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The design of multifunctional bulk metallic glasses is limited by the lack of a quantitative understanding
of the variables that control the glass-forming ability of alloys. Both geometric frustration (e.g., differences in
atomic radii) and energetic frustration (e.g., differences in the cohesive energies of the atomic species) contribute
to the glass-forming ability. We perform molecular dynamics simulations of binary Lennard-Jones mixtures
with only energetic frustration. We show that there is little correlation between the heat of mixing AH,,x and
critical cooling rate R., below which the system crystallizes, except that AH,,x < 0. By removing the effects of
geometric frustration, we show strong correlations between R, and the variables € = (egp — €44)/(€aa + €55)
and €45 = 2€4p/(€aa + €pp), Where €44 and €gp are the cohesive energies of atoms A and B and €45 is the pair
interaction between A and B atoms. We identify a particular composition-dependent combination of €_ and €45
that collapses the data for R. over nearly 4 orders of magnitude in cooling rate. By performing local structural
analyses, we find that energetic frustration, even in the absence of geometric frustration, can induce short-range
fivefold symmetric order that impedes crystallization. This result emphasizes that energetic frustration plays an
important role in determining the glass-forming ability, and thus it should be taken into account in the design of

new metallic glass formers.

DOI: 10.1103/PhysRevMaterials.3.085602

I. INTRODUCTION

Bulk metallic glasses (BMGs) are amorphous alloys that
possess promising structural, mechanical, and functional
properties [1-3]. However, a given BMG may not possess
multiple desirable properties, such as high elastic strength and
biocompatibility in the case of BMGs used in biomedical ap-
plications [4]. Thus, de novo design of BMGs with multifunc-
tional properties is an important goal. A key impediment to
progress is that one cannot currently predict the glass-forming
ability (GFA) of a given alloy [5]. The GFA can be directly
quantified by measuring the critical cooling rate R., below
which the system crystallizes. Smaller R, implies better GFA.
The most prominent and widely used features for identifying
BMGs were suggested by Inoue in 2000 [6]: (1) BMGs are
typically multicomponent systems consisting of three or more
elements, (2) the size ratios of the three main constituents
differ by more than 12%, and (3) the heat of mixing AHyix
among the three main elements is negative. However, there
are many examples of metallic glasses that do not obey these
rules. First, several binary alloys (such as CuZr) possess
GFAs that are comparable to those for multicomponent BMGs
[7-9]. Also, there are many ternary alloys (e.g., Al, Cu, and V)
that have R. < 10°® K/s, but the diameter ratios among the
three elements differ by less than 12% [10]. Furthermore,
recent experimental studies have shown that even monoatomic
metallic systems can form glasses via rapid cooling [11].
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Thus, it is clear that a more quantitative theoretical framework
is necessary for predicting the GFA of alloys.

There are two main contributions to the GFA of an al-
loy, geometric and energetic frustration [12,13]. Geometric
frustration can be achieved in alloys using elements with
sufficiently different metallic radii [12,14,15], which allows
the glass phase to pack more densely, but severely strains
the competing crystalline phases. Energetic frustration can be
achieved in alloys even with elements of similar sizes, if they
possess different cohesive energies and strong interactions
between different atomic species. While there have been many
computational studies of the variation of R. with geometric
frustration [13,16,17], there are few studies that have inves-
tigated how energetic frustration in the absence of geometric
frustration affects the GFA.

In this study we carry out molecular dynamics simulations
of binary Lennard-Jones (LJ) mixtures with atoms of the
same size, but different cohesive energies, to understand the
critical cooling rate as a function of the degree of energetic
frustration. We find several important results: (1) We show
that there is little correlation between the GFA and heat of
mixing in binary and multicomponent metallic glass formers.
(2) Instead, we find that there is a particular combination
of the difference in the cohesive energies and the pair inter-
actions among different species in binary alloys that yields
the best GFA for each composition. (3) We rationalize these
findings for binary LJ systems with the best GFA by con-
sidering separation fluctuations and chemical ordering [18]
among nearest neighbor atoms. We also show that energetic
frustration, even in the absence of geometric frustration, gives
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rise to local fivefold symmetric structural order that impedes
crystallization.

II. METHODS

We focus on binary LJ mixtures in three dimensions with
vanishing geometric, but tunable energetic frustration. The
pairwise interaction potential is

o\ 12 o \O
V(rij) = 4e;j <7> - (7> , (D
ij ij

where o is the diameter of atoms A and B, r;; is the separation
between atoms i and j, €44 and €pp are the cohesive energies
of atoms A and B, and €4 is the interaction energy between A
and B. The potential is truncated and shifted at r;; = 2.50, and
the total potential energy is V =), ; V(rij). We consider
N = N4 + Np atoms with equal mass m4 = mg in a cubic box
and periodic boundary conditions in all directions. We carry
out simulations with N = 1000, 2000, and 4000 to investigate
system-size effects; we show in the Appendix that the system-
size dependence of the critical cooling rate R, is weak. Length,
energy, pressure, and time scales will be reported in units of
G, €ans €034, and \/mac?/ean.

We first equilibrate each system with fraction of B atoms,
Jfs = Np/N, and combinations of egg/€aa and €qp/€an at
high temperature 7 = 5.0 (using a Nose-Hoover thermostat
[19,20]) and then quench them to low temperature 7 = 0.01
as a function of cooling rate R. The thermal quenches are
performed at fixed pressure Py = 10 to avoid cavitation [21],
and the results are averaged over six independent simulations.
As shown in the Appendix, we find that the particular value
of Py does not strongly affect the GFA in systems that do not
cavitate over the range 1072 < Py < 10.

III. RESULTS AND DISCUSSION

To understand the relevant range of parameter space for
the cohesive energies €44 and €pp, and interaction energy €4,
we cataloged these values for 990 binary alloys involving 45
elements that occur in metallic glasses. For this analysis, we
chose element A such that €44 > €gp and used the pairwise
definition of the heat of mixing AH,(i, j) = (€;; +€;;)/2 —
€;j to calculate e4p [22]. Values for €a4, €pp, and AH,, were
obtained from experimental data [23,24]. In Fig. 1(a) we
show that binary alloys exist over a relatively narrow range
of parameters 0.5 < €qp/€an S 1.4 and 0.1 < epp/ean < 1.
In contrast, these energetic parameters can exist over a wider
range in ionic liquids and molten salts [25,26]. Albeit with
scatter, the experimental data scales as e4p o \/€sa€pp, Which
is similar to the London mixing rule €4 = XLondon+/€4A€BB
[27], where

@

XLondon =

2/ 1alp |:2\/ 0AAOBB ]6

Iy + Ip | 044 + OB

o0;j = (0; +0;)/2 is the average diameter of atoms i and j,
and I4 and Iy are the ionization energies of atoms A and B.
In Fig. 1(b) we show the ratio of e = €ap/+/€an€pp for
the experimental data to xpondon. More than 70% of the data
obeys the London mixing rule with 1 < Xexpt/ XLondon < 1.25.
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FIG. 1. (a) The interaction energy €45 (normalized by €44) from
the pairwise heat of mixing AH, plotted versus the cohesive energy
ratio e€gp/€aq for 990 binary alloys involving 45 elements found in
metallic glasses [23,24]. We chose element A, such that €44 > €pp.
The solid line obeys €43 = c\/€pp€eaa With ¢ = 1.09. (b) The ratio
of Xexpt = €aB/+/€aa€pp to the London expression Xiondon in Eq. (2),
plotted versus xpondon fOr the same data in (a).

To more fully understand the effects of energetic frustration
on the GFA of binary mixtures, below we independently
vary €ap/€as and egp/€sa over a much wider range than in
Fig. 1(a).

To quantify the GFA, we analyze the positional order of the
system by measuring the bond orientational order parameter
for atom i [28,29]:

o172
m=6 N;
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where gom(i) = N;! Zl}l;] (A% /AL Yom [0(rij), ¢ (i),
Ysu[0(rij), ¢(rij)] is the spherical harmonic of degree 6 and
order m, 6 is the polar angle and ¢ is the azimuthal angle of
the vector r;; from atom i to j, N; is the number of Voronoi
neighbors of atom i, A’j is the area of the Voronoi cell face
separating atoms i and j, and A/ , is the total area of all faces
of the Voronoi cell for atom i [29].

The bond orientational order can distinguish between dis-
ordered systems (Q¢ < 0.3) and systems with crystalline or-
der [e.g., face-centered cubic (fcc) with Qg = 0.575, body-
centered cubic (bec) with Qg = 0.511, and hexagonal close
packed (hcp) Q¢ = 0.485]. In Fig. 2(a) we show the fraction
f of each sample with local fcc, hep, bee, and disordered
structure (using adaptive common neighbor analysis [30]) in
systems with fp = 0.5 over the full range of cohesive and
interaction energies for R = 5x107>. For more than 80%
of the systems, the fraction of atoms with fcc or hcp order
exceeds 0.70, whereas very few atoms possess bce order. (We
verify this result for other cooling rates in the Appendix.)
In Fig. 2(b) we plot the distribution P[Qg(i)] for a system
with €pp/€aa = €ap/€aa = 1 and several R. For R > R, the
systems are disordered and P[Q¢(i)] has a peak near Q¢ ~
0.2. For R < R., P[Qe(i)] develops peaks near the values
corresponding to fcc and hep order. The peak near Qg(i) =~
0.535 corresponds to regions of adjacent fcc and hep order, not
to bee order as shown in the Appendix. In Fig. 2(c) we show
that (Qg) = N~! Zf\;l Qe (i) versus R is similar to a logistic
function, and R, corresponds to the cooling rate at which
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FIG. 2. (a) Fraction f of each system (labeled k = 1, ..., 210) with a given local structure (fcc, hep, bee, or disordered) for a slow cooling

rate (R = 5x107°) in binary LJ systems with f5 = 0.5 over the full range of cohesive and interaction energies. (b) Distribution of the local bond
orientational order parameter P[Qq(i)] for systems with €pp/€44 = €45/€44 = 1.0 over 4 orders of magnitude in cooling rate R. (c) Average
bond orientational order (Qg) for the system in (b) versus R. R, corresponds to the cooling rate at which (Qg) = ((Qs)0 + (Q6)0)/2, Which is
obtained by fitting the data to a logistic function ({Qs) — (Q6)e0)/({Qs)o — (Qs)eo) = {1 — tanh[log,,(R/R.)"/*1}/2, where (Qg)o and (D)oo
are the average bond orientational order in the limits of R — 0 and oo, and 0 < x < 1 is the stretching factor. The vertical dashed line in

(b) indicates the (Qg) that determines R, [vertical dashed line in (c)].

(Q6) = ((Q6)o + (QD6)o0)/2, where {Qg)o and (Qs)c are the
values in the limits R — 0 and oo limits.

What combination of €4, €gp, €4p, and fp controls the
GFA in alloys? One possibility is the heat of mixing, which
can be generalized for multicomponent alloys as AHp,jx =
425# fifiAH,(@, j) [22]. In Fig. 3(a) we show R, versus
AHpx (normalized by the average cohesive energy €) for all
binary LJ systems studied. We find little correlation between
R. and AH,;x in the simulations [31]. We also assembled a
database of 482 metallic glass formers withn. = 2, ..., 8 dif-
ferent atomic species, with values of R, that span 10 orders of
magnitude [32]. (See the table provided in the Supplemental
Material [32].) The experimental data in Fig. 3(b) is similar
to the simulation data; there is no correlation between R, and
AHpix, other than AHpix < 0 for all metallic glasses. Note
that the simulations cover a much wider range of AHy,x/€
than experiments on metallic glasses, but R, in the simulations
corresponds to only rapid cooling, 10'3 to 10° K/s.

In Figs. 4(a)—4(i) we show contour plots of R, versus €45 =
2€xp/(€an + €pp) and e_ = (epp — €a4)/(€an + €pp) for bi-
nary LJ systems with fz = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9. We find strong correlations between R, and €_
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FIG. 3. (a) R, from simulations of binary LJ systems versus the
heat of mixing AH,y,ix/€, where € is the average cohesive energy, for
nine values of f5. (b) R, (in K/s) versus AH,,;x/€ from experiments
on 482 metallic glass formers with n =2, ..., 8 different atomic
species. Note that the scale of R, in (b) is 10 orders of magnitude,
whereas it is 4 orders of magnitude in (a).

and €,4p for all compositions. However, the contours of equal
values of R, in the €_ and €45 plane are very different for dif-
ferent values of fp. For example, R, increases with increasing
€4p and increasing €_ for fp = 0.1, whereas R, increases with
increasing €45 and decreasing €_ for fg > 0.3. For fz > fa
with a majority of B atoms and only a small fraction of A
atoms, to have good GFA, the cohesive interaction between
B atoms must be small compared to that for A atoms with
€ — €aa < 0 and the interaction between A and B atoms
must be strong with €45 >> 1. Similarly, when f4 > fp with
a majority of A atoms and only a small fraction of B atoms,
to have good GFA, the cohesive interaction between B atoms
must be strong (or at least comparable to that between A atoms
with €pp & €44) and the interaction between A and B atoms
must be strong with €45 > 1. Note that the R, contours are
symmetric with respect to switching the labels of atoms A and
B, and thus we only show the region egp — €44 < 0.

In the liquid state, the system is disordered in both the
positions and labels of the atoms. The system has only short-
range liquidlike positional order and the labels of the same-
sized atoms are randomly distributed. As the system is cooled
to low temperature, it seeks configurations (both the atomic
positions and labels of the atoms) with the lowest potential
energy, which will depend on the values of the cohesive
energies €44 and epp and the interaction energy €45. When
€aa = €pp and €45 = 0, the fact that there are two species of
atoms, A and B, does not affect the ability of the system to
find low energy configurations, all labelings of the atoms have
the same energy, and thus there is no energetic frustration.
When €44 # €pp and €45 > 0, the random distribution of the
atomic labels in the liquid state is no longer the lowest energy
configuration. The ability of the system to reach low energy
configurations (with order in the atomic labels and positional
order) depends on the cooling rate. Thus, the critical cooling
rate will depend on €44 and €pp, €4p, and fp.

We approximate the R, contours in Fig. 4 as straight lines
in the e_ and €45 plane for each fp and plot the slope k
versus fp in Fig. 5(a). The slope crosses zero near fp ~ 0.2
and reaches a peak value of k£~ 0.25 near fz ~ 0.8. As
fs — 1, the system becomes monoatomic with all B atoms,
the GFA depends only on €_, and thus k — 0. As fz — 0, the
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FIG. 4. (a)—(i) Contour plots of equal values of R, (on a logarithmic scale decreasing from blue to red) versus €, = 2€45/(€aa + €p5) and
€_ = (epp — €aa)/(€aa + €pp) at fzp = 0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. All plots share the same horizontal and vertical axes, as well
as the same color scale. Demixing occurs for €45 < (€44 + €55)/2 (purple region). The domain of experimentally accessible binary alloys is
enclosed within the solid pink curve [cf. Fig. 1(a)]. The dashed lines represent linear approximations of the equal-R. contours.

system becomes monoatomic with all A atoms, and the GFA
is independent of €_ and €45. In this regime, the slope of the
contours in the €_ and €45 plane is undefined as indicated by
the vertical dashed line in Fig. 5(a). In Fig. 5(b) we show that
the data for R, can be collapsed by plotting log;q R. versus
[e— — k(fp)€ap]. We find that the GFA in binary LJ systems
obeys a roughly parabolic form:

log,o Re & ci[e- — k(fp)eas]” + logo Ry, 4)
where ¢; ~ —2 gives the concavity and Ry ~ 1072 is the
cooling rate in the e — 0 and €45 — O limits.

There are two striking features about the R, contours in
Figs. 4(a)-4(i). First, R, increases with increasing e_ and
€4p for small fp, indicating that systems with the best GFA
possess €pp ~ €44 and €45 > 1. To frustrate crystallization

for small fp, epp/€aa should be as large as possible, ap-
proaching egp/e€sa — 1. Similarly, large €45 allows the B
atoms to act as low mobility defects with root-mean-square
(rms) fluctuations Arap = v (r3g) — (rap)? < Arsa in the
low-temperature glass, where (r4p) is the average separation
between an A atom and a Voronoi-neighbor B atom. Ad-
ditional details of the calculations of Aryp are included in
the Appendix. Second, R, increases with decreasing €_ and
increasing €45 for large fp. In this case, egg — 0 prevents
B atoms from clustering. Also, in the large €45 limit, the
A atoms act as low mobility defects with rms fluctuations
Arap < Argp in the low-temperature glass.

In the high-temperature liquid, the identities of the nearest
Voronoi neighbors of atoms A and B are completely random.
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FIG. 5. (a) The best fit slope & of the equal-R, contour lines in the €_ and €45 plane (in Fig. 4) plotted versus fz. For fz < 0.05 (vertical
dotted line), R, is uniform and & is undefined. (b) log,, R. versus e_ — k(fg)€ap for all systems studied. The dashed line obeys Eq. (4). Binary
LJ systems with €_ and €45 in the experimental range in Fig. 1(a) are indicated by filled diamonds.

As the system cools, the identities of the neighboring atoms
for each atom type A and B can deviate from random, and
such chemical ordering can affect the GFA. For example, we
hypothesize that if the competing crystal has large chemical
order, the system will possess large GFA since the A and B
species must rearrange significantly to form the crystal. Note
that a similar mechanism has been proposed by Song et al.

0.5

[33]. In this work they show that local atomic ordering in
the crystal phase of CusoZrsy results in a much lower atom
attachment rate to the crystal nucleus during crystallization,
which gives rise to enhanced GFA. To assess the hypothesis of
a connection between local order and high GFA, we measured
the chemical ordering [i.e., the probability ps(Np) for an A
atom to have Np B nearest neighbors when f; > fp or the
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FIG. 6. The probability P;(N;) with i # j for an i atom to have N; Voronoi nearest neighbors for (a)-(c) fz = 0.1, (d)—(f) 0.5, and (g)—-(1)
0.9 in binary LJ systems cooled at R = 5x 107> (green wide bars), which yields systems with local fcc order, for combinations of €_ and €4
with increasing GFA. We also show Pr"%°™(N) (thin blue bars) for systems with the same structure, but randomized atom types for the nearest
neighbors. For fz = 0.1, we only consider P4 (Ng) since A is the majority species. For fz = 0.9, we only consider Pz(N,) since B is the majority
species. The specific parameters for each panel are as follows: (a) R, = 7.4x1073, €43 = 0.83, ¢_ = —0.67, (b) R, = 7.5x 107, €45 = 5.0,
e =—0.67, (c) R. =2.5x107%, €43 = 4.17, e = —0.11, (d) R. = 3.3x107%, €43 = 0.83, e_ = —0.67, (e) R, =2.8x107*, €45 = 4.17,
€. =—0.11, H R <107, €43 =5.0, . = —0.67, (g) R, = 6.6x107*, €43 =0.83, e. = —0.67, (h) R. =5.6x1075, €43 = 4.17, €. =

—0.11,and (i) R, < 1074, €45 = 5.0, e = —0.67.
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FIG. 7. Contour plots of the local fivefold symmetric order parameter W as a function of €_ and €45 for low-temperature glasses generated
using R = 1072 for (a) fz = 0.1, (b) 0.5, and (c) 0.9. W increases from blue to red. The contours for W in (a)—(c) are similar to the contours

for R, presented in Figs. 4(a), 4(e) and 4(i).

probability pp(N4) for a B atom to have N4 A nearest neigh-
bors when fp > f4] at a slow cooling rate with significant fcc
order. In Fig. 6 we show p;(N;) (with i # j) for systems with
/8 =0.1,0.5,0.9 in Figs. 6(a)-6(f), and 6(g)-6(i), respec-
tively. R, decreases from Figs. 6(a) to 6(c), from Figs. 6(d) to
6(f), and from Figs. 6(g) to 6(i). In each panel we compare
pi(N;) to pﬁ““d"m(Nj), where we keep the low-temperature
structure of the system and randomly assign the labels of the
nearest neighbors. We find that the GFA increases with the
chemical order, ZN,- |pi(N;) — pﬁ““d"m (N;)I, of the competing
crystal.

To further understand how energetic frustration influences
the GFA of binary alloys in the absence of geometric frus-
tration, we performed local structural analysis using Voronoi
tessellation [34]. Using this analysis, we can calculate the
Voronoi index (n3, n4, ns, ng), which is a list of integers that
gives the number of faces with three, four, five, and six
edges. For example, the Voronoi index for an icosahedron
is (0,0, 12, 0). Although (0, 0, 12, 0) is the dominant local
structural motif in CuZr-based metallic glasses, it is not the
dominant motif in many other glass-forming alloys, such as
Mg-Cu-Y, Ni-P, Pd-Si, and Ni-Zr. However, local fivefold
symmetry is significant in these systems. We can define
the average degree of fivefold local structural order: W =
(ns/ 2?23 n;) [16]. Since local fivefold order is incompatible
with global fcc and related crystalline order, W quantifies the
degree of frustration to crystallization. In Fig. 7 we show that
large fivefold order is also observed in systems with only
energetic frustration, and no geometric frustration. Further-
more, we show that there is a strong correlation between large
fivefold order W and small values of the critical cooling rate
R, (i.e., good GFA). Thus, both geometric frustration and
energetic frustration (e.g., cohesive energy differences) can
lead to pronounced fivefold order that lowers the nucleation
rate due to an increase in the interfacial energy between the
liquid and crystal phases.

IV. CONCLUSIONS

By decoupling geometric and energetic frustration, we
have shown that the GFA is not strongly correlated to the
heat of mixing, which involves the particular combination of
variables (€pp + €44)/2€44 — €ap/€aa. Instead, we find that

the GFA is strongly correlated with €_ (i.e., the difference
in the cohesive energies, not the sum) and €45, and we
identified the fz-dependent combination of €_ and €,p that
controls the GFA for binary LJ systems. We emphasize that it
was important to study regions of the e_ and €45 parameter
space that were beyond the experimental range of metal-
lic glasses to fully understand the parameter dependence of
the GFA. This work will motivate several important future
studies. First, we encourage researchers to experimentally
characterize the GFA of binary alloys containing elements
with nearly the same metallic radii, yet with large energetic
frustration. Second, we are now in a position to understand
theoretically the GFA of binary LJ systems with both geo-
metric and energetic frustration. By tuning both the atomic
size ratio and cohesive energy difference, we will study how
energetic frustration couples to geometric frustration to deter-
mine the GFA of binary alloys. From our preliminary studies,
we find that the atomic species with the larger metallic radius
possesses the larger cohesive energy for binary alloys with
the best GFA. These results are consistent with several metal-
metal binary metallic glass formers found in experiments,
such as Cu-Zr, Ni-P, and Ni-Nb. A more complete study of
binary alloys with both energetic and geometric frustration is
currently being performed.
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APPENDIX

In this Appendix we include five brief sections that provide
additional details about the results presented in the main text.
The five sections are as follows: (1) Finite-size effects of
the critical cooling rate, (2) identification of the parameter
space where cavitation occurs, (3) comparisons of the critical
cooling rate when cooling at different fixed pressures, (4)
common neighbor analysis of structural order over a wide
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FIG. 8. Comparison of the critical cooling rate R. obtained at
N = 2000 to R. at N = 1000 (open red circles) and 4000 (open blue
circles) for fz = 0.1. The dashed line with slope one and zero vertical
intercept indicates when the critical cooling rates at different system
sizes are the same.

range of cooling rates, and (5) root-mean-square position
fluctuations among nearest neighbor atoms.

1. Finite-size effects of the critical cooling rate

We carried out studies of the glass-forming ability of
binary LJ alloys, by measuring the critical cooling rate, over
the full range of €_ and €45 for N = 1000, 2000, and 4000 to
understand the system-size effects of R.. We show in Fig. 8
that the system-size dependence of R, is weak, and thus we
show results for N = 2000 in the main text.

2. Identification of the parameter space where cavitation occurs

During the cooling process to create low-temperature
glasses, cavities can form when the number density p or
pressure P of the system is too low. To ensure that all systems
are homogeneous, we checked for cavity formation in the
low-temperature glass states. To determine whether a cavity
formed, we divided the cubic volume into 125 equal-sized
boxes and determined the fraction of boxes fyiq that did
not possess any atoms. For systems with N = 2000 atoms,
each box will contain on average 16 atoms if they are dis-
tributed homogeneously. As shown in Fig. 9, LJ systems
can cavitate when they are cooled at constant volume (with
p = 1.0), while cavity formation is rare when they are cooled
at constant pressure Py = 10. Thus, most of our studies were
performed at constant pressure with Py = 10. In addition, we
have found that the critical cooling rates R, for systems that
do not cavitate are similar when cooled at constant volume
(at p = 1.0) and constant pressure Py = 10.

3. Comparisons of the critical cooling rate when cooling
at different fixed pressures

Most of the studies of the critical cooling rate R, for binary
LJ systems were performed at constant pressure. In Fig. 10 we
show results for R, over the full range of €_ and €45 generated
by cooling at constant pressure with Py = 0.1 and 10. For
most of the data, the critical cooling rates are similar for the
two pressures. However, there is some dependence of R, on

(a) 0.20 (b) 0.20
e 0.1 m 06 e 0.1 m 06
0.15 0.2 0.7 * 0.15 0.2 0.7
’ 4 03 « 08 * ' A 03  « 08
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T
o o
.2 0.05 ® | 5 005
> - h'-t
M - - 2
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FIG. 9. The fraction f,,4 of each low-temperature glass (labeled
k=1,2,...,210) that possesses voids when cooled using R =
5x107> at (a) constant volume (with reduced number density p =
1.0) and at (b) constant pressure with Py = 10. We show systems in
which the fraction of B atoms is varied from fz = 0.1 to 0.9.

the pressure for the systems with low values of R, e.g., the
minimum R, is ~107> for Py = 10, while it is ~10~*> for
Py =0.1.

4. Common neighbor analysis of structural order
over a wide range of cooling rates

To study the crystallization process of binary LJ alloys, we
analyzed the structural order as a function of the cooling rate
using adaptive common neighbor analysis [30]. As shown in
Fig. 11(a) for fg = 0.5, at high cooling rates, all atoms exist in
disordered local environments. As the cooling rate decreases,
local crystalline order (fcc, hep, and bee) begins to appear as
shown in Figs. 11(b) and 11(c). However, at the lowest cooling
rates, the systems form crystals with only fcc and hep order,
with no bec order. We find similar results for the other values
of fp studied. These results suggest that the lowest energy

-1

e 0.7 /

l0g10Rc(Po = 0.1)

6 -5 -4 -3 -2 -1
l0g10Rc(Po = 10)

FIG. 10. Ceritical cooling rate R. of binary LJ systems at two
compositions, fp = 0.7 (filled circles) and 0.9 (downward trian-
gles), and many values of €45 = 2€4p/(€aa + €pp) and €_ = (€gg —
€44)/(€aa + €pg) When cooling at constant pressure Py = 0.1 (verti-
cal axis) and 10 (horizontal axis). The dashed line has slope one and
zero vertical intercept.
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FIG. 11. Fraction f of each system (labeled k = 1,2, ..., 210)
with a given local structure, fcc and hep (triangles), bee (circles),
or disordered (squares), at four cooling rates, (a) R =5x1072,
(b) 5x1073, (c) 1073, and (d) 5x10™* in binary LJ systems with
Jfs = 0.5 over the full range of cohesive energies and interaction
energies between A and B atoms.

state of binary LJ alloys over the full range of €_, €45, and
fs is the close packed hep and fcc crystals.

In the probability distributions of the bond-orientational
order parameter P[Qs(i)] in Fig. 2(b), we find a peak near
Qe (i) =~ 0.535 between peaks at Qg(i) ~ 0.485 (correspond-
ing to hcp order) and ~0.575 (corresponding to fcc order)
even for systems generated using low cooling rates. The
value Qg (i) ~ 0.535 is close to the value of Qg(i) = 0.511 for

FIG. 12. Snapshots of the low-temperature glasses of binary LJ
systems with €pp/€44 = €4p/€4a = 1.0 and fz = 0.5 at cooling rates
(@) R=5x1072, (b) 5x1073, (c) 5x107*, and (d) 5x 107>, where
R. ~ 5x1073. Atoms are colored according to the structure of their
local environment, i.e., green: fcc, red: hep, blue: bee, and white:
disordered.

FIG. 13. The same snapshot as in Fig. 12(c), but now only
showing atoms with 0.53 < Qg(i) < 0.54. We find that the atoms
with Qg (i) in this narrow range are adjacent to regions with local hcp
order. Note that the atoms are colored in the same way as Fig. 12.

bee order. To investigate this intermediate peak, we visualize
atoms with 0.53 < Qg(i) < 0.54 in Fig. 13. These atoms
possess local fcc order, not bee order, but are located at the
interface with local hcp order, which lowers their values of

Qs (@)

5. Root-mean-square position fluctuations
among nearest neighbor atoms

The root-mean-square position fluctuations Ar;; =

V{r};) = (rij)* are calculated using the low temperature solids
at a low cooling rate R = 5x 1073 at constant pressure with
Py = 10. For fg = 0.1 we consider the A atoms and calculate
the separations between their Voronoi neighbors, r44 for A
neighbors and r4p for B neighbors. Similarly for fp = 0.9,
we consider the B atoms and calculate the separations

between their Voronoi neighbors, r4p for A neighbors and

0.16 0.16 v,
(2) p (b)
% s s
A
0.14 : 0.14 ° Af‘f .
¢ ob4 4‘“
b .
g 0.12 g 0.121 ®
S g7
0.10 0.10
® 3.5<Exp<50 ® 3.5<Exp<5.0
A O<ép<l5 . A O<ép<1l5
c"08.08 0.10 0.12 0.14 0.16 0'08.08 0.10 0.12 0.14 0.16
Arpg Arag
FIG. 14. The root-mean-square  separation fluctuations,

(@) Argy versus Argg and (b) Argg versus Aryp, where
Aryy = N(r}) — (ryj)?, for binary LJ systems with (a) fz =0.1
and (b) 0.9 for the low-temperature solids obtained using a low
cooling rate R =5x1075 (at constant pressure with Py = 10).
The filled circles and triangles indicate large and small values of
€4, respectively. Argqa > Arap for fp = 0.1 and Argg > Arsp for
fs = 0.9. For both (a) and (b), the variable €_ occurs in the narrow
range, —0.2 < e_ < 0. Similar results were also obtained at other

values of fz.
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rpp for B neighbors. For large €45, the separation between
different species is smaller than that between similar species,
which makes the minor species act as low mobility defects.

(See Fig. 14.) The minor species will then hinder
crystallization of the major species, and yield a smaller
critical cooling rate.

[1] J. Schroers, Bulk metallic glasses, Phys. Today 66(2), 32
(2013).

[2] M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm,
D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, A damage-
tolerant glass, Nat. Mater. 10, 123 (2011).

[3] W. H. Wang, The elastic properties, elastic models and elastic
perspectives of metallic glasses, Prog. Mater. Sci. 57, 487
(2012).

[4] B. Zberg, P. J. Uggowitzer, and J. F. Loffler, MgZnCa glasses
without clinically observable hydrogen evolution for biodegrad-
able implants, Nat. Mater. 8, 887 (2009).

[5] Z. Lu and C. Liu, A new glass-forming ability criterion for bulk
metallic glasses, Acta Mater. 50, 3501 (2002).

[6] A. Inoue, Stabilization of metallic supercooled liquid and bulk
amorphous alloys, Acta Mater. 48, 279 (2000).

[7] D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C.
Garland, Bulk metallic glass formation in binary Cu-rich alloy
series—Cugo_.Zr, (x = 34, 36, 38.2, 40 at.%) and mechanical
properties of bulk CugsZrs6 glass, Acta Mater. 52, 2621 (2004).

[8] Y. Li, Q. Guo, J. A. Kalb, and C. V. Thompson, Matching
glass-forming ability with the density of the amorphous phase,
Science 322, 1816 (2008).

[9] M. B. Tang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Bi-
nary Cu-Zr bulk metallic glasses, Chin. Phys. Lett. 21, 901
(2004).

[10] A.-P. Tsai, A. Inoue, and T. Masumoto, Ductile Al-Cu-V amor-
phous alloys without metalloid, Metal. Trans. A 19, 391 (1988).

[11] L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S. X. Mao, For-
mation of monatomic metallic glasses through ultrafast liquid
quenching, Nature (London) 512, 177 (2014).

[12] K. Zhang, M. Wang, S. Papanikolaou, Y. Liu, J. Schroers, M. D.
Shattuck, and C. S. O’Hern, Computational studies of the glass-
forming ability of model bulk metallic glasses, J. Chem. Phys.
139, 124503 (2013).

[13] H. Shintani and H. Tanaka, Frustration on the way to crystal-
lization in glass, Nat. Phys. 2, 200 (2006).

[14] D. B. Miracle, A structural model for metallic glasses,
Nat. Mater. 3, 697 (2004).

[15] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma,
Atomic packing and short-to-medium-range order in metallic
glasses, Nature (London) 439, 419 (2006).

[16] Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, and W. H. Wang, Five-
fold symmetry as indicator of dynamic arrest in metallic glass-
forming liquids, Nat. Commun. 6, 8310 (2015).

[17] Y. Q. Cheng, E. Ma, and H. W. Sheng, Atomic Level Structure
in Multicomponent Bulk Metallic Glass, Phys. Rev. Lett. 102,
245501 (2009).

[18] G. Cargill and F. Spaepen, Description of chemical ordering in
amorphous alloys, J. Non-Cryst. Solids 43, 91 (1981).

[19] S. Nosé, A unified formulation of the constant tempera-
ture molecular dynamics methods, J. Chem. Phys. 81, 511
(1984).

[20] W. G. Hoover, Canonical dynamics: Equilibrium phase-space
distributions, Phys. Rev. A 31, 1695 (1985).

[21] G.J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure
molecular dynamics algorithms, J. Chem. Phys. 101, 4177
(1994).

[22] A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and
mismatch entropy for ternary amorphous alloys, Mater. Trans.
41, 1372 (2000).

[23] A. M. Halpern, From dimer to crystal: Calculating the cohesive
energy of rare gas solids, J. Chem. Ed. 89, 592 (2012).

[24] A. Takeuchi and A. Inoue, Classification of bulk metallic
glasses by atomic size difference, heat of mixing and period
of constituent elements and its application to characterization
of the main alloying element, Mater. Trans. 46, 2817 (2005).

[25] T. Kéddermann, D. Paschek, and R. Ludwig, Molecular dy-
namic simulations of ionic liquids: A reliable description of
structure, thermodynamics and dynamics, Chem. Phys. Chem.
8, 2464 (2007).

[26] J. de Andrade, E. S. Boes, and H. Stassen, Computational
study of room temperature molten salts composed by 1-alkyl-3-
methylimidazolium cations-force-field proposal and validation,
J. Phys. Chem. B 106, 13344 (2002).

[27] F. London, The general theory of molecular forces, Trans.
Faraday Soc. 33, 8 (1937).

[28] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond-
orientational order in liquids and glasses, Phys. Rev. B 28, 784
(1983).

[29] W. Mickel, S. C. Kapfer, G. E. Schroder-Turk, and K. Mecke,
Shortcomings of the bond orientational order parameters for the
analysis of disordered particulate matter, J. Chem. Phys. 138,
044501 (2013).

[30] A. Stukowski, Structure identification methods for atomistic
simulations of crystalline materials, Model. Simul. Mater. Sci.
Eng. 20, 045021 (2012).

[31] Y. Li, S. Zhao, Y. Liu, P. Gong, and J. Schroers, How many bulk
metallic glasses are there? ACS Comb. Sci. 19, 687 (2017).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.3.085602 for the database of the
critical cooling rates of various MGs from experiments.

[33] H. Song, Y. Sun, F. Zhang, C. Z. Wang, K. M. Ho, and
M. I. Mendelev, Nucleation of stoichiometric compounds from
liquid: Role of the kinetic factor, Phys. Rev. Mater. 2, 023401
(2018).

[34] C. H. Rycroft, G. S. Grest, J. W. Landry, and M. Z. Bazant,
Analysis of granular flow in a pebble-bed nuclear reactor,
Phys. Rev. E 74, 021306 (2006).

085602-9


https://doi.org/10.1063/PT.3.1885
https://doi.org/10.1063/PT.3.1885
https://doi.org/10.1063/PT.3.1885
https://doi.org/10.1063/PT.3.1885
https://doi.org/10.1063/PT.3.1885
https://doi.org/10.1038/nmat2930
https://doi.org/10.1038/nmat2930
https://doi.org/10.1038/nmat2930
https://doi.org/10.1038/nmat2930
https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1038/nmat2542
https://doi.org/10.1038/nmat2542
https://doi.org/10.1038/nmat2542
https://doi.org/10.1038/nmat2542
https://doi.org/10.1016/S1359-6454(02)00166-0
https://doi.org/10.1016/S1359-6454(02)00166-0
https://doi.org/10.1016/S1359-6454(02)00166-0
https://doi.org/10.1016/S1359-6454(02)00166-0
https://doi.org/10.1016/S1359-6454(99)00300-6
https://doi.org/10.1016/S1359-6454(99)00300-6
https://doi.org/10.1016/S1359-6454(99)00300-6
https://doi.org/10.1016/S1359-6454(99)00300-6
https://doi.org/10.1016/j.actamat.2004.02.009
https://doi.org/10.1016/j.actamat.2004.02.009
https://doi.org/10.1016/j.actamat.2004.02.009
https://doi.org/10.1016/j.actamat.2004.02.009
https://doi.org/10.1126/science.1163062
https://doi.org/10.1126/science.1163062
https://doi.org/10.1126/science.1163062
https://doi.org/10.1126/science.1163062
https://doi.org/10.1088/0256-307X/21/5/039
https://doi.org/10.1088/0256-307X/21/5/039
https://doi.org/10.1088/0256-307X/21/5/039
https://doi.org/10.1088/0256-307X/21/5/039
https://doi.org/10.1007/BF02652554
https://doi.org/10.1007/BF02652554
https://doi.org/10.1007/BF02652554
https://doi.org/10.1007/BF02652554
https://doi.org/10.1038/nature13617
https://doi.org/10.1038/nature13617
https://doi.org/10.1038/nature13617
https://doi.org/10.1038/nature13617
https://doi.org/10.1063/1.4821637
https://doi.org/10.1063/1.4821637
https://doi.org/10.1063/1.4821637
https://doi.org/10.1063/1.4821637
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nphys235
https://doi.org/10.1038/nmat1219
https://doi.org/10.1038/nmat1219
https://doi.org/10.1038/nmat1219
https://doi.org/10.1038/nmat1219
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/ncomms9310
https://doi.org/10.1038/ncomms9310
https://doi.org/10.1038/ncomms9310
https://doi.org/10.1038/ncomms9310
https://doi.org/10.1103/PhysRevLett.102.245501
https://doi.org/10.1103/PhysRevLett.102.245501
https://doi.org/10.1103/PhysRevLett.102.245501
https://doi.org/10.1103/PhysRevLett.102.245501
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468
https://doi.org/10.2320/matertrans1989.41.1372
https://doi.org/10.2320/matertrans1989.41.1372
https://doi.org/10.2320/matertrans1989.41.1372
https://doi.org/10.2320/matertrans1989.41.1372
https://doi.org/10.1021/ed200348j
https://doi.org/10.1021/ed200348j
https://doi.org/10.1021/ed200348j
https://doi.org/10.1021/ed200348j
https://doi.org/10.2320/matertrans.46.2817
https://doi.org/10.2320/matertrans.46.2817
https://doi.org/10.2320/matertrans.46.2817
https://doi.org/10.2320/matertrans.46.2817
https://doi.org/10.1002/cphc.200700552
https://doi.org/10.1002/cphc.200700552
https://doi.org/10.1002/cphc.200700552
https://doi.org/10.1002/cphc.200700552
https://doi.org/10.1021/jp0216629
https://doi.org/10.1021/jp0216629
https://doi.org/10.1021/jp0216629
https://doi.org/10.1021/jp0216629
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1088/0965-0393/20/4/045021
https://doi.org/10.1088/0965-0393/20/4/045021
https://doi.org/10.1088/0965-0393/20/4/045021
https://doi.org/10.1088/0965-0393/20/4/045021
https://doi.org/10.1021/acscombsci.7b00048
https://doi.org/10.1021/acscombsci.7b00048
https://doi.org/10.1021/acscombsci.7b00048
https://doi.org/10.1021/acscombsci.7b00048
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.3.085602
https://doi.org/10.1103/PhysRevMaterials.2.023401
https://doi.org/10.1103/PhysRevMaterials.2.023401
https://doi.org/10.1103/PhysRevMaterials.2.023401
https://doi.org/10.1103/PhysRevMaterials.2.023401
https://doi.org/10.1103/PhysRevE.74.021306
https://doi.org/10.1103/PhysRevE.74.021306
https://doi.org/10.1103/PhysRevE.74.021306
https://doi.org/10.1103/PhysRevE.74.021306

