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Tuning the glass-forming ability of metallic glasses through energetic frustration
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The design of multifunctional bulk metallic glasses is limited by the lack of a quantitative understanding
of the variables that control the glass-forming ability of alloys. Both geometric frustration (e.g., differences in
atomic radii) and energetic frustration (e.g., differences in the cohesive energies of the atomic species) contribute
to the glass-forming ability. We perform molecular dynamics simulations of binary Lennard-Jones mixtures
with only energetic frustration. We show that there is little correlation between the heat of mixing !Hmix and
critical cooling rate Rc, below which the system crystallizes, except that !Hmix < 0. By removing the effects of
geometric frustration, we show strong correlations between Rc and the variables ε− = (εBB − εAA)/(εAA + εBB )
and εAB = 2εAB/(εAA + εBB ), where εAA and εBB are the cohesive energies of atoms A and B and εAB is the pair
interaction between A and B atoms. We identify a particular composition-dependent combination of ε− and εAB
that collapses the data for Rc over nearly 4 orders of magnitude in cooling rate. By performing local structural
analyses, we find that energetic frustration, even in the absence of geometric frustration, can induce short-range
fivefold symmetric order that impedes crystallization. This result emphasizes that energetic frustration plays an
important role in determining the glass-forming ability, and thus it should be taken into account in the design of
new metallic glass formers.
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I. INTRODUCTION

Bulk metallic glasses (BMGs) are amorphous alloys that
possess promising structural, mechanical, and functional
properties [1–3]. However, a given BMG may not possess
multiple desirable properties, such as high elastic strength and
biocompatibility in the case of BMGs used in biomedical ap-
plications [4]. Thus, de novo design of BMGs with multifunc-
tional properties is an important goal. A key impediment to
progress is that one cannot currently predict the glass-forming
ability (GFA) of a given alloy [5]. The GFA can be directly
quantified by measuring the critical cooling rate Rc, below
which the system crystallizes. Smaller Rc implies better GFA.
The most prominent and widely used features for identifying
BMGs were suggested by Inoue in 2000 [6]: (1) BMGs are
typically multicomponent systems consisting of three or more
elements, (2) the size ratios of the three main constituents
differ by more than 12%, and (3) the heat of mixing !Hmix
among the three main elements is negative. However, there
are many examples of metallic glasses that do not obey these
rules. First, several binary alloys (such as CuZr) possess
GFAs that are comparable to those for multicomponent BMGs
[7–9]. Also, there are many ternary alloys (e.g., Al, Cu, and V)
that have Rc < 106 K/s, but the diameter ratios among the
three elements differ by less than 12% [10]. Furthermore,
recent experimental studies have shown that even monoatomic
metallic systems can form glasses via rapid cooling [11].
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Thus, it is clear that a more quantitative theoretical framework
is necessary for predicting the GFA of alloys.

There are two main contributions to the GFA of an al-
loy, geometric and energetic frustration [12,13]. Geometric
frustration can be achieved in alloys using elements with
sufficiently different metallic radii [12,14,15], which allows
the glass phase to pack more densely, but severely strains
the competing crystalline phases. Energetic frustration can be
achieved in alloys even with elements of similar sizes, if they
possess different cohesive energies and strong interactions
between different atomic species. While there have been many
computational studies of the variation of Rc with geometric
frustration [13,16,17], there are few studies that have inves-
tigated how energetic frustration in the absence of geometric
frustration affects the GFA.

In this study we carry out molecular dynamics simulations
of binary Lennard-Jones (LJ) mixtures with atoms of the
same size, but different cohesive energies, to understand the
critical cooling rate as a function of the degree of energetic
frustration. We find several important results: (1) We show
that there is little correlation between the GFA and heat of
mixing in binary and multicomponent metallic glass formers.
(2) Instead, we find that there is a particular combination
of the difference in the cohesive energies and the pair inter-
actions among different species in binary alloys that yields
the best GFA for each composition. (3) We rationalize these
findings for binary LJ systems with the best GFA by con-
sidering separation fluctuations and chemical ordering [18]
among nearest neighbor atoms. We also show that energetic
frustration, even in the absence of geometric frustration, gives
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rise to local fivefold symmetric structural order that impedes
crystallization.

II. METHODS

We focus on binary LJ mixtures in three dimensions with
vanishing geometric, but tunable energetic frustration. The
pairwise interaction potential is

V (ri j ) = 4εi j

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (1)

where σ is the diameter of atoms A and B, ri j is the separation
between atoms i and j, εAA and εBB are the cohesive energies
of atoms A and B, and εAB is the interaction energy between A
and B. The potential is truncated and shifted at ri j = 2.5σ , and
the total potential energy is V =

∑
i> j V (ri j ). We consider

N = NA + NB atoms with equal mass mA = mB in a cubic box
and periodic boundary conditions in all directions. We carry
out simulations with N = 1000, 2000, and 4000 to investigate
system-size effects; we show in the Appendix that the system-
size dependence of the critical cooling rate Rc is weak. Length,
energy, pressure, and time scales will be reported in units of
σ , εAA, ε/σ 3

AA, and
√
mAσ 2/εAA.

We first equilibrate each system with fraction of B atoms,
fB = NB/N , and combinations of εBB/εAA and εAB/εAA at
high temperature T = 5.0 (using a Nose-Hoover thermostat
[19,20]) and then quench them to low temperature T = 0.01
as a function of cooling rate R. The thermal quenches are
performed at fixed pressure P0 = 10 to avoid cavitation [21],
and the results are averaged over six independent simulations.
As shown in the Appendix, we find that the particular value
of P0 does not strongly affect the GFA in systems that do not
cavitate over the range 10−2 < P0 < 10.

III. RESULTS AND DISCUSSION

To understand the relevant range of parameter space for
the cohesive energies εAA and εBB, and interaction energy εAB,
we cataloged these values for 990 binary alloys involving 45
elements that occur in metallic glasses. For this analysis, we
chose element A such that εAA > εBB and used the pairwise
definition of the heat of mixing !Hp(i, j) = (εii + ε j j )/2 −
εi j to calculate εAB [22]. Values for εAA, εBB, and !Hp were
obtained from experimental data [23,24]. In Fig. 1(a) we
show that binary alloys exist over a relatively narrow range
of parameters 0.5 ! εAB/εAA ! 1.4 and 0.1 ! εBB/εAA < 1.
In contrast, these energetic parameters can exist over a wider
range in ionic liquids and molten salts [25,26]. Albeit with
scatter, the experimental data scales as εAB ∝ √

εAAεBB, which
is similar to the London mixing rule εAB = χLondon

√
εAAεBB

[27], where

χLondon =
2
√
IAIB

IA + IB

[
2
√

σAAσBB

σAA + σBB

]6

, (2)

σi j = (σi + σ j )/2 is the average diameter of atoms i and j,
and IA and IB are the ionization energies of atoms A and B.
In Fig. 1(b) we show the ratio of χexpt = εAB/

√
εAAεBB for

the experimental data to χLondon. More than 70% of the data
obeys the London mixing rule with 1 < χexpt/χLondon < 1.25.

FIG. 1. (a) The interaction energy εAB (normalized by εAA) from
the pairwise heat of mixing !Hp plotted versus the cohesive energy
ratio εBB/εAA for 990 binary alloys involving 45 elements found in
metallic glasses [23,24]. We chose element A, such that εAA > εBB.
The solid line obeys εAB = c

√
εBBεAA with c = 1.09. (b) The ratio

of χexpt = εAB/
√

εAAεBB to the London expression χLondon in Eq. (2),
plotted versus χLondon for the same data in (a).

To more fully understand the effects of energetic frustration
on the GFA of binary mixtures, below we independently
vary εAB/εAA and εBB/εAA over a much wider range than in
Fig. 1(a).

To quantify the GFA, we analyze the positional order of the
system by measuring the bond orientational order parameter
for atom i [28,29]:

Q6(i) =



4π
13

m=6∑

m=−6

∣∣∣∣∣∣
1

Ni + 1



q6m(i)+
Ni∑

j=1

q6m( j)





∣∣∣∣∣∣

2



1/2

,

(3)

where q6m(i) = N−1
i

∑Ni
j=1 (A

i
j/A

i
tot )Y6m [θ (ri j ),φ(ri j )],

Y6m[θ (ri j ),φ(ri j )] is the spherical harmonic of degree 6 and
order m, θ is the polar angle and φ is the azimuthal angle of
the vector ri j from atom i to j, Ni is the number of Voronoi
neighbors of atom i, Ai

j is the area of the Voronoi cell face
separating atoms i and j, and Ai

tot is the total area of all faces
of the Voronoi cell for atom i [29].

The bond orientational order can distinguish between dis-
ordered systems (Q6 ! 0.3) and systems with crystalline or-
der [e.g., face-centered cubic (fcc) with Q6 = 0.575, body-
centered cubic (bcc) with Q6 = 0.511, and hexagonal close
packed (hcp) Q6 = 0.485]. In Fig. 2(a) we show the fraction
f of each sample with local fcc, hcp, bcc, and disordered
structure (using adaptive common neighbor analysis [30]) in
systems with fB = 0.5 over the full range of cohesive and
interaction energies for R = 5×10−5. For more than 80%
of the systems, the fraction of atoms with fcc or hcp order
exceeds 0.70, whereas very few atoms possess bcc order. (We
verify this result for other cooling rates in the Appendix.)
In Fig. 2(b) we plot the distribution P[Q6(i)] for a system
with εBB/εAA = εAB/εAA = 1 and several R. For R > Rc, the
systems are disordered and P[Q6(i)] has a peak near Q6 ≈
0.2. For R < Rc, P[Q6(i)] develops peaks near the values
corresponding to fcc and hcp order. The peak near Q6(i) ≈
0.535 corresponds to regions of adjacent fcc and hcp order, not
to bcc order as shown in the Appendix. In Fig. 2(c) we show
that 〈Q6〉 = N−1 ∑N

i=1 Q6(i) versus R is similar to a logistic
function, and Rc corresponds to the cooling rate at which
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FIG. 2. (a) Fraction f of each system (labeled k = 1, . . . , 210) with a given local structure (fcc, hcp, bcc, or disordered) for a slow cooling
rate (R = 5×10−5) in binary LJ systems with fB = 0.5 over the full range of cohesive and interaction energies. (b) Distribution of the local bond
orientational order parameter P[Q6(i)] for systems with εBB/εAA = εAB/εAA = 1.0 over 4 orders of magnitude in cooling rate R. (c) Average
bond orientational order 〈Q6〉 for the system in (b) versus R. Rc corresponds to the cooling rate at which 〈Q6〉 = (〈Q6〉0 + 〈Q6〉∞)/2, which is
obtained by fitting the data to a logistic function (〈Q6〉 − 〈Q6〉∞)/(〈Q6〉0 − 〈Q6〉∞) = {1 − tanh[log10(R/Rc )1/κ ]}/2, where 〈Q6〉0 and 〈Q6〉∞
are the average bond orientational order in the limits of R → 0 and ∞, and 0 < κ < 1 is the stretching factor. The vertical dashed line in
(b) indicates the 〈Q6〉 that determines Rc [vertical dashed line in (c)].

〈Q6〉 = (〈Q6〉0 + 〈Q6〉∞)/2, where 〈Q6〉0 and 〈Q6〉∞ are the
values in the limits R → 0 and ∞ limits.

What combination of εAA, εBB, εAB, and fB controls the
GFA in alloys? One possibility is the heat of mixing, which
can be generalized for multicomponent alloys as !Hmix =
4

∑
i *= j fi f j!Hp(i, j) [22]. In Fig. 3(a) we show Rc versus

!Hmix (normalized by the average cohesive energy ε) for all
binary LJ systems studied. We find little correlation between
Rc and !Hmix in the simulations [31]. We also assembled a
database of 482 metallic glass formers with nc = 2, . . . , 8 dif-
ferent atomic species, with values of Rc that span 10 orders of
magnitude [32]. (See the table provided in the Supplemental
Material [32].) The experimental data in Fig. 3(b) is similar
to the simulation data; there is no correlation between Rc and
!Hmix, other than !Hmix < 0 for all metallic glasses. Note
that the simulations cover a much wider range of !Hmix/ε
than experiments on metallic glasses, but Rc in the simulations
corresponds to only rapid cooling, 1013 to 109 K/s.

In Figs. 4(a)–4(i) we show contour plots of Rc versus εAB =
2εAB/(εAA + εBB) and ε− = (εBB − εAA)/(εAA + εBB) for bi-
nary LJ systems with fB = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9. We find strong correlations between Rc and ε−

FIG. 3. (a) Rc from simulations of binary LJ systems versus the
heat of mixing !Hmix/ε, where ε is the average cohesive energy, for
nine values of fB. (b) Rc (in K/s) versus !Hmix/ε from experiments
on 482 metallic glass formers with n = 2, . . . , 8 different atomic
species. Note that the scale of Rc in (b) is 10 orders of magnitude,
whereas it is 4 orders of magnitude in (a).

and εAB for all compositions. However, the contours of equal
values of Rc in the ε− and εAB plane are very different for dif-
ferent values of fB. For example, Rc increases with increasing
εAB and increasing ε− for fB = 0.1, whereas Rc increases with
increasing εAB and decreasing ε− for fB ! 0.3. For fB + fA
with a majority of B atoms and only a small fraction of A
atoms, to have good GFA, the cohesive interaction between
B atoms must be small compared to that for A atoms with
εBB − εAA < 0 and the interaction between A and B atoms
must be strong with εAB + 1. Similarly, when fA + fB with
a majority of A atoms and only a small fraction of B atoms,
to have good GFA, the cohesive interaction between B atoms
must be strong (or at least comparable to that between A atoms
with εBB ≈ εAA) and the interaction between A and B atoms
must be strong with εAB + 1. Note that the Rc contours are
symmetric with respect to switching the labels of atoms A and
B, and thus we only show the region εBB − εAA " 0.

In the liquid state, the system is disordered in both the
positions and labels of the atoms. The system has only short-
range liquidlike positional order and the labels of the same-
sized atoms are randomly distributed. As the system is cooled
to low temperature, it seeks configurations (both the atomic
positions and labels of the atoms) with the lowest potential
energy, which will depend on the values of the cohesive
energies εAA and εBB and the interaction energy εAB. When
εAA = εBB and εAB = 0, the fact that there are two species of
atoms, A and B, does not affect the ability of the system to
find low energy configurations, all labelings of the atoms have
the same energy, and thus there is no energetic frustration.
When εAA *= εBB and εAB > 0, the random distribution of the
atomic labels in the liquid state is no longer the lowest energy
configuration. The ability of the system to reach low energy
configurations (with order in the atomic labels and positional
order) depends on the cooling rate. Thus, the critical cooling
rate will depend on εAA and εBB, εAB, and fB.

We approximate the Rc contours in Fig. 4 as straight lines
in the ε− and εAB plane for each fB and plot the slope k
versus fB in Fig. 5(a). The slope crosses zero near fB ≈ 0.2
and reaches a peak value of k ≈ 0.25 near fB ≈ 0.8. As
fB → 1, the system becomes monoatomic with all B atoms,
the GFA depends only on ε−, and thus k → 0. As fB → 0, the
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FIG. 4. (a)–(i) Contour plots of equal values of Rc (on a logarithmic scale decreasing from blue to red) versus εAB = 2εAB/(εAA + εBB ) and
ε− = (εBB − εAA)/(εAA + εBB) at fB = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. All plots share the same horizontal and vertical axes, as well
as the same color scale. Demixing occurs for εAB < (εAA + εBB )/2 (purple region). The domain of experimentally accessible binary alloys is
enclosed within the solid pink curve [cf. Fig. 1(a)]. The dashed lines represent linear approximations of the equal-Rc contours.

system becomes monoatomic with all A atoms, and the GFA
is independent of ε− and εAB. In this regime, the slope of the
contours in the ε− and εAB plane is undefined as indicated by
the vertical dashed line in Fig. 5(a). In Fig. 5(b) we show that
the data for Rc can be collapsed by plotting log10 Rc versus
[ε− − k( fB)εAB]. We find that the GFA in binary LJ systems
obeys a roughly parabolic form:

log10 Rc ≈ c1[ε− − k( fB)εAB]2 + log10 R0, (4)
where c1 ≈ −2 gives the concavity and R0 ≈ 10−2 is the
cooling rate in the ε− → 0 and εAB → 0 limits.

There are two striking features about the Rc contours in
Figs. 4(a)–4(i). First, Rc increases with increasing ε− and
εAB for small fB, indicating that systems with the best GFA
possess εBB ∼ εAA and εAB + 1. To frustrate crystallization

for small fB, εBB/εAA should be as large as possible, ap-
proaching εBB/εAA → 1. Similarly, large εAB allows the B
atoms to act as low mobility defects with root-mean-square
(rms) fluctuations !rAB =

√
〈r2AB〉 − 〈rAB〉2 < !rAA in the

low-temperature glass, where 〈rAB〉 is the average separation
between an A atom and a Voronoi-neighbor B atom. Ad-
ditional details of the calculations of !rAB are included in
the Appendix. Second, Rc increases with decreasing ε− and
increasing εAB for large fB. In this case, εBB → 0 prevents
B atoms from clustering. Also, in the large εAB limit, the
A atoms act as low mobility defects with rms fluctuations
!rAB < !rBB in the low-temperature glass.

In the high-temperature liquid, the identities of the nearest
Voronoi neighbors of atoms A and B are completely random.
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FIG. 5. (a) The best fit slope k of the equal-Rc contour lines in the ε− and εAB plane (in Fig. 4) plotted versus fB. For fB < 0.05 (vertical
dotted line), Rc is uniform and k is undefined. (b) log10 Rc versus ε− − k( fB )εAB for all systems studied. The dashed line obeys Eq. (4). Binary
LJ systems with ε− and εAB in the experimental range in Fig. 1(a) are indicated by filled diamonds.

As the system cools, the identities of the neighboring atoms
for each atom type A and B can deviate from random, and
such chemical ordering can affect the GFA. For example, we
hypothesize that if the competing crystal has large chemical
order, the system will possess large GFA since the A and B
species must rearrange significantly to form the crystal. Note
that a similar mechanism has been proposed by Song et al.

[33]. In this work they show that local atomic ordering in
the crystal phase of Cu50Zr50 results in a much lower atom
attachment rate to the crystal nucleus during crystallization,
which gives rise to enhanced GFA. To assess the hypothesis of
a connection between local order and high GFA, we measured
the chemical ordering [i.e., the probability pA(NB) for an A
atom to have NB B nearest neighbors when fA > fB or the

FIG. 6. The probability Pi(Nj ) with i *= j for an i atom to have Nj Voronoi nearest neighbors for (a)–(c) fB = 0.1, (d)–(f) 0.5, and (g)–(i)
0.9 in binary LJ systems cooled at R = 5×10−5 (green wide bars), which yields systems with local fcc order, for combinations of ε− and εAB
with increasing GFA. We also show Prandom

i (Nj ) (thin blue bars) for systems with the same structure, but randomized atom types for the nearest
neighbors. For fB = 0.1, we only consider PA(NB) since A is the majority species. For fB = 0.9, we only consider PB(NA) since B is the majority
species. The specific parameters for each panel are as follows: (a) Rc = 7.4×10−3, εAB = 0.83, ε− = −0.67, (b) Rc = 7.5×10−4, εAB = 5.0,
ε− = −0.67, (c) Rc = 2.5×10−4, εAB = 4.17, ε− = −0.11, (d) Rc = 3.3×10−4, εAB = 0.83, ε− = −0.67, (e) Rc = 2.8×10−4, εAB = 4.17,
ε− = −0.11, (f) Rc " 10−6, εAB = 5.0, ε− = −0.67, (g) Rc = 6.6×10−4, εAB = 0.83, ε− = −0.67, (h) Rc = 5.6×10−5, εAB = 4.17, ε− =
−0.11, and (i) Rc " 10−6, εAB = 5.0, ε− = −0.67.
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FIG. 7. Contour plots of the local fivefold symmetric order parameterW as a function of ε− and εAB for low-temperature glasses generated

using R = 10−2 for (a) fB = 0.1, (b) 0.5, and (c) 0.9.W increases from blue to red. The contours forW in (a)–(c) are similar to the contours
for Rc presented in Figs. 4(a), 4(e) and 4(i).

probability pB(NA) for a B atom to have NA A nearest neigh-
bors when fB > fA] at a slow cooling rate with significant fcc
order. In Fig. 6 we show pi(Nj ) (with i *= j) for systems with
fB = 0.1, 0.5, 0.9 in Figs. 6(a)–6(f), and 6(g)–6(i), respec-
tively. Rc decreases from Figs. 6(a) to 6(c), from Figs. 6(d) to
6(f), and from Figs. 6(g) to 6(i). In each panel we compare
pi(Nj ) to prandomi (Nj ), where we keep the low-temperature
structure of the system and randomly assign the labels of the
nearest neighbors. We find that the GFA increases with the
chemical order,

∑
Nj
|pi(Nj ) − prandomi (Nj )|, of the competing

crystal.
To further understand how energetic frustration influences

the GFA of binary alloys in the absence of geometric frus-
tration, we performed local structural analysis using Voronoi
tessellation [34]. Using this analysis, we can calculate the
Voronoi index 〈n3, n4, n5, n6〉, which is a list of integers that
gives the number of faces with three, four, five, and six
edges. For example, the Voronoi index for an icosahedron
is 〈0, 0, 12, 0〉. Although 〈0, 0, 12, 0〉 is the dominant local
structural motif in CuZr-based metallic glasses, it is not the
dominant motif in many other glass-forming alloys, such as
Mg-Cu-Y, Ni-P, Pd-Si, and Ni-Zr. However, local fivefold
symmetry is significant in these systems. We can define
the average degree of fivefold local structural order: W =
〈n5/

∑6
i=3 ni〉 [16]. Since local fivefold order is incompatible

with global fcc and related crystalline order,W quantifies the
degree of frustration to crystallization. In Fig. 7 we show that
large fivefold order is also observed in systems with only
energetic frustration, and no geometric frustration. Further-
more, we show that there is a strong correlation between large
fivefold orderW and small values of the critical cooling rate
Rc (i.e., good GFA). Thus, both geometric frustration and
energetic frustration (e.g., cohesive energy differences) can
lead to pronounced fivefold order that lowers the nucleation
rate due to an increase in the interfacial energy between the
liquid and crystal phases.

IV. CONCLUSIONS

By decoupling geometric and energetic frustration, we
have shown that the GFA is not strongly correlated to the
heat of mixing, which involves the particular combination of
variables (εBB + εAA)/2εAA − εAB/εAA. Instead, we find that

the GFA is strongly correlated with ε− (i.e., the difference
in the cohesive energies, not the sum) and εAB, and we
identified the fB-dependent combination of ε− and εAB that
controls the GFA for binary LJ systems. We emphasize that it
was important to study regions of the ε− and εAB parameter
space that were beyond the experimental range of metal-
lic glasses to fully understand the parameter dependence of
the GFA. This work will motivate several important future
studies. First, we encourage researchers to experimentally
characterize the GFA of binary alloys containing elements
with nearly the same metallic radii, yet with large energetic
frustration. Second, we are now in a position to understand
theoretically the GFA of binary LJ systems with both geo-
metric and energetic frustration. By tuning both the atomic
size ratio and cohesive energy difference, we will study how
energetic frustration couples to geometric frustration to deter-
mine the GFA of binary alloys. From our preliminary studies,
we find that the atomic species with the larger metallic radius
possesses the larger cohesive energy for binary alloys with
the best GFA. These results are consistent with several metal-
metal binary metallic glass formers found in experiments,
such as Cu-Zr, Ni-P, and Ni-Nb. A more complete study of
binary alloys with both energetic and geometric frustration is
currently being performed.
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APPENDIX

In this Appendix we include five brief sections that provide
additional details about the results presented in the main text.
The five sections are as follows: (1) Finite-size effects of
the critical cooling rate, (2) identification of the parameter
space where cavitation occurs, (3) comparisons of the critical
cooling rate when cooling at different fixed pressures, (4)
common neighbor analysis of structural order over a wide
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FIG. 8. Comparison of the critical cooling rate Rc obtained at
N = 2000 to Rc at N = 1000 (open red circles) and 4000 (open blue
circles) for fB = 0.1. The dashed line with slope one and zero vertical
intercept indicates when the critical cooling rates at different system
sizes are the same.

range of cooling rates, and (5) root-mean-square position
fluctuations among nearest neighbor atoms.

1. Finite-size effects of the critical cooling rate

We carried out studies of the glass-forming ability of
binary LJ alloys, by measuring the critical cooling rate, over
the full range of ε− and εAB for N = 1000, 2000, and 4000 to
understand the system-size effects of Rc. We show in Fig. 8
that the system-size dependence of Rc is weak, and thus we
show results for N = 2000 in the main text.

2. Identification of the parameter space where cavitation occurs

During the cooling process to create low-temperature
glasses, cavities can form when the number density ρ or
pressure P of the system is too low. To ensure that all systems
are homogeneous, we checked for cavity formation in the
low-temperature glass states. To determine whether a cavity
formed, we divided the cubic volume into 125 equal-sized
boxes and determined the fraction of boxes fvoid that did
not possess any atoms. For systems with N = 2000 atoms,
each box will contain on average 16 atoms if they are dis-
tributed homogeneously. As shown in Fig. 9, LJ systems
can cavitate when they are cooled at constant volume (with
ρ = 1.0), while cavity formation is rare when they are cooled
at constant pressure P0 = 10. Thus, most of our studies were
performed at constant pressure with P0 = 10. In addition, we
have found that the critical cooling rates Rc for systems that
do not cavitate are similar when cooled at constant volume
(at ρ = 1.0) and constant pressure P0 = 10.

3. Comparisons of the critical cooling rate when cooling
at different fixed pressures

Most of the studies of the critical cooling rate Rc for binary
LJ systems were performed at constant pressure. In Fig. 10 we
show results for Rc over the full range of ε− and εAB generated
by cooling at constant pressure with P0 = 0.1 and 10. For
most of the data, the critical cooling rates are similar for the
two pressures. However, there is some dependence of Rc on

FIG. 9. The fraction fvoid of each low-temperature glass (labeled
k = 1, 2, . . . , 210) that possesses voids when cooled using R =
5×10−5 at (a) constant volume (with reduced number density ρ =
1.0) and at (b) constant pressure with P0 = 10. We show systems in
which the fraction of B atoms is varied from fB = 0.1 to 0.9.

the pressure for the systems with low values of Rc, e.g., the
minimum Rc is ≈10−5.5 for P0 = 10, while it is ≈10−4.5 for
P0 = 0.1.

4. Common neighbor analysis of structural order
over a wide range of cooling rates

To study the crystallization process of binary LJ alloys, we
analyzed the structural order as a function of the cooling rate
using adaptive common neighbor analysis [30]. As shown in
Fig. 11(a) for fB = 0.5, at high cooling rates, all atoms exist in
disordered local environments. As the cooling rate decreases,
local crystalline order (fcc, hcp, and bcc) begins to appear as
shown in Figs. 11(b) and 11(c). However, at the lowest cooling
rates, the systems form crystals with only fcc and hcp order,
with no bcc order. We find similar results for the other values
of fB studied. These results suggest that the lowest energy

FIG. 10. Critical cooling rate Rc of binary LJ systems at two
compositions, fB = 0.7 (filled circles) and 0.9 (downward trian-
gles), and many values of εAB = 2εAB/(εAA + εBB ) and ε− = (εBB −
εAA)/(εAA + εBB ) when cooling at constant pressure P0 = 0.1 (verti-
cal axis) and 10 (horizontal axis). The dashed line has slope one and
zero vertical intercept.
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FIG. 11. Fraction f of each system (labeled k = 1, 2, . . . , 210)
with a given local structure, fcc and hcp (triangles), bcc (circles),
or disordered (squares), at four cooling rates, (a) R = 5×10−2,
(b) 5×10−3, (c) 10−3, and (d) 5×10−4 in binary LJ systems with
fB = 0.5 over the full range of cohesive energies and interaction
energies between A and B atoms.

state of binary LJ alloys over the full range of ε−, εAB, and
fB is the close packed hcp and fcc crystals.

In the probability distributions of the bond-orientational
order parameter P[Q6(i)] in Fig. 2(b), we find a peak near
Q6(i) ≈ 0.535 between peaks at Q6(i) ≈ 0.485 (correspond-
ing to hcp order) and ≈0.575 (corresponding to fcc order)
even for systems generated using low cooling rates. The
value Q6(i) ≈ 0.535 is close to the value of Q6(i) = 0.511 for

FIG. 12. Snapshots of the low-temperature glasses of binary LJ
systems with εBB/εAA = εAB/εAA = 1.0 and fB = 0.5 at cooling rates
(a) R = 5×10−2, (b) 5×10−3, (c) 5×10−4, and (d) 5×10−5, where
Rc ≈ 5×10−3. Atoms are colored according to the structure of their
local environment, i.e., green: fcc, red: hcp, blue: bcc, and white:
disordered.

FIG. 13. The same snapshot as in Fig. 12(c), but now only
showing atoms with 0.53 < Q6(i) < 0.54. We find that the atoms
with Q6(i) in this narrow range are adjacent to regions with local hcp
order. Note that the atoms are colored in the same way as Fig. 12.

bcc order. To investigate this intermediate peak, we visualize
atoms with 0.53 < Q6(i) < 0.54 in Fig. 13. These atoms
possess local fcc order, not bcc order, but are located at the
interface with local hcp order, which lowers their values of
Q6(i).

5. Root-mean-square position fluctuations
among nearest neighbor atoms

The root-mean-square position fluctuations !ri j =√
〈r2i j〉 − 〈ri j〉2 are calculated using the low temperature solids

at a low cooling rate R = 5×10−5 at constant pressure with
P0 = 10. For fB = 0.1 we consider the A atoms and calculate
the separations between their Voronoi neighbors, rAA for A
neighbors and rAB for B neighbors. Similarly for fB = 0.9,
we consider the B atoms and calculate the separations
between their Voronoi neighbors, rAB for A neighbors and

FIG. 14. The root-mean-square separation fluctuations,
(a) !rAA versus !rAB and (b) !rBB versus !rAB, where
!ri j =

√
〈r2i j〉 − 〈ri j〉2 , for binary LJ systems with (a) fB = 0.1

and (b) 0.9 for the low-temperature solids obtained using a low
cooling rate R = 5×10−5 (at constant pressure with P0 = 10).
The filled circles and triangles indicate large and small values of
εAB, respectively. !rAA > !rAB for fB = 0.1 and !rBB > !rAB for
fB = 0.9. For both (a) and (b), the variable ε− occurs in the narrow
range, −0.2 < ε− < 0. Similar results were also obtained at other
values of fB.
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rBB for B neighbors. For large εAB, the separation between
different species is smaller than that between similar species,
which makes the minor species act as low mobility defects.

(See Fig. 14.) The minor species will then hinder
crystallization of the major species, and yield a smaller
critical cooling rate.
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