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Abstract During the 2018 Kilauea volcanic eruption, lava erupted from a series of new fissures in the
lower East Rift Zone more than 30 km away from the summit through a dike intrusion. Between late May
and early August, variations in the effusion rate at the persistent eruptive vent (Fissure 8) were observed
following near-daily summit caldera collapse events. Targeting the ongoing eruptive activity and the
subsurface magma movement, we deployed a temporary dense seismic array. The observed time-lapse
changes in seismic velocity associated with the response of the summit collapse in three areas are presented
in this study. The results show (1) clear spatially dependent co-collapse velocity reductions across the
newly-intruded dike structure, (2) a gradual post-collapse velocity increase near Fissure 8 correlated with the
surge of magma supply, and (3) a gradual post-collapse velocity increase on the summit likely associated
with reservoir pressurization and crustal welding.

Plain Language Summary Volcanic eruptions commonly involve failure of rocks surrounding
the subsurface magma transport system, such as fracturing and rupturing. During the 2018 Kilauea
volcano eruption, lava mainly erupted from new fissures within the lower East Rift Zone (LERZ) located tens
of kilometers away from the magma reservoir beneath the summit. As magma drained from the summit
system to feed the LERZ eruption, the summit caldera subsided in an episodic fashion through a series of
62 collapses. Despite this spatial separation, we observe correlation between the summit collapse and the
LERZ eruptive activity suggesting the two features are interconnected through a subsurface dike. To better
study the eruption dynamics and subsurface magma movement, we deployed a temporary dense seismic
array across the Kilauea volcano system during the steady phase after mid-June in 2018. In this study, we
present the time-lapse changes in crustal seismic velocity observed across the dense array correlated with the
summit collapses. We show that different volcanic components (i.e., summit, dike, and fissure) react to
summit magma pressurization differently. Our findings provide new constraints on the time-evolving
mechanical structure of a volcano during a major eruption.

1. Introduction

Since 1983, eruptions from Kilauea volcano mainly occurred at the Halema'uma'u crater on the summit and
Pu'u'0'0, a persistent vent on the East Rift Zone (ERZ) located ~20 km downrift from the summit (Heliker &
Mattox, 2003; Orr et al., 2015; Patrick et al., 2018; Poland et al., 2014; Wolfe, 1988). The magma is supplied by
a reservoir 1-2 km beneath the summit (Anderson et al., 2019; Denlinger, 1997; Poland et al., 2014; Patrick,
Orr, et al., 2019). On 1 May (UTC time), migration of seismicity and ground deformation indicated that a
dike intruded ~20 km downrift of Pu'u 'O'0 to the lower East Rift Zone (LERZ) (Neal et al., 2019).
Following the intrusion, 24 new eruptive fissures opened and eventually coalesced around Fissure 8, which
became the principal outlet of lava between late May and early August (Figure 1). Coincident in time with
Fissure 8's activity, collapse events equivalent to magnitude 5.2-5.4 on the Kilauea summit occurred nearly
daily (Neal et al., 2019).

The summit collapse events, presumably accommodated by a ring-fault system which developed during mid-
dle to late June (Segall et al., 2019), were triggered by progressive magma withdrawal from the 1- to
2-km-deep summit reservoir (Anderson et al., 2019; Liang et al., 2020). The collapse of the caldera roof
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Figure 1. (a) Map of geographic features and the seismic nodal array (colored triangles) deployed between mid-June and mid-July 2018 on the island of Hawai'i.
Locations of permanent seismic stations (black triangles) are also shown for reference. Orange area indicates East Rift Zone; light red area illustrates the active
lava flows during 2018 eruption (Neal et al., 2019). The white rectangles denote the areas of enlargement shown in Figures 1b and 1c. (b) The magnified

map showing the summit nodal array (triangles) and seismicity distribution based on standard USGS catalog (Shiro et al., 2018). Red stars denote the ~M5 collapse
events; the earthquakes (circles) are color coded by the occurrence time relative to the closest collapse event. (c) The magnified map showing the LERZ nodal
array (triangles) and hypothesized dike emplacement (light gray area). Yellow lines are roads. Red circles are the eruptive fissures during the 2018 eruption.
Fissure 8 is the active fissure during the nodal deployment. Problematic stations not used in this study are marked as gray triangles (Text S1 in the supporting

information).

pressurized the underlying magma reservoir, increased magma flux in the dike, and led to higher effusion
rates at Fissure 8 (Neal et al., 2019; Patrick, Dietterich, et al., 2019). The observed correlation between
summit deformation and increased effusion rates at Fissure 8 thus suggests that the two were
hydraulically connected. The early stages of the eruption were accompanied by vigorous seismicity, which
outlined the geometry and progression of the initial dike intrusion. After the establishment of the
long-lived erupting vent (Fissure 8) as an “open pipe,” seismicity in the LERZ decreased significantly
(Shiro et al., 2018). To further understand the hydraulic connection and the dynamics of the magma
movement during the nearly steady state eruption stage, other high-resolution measurements in both

space and time are needed.

In this study, we investigate the temporal changes in seismic velocity across Kilauea volcano associated
with the 2018 eruption to infer the dynamic response to summit collapse events. We use data from a
dense seismic array we deployed from mid-June through mid-July 2018 (Lin & Farrell, 2018), which
recorded 25 out of the 62 summit collapses (Figure 1). Recently, dense seismic arrays have been widely
used to image detailed crustal structure (e.g., Lin et al., 2013; Nakata et al., 2015; Schmandt &
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Clayton, 2013; Wang et al., 2019; Ward et al., 2018; Wu et al., 2017) and monitor ongoing volcanic and
hydrothermal activity (Donaldson et al., 2017; Obermann et al., 2013; Olivier et al., 2019; Wu et al., 2019).
Here we apply coda wave interferometry (Snieder et al., 2002) to the seismic noise recordings. This tech-
nique permits the detection of small changes in the seismic velocity of the propagation medium, through
changes in the noise correlation coda. Previous studies have successfully applied this technique to volcano
monitoring (e.g., Bennington et al., 2018; Donaldson et al., 2017; Haney et al., 2015; Obermann et al., 2013;
Olivier et al., 2019) and investigation of crustal damage/recovery following large earthquakes (e.g.,
Brenguier et al., 2008; Wegler et al., 2009). Recently, the technique was applied to investigate the
long-term inflation/deflation associated with the Kilauea magma reservoir (Donaldson et al., 2017) and
short-term structural damage that occurred ~10 days prior to the 2018 Kilauea eruption (Olivier
et al., 2019). We find clear, space- and time-dependent velocity changes likely associated with crustal
damage, strengthening, and relaxation in response to the summit collapse events and hence infer the
reservoir pressurization and dynamic stress variations.

2. Data

In response to the 2018 Kilauea eruption, the University of Utah partnered with the U.S. Geological Survey
Hawaiian Volcano Observatory to deploy a dense geophone array between 15 June and 26 July 2018 (Lin &
Farrell, 2018). The array was composed of 80 three-component autonomous 5-Hz nodal geophone stations
(Ringler et al., 2018; Text S1) that continuously recorded with a 250-Hz sampling rate. There were two sub-
arrays targeting the Kilauea summit and the LERZ (Figure 1a). The summit subarray consisted of 24 stations
with ~250-m station spacing partially encircling the summit caldera (Figure 1b). The LERZ subarray
(Figure 1c) consisted of 30 closely spaced stations (~200-m spacing near the center) along highway 130 cross-
ing the presumed subsurface dike structure (Neal et al., 2019; Poland et al., 2014). Another 16 stations were
distributed in and around Leilani Estates near the active lava fountaining and surface lava flow. We note that
Station 93 is closest to Fissure 8, located just ~700 m away. In addition to the two major subarrays, nine geo-
phones were deployed in accessible locations around the ERZ. Bad stations and other deployment problems
are documented in Text S1.

During the nodal deployment, the Kilauea summit experienced 25 near-daily M5.2 to M5.4 collapse events
with an ~30-hr average interval. The collapse events were accompanied by a distinct seismicity cycle where
summit seismicity dropped immediately after the collapse, followed by an ~10-hr quiescent period, and
increased gradually before the next collapse (Figure 1b). Epicenters of the collapse events are predominantly
located east of Halema'uma'u particularly focused on the NE side (Figure 1b). While extensive seismicity
occurred at the Kilauea summit, the LERZ was seismically quiet during the array experiment, with the
exception of potential signals from continuous fountaining at Fissure 8 and littoral blasts from the
ocean entry.

3. Methods

We apply coda wave interferometry to autocorrelation functions (ACFs) of seismic noise (Minato et al., 2012;
Yu & Hung, 2012) to investigate the temporal and spatial variations of crustal elastic properties in response
to the summit collapse and underground magma flow. After removing the instrument response to generate
ground velocity, we downsample the daily seismograms to 50 samples per second, remove the mean and
trend, and divide the data into 5-min segments. The results of this study are presented in two time resolu-
tions: 5 min (no stacking) and 1 hr (stacking). For the hourly stacking ACF, we first apply a Butterworth fil-
ter between 1 and 5 Hz to remove high-frequency energy and then normalize each 5-min ACF by its
maximum amplitude before the stacking process. We stack 12 consecutive 5-min ACFs to retrieve the hourly
stacking ACF and use the start of each hour as the representative time. To better observe the signals in
response to the collapse events, all the ACFs are organized chronologically relative to the event origin times.
Coherent coda signals, which are the bases for our interferometric analysis, can be observed in ACFs both
before and after the collapse events (Figure S1).

The relative velocity is measured using a moving-window cross-spectral technique between any two given
ACFs from the same station but different time periods (Poupinet et al., 1984; Yu & Hung, 2012).
Assuming evenly distributed scatters and a homogenous velocity perturbation, this technique estimates
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the linear relationship between the time lag (67) and lapse time (7) of coda signals, which is inversely related
to the fractional perturbation in seismic velocity (dv/v). We use a 50% overlapping 2-s moving window
between 2- and 12-s lapse time to determine the time shifts and hence the velocity perturbation. Rather than
choosing an arbitrarily long-time averaged ACF as a reference, we adopt the Bayesian least squares inversion
technique from Brenguier et al. (2014; Text S2) and use any combination of the ACFs to construct the final
time-lapse velocity variation. Thus for each station, ~2 million dv/v measurements contribute to the
final result.

4. Results and Discussion

Figures 2-4 summarize the results of temporal velocity variations (8v/v) in the following locations: (1)
above the LERZ dike emplacement, (2) near Fissure 8, and (3) at the Kilauea summit. Here, the variations
in dv/v are expressed relative to the onsets of the 25 collapse events recorded during the array deploy-
ment. We calculate the average velocity perturbations combined for all collapse events and estimate a
95% confidence region to determine the dominant pattern common to all collapse events (Figure S2).

4.1. LERZ Dike Emplacement

Here we present the 8v/v at stations of the dense linear array along highway 130 in the LERZ (Figure 1c). The
intersection between the dike and the array is likely near the middle of the array (between Stations 46 and
49) where elevated temperatures, SO, gas emissions, intense ground cracking, and extensive steam vapor
emission were present (Figures 1c and 2b). Strong ground motion excited by the collapse events is also
observed near the center of our linear array with the largest peak ground velocity (PGV) observed about
1 km north of the dike (Figure S3c). The spatial PGV pattern suggests the presence of a low seismic velocity
anomaly adjacent to the dike with induced wave focusing and amplification.

The 8v/v results exhibit a clear co-collapse seismic velocity drop with a distinct spatial pattern in magnitude
associated with the presumed underground dike location (Figures 2 and S3a). The velocity drop has a max-
imum magnitude of —0.27% (+0.03%) at Station 46 near the middle of the array and gradually decreases in
magnitude toward both sides. For each station, the sudden velocity drop is followed by an exponential recov-
ery, which closely resembles previous observations of dynamic crustal weakening/damage following large
earthquakes (M > 7; Brenguier et al., 2008; Nakata & Snieder, 2011 ; Peng & Ben-Zion, 2006). We also attri-
bute the sudden velocity drop to dynamic weakening (damage from strong shaking) based on its spatial cor-
relation with the observed PGV pattern (Figure S3c). However, we cannot completely rule out the potential
contribution from stress changes associated with magma flux variations within the underlying dike.

To further quantify the spatiotemporal pattern of observed &v/v, for each station, we determine the
co-collapse velocity drop and the 90% exponential relaxation/recovery time (i.e., the velocity recovers to
90% of its pre-collapse value) based on least squares curve fitting (Text S3). Note that previous studies utilized
a logarithmic model for postseismic recovery which usually lasts over months and commonly has permanent
change (Nakata & Snieder, 2011; Peng & Ben-Zion, 2006). In contrast, the observations in this study expli-
citly show full recovery within hours of the collapse. Here, we employ a simple exponential recovery model
to avoid the divergence of the logarithmic model and ensure that the modeled velocity returns to its refer-
ence level (Hobiger et al., 2014; Qiu et al., 2019; Snieder et al., 2016; Taira et al., 2018). In Figures S3a and
S3b, we plot the estimated velocity drops and relaxation times as a function of orthogonal station distance
to the surface projection of the linear dike. The result shows a clear asymmetrical zone of significant velocity
drops (>0.1%) with a width of ~500 m to the south and ~1,500 m to the north (gray area in Figure S3). This
width is slightly larger than our estimated lateral resolution (Text S4) assuming a Rayleigh wave dominant
background wavefield (Text S5 and Figures S4 and S5). Despite some scattered points, stations north of
Station 46 in general have a shorter relaxation time (<2 hr) compared to stations to the south (Figure S3b).

The slight spatial offset between the patterns of the dv/v drop and PGV suggests that the medium in the
immediate vicinity of the dike is more susceptible to dynamic weakening (Brenguier et al., 2014).
Estimation from Poland et al. (2014) and Neal et al. (2019) suggests the dike emplacement is at ~2-4 km deep
with an ~2- to 4-m opening in the ERZ, which is deeper than the expected sensitivity of our measurements
(Text S4). It is possible that the dike emplacement was closer to the surface in the LERZ as it shallowed closer
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Figure 2. (a) Velocity drop and recovery across the LERZ associated with summit collapses. The velocity variations are
retrieved from nonoverlapping 5-min time windows. The red lines and the gray areas represent averaged velocity and
95% confidence intervals from ~25 collapse events. The black lines represent the best fitting curves for co-collapse
velocity drop and exponential recovery. The blue-dashed line marks the collapse event reference time. Labeled numbers
correspond to station locations shown in Figures 1c and 2b. (b) Station locations (triangles) are along Highway 130,
which are color coded by the co-collapse velocity drops from the best fitting results, showing clear spatial pattern related
to the subsurface dike structure. The blue area indicates vapor steam, elevated temperatures, and gas emissions observed
on the surface.

to the surface eruption, which fractured the shallow crust, making it more susceptible to further weakening,
and also increased the shallow hydrothermal steam venting.

The asymmetry of the velocity drop, relaxation time, and PGV (Figures 2 and S3) suggests the dike may serve
as a physical boundary (e.g., separating two different stress regions), the dike emplacement occurred at a pre-
existing structural boundary, or the dike structure is itself asymmetric. We note that differences in densities
from previous lava flows from previous eruption episodes have been reported (Clague et al., 1999; Hagstrum
& Champion, 1994) and a buttressed north flank and a more mobile south flank have also been inferred
(Denlinger & Okubo, 1995; Montgomery-Brown et al., 2009; Owen et al., 2000; Swanson et al., 1976).

4.2. LERZ Fountain Eruption (Fissure 8)

We present the hourly stacked 8v/v at three stations that were in line with the linearly distributed fissures in
the LERZ (Figure 1c). These three stations, 46, 64, and 93, were 3.8, 1.9, and 0.7 km from Fissure 8, respec-
tively. The results at Stations 46 and 64 show clear co-collapse velocity drops of around —0.2% that are
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Figure 3. Seismic velocity variations measured at Stations 46, 64, and 93 (upper left insects; Figure 1c) in the LERZ
associated with Kilauea summit collapses. The velocity variations are retrieved from smoothed hourly stacked ACFs,
yielding the affected velocity variation 1-hr preceding the exact perturbed time. The red and blue lines represent averaged
velocity perturbations and recorded seismic ground motion amplitudes (5-min resolution) among ~25 collapse events,
respectively. The gray areas indicate the 95% confidence intervals. Black dashed lines mark the level of unperturbed
velocity level.

associated with structural weakening and an ~1.5-hr 90% recovery time (Figure 3). We note that the
apparent velocity drop starting ~1 hr before the collapse is introduced by hourly stacking for enhancing
the signal-to-noise ratio. In addition to the co-collapse velocity drop similar to that observed at Stations 46
and 64, Station 93 exhibited an increase in velocity with a peak ~2-3 hr after the collapse event (Figure 3).
The apparent peak velocity perturbation of 0.18 + 0.05% is followed by an exponential decay where &v/
v returns to the unperturbed condition ~12 hr after the collapse. The velocity increase is likely associated
with the crack-closing process while the crust was under compression. Such an effect has been observed
at the Kilauea summit during the cyclic deflation/inflation induced by the magma reservoir's
pressurization (Donaldson et al., 2017). Based on the observation of higher effusion rates at Fissure 8
following the summit collapses (Patrick, Dietterich, et al., 2019), we hypothesize that the magma influx
surge within the LERZ shallow magma plumbing system contributes to the pressurization.

In this conceptual model, the summit collapse events act as piston drops and the summit magma reser-
voir is hydraulically connected to the ERZ/LERZ dike plumbing system (Anderson et al., 2019;
Gudmundsson et al., 2016; Neal et al., 2019). The 2- to 3-hr lag time for the maximum velocity increase
may be related to the transit time for the surge of magma influx to migrate down to Fissure 8, around
40 km away (Patrick, Dietterich, et al., 2019). A 2- to 3-hr delay in peak effusion rates following pressur-
ization at one end requires a compliant and elastic-walled dike structure (Bokhove et al., 2005). Note that
we do not have the temporal resolution to determine the onset of the effusion increase, which likely hap-
pened within 20 min after the collapse (Patrick, Dietterich, et al., 2019). Comparison of characteristic
transit time for pressure diffusion associated with magma flow through an elastic-walled dike
(Montagna & Gonnermann, 2013; Figure S6), to flux from Fissure 8, suggests a dike width between 1
and 3 m. There is a trade-off between dike height, shear modulus, Poisson's ratio of the host rocks,
and magma viscosity to control pressure diffusivity so it is less well constrained (Text S6). The exponential
velocity relaxation after the peak 8v/v increase will scale with the decreasing source pressure driving
excess flow in the dike (Woods & Huppert, 2003). While the structural weakening from the collapse is
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Figure 4. (a) Seismic velocity variations associated with Kilauea summit collapse events measured at Station 15 on the
NE rim of the summit caldera. The velocity variations are retrieved from hourly stacked ACFs, yielding the affected
velocity variation 1 hr preceding the exact perturbed time. The red line represents averaged velocity among ~25 collapse
events and the gray area indicates the 95% confidence interval. The blue line represents the best fit curve account for both
structural weakening from longer time scale depressurization and crustal strengthening from instantaneous collapse
pressurization. (b) Earthquake counts (orange histogram) on the summit between 15 June and 19 July 2018 relative to
collapse times. The blue lines and the gray area represent averaged seismic amplitudes with 5-min resolution and its 95%
confidence interval, respectively.

ubiquitous in the vicinity of the LERZ, the pressurization-induced velocity increase is clearest near
Fissure 8. This suggests the intruded magma pathway reaches a shallower depth very near Fissure 8,
and the shallow crustal velocity is sensitive to dynamic pressures in the magma. Alternatively, the
change from a Rayleigh wave to body wave dominant wavefield (Figure S5) might extend the depth
sensitivity of our measurements (Text S4). We note that Station 93 has a higher overall seismic ground
motion amplitude when compared with other stations within the LERZ (Figure 3), particularly after
the collapse events, likely related to the fountaining at Fissure 8.

4.3. The Kilauea Summit

Variation in 6v/v at the station NE of the summit caldera (Station 15; Figure 1b) exhibited a gradual increase
of 0.34 + 0.08% maximum amplitude, peaking ~4 hr after the collapse (Figure 4). The velocity increase likely
indicates compression of the shallow crust and is consistent with the contemporary GPS displacement mea-
surement (Segall et al., 2019) and the previous strain model based on a dilated/pressurized magma reservoir
at ~1-km depth (Donaldson et al., 2017). As the pressurization on the summit is considered to be instanta-
neous following collapse events (supported by abrupt changes in the GPS and tilt measurements in the vici-
nity of Halema'uma'u crater; Neal et al., 2019; Segall et al., 2019), the gradual velocity increase likely reflects
the relaxation time of crustal strengthening/welding associated with crack realignment and closing
(Brenguier et al., 2008; Snieder et al., 2016). Following collapse events, the reservoir gradually depressurized
as magma flowed to the LERZ (Anderson et al., 2019). Such a depressurization process is consistent with the
observed exponential relaxation in velocity. Therefore, the observed apparent velocity variation likely repre-
sents the superposition of these two processes with distinct scales in time: (1) crustal strengthening after the
pressurization collapse event, occurring over a short time scale; and (2) crustal weakening due to depressur-
ization, occurring over a longer time scale.

The magnitudes and relaxation times of the two effects that best fit the data are estimated using least squares
curve fitting (Text S3 and Figure S7; blue line in Figure 4). The result suggests a 0.63 + 0.04% co-collapse dv/v
increase from instantaneous pressurization with a 4.59 + 0.18-hr strengthening/welding process followed by
a26.62 + 2.04-hr weakening/depressurization process. The ~26-hr recovery time scale from depressurization
is similar to the average collapse event interval (~30 hr) using all 25 collapse events, showing that shallow
crustal weakening was in concert with the dynamic process of ongoing summit collapse. This is also sup-
ported by the decrease in velocity at a rate of ~—0.01% per hour and gradual increase in seismicity
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preceding each collapse event, which is likely associated with the overall depressurization of the system due
to the magma removal. We note that our &v/v result from different summit stations shows a distinct spatial
pattern characterized by a maximum apparent velocity increase in the NE section (Figure S8). The exact
mechanism that causes this spatial variation is beyond the scope of this study and will be the subject of future
studies. While the overall background seismic amplitude observed across the summit is clearly affected by
nearby seismicity (Figure 4), no obvious wavefield characteristic change (Figure S5) that can potentially bias
our result, has been observed during the collapse event cycle.

5. Conclusion

We designed and deployed a dense seismic array on Kilauea volcano from mid-June through mid-July 2018.
Using seismic noise coda wave interferometry, we investigated changes in seismic velocity in response to
summit collapse events and inferred magmatic movement between the summit and the LERZ. Across the
LERZ dike, we observed a clear co-collapse rapid év/v reduction followed by an exponential recovery. A max-
imum velocity drop of —0.27 + 0.03% is observed immediately above the presumed dike structure, which is
likely most susceptible to dynamic weakening. Adjacent to Fissure 8, a gradual velocity increase with
~0.18 + 0.05% maximum amplitude is observed ~2-3 hr after the collapse. We interpret this as the surge
of magma influx within the shallow plumbing system in response to summit reservoir pressurization. At
the summit, a gradual dv/v increase is also observed with 0.34 + 0.08% maximum amplitude which peaks
~4 hr after the collapse. This velocity increase at the summit may be related to the exponential relaxation
process of rock healing/crack closing in response to the instantaneous pressurization of the system at the
time of the collapse event.

The results suggest that the elastic properties in the shallow crust of Kilauea volcano varied in concert with
the dynamics of magmatic activity at depth. These properties can be detected and monitored if instruments
are close to the volcanic structure. We show that a dense seismic array can provide valuable new information
on spatiotemporal variations of crustal structure which can then be used to monitor ongoing eruption activ-
ity. Future studies of high-resolution static velocity structure of the dike and summit by combining both tem-
porary and permanent networks can advance our understanding of Kilauea's magmatic plumbing system.
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Erratum

In the originally published version of this article, there were minor typographical errors in the Supporting
Information on lines 113 and 116 and Figure S3. These errors have since been corrected, and the present ver-
sion may be considered the authoritative version of record.
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