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We present a many-body theory of exciton-trion polaritons (ETPs) in doped two-dimensional
semiconductor materials. ETPs are robust coherent hybrid excitations involving excitons, trions, and
photons. In ETPs, the 2-body exciton states are coupled to the material ground state via exciton-photon
interaction, and the 4-body trion states are coupled to the exciton states via Coulomb interaction. The trion
states are not directly optically coupled to the material ground state. The energy-momentum dispersion of
ETPs exhibit three bands. We calculate the energy band dispersions and the compositions of ETPs at
different doping densities using Green’s functions. The energy splittings between the polariton bands, as
well as the spectral weights of the polariton bands, depend on the strength of the Coulomb coupling
between the excitons and the trions, which in turn depends sensitively on the doping density. The doping
density dependence of the ETP bands and the charged nature of the trion states could enable novel electrical
and optical control of ETPs.
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Very recently, signatures of coherent hybrid excitations
involving excitons, trions, and photons in doped two-
dimensional (2D) materials have been reported in the
literature [1–5]. Although there is no consensus yet on
the nature of these hybrid excitations [1–6], these experi-
mental findings are interesting as they call into question the
traditional description of a trion as a bound 3-body
fermionic state [7–11] consisting of an exciton and a free
charge carrier since a fermionic state cannot exist in a
coherent superposition with a photon, which is a boson.
Several heuristic models describing these polaritons have
been proposed in the literature [1–6,12,13]. As discussed in
detail in the Supplemental Material [14], these models fall
short of describing ETPs accurately, and their shortcomings
stem from incomplete descriptions of the exciton and trion
states in doped semiconductors.
Several recent works have contributed to clarifying the

nature of excitons and trions in doped semiconductors
[5,21–25]. Recently, the authors have presented a model
based on two coupled Schrödinger equations to describe
2-body excitons and 4-body trions in electron-doped 2D
materials [21,22]. A 4-body bound trion state consists of a
conduction band electron-hole pair bound to an exciton.
The two Schrödinger equations are coupled as a result of
Coulomb interactions between the excitons and the trions
in doped materials. Good approximate eigenstates of the
coupled system can be constructed from superpositions of
exciton and trion states. These superpositions include
bound and unbound trion states. The latter are exciton-
electron scattering states [Fig. 1(a)]. These superposition
states resemble the exciton-polaron variational states

proposed by Sidler et al. [5,23]. The model developed
by the authors [21,22], rather interestingly, also showed
that the 4-body trion states have no direct optical matrix
elements with the material ground state. The contribution to
the material optical conductivity from trion states results
almost entirely from the latter’s Coulomb coupling to the
2-body exciton states [22] [see Fig. 1(a)].
In this Letter, we present a many-body theory of ETPs in

2D materials [21,22]. The optical coupling between the
excitons and the material ground state and the Coulomb
coupling between the trions and the excitons result in
robust ETPs. The quantum state of ETPs is a coherent
superposition of exciton, trion, and photon states. Since the

FIG. 1. (a) The nature of couplings among bound and unbound
trion states, exciton states, the material ground state, and photons
in exciton-trion polaritons (ETPs) is depicted for an electron-
doped 2D material (MoSe2) [21,22]. (b) A 2D material mono-
layer embedded inside an optical microcavity.
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4-body trion states also include the continuum of exciton-
electron scattering states (or unbound trion states), the
polariton problem requires a many-body approach for its
complete and accurate description. In the simplest case
considered in this work, the ETPs exhibit three bands in
their energy-momentum dispersion. The energy splittings
between these bands, as well as the spectral weights of
these bands, depend on the strength of the Coulomb
coupling between the excitons and the trions, which in
turn depends on the doping density. Furthermore, exciton-
electron scattering, which is inevitable at large electron
densities, results in a large broadening of the polariton band
closest in energy to the continuum of exciton-electron
scattering states (or unbound trion states).
Although the focus in this Letter will be on electron-

doped 2D transition metal dichalcogenide (TMD) MoSe2,
the arguments are kept general enough to be applicable to
other 2D materials. We consider a 2D material monolayer
embedded inside an optical microcavity [Fig. 1(b)]. The
Hamiltonian describing electrons and holes in the TMD
layer (near the K and K0 points in the Brillouin zone)
interacting with each other and with a transverse-electric-
polarized (TE-polarized or in-plane-polarized) cavity opti-
cal mode of in-plane momentum  Q in the rotating wave
approximation is [21,22,26–29] as follows:

H ¼
X

 k;s

Ec;sð  kÞc†sð  kÞcsð  kÞ þ
X

 k;s

Ev;sð  kÞb†sð  kÞbsð  kÞ

þ 1

A

X

 q;  k;  k0;s;s0
UðqÞc†sð  kþ  qÞb†s0 ð  k0 −  qÞbs0 ð  k0Þcsð  kÞ

þ 1

2A

X

 q;  k;  k0;s;s0
VðqÞc†sð  kþ  qÞc†s0 ð  k0 −  qÞcs0 ð  k0Þcsð  kÞ

þ ℏωð  QÞa†ð  QÞað  QÞ

þ 1ffiffiffiffi
A

p
X

 k;s

½gsc†sð  kþ  QÞbsð  kÞað  QÞ þ H:c:� ð1Þ

Here, Ec;sð  kÞ and Ev;sð  kÞ are the conduction band (CB) and
valence band energies. s, s0 represent the spin or valley
degrees of freedom in the 2D material. s ¼ fσ; τg, where
σ ¼ �1 and τ ¼ �1 represent the spin and valley degree of
freedom, respectively. me (mh) is the electron (hole)
effective mass. Uð  qÞ represents the Coulomb interaction
between electrons in the CB and the valence band, and
Vð  qÞ represents the Coulomb interaction among the elec-
trons in the CB. ℏωð  QÞ is the photon energy, and gs is the
electron-photon coupling constant. gs is assumed to be
nonzero only for the case of the optical coupling between
the topmost valence band and the conduction band of the
same spin (for s ¼ fþ1;þ1g or s ¼ f−1;−1g). Other than
for phase factors that are not relevant to the discussion in
this Letter, the nonzero values of gs can be written as

[28,29] g ¼ jgsj ¼ evχðz ¼ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=½2hϵiωð  QÞ�

q
, where, v is

the interband velocity matrix element [26–29], χðzÞ
describes the amplitude of the optical mode in the z
direction [Fig. 1(b)], and hϵi is the average dielectric
constant experienced by the cavity optical mode.
The energy dispersion of ETPs can be found from the

poles of the retarded photon Green’s function Gphð  Q; tÞ ¼
−ði=ℏÞθðtÞh½að  Q; tÞ; a†ð  Q; 0Þ�i, which satisfies

�
ℏωð  QÞ − iγp þ iℏ

∂
∂t
�
Gphð  Q; tÞ

¼ δðtÞ −
ffiffiffi
2

p
gffiffiffiffi
A

p
X

 k

Gex−ph
 Q;T

ð  k; tÞ: ð2Þ

Here, 2γp is the inverse photon lifetime in the optical cavity,
and

Gex−ph
 Q;T

ð  k; tÞ ¼ −
i
ℏ
θðtÞh½P†

 Q;T
ð  k; tÞ; a†ð  Q; 0Þ�i: ð3Þ

P  Q;Tð  k; tÞ is the transverse polarization operator. In 2D
TMDs, one can form superpositions of exciton states from
both valleys that couple selectively to either TE-polarized
or transverse-magnetic-polarized optical modes [28,29].
For transverse excitons, which couple only to TE-polarized
modes, P  Q;Tð  k; tÞ equals

P  Q;Tð  k; tÞ ¼
1ffiffiffi
2

p
X

s

gs
g
c†sð  kþ  Q; tÞbsð  k; tÞ: ð4Þ

The polarization operator can be obtained from the coupled
exciton and trion equations given by Rana et al. [21,22].
Assuming, for simplicity, that the optical mode is coupled
to only the nth exciton state in each valley (typically the
n ¼ 0 state, the lowest energy exciton state, is of interest),
the result for the photon Green’s function is found to be

½Gphð  Q;ωÞ�−1 ¼ ℏω − ℏωð  QÞ þ iγp − Σphð  Q;ωÞ; ð5Þ

where the photon self-energy Σphð  Q;ωÞ is

Σphð  Q;ωÞ¼
X

s

=Gex
n;sð  Q;ωÞ

×

����gs
Z

d2  k
ð2πÞ2ϕ

ex
n;  Q

ð  kþλh  QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−fc;sð  kþ  QÞ

q ����
2

:

ð6Þ

Here, ϕex
n;  Q

ð  kþ λh  QÞ is the eigenfunction of the nth exciton
state [21,22]. λh ¼ 1 − λe ¼ mh=mex, mex ¼ me þmh, and
fc;sð  kÞ are the occupation probabilities for the CB electron

states. The bare exciton Green’s function =Gex
n;sð  Q;ωÞ

(which does not include the contribution to the exciton
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self-energy from the exciton-photon interaction) appearing
in Eq. (6) is

½=Gex
n;sð  Q;ωÞ�−1 ¼ ℏω − Eex

n;sð  QÞ þ iγex − Σex
n;sð  Q;ωÞjtr:

ð7Þ

In the above expression, Eex
n;sð  QÞ is the energy of the nth

exciton state of the spin or valley s [21,22], and γex
describes the rate of coherence decay of the exciton
polarization due to all processes other than exciton-electron
scattering. The latter is included explicitly in the exciton
self-energy Σex

n;sð  Q;ωÞjtr [21,22]. The exciton-electron
interaction can be described in terms of exciton-trion
coupling [21,22], including couplings to bound and
unbound 4-body trion states. The following expression
for the exciton self-energy was derived by Rana et al. [21]:

Σex
n;sð  Q;ωÞjtr ¼

X

m;s0
Σex
n;m;s;s0 ð  Q;ωÞj

tr

¼
X

m;s0

ð1þ δs;s0 ÞjMn;m;s;s0 ð  QÞj2
ℏω − Etr

n;m;s;s0 ð  QÞ þ iγtr
: ð8Þ

The expressions for the Coulomb matrix elements
Mn;m;s;s0 ð  QÞ, coupling 2-body exciton states with spin or
valley s to 4-body trion states with spin or valley s, s0, can
be found in a previous paper by Rana et al. [21]. The
summation over m above implies a summation over all
bound and unbound 4-body trion states consistent with the
values of s and s0. Etr

n;m;s;s0 ð  QÞ is the energy of a 4-body
trion state and γtr is a phenomenological parameter describ-
ing the decay of the coherence of 4-body correlations.
Σex
n;sð  Q;ωÞjtr is an increasing function of the doping density

[21]. The photon self-energy in Eq. (6) can be written in
terms of the optical conductivity of the 2D material [21,22],

Σphð  Q;ωÞ ¼ −iℏ
jχðz ¼ 0Þj2

2hϵi σð  Q;ωÞ: ð9Þ

The dispersion of ETPs can be obtained from the poles of
the photon Green’s function.

Hopfield coefficients [30,31] play an important
role in describing the composition of polariton states.
In the case of ETPs, the same information is provided
by the spectral density functions, which we discuss
next. The photon spectral density function
Sphð  Q;ωÞ ¼ −2ℏImfGphð  Q;ωÞg. The spectral density
Sexn;Tð  Q;ωÞ of the transverse exciton equals

−2ℏImfGex
n;Tð  Q;ωÞg. Assuming Eex

n;sð  QÞ ¼ Eex
n;−sð  QÞ and

jgsj ¼ jg−sj, the transverse exciton Green’s function
Gex

n;Tð  Q;ωÞ is found to be

½Gex
n;Tð  Q;ωÞ�−1 ¼ ℏω − Eex

n;sð  QÞ þ iγex − Σex
n;sð  Q;ωÞjtr

− Σex
n;Tð  Q;ωÞjph ð10Þ

The spin or valley index s on the right-hand side stands for
any one of the two values for which jgsj ≠ 0, and the
exciton-photon interaction contribution to the transverse
exciton self-energy is

Σex
n;Tð  Q;ωÞjph

¼
X

s

jgs
R

d2  k
ð2πÞ2 ϕ

ex
n;  Q

ð  kþ λh  QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fc;sð  kþ  QÞ

q
j2

ℏω − ℏωð  QÞ þ iγp
: ð11Þ

We now assume that only a single bound 4-body
singlet trion state of index m exists (m ¼ 0 implies the
lowest energy bound trion state), and it exists only when
the exciton and the bound CB electron-hole pair
belong to different valleys (as is the case in MoSe2)
[21]. We define a 4-body bound transverse trion state as
the one formed by the binding of a CB electron-hole pair
to a transverse exciton [21]. Finally, the spectral
density function for the bound transverse trion state is
Strn;m;Tð  Q;ωÞ ¼ −2ℏImfGtr

n;m;Tð  Q;ωÞg, where the Green’s
function of the 4-body bound transverse trion state is

½Gtr
n;m;Tð  Q;ωÞ�−1¼ℏω−Etr

n;m;s;−sð  QÞþ iγtr−Σtr
n;m;Tð  Q;ωÞ:

ð12Þ

Here,

Σtr
n;m;Tð  Q;ωÞ ¼ jMn;m;s;−sð  QÞj2

ℏω − Eex
n;sð  QÞ þ iγex − Σex

n;Tð  Q;ωÞjph−
P

m0≠m;s0Σex
n;m0;s;s0 ð  Q;ωÞjtr

: ð13Þ

As before, the spin or valley index s on the right-hand side
in Eqs. (12) and (13) stands for any one of the two values
for which jgsj ≠ 0.
For simulations, we consider an electron-doped mono-

layer of 2D MoSe2 inside an optical microcavity, as shown

in Fig. 1(b). In monolayer MoSe2, the spin splitting of the
conduction bands is large (∼35 meV [32]), and the lowest
conduction band in each of the K and K0 valleys is optically
coupled to the topmost valence band [33]. We assume
me ¼ mh ¼ 0.7mo, which agrees with the recently
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measured value of 0.35mo for the exciton reduced mass
[34]. The cavity optical mode has a parabolic dispersion
with a photon mass of 10−5mo. jχðz ¼ 0Þj2 ¼ 10 μm−1. We
use a wave-vector-dependent dielectric constant ϵð  qÞ,
appropriate for 2D materials [21,26], to screen the
Coulomb potentials. We assume that γex ¼ γtr ¼
γp ∼ 6 meV [35]. We compute exciton and trion eigen-
functions and eigenenergies for different momenta and
electron densities as described by Rana et al. [21].
Figure 2 shows the real part of the optical conductivity

(optical absorption spectra) for three different electron
densities, and Fig. 3 shows the corresponding polariton
dispersions (dashed lines) as well as the spectral densities
of the photon, the transverse exciton, and the transverse
bound trion. We assume in simulations that the cavity
optical mode is tuned ∼20 meV below the lower energy
peak in the optical absorption spectra (as indicated in
Fig. 2). At the lowest electron density (n ¼ 1010 cm−2), the
lower energy peak in the optical absorption spectrum has
essentially no optical oscillator strength and all the spectral
weight lies in the higher energy peak [which is the only one
seen in Fig. 2(a)]. The higher and lower energy states at
such small electron densities correspond to essentially pure
exciton and pure (bound) trion states, respectively [21]. The
resulting polariton dispersion shows two bands, UP (upper
polariton) and LP (lower polariton), which represent
exciton polaritons [Figs. 3(a) and (b)]. The bound trion
states do not form polaritons as they have no oscillator
strength. When the electron density increases beyond
∼1012 cm−2, the exciton and trion states become coupled

as a result of strong Coulomb interactions, and the resulting
optical absorption spectra show two prominent peaks
[Fig. 2(b)]. Each peak corresponds to a state that is a
superposition of 2-body exciton and 4-body (bound) trion
states [21]. The polariton dispersion for n ¼ 2 × 1012 cm−2

shows three bands: UP, MP (middle polariton), and LP
[Figs. 3(d)–(f)]. The Rabi splitting between the LP and MP
bands is, however, small and reflects the fact that the lower
energy peak in the optical absorption spectra [Fig. 2(b)]

(a) (b) (c)

FIG. 2. Calculated real part of the optical conductivity,
σð  Q ¼ 0;ωÞ, for in-plane (TE) light polarization, is plotted
for three different electron densities (ne ¼ 1010; 2 × 1012;
8 × 1012 cm−2) for electron-doped monolayer 2D MoSe2. Only
the lowest energy exciton state is considered in the calculations.
The spectra are all normalized to the peak optical conductivity
value at zero electron density. T ¼ 5 K. The frequency axis is
offset by the exciton energy Eex

n¼0;sð  Q ¼ 0Þ. The position of the
cavity optical mode is also indicated (see Fig. 3). Two prominent
peaks are seen in the absorption spectra when the electron density
exceeds ∼1012 cm−2. Each peak corresponds to a state that is a
superposition of the exciton and trion states [21]. The spectral
weight shifts from the higher energy peak to the lower energy
peak with the increase in the electron density.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Calculated exciton-trion polariton (ETP) energy
dispersions (dashed lines) and the spectral densities of the
photon [Sphð  Q;ωÞ], the transverse exciton [Sexn¼0;Tð  Q;ωÞ],
and the transverse bound trion [Strn¼0;m¼0;Tð  Q;ωÞ], are plotted
for three different electron densities (ne ¼ 1010; 2 × 1012;
8 × 1012 cm−2) for an electron-doped monolayer 2D MoSe2
inside an optical cavity [Fig. 1(b)]. In each case, the cavity
optical mode is tuned ∼20 meV below the lower energy peak in
the optical absorption spectra (as indicated in Fig. 2). T ¼ 5 K.
The unit in the color bar is 10−13 s.
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does not have much optical oscillator strength. As the
electron density increases further, the spectral weight
continues to shift from the higher energy peak in the
absorption spectrum to the lower energy peak and, in
addition, the higher energy peak broadens, becomes non-
Lorentzian, and develops a pedestal as a result of exciton-
electron scattering (i.e., Coulomb coupling of the exciton
and unbound trion states). This pedestal is visible
on the higher energy side of the peak in Fig. 2(c)
for n ¼ 8 × 1012 cm−2. When n ¼ 8 × 1012 cm−2, the
increase in the oscillator strength of the lower energy peak
is reflected in the large Rabi splitting between the LP and
MP polariton bands in Figs. 3(g)–(i). Also visible in
Figs. 3(g)–(i) is the extremely large broadening of the
UP band from dephasing caused by exciton-electron
scattering at this large doping density. The spectral den-
sities obey the following sum rule:
Z

dω
2π

½Sphð  Q;ωÞ þ Sexn¼0;Tð  Q;ωÞ þ Strn¼0;m¼0;Tð  Q;ωÞ� ¼ 3:

ð14Þ

The results presented in this Letter highlight the
important role played by the Coulomb interaction between
trions and excitons in coupling trions and photons to
enable ETPs. Since this Coulomb interaction depends on
the doping density, the spectral weights and the energies
of ETP bands can be modified in a significant way by
varying the doping density, as shown in Fig. 3. The
electron density in 2D TMD materials can be varied from
zero to mid-1013 cm−2 by electrostatic gating, thereby
opening up opportunities for novel electrically controlled
polariton devices. The 4-body trion component of ETPs
contains a tightly bound charged 3-body complex sur-
rounded by a Fermi hole (Fig. 1). This Fermi hole is not
too different from the exchange hole that surrounds every
electron in an electron-doped semiconductor [36,37]. One
can therefore expect ETPs to move in response to
electrochemical potential gradients by virtue of their trion
component, thereby enabling electrical control over polar-
iton dynamics. Electrical and optical transport experi-
ments performed on exciton-trion superposition states in
semiconductor quantum wells support this conjecture
[38]. In exciton-polaritons, polariton-polariton inter-
actions and polariton relaxation processes, which play
an important role in polariton lasers and condensates, are
determined by their exciton component [39,40]. In ETPs,
exciton and trion components will determine polariton
interactions. Experimental efforts geared toward under-
standing these interactions have been recently reported
[2,41]. An accurate description of the structure and
composition of ETPs, as attempted in this Letter, will
be critical in understanding and modeling these inter-
actions. The direct Coulomb interactions between exci-
tons are weak due to their charge-neutral nature, and

short-range exchange interactions tend to dominate [39].
In contrast, the direct Coulomb coupling between trions,
although screened by the Fermi holes, is expected to be
stronger and could play an important role in polariton-
polariton interactions. These interactions are expected to
be also strongly affected by phase space filling effects (at
large electron or hole densities) and doping depletion
effects (at large polariton densities). We expect that the
work presented in this Letter will stimulate further
exploration of the physics and applications of ETPs in
2D materials.
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