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Optical absorption and emission spectra of doped two-dimensional (2D) materials exhibit sharp peaks that
are often mistakenly identified with pure excitons and pure trions (or charged excitons), but both peaks have
been recently attributed to superpositions of two-body exciton and four-body trion states and correspond to
the approximate energy eigenstates in doped 2D materials. In this paper, we present the radiative lifetimes of
these exciton-trion superposition energy eigenstates using a many-body formalism that is appropriate given the
many-body nature of the strongly coupled exciton and trion states in doped 2D materials. Whereas the exciton
component of these superposition eigenstates are optically coupled to the material ground state and can emit a
photon and decay into the material ground state provided the momentum of the eigenstate is within the light
cone, the trion component is optically coupled only to the excited states of the material and can emit a photon
even when the momentum of the eigenstate is outside the light cone. In an electron-doped 2D material, when
a four-body trion state with momentum outside the light cone recombines radiatively, and a photon is emitted
with a momentum inside the light cone, the excess momentum is taken by an electron-hole pair left behind in the
conduction band. The radiative lifetimes of the exciton-trion superposition states with momenta inside the light
cone are found to be in the few hundred femtoseconds to a few picoseconds range and are strong functions of
the doping density. The radiative lifetimes of exciton-trion superposition states with momenta outside the light
cone are in the few hundred picoseconds to a few nanoseconds range and are again strongly dependent on the
doping density. The doping density dependence of the radiative lifetimes of the two peaks in the optical emission
spectra follows the doping density dependence of the spectral weights of the same two peaks observed in the
optical absorption spectra, as both have their origins in the Coulomb coupling between the excitons and trions in
doped 2D materials.
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I. INTRODUCTION

Optical absorption and emission spectra of doped two-
dimensional (2D) materials in general, and of transition metal
dichalcogenides (TMDs) in particular, exhibit sharp and dis-
tinct peaks that are often attributed to neutral and charged
excitons (or trions) [1–11]. Although optical signatures of ex-
citons and trions in doped semiconductors have been observed
for a long time [8], their nature, especially of trions, in doped
materials had remained somewhat of a mystery. For one, it
was difficult to understand how a photon, being a boson,
could get absorbed and create a trion, if a trion is taken to
be fermionic bound state of three particles. Second, it was not
clear what happened to one of the charged particles left behind
when a trion emitted a photon. Pauli’s exclusion required the
left-behind charged particle to be deposited outside the Fermi
sea, but the energy and momentum conservation requirements
following from Pauli’s exclusion were never observed in the
measured photoluminescence (PL) spectra. Third, the varia-
tion of the energy separation of the two peaks observed in
the optical absorption spectra, as well as the spectral weight
transfer between these two peaks with doping, did not seem
to follow from the assumption of excitons and trions being
independent excitations.

Several recent works have contributed to resolving this
mystery and clarifying the nature of excitons and trions
in doped semiconductors [12–16]. Recently, the authors
have presented a theoretical model based on two cou-
pled Schrödinger equations to describe excitons and trions
in electron-doped 2D materials [12]. One is a two-body
Schrödinger equation for a conduction band (CB) electron
interacting with a valence band (VB) hole, and the other is
a four-body Schrödinger equation of two CB electrons, one
VB hole, and one CB hole interacting with each other. The
CB hole is created when a CB electron is scattered out of
the Fermi sea by an exciton. The eigenstates of the two-body
equation were identified with excitons and the eigenstates of
the four-body equation were identified with trions. A bound
trion state is therefore a four-body bosonic state and not a
three-body fermionic state. The two Schrödinger equations
are coupled as a result of Coulomb interactions between
the excitons and the trions in doped materials. The model
shows that pure exciton and trion states are not eigenstates
of the Hamiltonian in the presence of doping. However, good
approximate eigenstates can be constructed from superposi-
tions of exciton and trion states. This superposition includes
both bound trion states as well as unbound trion states. The
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FIG. 1. The nature of couplings involving two-body exciton and
four-body trion states are depicted for an electron-doped material.
The four-body trion states are coupled to the two-body exciton states
via electron-electron and electron-hole Coulomb interactions. Only
the exciton states are coupled to the material ground state via optical
coupling. The trion states are optically coupled to excited states of
the material consisting of a CB electron-hole pair. The trion states
include both bound and unbound trion states.

latter are exciton-electron scattering states. These superpo-
sition states, proposed by Suris [13], resemble the exciton-
polaron variational states proposed by Sidler et al. [14]. The
optical conductivity obtained from the model proposed by
the authors explains all the prominent features experimentally
seen in the optical absorption spectra of doped 2D materials,
including the observation of two prominent absorption peaks
and the variation of their energy splittings and spectral shapes
and strengths with the doping density [12]. Furthermore, the
peaks observed in the optical absorption spectra of doped
2D materials do not correspond to pure exciton or pure trion
states. Each peak corresponds to a superposition of exciton
and trion states.

While previous papers, including the one by the authors,
have addressed the problem of light absorption by excitons
and trions [12,13,15,16], questions related to light emission
and radiative lifetimes of excitons and trions in doped materi-
als remain unanswered. The model developed by the authors
[12], rather interestingly, also showed that the four-body
trion states have no optical matrix elements with the mate-
rial ground state. The ground state of, say an electron-doped
material, is defined as the state consisting of a completely
full VB (no VB holes) and a completely full Fermi sea in
the CB (no CB holes inside and no CB electrons outside
the Fermi sea). Therefore, the contribution to the material
optical conductivity from the four-body trion states results
almost entirely from their Coulomb coupling to the two-body
exciton states [17]. The exciton and trion states and the related
couplings are depicted in Fig. 1. However, the trion states,
including both bound and unbound trion states, are optically

coupled to the excited states of the material consisting of a
CB electron-hole pair. In other words, a trion state can decay
by emitting a photon and leaving behind a CB electron-hole
pair. The radiative rate of this process is significant after one
has summed over all possible CB electron-hole pairs that can
result from the radiative decay of a four-body trion state.

The experimentally relevant radiative lifetimes are not
those of pure exciton and trion states, but of the approximate
energy eigenstates which, as discussed above, are superpo-
sitions of exciton and trion states. The goal of this paper
is to clarify the processes contributing to photon emission
from these energy eigenstates in 2D materials and calculate
the corresponding radiative lifetimes. Our main results are
as follows. The radiative lifetimes of the exciton-trion en-
ergy eigenstates, with momenta inside the light cone, are
found to be in the few hundred femtoseconds to a few pi-
coseconds range and are strongly dependent on the doping
density. Within the light cone, the exciton component of
these eigenstates provides the dominant contribution to the
radiative rates. The radiative lifetimes of the exciton-trion
superposition states, with momenta outside the light cone, are
in the few hundred picoseconds to a few nanoseconds range
and are again strong functions of the doping density. Outside
the light cone, only the trion component of these eigenstates
contributes to the radiative rates. The doping density depen-
dence of the radiative lifetimes of the two peaks in the optical
emission spectra follows the doping density dependence of
the spectral weights of the same two peaks observed in the
optical absorption spectra as both have their origins in the
Coulomb coupling between the excitons and trions in doped
2D materials.

II. THEORETICAL MODEL

In this section, we set up the Hamiltonian and derive the
main equations. Although the focus is on electron-doped 2D
TMD materials, the arguments are kept general enough to be
applicable to any 2D material.

A. The Hamiltonian

We consider a 2D TMD monolayer located in the z = 0
plane inside a uniform medium of dielectric constant ε. The
TMD layer interacts with both TE (electric field in the z = 0
plane) and TM (magnetic field in the z = 0 plane) polarized
light modes. The Hamiltonian describing electrons and holes
in the TMD layer (near the K and K ′ points in the Brillouin
zone) interacting with each other and with the optical mode in
the rotating wave approximation is [2,18–20]

H =
∑
�k,s

Ec,s(�k)c†s (�k)cs(�k) +
∑
�k,s

Ev,s(�k)b†s (�k)bs(�k)

+ 1

A

∑
�q,�k,�k′,s,s′

U (q)c†s (�k + �q)b†s′ (�k′ − �q)bs′ (�k′)cs(�k)

+ 1

2A

∑
�q,�k,�k′,s,s′

V (q)c†s (�k + �q)c†s′ (�k′ − �q)cs′ (�k′)cs(�k)
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FIG. 2. A 2D TMD monolayer in the z = 0 plane is shown. The
two light polarizations are also illustrated.

+
∑
�/q, j

h̄ω(/q)a
†
j (�/q)a j (�/q) + 1√

AL

∑
qz, �Q,�k, j,s

(g j,s(�/q)

× c†s (�k + �Q)bs(�k)aj (�/q) + H.c.). (1)

Here, Ec,s(�k) and Ev,s(�k) are the conduction and VB ener-
gies. s, s′ represent the spin/valley degrees of freedom in the
2D material, and we assume for simplicity that the electron
and hole effective masses are independent of the spin/valley.
U (�q) represents Coulomb interaction between electrons in the
conduction and VBs andV (�q) represents Coulomb interaction
among the electrons in the CBs. A is the monolayer area and
AL is the volume assumed for field quantization. h̄ω(�/q) is
the energy of a photon with momentum �/q, and g j,s(�/q) is the
electron-photon coupling constant for light with photon po-
larization j = TE,TM (see Fig. 2). Most momentum vectors
in the Hamiltonian above are in 2D. Those associated with
light are in 3D, carry a slash in the notation for clarity, and
�/q = �Q + qzẑ, where �Q is the momentum component in the
z = 0 plane. Other than for phase factors that are not relevant
to the discussion in this paper, gj,s(�/q) for electron states near
the band edges in 2D TMDs can be given by [19,20]

g j,s(�/q) = ev

√
h̄

2εω(�/q) ×
{
qz//q for TM

1 for TE,
(2)

where v is the interband velocity matrix element [2,18–20].

B. Exciton states, trion states, and energy eigenstates

As shown by Rana et al. [12], approximate eigenstates of
the Hamiltonian in Eq. (1) can be written as a superposition
of two-body exciton and four-body trion states:

|ψn,s( �Q)〉 = αn√
A

∑
k

φex∗
n, �Q(

�k)
Nex

× c†s (�k + λe �Q)bs(�k − λh �Q)|GS〉

+
∑
m,s′

βm,s′√
A3

�k1,�k2 �= �p∑
�k1,�k2, �p

φtr∗
m, �Q(

�k1, s; �k2, s′; �p, s′)
Ntr

× c†s (�k1)c†s′ (�k2)bs(�k1 + �k2 − ( �Q + �p))cs′ ( �p)|GS〉.
(3)

Here, |GS〉 is the ground state of the electron doped material.
The normalization factors are

Nex =
√
1 − fc,s(�k + λe �Q),

Ntr =
√
(1 + δs,s′ ) fc,s′ ( �p)[1 − fc,s(�k1)][1 − fc,s′ (�k2)].

(4)

The above energy eigenstate has (in-plane) momentum �Q.
φex
n, �Q(

�k + λh �Q) and φtr
m, �Q(

�k1, s1; �k2, s2; �p, s2) are eigenstates
of the two-body exciton and four-body trion eigenequa-
tions, respectively [12]. The corresponding eigenenergies
are E ex

n ( �Q, s) and E tr
m ( �Q, s1, s2), respectively. λh = 1 − λe =

mh/mex (mex = me + mh), where me (mh) is the electron
(hole) effective mass. mtr = 2me + mh, ξ = me/mtr , and η =
mh/mtr. The underlined vector �k stands for �k + ξ ( �Q + �p).
The summation over the index m implies summation over all
bound and unbound trion states. Expressions for the coeffi-
cients αn and βm,s′ are given later in this paper. The states
given above are good approximations to the actual eigen-
states of the Hamiltonian in Eq. (1) within the purview of
single electron-hole pair excitations and provided one ig-
nores multiple electron-hole pair excitations [12]. In most
cases of practical interest involving 2D TMDs, only the low-
est energy exciton state needs to be considered. However,
bound trion states as well as the continuum of unbound
trion states need to be included since the energy differ-
ences involved therein are small [12]. This makes the direct
calculation of radiative rates using Fermi’s golden rule
awkward.

The optical interaction term in the Hamiltonian in Eq. (1)
couples the material ground state to only the exciton com-
ponent, and not to the trion components, in the exciton-trion
supersposition energy eigenstates (see Fig. 1) [12]. However,
excited states of the material containing an electron-hole pair
in the CB are optically coupled to the trion components.
Given this, two different kinds of radiative transitions are
possible and are depicted in Fig. 3. Figure 3(a) shows photon
emission resulting in a decay of the energy eigenstate into
the material ground state. The transition rate is determined
by |αn|2, the weight of the exciton component of the energy
eigenstate in Eq. (3). This transition is possible only if the
momentum �Q of the energy eigenstate is within the light cone.
Figure 3(b) shows photon emission resulting in a decay of
the energy eigenstate into an excited state of the material that
has a CB electron-hole pair. The CB electron-hole pair is left
behind after photon emission from the trion components of
the energy eigenstate. Unlike the process in Fig. 3(a), the
process in Fig. 3(b) is possible even if the momentum �Q of
the energy eigenstate is outside the light cone. If the emit-
ted photon has an in-plane momentum �Q′ within the light
cone, the difference �Q − �Q′ is taken by the electron-hole pair
left behind in the CB. The radiative rate for this process is
determined by the magnitude of the coefficients βm,s′ of the
trion states in the expression for the energy eigenstate given
in Eq. (3).

In the sections that follow, we will calculate separately the
radiative rates for the two processes in Fig. 3.
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FIG. 3. Two different kinds of photon emission processes are
depicted. (a) Photon emission resulting in a decay of the energy
eigenstate into the material ground state. The transition rate is de-
termined by |αn|2, the weight of the exciton component of the energy
eigenstate in Eq. (3). This transition is possible only if the momentum
�Q of the energy eigenstate is within the light cone. (b) Photon emis-
sion resulting in a decay of the energy eigenstate into an excited state
of the material that has a CB electron-hole pair. The CB electron-hole
pair is left behind after photon emission from the trion components
of the energy eigenstate. The transition rate is determined by |βm,s′ |2
in Eq. (3). This transition is possible even if the momentum �Q of the
energy eigenstate is outside the light cone.

III. RATE FOR RADIATIVE DECAY INTO THE MATERIAL
GROUND STATE

We first calculate the rate for the radiative decay of the
energy eigenstate into the material ground state. This rate
is expected to be proportional to the weight of the exciton
component of the energy eigenstate, and the weight of the ex-
citon component is conveniently given by the spectral density
function which is proportional to the imaginary part of the
exciton Green’s function. Thus, we seek an expression for the
radiative rate in terms of the exciton Green’s function.

A. Heisenberg equations

We start from the Heisenberg equation for the photon op-
erator:[

h̄ω(�/q) + ih̄
d

dt

]
a†j (�/q, t ) = − 1√

AL

∑
�k,s

g j,s(�/q)P�Q(�k, s; t ).

(5)

The polarization operator P�Q(�k, s; t ) equals c†s (�k +
�Q, t )bs(�k, t ). The Heisenberg equation for the polarization
operator is [12]

[
Ec,s(�k + �Q) − Ev,s(�k) + iγex + ih̄

d

dt

]
P�Q(�k, s; t ) = − 1√

AL

∑
qz, j

g∗
j,s(�/q)a†j (�/q; t )[1 − fc,s(�k + �Q)] + F�Q(�k, s; t )

+ 1

A

∑
�q
U (�q)P�Q(�k + �q, s; t )[1 − fc,s(�k + �Q)] − 1

A

∑
�q, �p,s′

U (�q)

×T c
�Q (�k + (ξ + η) �Q − ξ �p, s; (ξ + η) �p− ξ �Q − �q, s′; �p, s′; t ) + 1

A

∑
�q, �p,s′

V (�q)

×T c
�Q (�k + (ξ + η) �Q − ξ �p+ �q, s; (ξ + η) �p− ξ �Q − �q, s′; �p, s′; t ). (6)

Here, fc,s(�k) is the electron occupation probability in the CB (VB is assumed to be completely full) and γex is a phenomenological
decoherence rate for the polarization that includes dephasing due to all processes other than exciton-electron scattering.
F�Q(�k, s; t ) is a zero-mean delta-correlated quantum Langevin noise source that is introduced by the same processes that

contribute to the decoherence γex [21]. The energies Ec,s(�k) include renormalizations due to exchange at the Hartree-Fock
level (−(1/A)

∑
�q V (�q) fc,s(�k − �q)). Taking the mean value of the operators in Eq. (6), ignoring the first term and the last two

terms on the right-hand side (RHS), and Fourier transforming the remaining terms results in a two-body Schrödinger equation
for the excitons [12,21,22]. The last two terms in Eq. (6) on the RHS contain four-body operators T c

�Q . We define the operator

T�Q(�k1, s1; �k2, s2; �p, s2; t ) as follows:

c†s1 (�k1; t )c†s2 (�k2; t )bs1 (�k1 + �k2 − ( �Q + �p); t )cs2 ( �p; t ). (7)

As before, the underlined vector �k stands for �k + ξ ( �Q + �p). The average of the operator T�Q describes correlations arising from

Coulomb interactions among four particles: two CB electrons, a VB hole, and a CB hole. �Q is the total momentum of this
four-body state. We also define the connected operator T c

�Q as follows [12]:

T�Q(�k1, s1; �k2, s2; �p, s2; t ) = T c
�Q (�k1, s1; �k2, s2; �p, s2; t ) − fc,s2 ( �p)P�Q(�k1 − �Q, s1; t )δ�k2, �p

+ fc,s2 ( �p)P�Q(�k2 − �Q, s2; t )δs1,s2δ�k1, �p. (8)

The Heisenberg equation for the operator T c
�Q (

�k1, s1; �k2, s2; �p, s2) is found to be [12]
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[
Ec,s1 (�k1) + Ec,s2 (�k2) − Ev,s1 (�k1 + �k2 − ( �Q + �p)) − Ec,s2 ( �p) + iγtr + ih̄

d

dt

]
T c

�Q (�k1, s1; �k2, s2; �p, s2; t )

= D �Q(�k1, s1; �k2, s2; �p, s2; t ) − 1

A

∑
�q
V (�q)T c

�Q (�k1 + �q, s1; �k2 − �q, s2; �p, s2; t )[1 − fc,s1 (�k1) − fc,s2 (�k2)]

+ 1

A

∑
�q
U (�q)T c

�Q (�k1 + �q, s1; �k2, s2; �p, s2; t )[1 − fc,s1 (�k1)] + 1

A

∑
�q
U (�q)T c

�Q (�k1, s1; �k2 − �q, s2; �p, s2; t )[1 − fc,s2 (�k2)]

+ 1

A

∑
�q
V (�q)T c

�Q (�k1 + (ξ + η)�q, s1; �k2 − ξ �q, s2; �p+ �q, s2; t )[ fc,s2 ( �p) − fc,s1 (�k1)]

+ 1

A

∑
�q
V (�q)T c

�Q (�k1 − ξ �q, s1; �k2 + (ξ + η)�q, s2; �p+ �q, s2; t )[ fc,s2 ( �p) − fc,s2 (�k2)]

− 1

A

∑
�q
U (�q)T c

�Q (�k1 − ξ �q, s1; �k2 − ξ �q, s2; �p+ �q, s2; t ) fc,s2 ( �p) + fc,s2 ( �p)
A

∑
�q
V (�q)[1 − fc,s1 (�k1) − fc,s2 (�k2)]

× [
P�Q(�k1 − �Q + �q, s1; t )δ�k2−�q, �p − P�Q(�k2 − �Q − �q, s2; t )δ�k1+�q, �pδs1,s2

]
− fc,s2 ( �p)

A

∑
�q
U (�q)

{
P�Q(�k1 − �Q, s1; t )δ�k2−�q, �p[1 − fc,s2 (�k2)] − P�Q(�k2 − �Q, s2; t )δ�k1+�q, �pδs1,s2 [1 − fc,s1 (�k1)]

}
. (9)

In deriving the above equation, all six-body operator prod-
ucts were reduced to four-body operator products using the
random phase approximation [21,22]. By ignoring higher
order correlations, we are ignoring the generation of multi-
ple particle-hole pairs in the CB. γtr is a phenomenological
decoherence rate and D �Q is the corresponding zero-mean
delta-correlated Langevin noise source. If �re1, �re2, �rh1, are
�rh2 the coordinates of the two electrons, the VB hole and
the CB hole, respectively, then �k1, �k2, �Q, and �p are the
momenta associated with the coordinates �re1 − �rh1, �re2 − �rh1,�R = ξ (�re1 + �re2) + η�rh1, and �R − �rh2, respectively. Here, �R is
the center of mass coordinate of the two electrons and the
VB hole. Taking the mean value of the operators in Eq. (9),
ignoring the last two terms on the RHS in Eq. (9) that involve
P�Q, and Fourier transforming the remaining terms will result
in a four-body Schrödinger equation for the trions [12]. Each
term on the RHS in the above equation (except the first and
the last two) describes Coulomb interaction between two of
the four particles. The last two terms involving P�Q describe
the generation of four-body correlation from two-body cor-
relations or the creation of an CB electron-hole pair by an
exciton.

We should mention here that a classical equation similar
to Eq. (9) was obtained by Esser et al. [24]. However, there
are significant differences between Eq. (9) and the equation
obtained by Esser et al. In the work of Esser et al., the
connected nature of T c

�Q was overlooked, the terms containing
interactions with the CB hole were ignored, the phase-space
restricting factors were ignored too, and, most importantly,
the terms containing the polarization P�Q were also missed.
Ignoring the coupling to P�Q in Eq. (9) is equivalent to ig-
noring exciton-trion coupling via Coulomb interactions. This
coupling is responsible for making exciton-trion superposi-

tion states approximate eigenstates of the interacting system
consisting of excitons and electrons in a doped material.

B. Solution of Heisenberg equations

The polarization operator P�Q(�k, s; t ) can be decomposed

using the complete set of exciton eigenfunctions [12] φex
n, �Q(

�k +
λh �Q) as follows:

P�Q(�k, s; t ) =
∑
n

Pn, �Q(s; t )
√
1 − fc,s(�k + �Q)φex

n, �Q(�k + λh �Q).

(10)
We assume that at time t , Pn, �Q(s; t ) has a nonzero mean value
for some particular values of n and s. 〈Pn, �Q(s; t )〉 can be
nonzero if the quantum state is a superposition of the material
ground state |GS〉 and one of the eigenstates described in
Sec. II B. Following Milonni [23], the strategy going forward
will then be as follows. The Heisenberg equations will be
solved to find how the mean value 〈Pn, �Q(s; t )〉 decays with
time due to radiative transitions, and the lifetime associated
with this decay would give the radiative rate. Since we are
exclusively interested in radiative transitions in this paper,
several approximations will be made in order to keep the focus
on the relevant physics and irrelevant terms will be ignored to
keep the analysis simple.

Equation (5) can be be solved by direct integration to give

a†j (�/q, t ) = a†j (�/q, t = 0)eiω(�/q)t + i√
AL

∑
�k,s

g j,s(�/q)
h̄

×
∫ t

0
eiω(�/q)(t−t ′ )P�Q(�k, s; t ′)dt ′. (11)
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Next, we find the time dependence of the operator Pn, �Q(s; t ).
Using Eq. (10) in Eq. (6), ignoring the Langevin noise sources
on the RHS in Eqs. (6) and (9) (because these noise sources
will not have any effect on the end results sought in this

paper), and using the techniques discussed in a previous pa-
per by the authors [12] for solving the coupled system of
equations in Eqs. (6) and (9), the operator Pn, �Q(s; t ) is found
to be

Pn, �Q(s; t ) =
∫

dω

2π

−ih̄eiωtPn, �Q(s; t = 0)

h̄ω − E ex
n ( �Q, s) − iγex − �ex∗

n,s ( �Q, ω)
+ 1√

AL

∑
qz, j

g∗
j,s(�/q)

∫
d2�k
(2π )2

√
1 − fc,s(�k + �Q)φex∗

n, �Q(�k + λh �Q)

×
∫

dω

2π

∫ t

0

eiω(t−t ′ )a†j (�/q; t ′)
h̄ω − E ex

n ( �Q, s) − iγex − �ex∗
n,s ( �Q, ω)

. (12)

Here, �ex
n,s( �Q, ω) is the self-energy of the excitons arising from their Coulomb coupling to the trions [12]:

�ex
n,s( �Q, ω) =

∑
m,s′

(1 + δs,s′ )|Mm,n( �Q, s, s′)|2
h̄ω − E tr

m ( �Q, s, s′) + iγtr
. (13)

The summation over m above implies a summation over all bound and unbound trion states consistent with the values of s and s′.
The expression for the Coulomb matrix elements Mm,n( �Q, s, s′) coupling the exciton and trion states can be found in a previous
paper by Rana et al. [12]. The exciton self-energy thus includes contribution of trion states to the polarization via exciton-trion
Coulomb coupling. Equation (12) gives the natural frequencies associated with the material polarization response, given by the
poles of the expression in the denominator, and these frequencies also correspond to the energy eigenstates of the Hamiltonian
[12]. It follows that on fast timescales (of the order of the inverse of the relevant optical frequencies), Pn, �Q(s; t ) can be written as

Pn, �Q(s; t
′) ≈ Pn, �Q(s; t )

⎧⎨
⎩

∫
dω
2π

−ih̄e−iω(t−t ′ )

h̄ω−E ex
n ( �Q,s)−iγex−�ex∗

n,s ( �Q,ω)
t ′ > t∫

dω
2π

ih̄e−iω(t−t ′ )

h̄ω−E ex
n ( �Q,s)+iγex−�ex

n,s ( �Q,ω)
t ′ < t .

(14)

The above approximation, when used together with Eq. (10) in Eq. (11), results in an expression for the photon operator in the
standard Markoff approximation [23]:

a†j (�/q, t ) = a†j (�/q, t = 0)eiω(�/q)t −
√
A

L

∑
n,s

g j,s(�/q)
∫

d2�k
(2π )2

√
1 − fc,s(�k + �Q)φex

n, �Q(�k + λh �Q)

× Pn, �Q(s; t )

h̄ω(�/q) − E ex
n ( �Q, s) + iγex − �ex

n,s( �Q, ω)
. (15)

C. Radiative rate

Use of Eq. (15) in the first term on the RHS of Eq. (6)
introduces an additional source of damping in the material
polarization which is due to radiative transitions. To show
this more clearly, we substitute Eq. (15) in (6), then use the
decomposition in Eq. (10) and project out the equation for
Pn, �Q(s; t ), take the mean value, and retain only those terms
that are relevant to see this radiative damping to get

d〈Pn, �Q(s; t )〉
dt

∼ −Rn,s( �Q)

2
〈Pn, �Q(s; t )〉, (16)

where the spontaneous emission rate Rn,s( �Q) is

Rn,s( �Q) = 2

cε

∫ ∞

Qc

dω

2π

(
ω√

ω2 − Q2c2
+

√
ω2 − Q2c2

ω

)

×Re[σn,s( �Q, ω)]. (17)

Here, c = 1/
√

εμo is the speed of light in the medium
surrounding the 2D monolayer. The above result for the spon-
taneous emission is conveniently expressed in terms of the
relevant exciton/trion optical conductivity of the 2D TMD

monolayer. Equation (17) is the main result of this paper.
The optical conductivity of a 2D TMD monolayer, for in-
plane light polarization, can be written in terms of the exciton
Green’s function [12]:

σ ( �Q, ω)

=
∑
n,s

σn,s( �Q, ω)

= i
e2v2

ω

∑
n,s

∣∣∣∣
∫

d2�k
(2π )2

φex
n, �Q(�k + λh �Q)

√
1 − fc,s(�k + �Q)

∣∣∣∣
2

×Gex
n,s( �Q, ω). (18)

Here, Gex
n,s( �Q, ω) is the exciton Green’s function [12]:

Gex
n,s( �Q, ω) = 1

h̄ω − E ex
n ( �Q, s) + iγex − �ex

n,s( �Q, ω)
. (19)

The energies of the eigenstates in Eq. (3) are given by the
poles of the exciton Green’s function. We label these energies
as E lo

n,s( �Q) and Ehi
n,s( �Q). Earlier, in Sec. II B, we remarked

that the radiative rate for the energy eigenstate to decay into
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0,
s

FIG. 4. Calculated real part of the optical conductivity, σ0,s( �Q =
0, ω), for in-plane light polarization is plotted for different electron
densities for electron-doped monolayer 2D MoSe2. Only the lowest
energy exciton state is considered in the calculations. The spectra
are all normalized to the peak optical conductivity value at zero
electron density. T = 5 K. The frequency axis is offset by the exciton
eigenenergy E ex

0 ( �Q = 0, s) of the two-body Schrödinger equation.
Two prominent peaks are seen in the spectra. Each peak corresponds
to an energy eigenstate state that is a superposition of exciton and
trion states, as shown in Eq. (3). Figure is reproduced from the paper
by Rana et al. [12].

the ground state is proportional to the weight of its exciton
component given by αn in Eq. (3). Assuming, γtr = γex = 0
for simplicity, |αn|2 for an energy eigenstate equals the residue
of the exciton Green’s function at the energy of the eigenstate:

|αn|2 =
[
1 − 1

h̄

∂

∂ω
Re�ex

n,s( �Q, ω)

]−1

= 1

1 + ∑
m,s′

(1+δs,s′ )|Mm,n( �Q,s,s′ )|2
(E lo/hi

n,s ( �Q)−E tr
m ( �Q,s,s′ ))2

.

(20)

Before exploring the above results further, it is in-
structive look at the optical conductivity of 2D materials.
The exciton/trion optical conductivity of electron-doped 2D
MoSe2 was calculated by the authors in a recent paper and
the results are reproduced in Fig. 4 [12]. The spectra shows
two prominent absorption peaks which correspond to the
poles, E lo

n,s( �Q) and Ehi
n,s( �Q), of the exciton Green’s function

in Eq. (19). The spectral weight shifts from the higher en-
ergy peak to the lower energy peak as the electron density
increases. The energy separation between the two peaks also
increases nearly linearly with the electron density [12]. In
the literature, the lower energy absorption peak is often iden-
tified with the trions (or charged excitons) and the higher
energy peak with the excitons. This identification is true
only in the limit of very small electron densities. At electron
densities large enough such that the lower energy peak has
sufficient spectral weight to be experimentally visible in the
absorption spectrum, each peak corresponds to an energy
eigenstate that is a superposition of exciton and trion states,
as shown in Eq. (3). Furthermore, at large electron densities,
the higher energy peak is broadened due to exciton-electron

scattering and acquires a wide pedestal (more visible on its
higher energy side) that corresponds to the continuum of
unbound trion states (or exciton-electron scattering states). In
Fig. 4, linewidth broadening due to factors other than exciton-
electron scattering, such as phonon scattering, was included
by assuming that γex = γtr = 4 meV.

The rates, Rlo
n,s( �Q) = 1/τ lo

n,s( �Q) and Rhi
n,s( �Q) = 1/τ hi

n,s( �Q),
corresponding to the lower and higher energy peaks in the
absorption spectra, respectively, can be each obtained by re-
stricting the frequency integral in Eq. (17) to the respective
peak. Interestingly, because the integral of the optical conduc-
tivity in Eq. (18) satisfies the sum rule [12],∫ ∞

0
ωRe{σ ( �Q, ω)} dω

2π
= e2v2

2h̄

∑
s

∫
d2�k
(2π )2

(1 − fc,s(�k)),
(21)

one can expect from Eq. (17) that the radiative rate for the
lower energy absorption peak to increase with the electron
density and the radiative rate for the higher energy absorption
peak to decrease with the electron density such that the sum
rule above is always satisfied. In addition, since the area under
the two peaks in Fig. 4 become nearly the same at large elec-
tron densities (2 × 1013 cm−2) (despite the fact that the peak
optical conductivity of the lower energy peak is higher), one
can expect the two lifetimes to become comparable at large
electron densities. Numerical simulation results, presented in
the next section, confirm these findings.

D. Numerical simulations and results

For simulations, we consider an electron-doped monolayer
of 2D MoSe2 suspended in air. In monolayer MoSe2, spin
splitting of the CBs is large (∼35 meV [25]) and the lowest
CB in each of the K and K ′ valleys is optically coupled to the
topmost VB [26]. We use effective mass values of 0.7mo for
both me and mh which agree with the recently measured value

o
n s Q

hi
n s Q

FIG. 5. The zero-momentum radiative lifetimes,τ lo
n=0,s( �Q = 0)

and τ hi
n−0,s( �Q = 0), of the lower and higher energy eigenstates, re-

spectively, of the coupled exciton-trion system (and corresponding to
the lower and higher energy peaks in the optical absorption spectra
in Fig. 4) are plotted as a function of the electron densities for an
electron-doped monolayer 2D MoSe2 suspended in air. T = 5 K.
The inset shows the same data on a linear scale.
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o
n s Q

hi
n s Q

FIG. 6. The radiative lifetimes,τ lo
n=0,s( �Q) and τ hi

n−0,s( �Q), of the
lower and higher energy eigenstates, respectively, of the coupled
exciton-trion system (and corresponding to the lower and higher en-
ergy peaks in the optical absorption spectra in Fig. 4) are plotted as a
function of the in-plane momentum Q for different electron densities
(1012 cm−2 and 6 × 1012 cm−2) for an electron-doped monolayer 2D
MoSe2 suspended in air. T = 5 K.

of 0.35mo for the exciton reduced mass [27]. We use a wave
vector-dependent dielectric constant ε(�q), appropriate for 2D
materials [2], to screen the Coulomb potentials. We assume
that γex = γtr ∼ 4 meV [28]. We compute exciton and trion
eigenfunctions and eigenenergies for different momenta and
electron densities as described by Rana et al. [12].

Figure 5 shows the zero-momentum radiative lifetimes,
τ lo
n=0,s( �Q = 0) and τ hi

n−0,s( �Q = 0), plotted for different electron
densities. As expected, at very small electron densities the
radiative lifetime τ lo

n=0,s( �Q = 0) of the lower energy eigenstate

is much longer than the lifetime τ hi
n=0,s( �Q = 0) of the higher

energy eigenstate. At very large electron densities these two
lifetimes become comparable. At small electron densities,
when the entire spectral weight lies with the higher energy
absorption peak in Fig. 4, and the corresponding eigenstate
is essentially a pure exciton state, the calculated lifetimes
for the higher energy eigenstate agree well with the lifetimes
published previously for excitons in 2D materials [20,29]. But
at larger electron densities (>10121/cm2), the results in pre-
vious work, which treated excitons and trions as independent
excitations, become incorrect.

Figure 6 shows the radiative lifetimes,τ lo
n=0,s( �Q) and

τ hi
n−0,s( �Q), plotted as a function of the in-plane momentum Q
(within the light cone) for different electron densities. The
light cone momentum is defined as the momentum Q for

which the energy of the eigenstate, E lo
n,s( �Q) or Ehi

n,s( �Q), equals
the photon energy h̄Qc. The radiative lifetimes are more or
less constant for momenta within the light cone, decrease
rapidly as the momentum approaches the light cone (due to an
increase in the density of photon states), and then diverge for
momenta outside the light cone (where the excitonic compo-
nent of the energy eigenstates cannot emit a photon and decay
into the material ground state). This behavior is well known
for pure exciton states in 2Dmaterials [20,21,29] and it carries
over to the coupled exciton-trion energy eigenstates in doped
2D materials.

IV. RATE FOR RADIATIVE DECAY INTO THE MATERIAL
EXCITED STATES

The radiative rates calculated above correspond to the
process depicted in Fig. 3(a) in which the energy eigenstate
decays into the material ground state. In this section, we calcu-
late the radiative rate for the process in Fig. 3(b) in which the
energy eigenstate decays into an excited state of the material
that has an electron-hole pair in the CB. The final state after
photon emission consists of a photon with momentum �q′ =
ẑq′

z + �Q′, a CB hole with momentum �p and a CB electron with
momentum �p+ �Q − �Q′. The radiative rate expression must
include a summation over all these final states. Furthermore,
the radiative rate for the process in Fig. 3(b) is expected to be
determined by the magnitude of the coefficients βm,s′ of the
trion states in the expression for the energy eigenstate given
in Eq. (3). These coefficients are found to be

|βm,s′ |2 =
(1+δs,s′ )|Mm,n( �Q,s,s′ )|2
(E lo/hi

n,s ( �Q)−E tr
m ( �Q,s,s′ ))2

1 + ∑
m′,s′′

(1+δs,s′′ )|Mm′,n( �Q,s,s′′ )|2
(E lo/hi

n,s ( �Q)−E tr
m′ ( �Q,s,s′′ ))2

.

(22)

The summation over m′ above implies a summation over all
bound and unbound trion states consistent with the values of
s and s′′. The expression for the Coulomb matrix elements
Mm,n( �Q, s, s′) coupling the exciton and trion states (including
bound and unbound trion states) can be found in a previous
paper by Rana et al. [12].

A. Radiative rate

To calculate the radiative rates for the process in Fig. 3(b),
we avoid truncating the six-body operator products to four-
body operator products that appear during the derivation of
Eq. (9), and then include a Heisenberg equation for six-body
operator products in our model. The calculations are tedious
and not particularly illuminating. The final result for the ra-
diative rate Rn,s( �Q) can be written in a simple form:

Rn,s( �Q) =
∑
m,s′

e2v2

ε
(1 + δs,s′ )

∫
dq′

z

2π

∫
d2 �Q′

(2π )2

∫
d2 �p
(2π )2

[
1 + q′2

z

Q′2 + q′2
z

]∣∣∣∣
∫

d2�k
(2π )2

×φtr
m, �Q(�k − ξ ( �Q + �p), s; (ξ + η)( �Q + �p) − �Q′, s′; �p′, s′)

√
1 − fc,s(�k)

∣∣∣∣
2

Re
[ i

ω
Sn,s,m,s′ ( �Q, �p, �Q′, ω)|

]
ω=

√
q′2

z+Q′2c
.

(23)
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The spectral function Sn,s,m,s′ ( �Q, �p, �Q′, ω) is

Sn,s,m,s′ ( �Q, �p, �Q′, ω) = 1

h̄ω − E tr
m ( �Q, s, s′) + � + iγtr − �n,s,m,s′ ( �Q, �p, �Q′, ω)

. (24)

Here, � stands for the energy difference Ec,s′ ( �p+ �Q − �Q′) − Ec,s′ ( �p), and

�n,s,m,s′ ( �Q, �p, �Q′, ω) = (1 + δs,s′ )|Mm,n( �Q, s, s′)|2
h̄ω − E ex

n ( �Q, s) + � + iγtr − Fn,s,m,s′ ( �Q, �p, �Q′, ω)
, (25)

where

Fn,s,m,s′ ( �Q, �p, �Q′, ω) =
∑

m′ �=m,s′′ �=s′

(1 + δs,s′′ )|Mm′,n( �Q, s, s′′)|2
h̄ω − E tr

m ( �Q, s, s′′) + � + iγtr
. (26)

The spectral function Sn,s,m,s′ ( �Q, �p, �Q′, ω) has the following
two important properties:

(1) Its poles are at the energies of the exciton-trion su-
perposition eigenstates shifted by �, the energy taken by the
electron-hole pair left behind in the CB after photon emission.
Therefore, the spectrum of Sn,s,m,s′ ( �Q, �p, �Q′, ω) will have two
prominent peaks just like the spectrum of optical absorption.
Since for Q � kF , the energy shift � will be negligibly small
for all p < kF , and the peaks in the Sn,s,m,s′ ( �Q, �p, �Q′, ω) spec-
trum will be more or less at the same energies as the peaks in
the absorption spectrum.

(2) Assuming γex = γtr = 0, the residue of
Sn,s,m,s′ ( �Q, �p, �Q′, ω) at these two poles is exactly equal
to the values of |βm,s′ |2 given in Eq. (22), which is satisfying
in light of the discussion above.

The radiative rates, Rlo
n,s( �Q) = 1/τ lo

n,s( �Q) and Rhi
n,s( �Q) =

1/τ hi
n,s( �Q), corresponding to the lower and higher energy peaks

in the absorption spectra, respectively, and associated with the
process shown in Fig. 3(b), can be each obtained by restricting
the frequency integral in Eq. (23) to the respective spectral
peak [the integral over frequency is implicit in Eq. (23) in the
q′
z and �Q′ integrations].

B. Simulation results

Figure 7 shows the radiative lifetimes,τ lo
n=0,s( �Q) and

τ hi
n−0,s( �Q), for radiative decay into the excited states of the
material, plotted as a function of the in-plane momentum Q
of the energy eigenstates for two different electron densities.
The radiative lifetimes are finite even outside the light cone
and have a weak dependence on the momentum Q. More
interestingly, the radiative rates shown in Fig. 7 are three to
four orders of magnitude smaller compared to the radiative
rates for decay into the material ground state shown in Fig. 6.
This large difference can be understood as follows. Consider
an energy eigenstate of momentum �Q, as given in Eq. (3),
and consider the four-body bound trion state component of
the energy eigenstate (the bound trion state has more weight
in the eigenstate than all the unbound trion states). The small
radius of the bound trion state (∼1 − 2 nm [12]) means that
the phase space occupied by each one of the two CB electrons
in the bound trion state is fairly large, and is of the order of
a−2, where a is the trion radius. When one of the two CB
electrons in the bound trion state radiatively recombines with

the VB hole, a CB electron and a CB hole are left behind.
Suppose the in-plane momentum of the emitted photon is �Q′,
the momentum of the CB electron left behind is �p+ �Q − �Q′,
and the momentum of the CB hole is �p. Since �Q′ is restricted
to be within the light cone (the phase space area of which
is ∼ω2/c2), only a very small portion of the phase space
of the CB electron state prior to the photon emission con-
tributes to photon emission. This phase space fraction is of
the order of ω2a2/c2, which is between 10−3 to 10−4. Note
that τ hi

n−0,s( �Q) > τ lo
n−0,s( �Q) in Fig. 7, which is the opposite

of the case in Fig. 6. This is because the radiative rates in
Fig. 7 are proportional to |βm,s′ |2 (weight of the trion com-
ponent in the energy eigenstate), whereas the radiative rates
in Fig. 6 are proportional to |αn|2 (weight of the exciton
component in the energy eigenstate). Figure 8 shows the ra-
diative lifetimes, τ lo

n=0,s( �Q) and τ hi
n−0,s( �Q), for momentum Q

o
n s Q

hi
n s Q

FIG. 7. The radiative lifetimes,τ lo
n=0,s( �Q) and τ hi

n−0,s( �Q), of the
lower and higher energy eigenstates, respectively, of the coupled
exciton-trion system (and corresponding to the lower and higher
energy peaks in the optical absorption spectra in Fig. 4) are plotted as
a function of the in-plane momentum Q for different electron densi-
ties (1012 cm−2 and 6 × 1012 cm−2) for an electron-doped monolayer
2D MoSe2 suspended in air. The lifetimes shown correspond to the
process depicted in Fig. 3(b) for radiative decay into excited states of
the material. T = 5 K. The lifetimes shown are three to four orders
of magnitude longer than the lifetimes shown earlier in Fig. 6 for
the process depicted in Fig. 3(a) for radiative decay into the material
ground state.
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o
n s Q

hi
n s Q

FIG. 8. The radiative lifetimes,τ lo
n=0,s( �Q) and τ hi

n−0,s( �Q), of the
lower and higher energy eigenstates, respectively, of the coupled
exciton-trion system (and corresponding to the lower and higher
energy peaks in the optical absorption spectra in Fig. 4) are plotted as
a function of the electron densities for an electron-doped monolayer
2D MoSe2 suspended in air. T = 5 K. The momentum value is
chosen to be just outside the light cone Q ∼ 107 1/m. The lifetimes
shown correspond to the process depicted in Fig. 3(b) for radiative
decay into the excited states of the material.

value just outside the light cone, plotted for different elec-
tron densities. At very small electron densities the radiative
lifetime τ hi

n=0,s( �Q) of the higher energy eigenstate is much

longer than the lifetime τ lo
n=0,s( �Q) of the lower energy eigen-

state, and at very large electron densities these two lifetimes
become comparable. The fact that τ lo

n−0,s( �Q) � τ hi
n−0,s( �Q) at

very small electron densities can be understood as follows. At
very small electron densities, |αn=0|2 ∼ 1 and |βm=0,s′ |2 � 1,
and the higher and lower energy eigenstates are thus nearly
pure exciton and pure trion states, respectively, and exciton
states do not radiatively decay into the excited states of the
material.

V. CERTAIN OTHER MISCONCEPTIONS REGARDING
RADIATIVE RATES

Certain other concepts and processes for radiative transi-
tions have appeared in the literature in the context of excitons
and trions in doped 2D materials that are incorrect in the opin-
ion of the authors. We discuss them briefly here. Figure 9(a)
shows a photon emission process involving a three-body trion
state in which the CB electron recombines with the VB hole
leaving behind a CB electron which is deposited outside the
Fermi sea [1,20,30]. This model showed that the energy of
the photon emitted by a trion state would be redshifted (with
respect to the photon emitted by an exciton in the same ma-
terial) by roughly the Fermi energy EF (in addition to the
trion binding energy) which is consumed in promoting the
left-behind CB electron to the unoccupied states above the
Fermi level. The redshift of the photon energy with the Fermi
energy is in agreement with experiments [1,30]. However,
there are several problems with this photon emission model
and with the concept of a three-body trion state itself [12].
Recent papers have unambiguously shown that the redshifting

FIG. 9. Certain processes that have been proposed in the lit-
erature for photon emission involving excitons and trions in
electron-doped materials are depicted. (a) Photon emission process
involving a three-body trion state in which the CB electron recom-
bines with the VB hole leaving behind another CB electron which
is deposited outside the Fermi sea [1,20,30]. (b) Photon emission
process involving an exciton in which an uncorrelated CB electron
from the Fermi sea recombines with the VB hole, leaving behind an
electron-hole pair in the CB [31]. (c) Photon emission process in-
volving a trion in which an uncorrelated CB electron from the Fermi
sea recombines with the VB hole, leaving behind two electron-hole
pairs in the CB [31].

of the lower energy eigenstate, linearly with the Fermi energy,
with respect to the higher energy eigenstate is the result of
Coulomb interactions [12–16]. Second, this model incorrectly
assumes that the electrons forming the trion state are somehow
not a part of the CB electronic states [as Fig. 9(a) depicts]
and then concludes that the electron left behind after photon
emission needs to be deposited back into the CB with enough
energy to avoid Pauli blocking. The closest correct model,
depicted in Fig. 3(b), shows that when a four-body trion state
emits a photon, the CB electron and the CB hole left behind
(that were a part of the four-body trion state) remain in the
states they occupied just before the emission of the photon.

Figure 9(b) shows a photon emission process involving
an exciton in which an uncorrelated CB electron from the
Fermi sea recombines with the VB hole, leaving behind an
electron-hole pair [31]. A simple calculation using an exciton
state as the initial state and a final state consisting of a Fermi
sea with an electron-hole pair in the CB, and using Fermi’s
Golden Rule, will show that the rate of this process, although
very small, is roughly proportional to the electron density
(for small electron densities) which in turn is proportional to
the probability of finding an uncorrelated electron near the
exciton. The catch here is that the probability of finding an
electron of the same spin/valley near the exciton as that of the
electron forming the exciton is not proportional to the electron
density but is in fact near zero due to Pauli’s principle. Each
electron in the CB, including the one forming an exciton, is
surrounded by its exchange hole and the size of this exchange
hole is much larger than the size of the exciton in 2D materials
for electron densities smaller than ∼1013 cm−3. In our model,
when we switched from the four-body operator T�Q to the
connected four-body operator T c

�Q in Eq. (6), we removed terms
that contributed to the process shown in Fig. 9(b), and one of
the difference terms, given in Eq. (8), gave the exchange en-
ergy contribution, which renormalized the CB energy Ec,s(�k)
on the LHS in (6). The similar process for trions, shown in
Fig. 9(c) [31], would have a negligibly small rate for the same
reason.
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VI. DISCUSSION AND CONCLUSION

The results presented in this paper show that photons
can be emitted by exciton-trion energy egenstates when their
momenta �Q are inside or outside the light cone. Inside the
light cone, radiative rates for transitioning into the material
ground state are nearly four orders of magnitude faster than
the radiative rates in which the final state is an excited state
of the material. Outside the light cone, only radiative decay
into an excited state of the material is possible. Our results
are expected to clarify many concepts associated with light
emission from excitons and trions and their superposition
states in doped 2D materials.

It needs to be mentioned here that the radiative lifetimes
measured in experiments depend on the type of measurement
performed and therefore some care is needed in comparing
experiments with theory. Radiative lifetime measurements are
usually performed over exciton/trion ensembles and these
ensembles can be prepared in experiments in various ways.
Ultrafast resonant optical generation of excitons within the
light cone and their subsequent probing via 1s → 2s exci-
tonic transitions using a mid-IR probe pulse have yielded
exciton lifetimes in 2D TMDs that match well with theory
[32]. Time-resolved PL measurements, on the other hand, rely
on the exciton-trion energy eigenstates to relax down to the
light cone before they can recombine radiatively with high

efficiency [33]. This relaxation process is generally bot-
tlenecked by phonon scattering times which are usually
much slower (around a few picoseconds) than the radia-
tive lifetimes inside the light cone [34–37]. In addition, as
discussed in this paper, PL collected from both peaks in
the emission/absorption spectra of doped 2D materials are
from states that are superpositions of exciton and trion states
and contribute to PL from both inside and outside the light
cone. Although the radiative rates outside the light cone are
much smaller than the rates inside the light cone, the phase
space available outside the light cone for hosting a non-
equilibrium exciton-trion population is also much larger and
a lot more exciton-trions could be present outside the light
cone than inside it depending on the nature and details of
the experiment. An accurate modeling of radiative emission
from non-equilibrium ensembles requires computational ap-
proaches well beyond the scope of this paper [37].
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[25] K. Kośmider, J. W. González, and J. Fernández-Rossier, Phys.
Rev. B 88, 245436 (2013).

[26] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Phys. Rev.
B 88, 085433 (2013).

[27] M. Goryca, J. Li, A. V. Stier, T. Taniguchi, K. Watanabe, E.
Courtade, S. Shree, C. Robert, B. Urbaszek, X. Marie, and S. A.
Crooker, Nat. Commun. 10, 4172 (2019).

[28] M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller,
T. F. Heinz, T. Korn, A. Chernikov, E. Malic, A, Knorr, Nat.
Commun. 7, 13279 (2016).

[29] M. Palummo,M. Bernardi, and Jeffrey C. Grossman, Nano Lett.
15, 2794 (2015).

[30] V. Huard, R. T. Cox, K. Saminadayar, A. Arnoult, and S.
Tatarenko, Phys. Rev. Lett. 84, 187 (2000).

[31] O. Cotlet, D. S. Wild, M. D. Lukin, and A. Imamoglu, Phys.
Rev. B 101, 205409 (2020).

[32] C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G.
Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and
R. Huber, Nat. Mater. 14, 889 (2015).

[33] C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T.
Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and
X. Marie, Phys. rev. B 93, 205423 (2016)

[34] A. V. Paraskevov, J. Luminescence 132, 2913 (2012).
[35] A. O. Slobodeniuk and D. M. Basko, Phys. Rev. B 94, 205423

(2016).
[36] P. K. Basu and Partha Ray, Phys. Rev. B 45, 1907 (1992).
[37] S. Brem, M. Selig, G. Berghaeuser, and E. Malic, Nat. Sci. Rep.

8, 8238 (2018).

035424-12

https://doi.org/10.1103/PhysRevB.88.245436
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1038/s41467-019-12180-y
https://doi.org/10.1038/ncomms13279
https://doi.org/10.1021/nl503799t
https://doi.org/10.1103/PhysRevLett.84.187
https://doi.org/10.1103/PhysRevB.101.205409
https://doi.org/10.1038/nmat4356
https://doi.org/10.1103/PhysRevB.93.205423
https://doi.org/10.1016/j.jlumin.2012.06.004
https://doi.org/10.1103/PhysRevB.94.205423
https://doi.org/10.1103/PhysRevB.45.1907
https://doi.org/10.1038/s41598-018-25906-7

