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ABSTRACT: Drop condensation and evaporation as a result of
the gradient in vapor concentration are important in both
engineering and natural systems. One of the interesting natural
examples is transpiration on plant leaves. Most of the water in the
inner space of the leaves escapes through stomata, whose rate
depends on the surface topography and a difference in vapor
concentrations inside and just outside of the leaves. Previous vapor
research on the vapor flux on various surfaces has focused on flux
numerically solving the vapor diffusion equation or using scaling ‘.
arguments based on a simple solution with a flat surface. In this Low vapor flux

present work, we present and discuss simple analytical solutions on
various 2D surface shapes (e.g, semicylinder, semiellipse, hair).
The method of solving the diffusion equation is to use the complex
potential theory, which provides analytical solutions for vapor concentration and flux. We find that a high mass flux of vapor is
formed near the top of the microstructures while a low mass flux is developed near the stomata at the leaf surface. Such a low vapor
flux near the stomata may affect transpiration in two ways. First, condensed droplets on the stomata will not grow due to a low mass
flux of vapor, which will not inhibit the gas exchange through the stomatal opening. Second, the low mass flux from the atmosphere
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will facilitate the release of highly concentrated vapor from the substomatal space.

B INTRODUCTION

Drop condensation frequently occurs on plant leaves as both
ambient vapor concentration and vapor flux are high at the leaf
surface (e.g., early morning or after rain). This condensation
process plays an important role in plant transpiration. The plant
transpiration process (i.e., the exchange rate of water vapor
through the stomata) depends on a difference in vapor pressures
or concentrations between the substomatal cavity and the air just
outside the stomata.' Especially, uneven leaf surfaces (e.g.,
trichomes or bumpy epidermal cells) could alter the vapor
concentration and its flux in the air. Therefore, the transpiration
rate can vary depending on the topography on the leaf surface
and vapor concentration outside the stomata. Recent work
inspired plant surface structures showed variations in vapor flux
for drop condensation or ice nucleation over different surface
structures.” "

In engineering systems, drop condensation is a key factor in
designing heat transfer devices,””® e.g., thermal power
generators, solar power plants, waste incineration, and water
harvesting applications. In particular, controlling the location
and amount of condensed droplets is one of the main technical
challenges. Inspired by a leaf’s hierarchical structures, extensive
work has been done in terms of selective location of drop
conc113e&sation,9_12 which further controls ice nucleation,
too. ™
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Here is a brief summary of two key steps in the condensation
process. First, the initial nucleation process happens at the nano
scale and strongly depends on the wettability. Tiny droplets can
be nucleated between nanowax tubules on a leaf. To formulate
this process, the Gibbs free energy associated with condensa-
tion" is given as AG = —(RT/V,,) I0(Pyapor/Psat) where V, is the
molar volume of condensed water, which is balanced with the
Gibbs energy to create a tiny droplet (2y cos Opqui/1; v is the
surface tension, € is the equilibrium contact angle, and r is the
pore or groove size of the surface). Therefore, the nucleation
happens when
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where R is the universal gas constant, T is the temperature, p .,
is the actual vapor pressure, and p, is the saturated vapor
pressure This relation explains that the droplet nucleation easily
occurs on a hydrophilic surface (cos Opqui > 0) at any groove
sizes (r) in saturated air (Pyupor/Psa > 1). Hierarchical double-
layer roughness (i.e., nanowax and microbumps) is typical for
leaf surfaces in nature (e.g., lotus leaf,'®'” katsura tree leaf,'® and
arecent review in ref 19). Especially, the nanowax might provide
the groove length scale to initiate the droplet nucleation. Even in
slightly unsaturated air, the drop can nucleate above a certain
groove size. However, on a hydrophobic surface (cos Opquil < 0),
the droplet nucleation happens only in saturated air and above
the minimum pore size as

-1
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In short, droplets likely nucleate on a hydrophilic surface even in
unsaturated air, but they do not easily nucleate on a hydrophobic
surface.

Second, the droplets will grow as more vapor diffuses onto
after the droplet nucleation. Hence, the vapor diffusion flux
determines the growth rate of the nucleated droplets. Following
Fick’s law of diffusion, the diffusion flux can be expressed as
—DV¢, where D is the diffusivity, V is the spatial gradient, and ¢
is the vapor concentration. The diffusion flux is affected by the
surface topography such as leaf epidermal cells since the vapor
concentration field is deformed due to a constant vapor pressure
on the surface. Typically, this diffusion process is slow compared
to the air convection, so it acts as a barrier for the exchange of
vapor or other gases between the surface and the atmosphere.
For example, a large portion of the total mass transfer resistance
from the atmosphere to the surface is attributed to the resistance
by the boundary layer.”' ~** Likewise, understanding the vapor
concentration and diffusion flux in the presence of leaf
microstructures will be an important task in understanding the
exchange of vapor between the leaf and the atmosphere.

In this present study, we theoretically calculate the vapor
concentration field and mass flux on a nonhygroscopic surface at
a constant temperature to characterize the effect on vapor
exchange through the stomata. First, we explain the analogies
between flows past an object and vapor concentration fields
around an object using the complex potential theory. Second, we
present solutions of the vapor concentration and diffusion flux
on flat, semicircular, semielliptical, or hairlike surfaces. Addi-
tionally, we calculate the vapor concentration and diffusion flux
when a leaf stomatum opens between two bumps. Finally, we
discuss the biological benefits of leaf microstructures in terms of
plant transpiration.

Bl RESULTS

Similarity between a Flow Past an Object and Vapor
Concentration around an Object. One of the canonical
examples in fluid dynamics is to describe an incompressible and
irrotational flow past an object. Among many problem-solving
methods, the complex potential theory is widely used in flow
problems in aerodynamics, animal swimming and diving,“’25
and hull slamming.*® This complex potential method becomes
more powerful along with conformal mapping to solve the flow
solution around arbitrary shapes. There are many good textbook
chapters for readers to study the basic concepts (e.g, chapter 4
inref27, chapter 4 in ref 28, chapters 16 and 17 in ref 29, chapter

6 in ref 30). The complex potential is composed of a velocity
potential as a real part and a stream function as an imaginary
part. The irrotational condition leads to Vy(x, y) = 0, ie,
Laplace’s equation. The flow velocity is given as v = (V X y)-b,
where b is the unit vector normal to the x—y plane.

We see a similar mathematical structure for the vapor
concentration and its flux. The vapor concentration satisfies
Laplace’s equation (Vc = 0) as a continuity condition V-J = 0,
where the diffusion flux is J = —DVc. This diffusion flux
corresponds to a mass flow from high to low vapor concentration
regions. Likewise, we can calculate the concentration field and
its flux mathematically using the complex potential method as
we traditionally solve a fluid flow around an object (see Figure
1). Furthermore, we are able to estimate the preferred location
and amount of condensation on various leaf surfaces.

Complex potential
W(2) = ¢(2) + iy(2)

Complex potential
W(2) = ¢(2) +ic(2)

where z = x + iy ﬂ where z = x + iy
Streamfunction, y = Im(W) Vapor concentration ¢ = Im(W)
Viy =0 I V=0
Tangential velocity on an object Vapor flux on an object
= ‘fl—‘:’ Jy=-D w
on the surface ﬂ on the surface

Figure 1. Similarity between a stream function and a vapor
concentration around a nonhygroscopic object.

Two Canonical Cases. We consider two cases; a flat plate
and a semicylinder on a plate. Let us consider a complex domain,
i.e., the z plane. Here, z is defined as x + iy where the real number
corresponds to a x coordinate and the imaginary number
corresponds to a y coordinate. Both x and y coordinates are
unitless values in this study. However, the coordinate

dimensions can be interpreted relative to the bump size.
Uniform Flow Past a Plate or Vapor on a Plate. A basic

example of a fluid flow is a uniform flow along a plate. We assume
that the plate is aligned along the x direction. All streamlines
(contours of the stream function) are aligned along the x
direction; thereby they are a function of y coordinate only.
Hence, when the flow speed is given as U, the complex
potential, stream function in the bulk, and tangential velocity on

the surface are given as

https://doi.org/10.1021/acs.langmuir.1c00473
Langmuir XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00473?fig=fig1&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.1c00473?rel=cite-as&ref=PDF&jav=VoR

pubs.acs.org/Langmuir

Langmuir
W(z) _ v
- =2, —_— =Y
Uo Uo
Mo Lo _1dwy
U U o Up dz |- (1)

The same solution can be found for the case of the vapor on a
flat surface. Here, the complex potential, concentration field in
the bulk, and the diffusion flux on the surface are given as

W*(z) c
=2z, =
Co/& Co/ %o
Jo_ 1 o _ 1 odwr| _
DCy/&, Co/& Oy Co/&y dz y=0
(2)

where C, is the difference of the vapor concentration across a
boundary layer and & is the boundary layer thickness. Hence,
Co/&, is the gradient of the vapor concentration over the
boundary layer. The diffusion flux on the surface, J§, is a constant
(=DC,/&,), which indicates that there is a uniform downward
flux onto the surface.

Flow Past a Semicylinder or Vapor around a Semicylinder.
The second canonical example is a flow around a cylinder, which
is the same as the vapor concentration around a semicylinder as
shown in Figure 1. The problem of a flow around a cylinder can
be solved using a doublet (i.e., a dipole) added with a uniform
flow. The complex potential, stream function in the bulk, and
tangential velocity on the surface are given as

2 2
M=zl+a—2, £=rsin91—(£),
Uy z Uy r

v 2
ML dw :sin9[1+(ﬁ)]=2sin9
= r (3)

Uy U dz
where a is the radius of the cylinder. The first term in the
complex potential describes a uniform flow along the x direction,
and the second term represents a dipole flow. For the tangential
velocity on a cylindrical surface, there are stagnation points (v =
0): front and back sides of the cylinder (i.e., & = 0 or x). The
maximum velocity is achieved on the side (8 = 7/2).

This example is an analogy for the vapor concentration on a
semicylinder on a flat surface. The complex potential,
concentration field in the bulk, and the diffusion flux on the
surface are given as

W#(z) ( aZJ c ) ( a)
=z{1+ —) —=rs1n91—(—),
Co/ & z Co/&o r

]f -1 4w = —sinf|1 + (ﬁ)z
DC/&,  Co/& dz |, r
= —2sin 0 (4)

This solution shows that the downward flux (J§ < 0) reaches
the maximum value at the top of the bump (0 = 7/2) and
becomes zero at the corners where the semicylinder meets the
flat bottom surface (6 = 0 or 7). This trend can be observed from
the contour lines as shown in the right panel of Figure 1. Densely
(or sparsely) packed contours of vapor concentration represent
a higher (or lower) diffusion flux. Therefore, more densely
packed contours near the top of the semicylinder and less packed

contours near the side corners indicate more vapor flux near the
top and less flux near the side corners.

Vapor Flux with a Single Bump. We will consider the
vapor concentration and diffusion flux on different shaped
bumps beyond a simple semicylinder, e.g., prolate semiellipse
and hairlike structures. From now on, we will use the normalized
complex potential and vapor flux as W= W*/(C,/&,) and ], =
Jt/(DCy/&y) for simplicity, respectively. These normalized
quantities can be understood as the values relative to the ones
without any bump (i.e., a flat surface).

Single Semicylinder. As described in the previous section, the
vapor concentration and its derivative on a semicylinder with a

flat surface are given as
z[1 + i w_ 1 g
2 de 2z (s)
The diffusion flux normal to the surface is simply a negative of
the derivative of the complex potential. The reason is that the
tangential component of the flux is always zero (like zero normal
velocity in fluid flow) in the complex potential method. Hence,

the magnitude of the derivative equals the flux normal to the
surface (J, ). The diffusion flux on the semicylinder (z = ae'’)) is

_dw
dz

Im[W(z)] = Im

= —\/(1 — cos 20)* + sin®20 = —2

J =

. y

sinf = -2~

a (6)

We recover the same result as in eq 4 by replacing y = a sin 0.
The diffusion flux outside the semicylinder (z = x + i-0) is

112
y=0and Ix|>a x (7)

This shows that the diffusion flux is zero at the corners (x = +a)
and slowly reaches —1 as x gets far from the corner.

Single Semiellipse. Conformal mapping is a powerful method
to transform solutions of simple shapes (e.g, a plate and a
semicylinder) into those in different complicated shapes. Using
a transformation function, we can obtain solutions of vapor
concentration and flux around a semiellipse. The transformation
function from the { plane with a semicylinder to the z plane with
an ellipse is given as (similar calculations in pp 116—120 of ref
28)

_dw
dz

] =

b* z z\? 2
z2({)=C(F— or ((z)=—+ (—) +b
©) R (2) 5 . ®)
where b is different from the radius of the semicylinder, g, in the
pretransformed  plane. The complex potential of a semiellipse
is given as

2 2
wor =z [ av e
2\ S G e
2 2 -
2

=z—[1i‘;—i][§—\/@j] 9

Here, a plus sign is for a prolate shape and a minus sign is for
an oblate shape. The half-length of the major axis becomes a +
b?/a, and the half-length of the minor axis is a — b?*/a. The
contour of the ellipse surface becomes x = (a F b*/a) cos 0,y =

https://doi.org/10.1021/acs.langmuir.1c00473
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Figure 2. (A) Bump structures on plant surfaces. Images from left to right are from C. japonicum (From ref 18. CC BY 4.0.), V. tricolor, and P. vulgaris
(Fromref 19. CCBY 4.0.). (B) Vapor concentration fields near different bump structures: a semicylinder (a = 0.6), a prolate semiellipse (a = 0.68 and b
=0.47), and a hair (a = 1.2). (C) Three plots of downward diffusion flux normalized by the diffusion flux on a flat surface (—], = DV ). As shown, the
highest diffusion flux (i.e,, condensation growth rate) is observed on the top of the bump.

(a + b*/a) sin @ as a function of 6, or (x/(a F b*/a))* + (y/(a £
b*/a))* = 1 as a single equation. The derivative of the complex
potential is given as

d_wzl_[lia_Z)%_#
(5) + b’

2

(10)

From the derivative, we can calculate the diffusion flux on the
bump as

2(a* F by
]l == )4 291/2

[(a + b*/a)*x* + (a ¥ b*/a)*y*] (11)

Since the numerator linearly depends on y, we expect a higher
downward flux at a higher y (ie., near the top of the bump),
which has a similar trend to the solution of a semicylinder. Also,
in the limit of b — 0, the above solution converges to the
solution on a semicylinder.

The diffusion flux outside the bump along the flat surface y =0
and Ixl > a F b*/a is

az) 1 x/4
Jo=—-1+|1+ —
. ( b’ V2! £ 6 (12)

In the limit of a position far from the bump (i.e., lx| > 1), the flux
converges to —1 (J.— -1).

Single Hair. Using conformal mapping, we can further solve
the case with a hairlike structure. The transformation from the
concentration around a semicylinder in the { plane to the
concentration around a hair in the z plane is (similar calculation
in pp 136—139 of ref 28)

R R OS]

2 =¢—

where a is the height of the hair in the z plane, which is the same
as the radius of a circle in the { plane. Then, the complex
potential is given as

R R P

=z* +a° (14)

Its derivative becomes
aw _ =
dz /22 4 42 (15)

The diffusion flux on the bump (i.e., y <aandx=0;z=0+1iy)
is obtained from the derivative above.

Yy
J = ——=
R s (16)

The flux increases close to the tip of the hair, but the solution will
diverge at the tip y — a.

The diffusion flux outside the hair along the surface (i.e., y =0
and lxl > 0; z = x +i-0) is

x
L= Va2 + «* (17)

It shows that the flux is 0 at the corner and approaches —1 in the
far field.

Figure 2 summarizes our simulation results with single bumps
of different shapes. Three cases are presented: a single
semicylinder, a single prolate semiellipse, and a single hair.
These structures are inspired by the microstructures found on
real plant leaves (circular epidermal bumps in Cercidiphyllum
japonicum;'® prolate bumps in Viola tricolor;"” hairlike structures
in Phaseolus vulgaris'”). As shown in Figure 2B, vapor
concentration contours are pushed up quite a bit with elongated
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Figure 3. (A) Condensed droplet volume vs time. Circles are from previously published experiments in ref 4. Different colors represent bumps with
different curvatures. Solid lines are from our theoretical model as %”rmaf =2 X 107"J7™(¢ — 400). Both the prefactor of 2 X 10™"° and the time offset of

300 are arbitrarily chosen. (B) Ratios of maximum diffusion fluxes. Circle symbols are from experiments,” and lines bounded by triangles are from our

theory. The first group is a ratio of the diffusion flux with

! = 0.53 mm to one with ¥ = 420 mm.

=1.50 mm to one with k™

!'= 420 mm. The second group is a ratio of the diffusion flux with
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Figure 4. (A) Due to morphological features at the leaf surface, a low mass flux of vapor is developed near stomata while a high flux is formed near the
top of epidermal cells. The low vapor flux on the stomata will reduce the chance of clogging or reducing the stomatal opening. Condensed drops on the
lower panel are not part of initial conditions but rather are a consequence of vapor flux. (B) Normalized total flux and normalized bending force as a

function of the normalized bump height.

prolate or hairlike structures. Therefore, its gradient (ie,
downward diffusion flux; —J, = V) is high near the top of the
bump and low at the lower side of the surface in Figure 2C.

Total Vapor Flux on a Single Bump. We will systematically
study the trends of total diffusion flux for various shapes from
oblate to prolate semiellipses. Since biomaterials are expensive
to make, a fixed area would be a good criterion for systematic
comparison here. The semiellipse has the half-length along the
x-axis, W = a F b*/a, and the half-length (i.e., height) along the
y-axis, H = a + b*/a. Then, the area of the semiellipse is a minor
half-length times a major half-length as (z/2)WH. By choosing
the reference area as a semicylinder with a radius of Ry as (7/2)
Ry, we can replace W with Ry*/H. Finally, the total flux is
calculated by integrating ]| over the bump surface.

Using the relation of x2/W? + yz/ H? = 1, we rewrite the
condensation flux of eq 11 on a semiellipse in terms of W and H
as

W(W + H)y

(W + H)y
[H*? + W4y2]1/2

[H* + (W* — By
(18)
The maximum flux always happens at y = Has J7* = —(W + H)/
w.
Park et al.* performed condensation experiments on bumpy
surfaces. In the experiments, they manufactured spherical caps

with a fixed height (H ~0.8 mm) and three different radii of
curvature (k' = 0.53, 1.50, and 4.20 mm). The bump width on

J =

the flat surface can be written in terms of the radius of curvature
and the height as

W=Hy2x'/H - 1

The corresponding maximum diffusion flux in 2D becomes

=

Even though our theory is in 2D, we approximate the 3D
maximum flux by taking the square of the 2D solution (similarly,
the area is approximately r in 2D and r* in 3D). Therefore, the
maximum flux on a 3D bump can be approximated as

J > =1+ 1/y27Y/H = 1)

Then, the measured volume of a condensed drop is expected to
be proportional to the maximum diffusion flux multiplied by
time. Figure 3A shows a plot of the condensed droplet volume

—(1+1/yJ2"'/H-1)

4 . . 4
versus the maximum flux mulitplied by time as ?”rmf o JIE

Experimental data points (circles) are well fitted with our
theoretical models. Here, we arbitrarily choose the prefactor of 2
X 107" and the time offset of 400 s for all three cases. In
addition, the ratio of the maximum diffusion fluxes is measured,
which is not affected by these fitting parameters. Figure 3B
shows that our predicted ratios of the maximum fluxes (lines
bounded by two triangles) are in good agreement with
experimental values (circles).
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Figure 5. (A) Vapor concentration field and contours with two semicylinders (a = 0.6 and L = 1), two prolate semiellipses (a = 0.68, b =0.47, and L =
1), or two oblate semiellipses (a =0.62, b=0.31,and L = 1) from left to right. (B) Plots of diffusion flux onto three different surfaces. The diffusion flux
is normalized by the flux on a flat surface. High downward fluxes are found near the tops of bumps.

If we integrate eq 18 from the bottom to the top of the bump
(0 <y < H), then the total flux per unit area becomes

2
1 /H dx
=— 1+ a
w Jo Lo [dy} !
/ VHY + W (W + H)
- dy ="~
H* w (19)

This shows that the total flux increases as the bump has a more
prolate shape (HT and W). A higher total flux by the bump is
preferable for plants to avoid or inhibit condensation on the
stomata that are usually located in between bumps or on the
bottom of the leaf surface, not on the top of the bumps (see
Figure 4A).

Even though a higher total flux is developed with a more
prolate shape closer to a hairlike structure, a leaf may not
maintain all prolate structures on the leaf surface. One of the
major disadvantages of prolate or hairlike structures is structural
instability or failure. If the structure is too elongated, then the
structure can be easily bent or torn. For a semiellipse, the 2D
bending second moment of the area, I, is proportional to I = (z/
4)W?H. Then, the resisting moment F,,H is proportional to the
bending rigidity EI, i.e., Young’s modulus times the second
moment of the area and the curvature, k. The external force is
proportional to F,, = EIx/H ~ (n/4)EIS/H® = (n/4)ESR,°H ™,
where ¢ is the horizontal deflection distance. This shows that a
narrower and higher bump (H? and W) can bend more and
become vulnerable against external force, thereby destabilizing
its structure on the leaf surface.

Figure 4B shows the normalized total flux (—J D and
normalized bending force (F,,/ES) as a function ofits height, H.
As the bump height increases, the total flux onto the bump
becomes larger, but the bending force gets smaller. Presumably,
plant leaf surfaces are evolved to optimize both higher mass flux
and stable structures, thereby having a suitable height of bumpy
microstructures.

Vapor Flux with Two Bumps. We consider the vapor
concentration and its flux with two bumps on a flat surface. For
potential flow calculations, the solution of a uniform flow
through an array of cylinders can be obtained using Schwartz
mapping.”’ More recently, Crowdy’s group published a series of
papers on this type of potent1a1 ﬂow using conformal mapping or
using Fourier transformation.*>** However, analytical expres-

sions do not exist since there is no explicit (closed-form)
expression of the transformation function and/or its inverse
function. Instead, we propose a simple way to get an analytical
solution of the vapor concentration and flux over two bumps.
Proposed solutions can be obtained by superpositioning two
complex potentials with a uniform flow potential. It is worth
noting that our solution here is not an exact solution of two
bumps, but instead approximates the vapor concentration and
flux solutions around two semielliptical or semicircular bumps.

Two Semicylinders. The approximate solution can be
obtained by placing two dipoles at the centers of two
semicylinders. Then, the strength of each dipole can be
determined by satisfying a boundary condition. This approx-
imate solution can be further used for the case of more than two
objects, too. However, we will demonstrate the case with only
two bumps in this paper. One caveat is that this method works
well when the distance between two structures is larger than the
size of the structures.

The complex potential of a dipole can be written as —a*/z,
where a is the radius of the semicylinder. When we place two
semicylinders of radius a at a distance L from the center, the
complex potential will become

a* a*
W(z) =z — A - A,
z—1L z+ L (20)

Since the bump shape is the same for both (i.e., symmetric across
x = 0), we can set two unknowns to one as A; = A, = A,. This
unknown, A, can be determined from one boundary condition
Im[W]l,_ss1 ora—r = 0. It does not matter whether you choose the
right or left boundary condition. From the boundary condition,
one can find A, = —(a + 2L)*/((a + 2L)* + a*). Alternatively,
we can write the potential by shifting the potential by L as W(z)
=z+ L — Ad*/z — Aa®/(z + 2L). In the limit of L — oo, it
converges to the potential with a single semicylinder.
Then the complex potential becomes

(a + 2L)*a* 2z
(a +2L) + a* (2* - I?) (21)

W(z) =z +

One thing about this solution is that, in the limit of L — 0, this
solution converges to the solution with a single semicylinder.

The vapor flux is calculated from the derivative of the complex
potential above.
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Table 1. Summary of Normalized Vapor Flux around Different Single Bumps

bump type normalized flux on the bump

a> — ¥’

semicylinder ], = —2Z =-2——- Ixl<a
+ a a
late or oblate semiellipse  J, = e ¥ P
rolate or oblate semiellipse = ’
P p L \/(a £ b /a) '+ (a T bz/a)4y2
- Y —

hair ]J___ az_yz; x=0

2
2 a |1 x/4
lxl < a—b"/a ]J.=_1+(li?][g_

normalized flux outside the bump

2
a

J = —(1 - —2], lxl > a
x

], ld > a — b*/a

J(x/2)? £ b?

x
lxl > 0

Table 2. Summary of Normalized Vapor Field and Flux with Two Bumps

bump type

two semicylinders N

two semiellipses

JL=1—5‘1{1¢“

normalized flux on bumps

B ( (a+2L)0a* \2(z* + 1Y)

(a+20) +a* ) (22— I?)?

(z—-1L) (z+1L)

22

?]1_ (z-L)* - (z+1)?
\/12—2+b2 \/ZT+b2

2

azb/a az b’ /u+2L
2 axv /a a¥9y /avah
] ;

\/(a+b2/a)2

\/(<z+l72/a+2L)2 bz

1 2

Inward flux

Figure 6. (A) Diffusion flux when the stomatum opens with a high vapor flux (Q = 1) on flat, semicylindrical bumps (a = 0.6 and L = 0.7) or prolate
bumps (a = 0.68, b = 0.47, and L = 0.7). (B) Diffusion flux on the leaf surface. Higher outward flux between two prolate bumps than one on a flat
surface. (C) Vapor concentration and flux along the centerline x = 0. (D) The SEM image shows that the stomata of Nelumbo nucifera are surrounded

by epidermal bumps. (From ref 34. CC bY 4.0.)

J = _aw _[1 _ ( (a +2L)*a’ ]2(z2 + 1)

dz (a +2L) + a* | (&2 - L)

(22)

Here, by replacing z with a point along the surface, we can
calculate the diffusion flux on the surface. It is a bit complicated
to get an analytical expression of diffusion flux on the bump.

However, as you see the shapes and magnitudes of diffusion flux
in Figures S and 2, they are of a similar shape and value.
Therefore, you can approximate the diffusion flux on each bump
as the expression listed in Table 1.

Two Semiellipses. Similar to the previous section, the
approximate solution can be obtained by placing a certain
form of the complex potential at the centers of two semiellipses.
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The complex potential to be used is the second term in eq 9. For
two semielliptical bumps, the complex potential is composed of
two of this term along with two unknowns. Similarly, we can set
both unknowns the same due to the structural symmetry. Each
semiellipse has the major half-length as a + b*/a and the minor
half-length as a — b*/a. The distance from the center of each
semiellipse to the origin x = 0 is L.
Then the complex potential becomes

e _ Iy
W(z)=z—ﬂ1(li?)z—1 %ibz
_ Mibz
2 (23)

where A,(a, b, L) is a constant given in Table 2. The same as
before, the plus sign is for a prolate shape and the minus sign is
for an oblate shape. This constant is calculated to satisfy the
boundary condition, Im(W)I (/441 = 0-

From its derivative, the vapor flux is given as

dw : o
]lz——z—l—ﬂ{1i“—2)1—272
dz b (z—ZL) + b
2
(z+1L)

22

(Z+L)2 + bz

(24)

Figure 5 shows the vapor concentration field and flux around
two bumps. General features are similar to those in the case of a
single bump: the concentration contours are pushed up by bump
structures. As the structures are elongated vertically, the
contours are packed and lifted up. Therefore, a higher flux is
developed near the top of microstructures. One interesting
feature in the case of two bumps is that the flux value is between
two bumps. It does not reach the far-field limit (J, (x — +o00) =
—1); instead it creates a small flux region. This small flux region
between the two bumps indicates that any condensed drops
hardly grow when they are located between bumps.

Vapor from a Stomatum with Two Semiellipses. We
simulate the vapor escaping from a stomatum that is a small
opening on a leaf surface. Typically, the inner space of a
stomatum is fully saturated due to high water contents. Such a
high vapor concentration through the small opening will create a
outward flux to diffuse the water molecules out. These stomata
are surrounded by other epidermal bumps as shown in Figure
6D. To simplify this flux, we will place a small dipole pointing the
horizontal direction in the middle of the two bumps.

The dipole source to simulate the flux from a stomatum can be
expressed as

o= @

source - 27[Z (25)

Here, Q is the strength of the dipole, i.e., the total flux. By adding
this dipole source into a solution with two bumps, we can
simulate a situation close to a stomatum between two bumps as
shown in Figure 6.

For two semicylinders, the superposed complex potential will

be

a* A a* Q

W=Z_ﬂ0 - - -
z—L

%24+ L 27z (26)

where A, is a coefficient to be chosen to satisfy a boundary
condition as

dw >
= =14+ A+ A—— C
dz o pip) (a+2L) 2n(a + L)
=0 (27)
Hence, we get

A, = —(Q/2z(a+ L)*1+1)/(1 + C)

where C = a*/(a + 2L)%
For two semiellipses with a stomatum source, the superposed
complex potential will be

2 B 2
W(z):z—ﬂl[li%) zzL_1 (2 ZZL) + b

2 2
—ﬂllia—z z+L (z+2L) L Q.
b 2 2 27z
(28)

where A, is a coeflicient to be chosen based on a boundary
condition. That boundary condition is

2
=1- 5‘(1(1 + “—2]
z=aFb*/a+L b

aihz/a

aw
dz

aFb*/a+2L

22

1- 2 -
— 12, \2 — 2 2
\/(a+l;2/a) ibz \/(a+h /2211+2L) +b2
Q

=0
27(a ¥ b*/a + L) (29)

Hence, we get

14—
2z(aFb*/a+ L)

axb?/a axb?/a+2L

2 2 2
(1 i a_z) 1 B 2 - )
b \/(uihzz/a)z+b2 \/(aibz/a+zl,)z+b2

2 2 -
(30)
For the plus—minus or minus—plus signs, the upper sign is for a
prolate shape and the lower sign is for an oblate shape.

Figure 6A demonstrates the case when a small opening in the
middle ejects water vapor like open stomata on a flat surface (left
image), on the surface with two semicylinders (middle image),
and on the surface with two prolate semiellipses (right image). It
is worth noting that the boundary of solid structures is deformed
in the presence of the dipole. As mentioned earlier, this method
of using superposed singularities works well with a large distance
between dipoles. However, to demonstrate the case of an
outward flux close to and in between two bumps, it is inevitable
to get the bump contour distorted from ideal semicylinders or
prolate shapes. Figure 6B shows a flux profile on a leaf surface.
Similar to the case of a single bump, a higher flux is formed near
the top of the flux. Also, the order of the magnitude and the
shape of the flux are similar to the flux solution in a single bump.

Figure 6C shows the vapor concentration and flux along the
centerline above a stomatum (x = 0). The vapor concentration
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Figure 7. Drop condensation experiments on a katsura leaf. Images are adapted with permission from Dr. Hosung Kang. (A) SEM images from the top
view. (B) SEM images from an angled view. You can see growing droplets (pointed to by arrows) only near the tops of epidermal bumps.

profile shows a sharply decreasing trend starting from the
stomatum and then a gradually increasing trend. As you know,
the vapor flows from a high concentration region to a low
concentration region. Therefore, we expect the outward flux
from the stomata and the inward flux from the atmosphere. The
outward diffusion flux (J, > 0, i.e, Vc < 0) becomes zero in a
distance from the stomatum, in which the inward flux cancels
out. Two fluxes in opposite directions balance out at some point
in the air. As this zero-flux point moves away from the stomatum,
more area with less vapor is available for the vapor to escape
from the inner space of the leaf. As shown in the right panel of
Figure 6C, the zero-flux point is moved away from the stomatum
as the bumps have more prolate shape. Based on the image of
contours in Figure 6B, prolate bumps will hinder the inward flux
from the atmosphere and make room for the outward vapor flux
from the stomatum. Therefore, the vapor from the stomata can
easily diffuse out to the atmosphere in the presence of prolate
bumps rather than the cases with cylindrical/oblate bumps or a
flat surface.

B CONCLUSIONS

In this paper, we provide simple and analytical solutions of vapor
concentration and diffusion flux on different surfaces: semi-
cylinder, prolate semiellipse, oblate semiellipse, and hairlike
structures. We find that a high inward diffusion flux (i.e., a high
mass flux of vapor) is developed near the top of the
microstructures; thereby droplets easily condense and grow.
On the other hand, a low diffusion flux is formed near the
stomata or the lower side at the leaf surface. Such a low vapor
flux near the stomata could affect transpiration in two ways.
First, the condensed droplets on the stomata will not grow due
to a low mass flux of vapor, which lets the open stomata fully
exchange gases. Second, the low vapor flux from the atmosphere
will not hinder the release of highly concentrated vapor from the
substomatal space much. Our results can be applicable to the
concentration and vapor flux very close to the surface at the scale
of microstructures. We did not consider a large-scale

concentration gradient in this study. Additionally, if there is a
slight air flow in real situations, we need to solve the advected
diffusion equation, which is beyond the scope of the study.

Currently, we do not have our own quantitative measure-
ments to compare experimental results with theoretical
solutions, but our preliminary results on the leaf surface show
the likelihood of dropwise condensation on the upper portion of
the microstructures qualitatively as shown in Figure 7. In the
future, we will perform quantitative experiments to verify the
solutions and develop surrogate analytical solutions in 3D
bumps. Another interesting fact is that plant leaves are very
dynamic due to raindrop impact’> ™’ or wind,***” which will
further modify the vapor concentration and flux around.
Additionally, even though we present our results from a plant
transpiration perspective, many of these results can be useful in
understanding condensation or evaporation on nonuniform
engineering surfaces.
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