propagate in both 
directions at all frequencies.

Different models of non-locality, and 
different choices of boundary conditions 
(including, for instance, the effect of 
electron spill-out25) are expected to produce 
moderately different results, and the area 
of non-reciprocal plasmonics can certainly 
benefit from more accurate microscopic 
and quantum-plasmonic models, beyond 
the hydrodynamic treatment. Nevertheless, 
the observations above are more general 
than the specific model of non-locality 
considered in these studies. Indeed, general 
phenomenological considerations of 
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Fig. 1 | Unidirectional SPPs. a, Illustration of the typical band diagram of a non-reciprocal plasmonic platform in the local and non-local cases (in the limit 
of vanishing losses). Black curves indicate the bulk modes of a three-dimensional magnetized plasmonic material, in the plane orthogonal to the bias B0 
(the curves delimit the region of the projected bulk bands). Red/blue curves denote the SPPs supported by an interface between the biased plasma and 
a transparent or an opaque material, respectively (corresponding to the red/blue inset boxes to the right). Solid lines, local case; dashed lines, non-local 
(hydrodynamic) case. k is the SPP wavenumber in the longitudinal x-direction, and kp is the free-space wavenumber at the plasma frequency ωp. The 
arrows next to each dashed line indicate the upward bend of the dispersion curves as the non-local parameter β increases. Shaded grey areas indicate the 
unidirectional frequency windows, which are closed by non-local effects for values of wavenumber typically comparable or larger than 100ωp/c0 (refs. 18,21), as 
indicated by the vertical dashed lines. b, One-way SPP incident on an ideal termination, forming an intense field hotspot as the wavelength shrinks16,17,21. The 
colours represent the intensity of the electric field E. Panel b adapted with permission from ref. 21, The Optical Society.
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non-locality show that the leading-order 
non-local correction to the local-response 
electrodynamics is always O(k2), as in the 
hydrodynamic model, irrespective of the 
microscopic mechanism of non-locality26. 
As an aside, it is also noted that the singular 
and paradoxical response of certain exotic 
metamaterials can often be regularized in 
a similar fashion by including non-locality 
(or loss). This is the case, for example, of 
the broadband density-of-states singularity 
exhibited by hyperbolic metamaterials in 
the local-response approximation, which is 
regularized by the introduction of non-local 
effects and the resulting large-wavevector 
cut-off in the material response27.

The impact of dissipation (electron 
scattering, radiation loss and surface-induced 
Landau damping) should also be carefully  
assessed, as it prevents the SPP from 
reaching very large values of wavenumber. 
In the local dissipative case, close to ω±

SP
I

,  
the SPP dispersion exhibits a so-called 
‘back-bending’, as Re[k] decreases after  
reaching a maximum value, while the 
damping, Im[k], strongly increases in the  
same region. In the non-local case, dissipa
tion may actually restore unidirectionality, 
since the non-locality-induced right-going 
mode gets attenuated more strongly than 
the left-going mode. Indeed, for moderately 
high levels of loss and weak non-locality, 
the surface magneto-plasmon dispersion 
exhibits a similar back-bending as in the 
local case. In this scenario, as shown in  
Fig. 2a, the left-going mode is underdamped 
(Re[k] > Im[k]) within the unidirectional 
frequency window, whereas the right-going 
mode is overdamped (Re[k] < Im[k]).  

The latter is, therefore, suppressed by 
dissipation, restoring unidirectionality for 
all practical purposes. Conversely, if the 
loss level is low, or non-local effects are 
particularly strong, as in the case of solid-state 
plasmas with low effective mass (for example, 
n-InSb), the right-going mode may remain 
underdamped, as discussed in ref. 18 and 
shown in Fig. 2b. The mutual competition  
of non-locality and damping illustrated in  
Fig. 2a,b is analogous to a competition 
observed in reciprocal plasmonic systems 
(see, for example, ref. 28), with the main 
difference being the strong asymmetry of the 
dispersion diagram in the non-reciprocal case.

In summary, while surface 
magneto-plasmons cannot be considered 
strictly unidirectional, in practice the actual 
impact of non-locality relative to the effect 
of dissipation should be carefully assessed 
for different plasmonic materials.

Unidirectionality based on the  
dispersion behaviour for small k
The SPPs considered above, while arguably 
the most studied in the literature, are not the  
only form of surface modes supported 
by plasmonic platforms. If the material 
interfaced with the magnetized plasma 
is not a dielectric, but a reciprocal (that 
is, unbiased) metal with higher plasma 
frequency, the interface now supports SPPs 
in the frequency range between the plasma 
frequencies of the two materials. In this 
range, while the reciprocal metal is still 
opaque, the magnetized plasma is generally 
not, but it exhibits, in the local case, a 
bandgap for the bulk modes that is opened 
by breaking time-reversal symmetry.  

At frequencies within this bulk-mode 
bandgap, the SPPs supported by the metal/
metal interface are unidirectional, as 
illustrated in Fig. 1a (blue solid curves). 
This fact has been known since the 1960s 
in studies of gyrotropic plasma sheaths on a 
metallic surface1,2.

It was then shown in refs. 9,11,19,20 that 
the unidirectional nature of SPPs of this 
type stems from the non-trivial topological 
properties of the upper bulk-mode 
bandgap of the magnetized plasma, which 
is characterized by an integer non-zero 
topological invariant — the gap Chern 
number — that can change only if the 
bias is switched off or reversed. As in 
quantum-Hall topological insulators, 
at the interface between materials 
having different gap Chern numbers, 
unidirectional surface states may emerge 
that are topologically protected and 
backscattering immune, as dictated by 
the so-called bulk–edge correspondence 
principle. The interested reader may 
refer to ref. 22 for further details on this 
principle, and to ref. 23 for a discussion of 
some apparent violations and anomalies in 
continuous media. Conversely, the surface 
magneto-plasmons supported by dielectric/
metal interfaces, discussed in the previous 
section, are not topological, since they 
exist in a topologically trivial bulk-mode 
bandgap (lower bandgap of the magnetized 
plasma) and the transparent medium at 
the interface does not have a bulk-mode 
bandgap in the same frequency region11,21.

The robust unidirectionality of 
topological SPPs on metal/metal interfaces 
can also be understood, in simpler terms, 

Weakly non-local, high losses

–10 –8 –6 –4 –2 0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Real part
Imaginary part

10
k / kp

ω
 / 

ω
p

a
Strongly non-local, low losses Non-local, lossy

Real part
Imaginary part

–30 –20 –10 0 10 20 30
k / kp

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω
 / 

ω
p

b

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Real part
Imaginary part

k / kp

ω
 / 

ω
p

c

Fig. 2 | Impact of dissipation and non-locality. a,b, Complex dispersion diagrams (complex wavenumber and real frequency) for surface magneto-plasmons  
in the dissipative scenario, for two limiting cases: high losses and weak non-locality (a), low losses and strong non-locality (b). As discussed in the text, 
whether the effect non-locality or dissipation dominates depends on the specific material. Solid black curves represent the light lines in the transparent 
material. c, Complex dispersion diagram for topological SPPs in the dissipative non-local scenario. The impact of non-locality is minimal in this case.  
The shaded grey areas indicate the unidirectional frequency windows.
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by recognizing that, unlike surface 
magneto-plasmons, these surface modes 
have a lower-frequency cut-off, below 
which the mode is evanescent. The 
application of the bias makes the cut-off 
frequencies asymmetric, opening a 
unidirectional frequency window, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
c þ ω2

p

q
<ω<ωc=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c=4þ ω2

p

q

I

, 

where only the forward-propagating 
SPP is above cut-off and is allowed to 
propagate, as illustrated in Fig. 1a. Thus, 
the unidirectionality of these SPPs does not 
depend on a non-physical flat dispersion 
for large wavenumbers, but rather on an 
asymmetry in modal cut-offs for small 
wavenumbers, which suggests that they 
may be much more robust to non-locality 
and dissipation. It was recently shown 
in ref. 21 that this is indeed the case: the 
unidirectional SPPs existing at a plasma/
plasma interface, within the bulk-mode 
bandgap, are almost completely unaffected 
by spatial dispersion, even considering the 
strong non-locality of a solid-state plasma 
such as n-InSb.

It should also be noted that the full 
bulk-mode bandgap is not generally preserved 
in the non-local case: the flat asymptotic 
dispersion of the lower bulk mode is strongly 
affected by non-locality, which causes the 
mode to bend upward for large values of 
k, as illustrated in Fig. 1a (black dashed 
curves). For a typical sample of n-InSb, this 
non-local correction becomes important 
only for large values of wavenumber on the 
order of tens of ωp/c0 (ref. 21). The main effect 
of this behaviour is that the unidirectional 
SPP becomes, in general, a leaky wave, 
damped by radiation into the magnetized 
plasma since the SPP can now couple to 
the bulk mode at certain angles (as dictated 
by transverse momentum conservation). 
Non-locality-induced leakage was already 
recognized in early works on surface waves 
supported by metal/metal interfaces29. In 
practice, however, it was found in ref. 21 that 
the leakage is negligible at frequencies where 
the SPP mode is unidirectional, while it 
becomes important at higher frequencies.

Finally, also for this type of SPPs, 
the impact of absorption losses should 
be carefully investigated to understand 
whether their unidirectionality is robust 
to dissipation. As shown in Fig. 2c, both 
dispersion branches continue below cut-off 
in the lossy case. In other words, the 
longitudinal wavenumber k is no longer 
purely imaginary below cut-off and purely 
real above; instead, k is always a complex 
number, representing a damped propagating 
mode, consistent with the response of lossy 
waveguides near cut-off. Nevertheless, 
it is clear from Fig. 2c that, while the 

forward-propagating SPP is underdamped 
(Re[k] > Im[k]), the backward-propagating 
SPP is overdamped (Re[k] < Im[k]) over the 
entire bulk-mode bandgap. In this sense, 
therefore, the system remains unidirectional 
even in the presence of dissipation.

Different variations of the configuration 
discussed here exist, with, for example, the 
two plasmonic materials both magnetized in 
opposite directions, or with a subwavelength 
dielectric gap between the metals; however, 
similar considerations are expected to 
apply to all these cases, as long as the SPP 
unidirectionality is based on the dispersion 
behaviour for small wavenumbers. 
Interestingly, while all the cases discussed 
here refer to SPPs existing on the surface 
of three-dimensional plasmonic platforms 
(in the plane orthogonal to the bias), 
two-dimensional electron gases (for 
example, graphene) under a magnetic bias 
have also been shown to support one-way 
edge SPPs with an analogous topologically 
robust behaviour10.

Terminated one-way channels and 
non-reciprocal cavities
Unidirectional modes, which typically 
propagate seamlessly around bends and 
discontinuities, can be fully stopped by 
introducing certain suitable terminations 
(Fig. 1b). For example, a metallic wall 
orthogonal to the plasma/dielectric interface 
can be used to stop unidirectional surface 
magneto-plasmons14,17,18,21. Since the wall 
itself does not support propagating waves 
on its surface, it is relevant to wonder 
what happens to the energy carried by a 
unidirectional surface wave as it impinges 
on the termination. Consistent with the fact 
that a linear optical isolator can offer ideal 
isolation only in the presence of some form 
of loss, the wave incident on the termination 
sees different loss channels, which include 
not only material absorption, but also the 
non-locality-induced backward-propagating 
mode or the radiation leakage discussed in 
the previous sections.

Interestingly, however, even if non-local 
effects or dissipation are assumed negligible, 
a configuration of this type still has 
another often-neglected loss channel. The 
wave approaching the termination sees a 
plasmonic corner, or wedge, with shrinking 
size, which has the effect of continuously 
reducing the SPP wavelength and lowering 
its group velocity. As shown in Fig. 1b, this 
so-called ‘wedge mode’ creates an intense 
field hotspot, due to the accumulation 
of energy at the termination, which is 
ultimately dissipated completely, regardless 
of the level of losses, as discussed in  
refs. 16,17,21. This is true even in the limit of 
vanishing losses, as recognized since the 

pioneering work of Ishimaru, Barzilai, and 
others in the 1960s1,30. While the problem 
of an ideally lossless, terminated, one-way 
channel is an ill-posed boundary-value 
problem, in the limit of vanishing losses the 
dissipation in the wedge mode can be shown 
to be finite1,17. In a sort of modern-day 
Zeno’s paradox, the wave never truly 
reaches the termination as its wavelength 
continuously shrinks and its group velocity 
lowers. Furthermore, this behaviour is 
relatively broadband since it can occur over 
the entire unidirectional frequency window 
of the non-reciprocal system, and does not 
rely on resonant effects. This is analogous 
to the broadband focusing of energy in 
conventional adiabatic plasmonic tapers31, 
but facilitated here by the non-reciprocal 
nature of the channel, which ensures 
automatic impedance matching.

Interestingly, it was recently argued 
that, if a one-way channel is terminated 
by a closed cavity, it may appear that the 
in-coupling rate of the energy into the 
cavity is different from the out-coupling 
rate, which was proposed as a mechanism 
to break the well-established lifetime–
bandwidth limit for resonant cavities14. 
Unfortunately, however, this is not possible. 
As fully elucidated in ref. 17, both the lifetime 
and bandwidth of a cavity resonance depend 
on the total out-coupling rate and, more 
generally, the time–bandwidth limit cannot 
be violated in any time-invariant system, 
reciprocal or not17,18,32. Moreover, if a passive 
cavity, reciprocal or non-reciprocal, has 
one port, the in-coupling and out-coupling 
rates at that port must always be equal in 
magnitude, otherwise the system would 
never reach equilibrium (steady state) as 
the energy stored in the cavity would build 
up indefinitely. Unequal in-coupling and 
out-coupling rates at an individual port can 
be obtained only if more than one channel 
is connected to the cavity, while the total 
input and output rates must always remain 
equal to respect energy conservation in a 
passive system15,17. These additional ports 
are provided by external loss channels, 
which also include the non-locality-induced 
propagation/radiation channels and the 
wedge mode discussed above.

These considerations further illustrate the 
counterintuitive behaviour of non-reciprocal 
plasmonic systems, and confirm the 
importance of accurately modelling their 
rich physics.

Conclusion and parting thoughts
The growing number of publications 
on anomalous effects in non-reciprocal 
plasmonics indicates how dynamic and 
fertile this area of research has recently 
become. As discussed in this Comment, 
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one key conclusion of recent work in this 
area is that the impact of non-locality 
and dissipation on one-way SPPs strongly 
depends on the considered structure and 
regime of operation18,21. In addition, even if 
all materials are assumed perfect, with zero 
intrinsic bulk losses, plasmonic platforms 
can never be treated as ideally lossless, since 
non-locality-induced radiation loss and, 
especially, confinement-induced Landau 
damping always need to be taken into 
account to avoid incorrect predictions23,33,34. 
Another important finding of recent work 
in this area is that non-reciprocal plasmonic 
systems are still subject to the same time–
bandwidth constraints of reciprocal systems, 
unless linearity and/or time-invariance 
are also broken17,32. This conclusion is true 
for any system, but it becomes particularly 
important in the context of non-reciprocal 
plasmonics, where extreme field localization 
and enhancement, as in the case of the 
plasmonic wedge mode mentioned 
above, may exacerbate the difficulties in 
interpreting the behaviour of non-reciprocal 
waveguides and resonators. One can also 
speculate that the ultra-strong, broadband 
and highly confined field hotspots obtained 
in terminated one-way plasmonic channels 
may be useful, under certain conditions, 
to drastically enhance linear and nonlinear 
light–matter interactions.

It must be stressed that classical 
macroscopic electrodynamics, 

combined with energy conservation 
considerations, is typically sufficient to 
clarify, self-consistently, the behaviour of 
seemingly paradoxical situations, as in the 
case of a terminated one-way channel or 
a non-reciprocal cavity, without the need 
of relying on microscopic descriptions 
of the involved materials. At the same 
time, as concluded in ref. 18, more realistic 
material models, based on microscopic 
and quantum-plasmonic considerations, 
are important for more accurate and 
quantitative predictions of extreme 
non-reciprocal plasmonic effects in practical 
scenarios. ❐
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