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Abstract. Worst-case complexity guarantees for nonconvex optimization algorithms have been a
topic of growing interest. Multiple frameworks that achieve the best known complexity bounds among
a broad class of first- and second-order strategies have been proposed. These methods have often
been designed primarily with complexity guarantees in mind and, as a result, represent a departure
from the algorithms that have proved to be the most effective in practice. In this paper, we consider
trust-region Newton methods, one of the most popular classes of algorithms for solving nonconvex
optimization problems. By introducing slight modifications to the original scheme, we obtain two
methods—one based on exact subproblem solves and one exploiting inexact subproblem solves as
in the popular “trust-region Newton-conjugate gradient” (trust-region Newton-CG) method—with
iteration and operation complexity bounds that match the best known bounds for the aforementioned
class of first- and second-order methods. The resulting trust-region Newton-CG method also retains
the attractive practical behavior of classical trust-region Newton-CG, which we demonstrate with
numerical comparisons on a standard benchmark test set.
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1. Introduction. Consider the unconstrained optimization problem

min
x∈Rn

f(x),(1.1)

where f : Rn → R is twice Lipschitz continuously differentiable and possibly non-
convex. We propose and analyze the complexity of two trust-region algorithms for
solving problem (1.1). Our main interest is in an algorithm that, for each subproblem,
uses the conjugate gradient (CG) method to minimize an exact second-order Taylor
series approximation of f subject to a trust-region constraint, as in so-called trust-
region Newton-CG methods. Our complexity analysis for both methods is based on
approximate satisfaction of second-order necessary conditions for stationarity, that is,

∇f(x) = 0 and ∇2f(x) positive semidefinite.(1.2)
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TRUST-REGION NEWTON-CG WITH STRONG COMPLEXITY 519

Specifically, given a pair of (small) real positive tolerances (εg, εH), our algorithms
terminate when they find a point xε such that

‖∇f(xε)‖ ≤ εg and λmin(∇2f(xε)) ≥ −εH ,(1.3)

where λmin(·) denotes the minimum eigenvalue of its symmetric matrix argument.
Such a point is said to be (εg, εH)-stationary. By contrast, any point satisfying the
approximate first-order condition ‖∇f(x)‖ ≤ εg is called an εg-stationary point.

Recent interest in complexity bounds for nonconvex optimization stems in part
from applications in machine learning, where for certain interesting classes of prob-
lems all local minima are global minima. We have a particular interest in trust-region
Newton-CG algorithms since they have proved to be extremely effective in practice
for a wide range of large-scale applications. We show in this paper that by making
fairly minor modifications to such an algorithm, we can equip it with strong theo-
retical complexity properties without significantly degrading important performance
measures such as the number of iterations, function evaluations, and gradient eval-
uations required until an (εg, εH)-stationary point is reached. This is in contrast to
other recently proposed schemes that achieve good complexity properties but have
not demonstrated such good performance in practice against a state-of-the-art trust-
region Newton-CG algorithm; see, e.g., [1, 6].

We prove results concerning both iteration complexity and operation complexity.
The former refers to a bound on the number of “outer” iterations required to identify a
point that satisfies (1.3). For the latter, we identify a unit operation and find a bound
on the number of such operations required to find a point satisfying (1.3). As in
earlier works on Newton-CG methods [30, 29], the unit operation is either a gradient
evaluation or a Hessian-vector multiplication. In both types of complexity—iteration
and operation—we focus on the dependence of bounds on the tolerances εg and εH .

Our chief contribution is to show that a trust-region Newton-CG method can
be modified to have state-of-the-art operation complexity properties for locating an

(εg, ε
1/2
g )-stationary point, matching recent results for modified line search Newton

methods, cubic regularization methods, and other approaches based on applying ac-

celerated gradient to nonconvex functions (see section 1.3). The setting εH = ε
1/2
g is

known to yield the lowest operation complexity bounds for several classes of second-
order algorithms.

1.1. Outline. We specify assumptions and notation used throughout the pa-
per in section 1.2 and discuss relevant literature briefly in section 1.3. Section 2
describes a trust-region Newton method in which we assume that the subproblem is
solved exactly at each iteration and in which the minimum eigenvalue of the Hes-
sian is calculated as necessary to verify the conditions (1.3). We prove the iteration
complexity of this method, setting the stage for our investigation of a method using
inexact subproblem solves. In section 3, we describe an inexact implementation of
the solution of the trust-region subproblem by a CG method and find bounds on the
number of matrix-vector multiplications required for this method. We also discuss
the use of iterative methods to obtain approximations to the minimum eigenvalue of
the Hessian. Section 4 describes a trust-region Newton-CG method that incorporates
the inexact solvers of section 3 and analyzes its iteration and operation complexity
properties. We describe implementation challenges in section 5, then detail our com-
putational experiments in section 6. Finally, we make some concluding observations in
section 7.
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1.2. Assumptions and notation. We write R for the set of real numbers (that
is, scalars), Rn for the set of n-dimensional real vectors, Rm×n for the set of m-by-n-
dimensional real matrices, Sn ⊂ Rn×n for the set of n-by-n-dimensional real symmetric
matrices, and N for the set of nonnegative integers. For v ∈ Rn, we use ‖v‖ to denote
the `2-norm of v. Given scalars (a, b) ∈ R× R, we write a ⊥ b to mean ab = 0.

In reference to problem (1.1), we use g := ∇f : Rn → R and H := ∇2f : Rn → Sn
to denote the gradient and Hessian functions of f , respectively. For each iteration
k ∈ N= {0, 1, 2, . . . } of an algorithm for solving (1.1), we let xk denote the kth solution
estimate (that is, iterate) computed. For brevity, we append k ∈ N as a subscript
to a function to denote its value at the kth iterate, e.g., fk := f(xk), gk := g(xk),
and Hk := H(xk). The subscript j ∈ N is similarly used for the iterates of the
subroutines used for computing search directions for an algorithm for solving (1.1).
Given Hk ∈ Sn, we let λk := λmin(Hk) denote the minimum eigenvalue of Hk with
respect to R.

Given functions φ : R → R and ϕ : R → [0,∞), we write φ(·) = O(ϕ(·)) to
indicate that |φ(·)| ≤ Cϕ(·) for some C ∈ (0,∞). Similarly, we write φ(·) = Õ(ϕ(·))
to indicate that |φ(·)| ≤ Cϕ(·)| logc(·)| for some C ∈ (0,∞) and c ∈ (0,∞). In this
manner, one finds that O(ϕ(·) logc(·)) ≡ Õ(ϕ(·)) for any c ∈ (0,∞).

The following assumption on the objective function in (1.1) is made throughout.

Assumption 1. The objective function value sequence {fk} is bounded below by
flow ∈ R. The sequence of line segments {[xk, xk + sk]} lies in an open set over
which f is twice continuously differentiable and the gradient and Hessian functions
are Lipschitz continuous with constants Lg ∈ (0,∞) and LH ∈ (0,∞), respectively.

The following bounds are implied by Assumption 1 (see, e.g., [26]):

f(xk + sk)− fk − gTk sk −
1

2
sTkHksk ≤

LH
6
‖sk‖3 for all k ∈ N,(1.4a)

‖g(xk + sk)− gk −Hksk‖ ≤
LH
2
‖sk‖2 for all k ∈ N,(1.4b)

and ‖Hk‖ ≤ Lg for all k ∈ N.(1.4c)

1.3. Literature review. Complexity results for smooth nonconvex optimiza-
tion algorithms abound in recent literature. We discuss these briefly and give some
pointers below, with a focus on methods with best known complexity.

Cubic regularization [27, Theorem 1] has iteration complexity O(ε
−3/2
g ) to find

an (εg, ε
1/2
g )-stationary point; see also [7, 9]. Algorithms that find such a point with

operation complexity Õ(ε
−7/4
g ), with high probability, were proposed in [1, 6]. (The

“high probability” is due to the use of randomized iterative methods for calculating a
minimum eigenvalue and/or solving a linear system.) A method that deterministically

finds an εg-stationary point in Õ(ε
−7/4
g ) gradient evaluations was described in [5].

Line search methods that make use of Newton-like steps, the CG method for
inexactly solving linear systems, and randomized Lanczos for calculating negative
curvature directions are described in [30, 29]. These methods also have operation

complexity Õ(ε
−7/4
g ) to find a (εg, ε

1/2
g )-stationary point with high probability. The

method in [29] finds an εg-stationary point deterministically in Õ(ε
−7/4
g ) operations,

showing that the CG method on nonconvex quadratics shares properties with accel-
erated gradient on nonconvex problems as described in [5].

Trust-region methods. An early result of [19] shows that standard trust-region
methods require O(ε−2

g ) iterations to find an εg-stationary point; this complexity was
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shown to be sharp in [8]. A trust-region Newton method with iteration complexity of

O(max{ε−3/2
g , ε−3

H }) for finding an (εg, εH)-stationary point is described in [11]. This
complexity matches that of cubic regularization methods [27, 7, 9].

Another method that uses trust regions in conjunction with a cubic model to find
an (εg, εH)-stationary point with guaranteed complexity appears in [23]. This is not a
trust-region method in the conventional sense because it fixes the trust-region radius at
a constant value. Other methods that combine trust-region and cubic-regularization
techniques in search of good complexity bounds are described in [12, 14, 15, 2, 3].

Solving the trust-region subproblem. Efficient solution of the trust-region sub-
problem is a core aspect of both the theory and practice of trust-region methods.
In the context of this paper, such results are vital in turning an iteration complexity
bound into an operation complexity bound. The fact that the trust-region subproblem
(with a potentially nonconvex objective) can be solved efficiently remains surprising
to many. This is especially true since it has some complicating features, particularly
the “hard case” in which, in iteration k ∈ N, the gradient gk is orthogonal to the
eigenspace of the Hessian Hk corresponding to its minimum eigenvalue.

Approaches for solving trust-region subproblems based on matrix factorizations
are described in [24]; see also [28, Chapter 4]. For large-scale problems, iterative
techniques based on the CG algorithm [31, 32] and the Lanczos method [16, 25]
have been described in the literature. Convergence rates for the method of [16] are
presented in [34], though results are weaker in the hard case.

Global convergence rates in terms of the objective function values for the trust-
region subproblem are a recent focus; see, for example, [20], wherein the authors
use a semidefinite programming relaxation, and [33], wherein the authors apply an
accelerated gradient method to a convex reformulation of the trust-region subproblem
(which requires an estimate of the minimum eigenvalue of the Hessian). Both solve
the trust-region subproblem to within ε of the optimal subproblem objective value in
Õ(ε−1/2) time.

A recent method based on Krylov subspaces is presented in [4]. This method
circumvents the hard case by its use of randomization. Subsequent work in [18]
derives a convergence rate for the norm of the residual vectors in the Krylov-subspace
approach.

The hard case does not present a serious challenge to the main algorithm that we
propose (Algorithm 4.1). When it occurs, either the CG procedure (Algorithm 3.1)
returns an acceptable trial step, or else the minimum-eigenvalue procedure (Algo-
rithm 3.2) will be invoked to find a negative curvature step.

2. An exact trust-region Newton method. In this section, we propose a
trust-region Newton method that uses, during each iteration, the exact solution of a
(regularized) trust-region subproblem. The algorithm is described in section 2.1, and
its complexity guarantees are analyzed in section 2.2. Our analysis of this method
sets the stage for our subsequent method that uses inexact subproblem solutions.

2.1. The algorithm. Our trust-region Newton method with exact subproblem
solves, which is inspired in part by the line search method proposed in [30], is written
as Algorithm 2.1. Unlike a traditional trust-region method, the second-order station-
arity tolerance εH ∈ (0,∞) is used to quantify a regularization of the quadratic model
mk : Rn → R of f at xk used in the subproblem, which is given by

mk(x) := fk + gTk (x− xk) +
1

2
(x− xk)THk(x− xk);(2.1)
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Algorithm 2.1. Trust-Region Newton Method (exact version)

Require: Tolerances εg ∈ (0,∞) and εH ∈ (0,∞); trust-region adjustment param-
eters γ1 ∈ (0, 1), γ2 ∈ [1,∞), and ψ ∈ (1/γ2, 1]; initial iterate x0 ∈ Rn; initial
trust-region radius δ0 ∈ (0,∞); maximum trust-region radius δmax ∈ [δ0,∞); and
step acceptance parameter η ∈ (0, 1).

1: for k = 0, 1, 2, . . . do
2: Evaluate gk and Hk.
3: Initialize λk ←∞.
4: if ‖gk‖ ≤ εg then
5: Compute λk ← λmin(Hk).
6: if λk ≥ −εH then
7: return xk as an (εg, εH)-stationary point for problem (1.1).
8: end if
9: end if

10: Compute a trial step sk as a solution to the regularized trust-region subproblem

min
s∈Rn

mk(xk + s) +
1

2
εH‖s‖2 s.t. ‖s‖ ≤ δk.(2.2)

11: Compute the ratio of actual-to-predicted reduction in f , defined as

ρk ←
fk − f(xk + sk)

mk(xk)−mk(xk + sk)
.(2.3)

12: if ρk ≥ η then
13: Set xk+1 ← xk + sk.
14: if ‖sk‖ ≥ ψδk then
15: Set δk+1 ← min {γ2δk, δmax}.
16: else
17: Set δk+1 ← δk.
18: end if
19: else
20: Set xk+1 ← xk and δk+1 ← γ1‖sk‖.
21: end if
22: end for

see (2.2). Our choice of regularization makes for a relatively straightforward complex-
ity analysis because it causes the resulting trial step sk to satisfy certain desirable
objective function decrease properties. Of course, a possible downside is that the
practical behavior of the method may be affected by the choice of the stationarity
tolerance εH , which is not the case for a traditional trust-region framework. In any
case, the remainder of Algorithm 2.1 is identical to a traditional trust-region Newton
method.

Before presenting our analysis of Algorithm 2.1, we remark that the sequence {λk}
of minimum eigenvalues of the Hessians {Hk} does not influence the iterate sequence
{xk}. The only use of these values is in the termination test in line 6 to determine
when an (εg, εH)-stationary point has been found.

2.2. Iteration complexity. We show that Algorithm 2.1 reaches an (εg, εH)-
stationary point in a number of iterations that is bounded by a function of εg and εH .
To this end, let us define the set of iteration numbers
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K := {k ∈ N : iteration k is completed without algorithm termination}

along with the subsets

I := {k ∈ K : ‖sk‖ < δk} and B := {k ∈ K : ‖sk‖ = δk}

and

S := {k ∈ K : ρk ≥ η} and U := {k ∈ K : ρk < η}.

The pairs (I,B) and (S,U) are each partitions of K. The iterations with k ∈ I are
those with sk in the interior of the trust region, and those with k ∈ B are those
with sk on the boundary of the trust region. The iterations with k ∈ S are called the
successful iterations, and those with k ∈ U are called the unsuccessful iterations. Due
to the termination conditions in line 6, it follows for Algorithm 2.1 that

K = {k ∈ N : iteration k is reached and either ‖gk‖ > εg or λk < −εH}.(2.4)

It follows that, for a run of Algorithm 2.1, the cardinalities of all of the index sets K,
I, B, S, and U are functions of the tolerance parameters εg and εH .

Since sk is computed as the global solution of the trust-region subproblem (2.2),
it is well known [24, 28] that there exists a scalar Lagrange multiplier µk such that

gk + (Hk + εHI + µkI)sk = 0,(2.5a)

Hk + εHI + µkI � 0,(2.5b)

and 0 ≤ µk ⊥ (δk − ‖sk‖) ≥ 0.(2.5c)

Our first result is a lower bound on the model reduction achieved by a trial step.

Lemma 2.1. For all k ∈ K, the model reduction satisfies

mk(xk)−mk(xk + sk) ≥ 1

2
εH‖sk‖2.(2.6)

Proof. The definition of mk in (2.1) and the optimality conditions in (2.5) give

mk(xk)−mk(xk + sk) = −gTk sk −
1

2
sTkHksk

= sTk (Hk + εHI + µkI)sk −
1

2
sTkHksk

=
1

2
sTk (Hk + εHI + µkI)sk +

1

2
εH‖sk‖2 +

1

2
µk‖sk‖2

≥ 1

2
εH‖sk‖2,

as desired.

Next, we show that all sufficiently small trial steps lead to successful iterations.

Lemma 2.2. For all k ∈ K, if k ∈ U , then δk > 3(1 − η)εH/LH . Hence, by the
trust-region radius update procedure, it follows that

δk ≥ δmin := min

{
δ0,

(
3γ1(1− η)

LH

)
εH

}
∈ (0,∞) for all k ∈ K.
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Proof. We begin by proving the first statement of the lemma. To that end,
suppose that k ∈ U (meaning that ρk < η), which from the definition of ρk means
that

η (mk(xk + sk)−mk(xk)) < f(xk + sk)− fk.(2.7)

Combining (2.7) with (1.4a), (2.2), Lemma 2.1, and (2.1) leads to

η (mk(xk + sk)−mk(xk)) < gTk sk +
1

2
sTkHksk +

LH
6
‖sk‖3

=⇒ (η − 1) (mk(xk + sk)−mk(xk)) <
LH
6
‖sk‖3

=⇒ 1− η
2

εH‖sk‖2 <
LH
6
‖sk‖3

=⇒ 3(1− η)

LH
εH < ‖sk‖.

We have shown that k ∈ U implies δk≥ ‖sk‖ > 3(1 − η)εH/LH , as desired. Using
a contraposition argument, we also have that ‖sk‖ ≤ 3(1 − η)εH/LH implies k ∈ S.
Combining this with the trust-region radius update procedure and accounting for the
initial radius δ0 completes the proof.

We now establish that each successful step guarantees that a certain amount of
decrease in the objective function value is achieved.

Lemma 2.3. The following hold for all successful iterations:
(i) If k ∈ B ∩ S, then

fk − fk+1 ≥
η

2
εHδ

2
k.

(ii) If k ∈ I ∩ S, then

fk − fk+1 ≥
η

2(1 + 2LH)
min

{
‖gk+1‖2ε−1

H , ε3H
}
.

Proof. Part (i) follows from Lemma 2.1 and the definition of B, which imply that

fk − fk+1 ≥ η (mk(xk)−mk(xk + sk)) ≥ η

2
εH‖sk‖2 =

η

2
εHδ

2
k.

For part (ii), from k ∈ I we know that ‖sk‖ < δk. This fact along with (2.5c)
and (2.5a) imply that µk = 0 and gk + (Hk + εHI)sk = 0. Now, with (1.4b), we have

‖gk+1‖ = ‖gk+1 − gk − (Hk + εHI)sk‖

≤ ‖gk+1 − gk −Hksk‖+ εH‖sk‖ ≤
LH
2
‖sk‖2 + εH‖sk‖,

which after rearrangement yields

LH
2
‖sk‖2 + εH‖sk‖ − ‖gk+1‖ ≥ 0.

Treating the left-hand side as a quadratic scalar function of ‖sk‖ implies that

‖sk‖ ≥
−εH +

√
ε2H + 2LH‖gk+1‖
LH

=
−1 +

√
1 + 2LH‖gk+1‖ε−2

H

LH
εH .
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To put this lower bound into a slightly more useful form, we use [30, Lemma 17 in
Appendix A], which states that for scalars (a, b, t) ∈ (0,∞)× (0,∞)× [0,∞), we have

−a+
√
a2 + bt ≥ (−a+

√
a2 + b) min{t, 1}.(2.8)

By setting a = 1, b = 2LH , and t = ‖gk+1‖ε−2
H , we obtain

‖sk‖ ≥
(
−1 +

√
1 + 2LH
LH

)
min

{
‖gk+1‖ε−2

H , 1
}
εH

=

(
2LH

LH(1 +
√

1 + 2LH)

)
min

{
‖gk+1‖ε−1

H , εH
}

≥
(

1√
1 + 2LH

)
min

{
‖gk+1‖ε−1

H , εH
}
.

Using this inequality in conjunction with k ∈ S and Lemma 2.1 proves that

fk − f(xk + sk) ≥ η (mk(xk)−mk(xk + sk)) ≥ η

2
εH‖sk‖2

≥ η

2(1 + 2LH)
min

{
‖gk+1‖2ε−1

H , ε3H
}
,

which completes the proof for part (ii).

We now bound the number of successful iterations before termination.

Lemma 2.4. The number of successful iterations performed by Algorithm 2.1 be-
fore an (εg, εH)-stationary point is reached satisfies

|S| ≤
⌊
CS max{ε−1

H , ε−2
g εH , ε

−3
H }
⌋

+ 1,(2.9)

where

CS :=
4(f0 − flow)

η
max

{
1

δ2
0

,
L2
H

9γ2
1(1− η)2

, 1 + 2LH

}
.(2.10)

Proof. The successful iterations may be written as S = SL ∪ SGG ∪ SGL, where

SL := {k ∈ S : ‖gk‖ ≤ εg},
SGG := {k ∈ S : ‖gk‖ > εg and ‖gk+1‖ > εg},

and SGL := {k ∈ S : ‖gk‖ > εg and ‖gk+1‖ ≤ εg}.

We first bound |SL ∪ SGG|, for which we will make use of the constant

c :=
η

2
min

{
δ2
0 ,

9γ2
1(1− η)2

L2
H

,
1

1 + 2LH

}
.(2.11)

For k ∈ SL, the fact that the algorithm has not yet terminated implies (see (2.4)) that
λk < −εH . By (2.5), it follows that µk > 0 and ‖sk‖ = δk, and thus k ∈ B. Thus, for
k ∈ SL, Lemma 2.3(i), Lemma 2.2, and (2.11) imply that

fk − fk+1 ≥
η

2
εHδ

2
k ≥

η

2
min

{
δ2
0εH ,

9γ2
1(1− η)2

L2
H

ε3H

}
≥ cmin

{
εH , ε

3
H

}
.(2.12)
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Now consider k ∈ SGG. Since in this case either of the cases in Lemma 2.3 may apply,
one can only conclude that, for each k ∈ SGG, the following bound holds:

fk − fk+1 ≥
η

2
min

{
δ2
kεH ,

(
‖gk+1‖2

1 + 2LH

)
ε−1
H ,

(
1

1 + 2LH

)
ε3H

}
.

Combining this with the definition of SGG, the lower bound on δk in Lemma 2.2, and
the definition of c in (2.11), it follows that

fk − fk+1 ≥ cmin
{
εH , ε

2
gε
−1
H , ε3H

}
.(2.13)

To bound |SL ∪SGG|, we sum the objective function decreases obtained over all such
iterations, which with Assumption 1 and the monotonicity of {fk} gives

f0 − flow ≥
∑
k∈K

(fk − fk+1) ≥
∑
k∈SL

(fk − fk+1) +
∑

k∈SGG

(fk − fk+1).

Combining this inequality with (2.12) and (2.13) shows that

f0 − flow ≥
∑
k∈SL

cmin{εH , ε3H}+
∑

k∈SGG

cmin
{
εH , ε

2
gε
−1
H , ε3H

}
≥ c(|SL|+ |SGG|) min

{
εH , ε

2
gε
−1
H , ε3H

}
,

from which it follows that

|SL|+ |SGG| ≤
(
f0 − flow

c

)
max

{
ε−1
H , ε−2

g εH , ε
−3
H

}
.(2.14)

Next, let us consider the set SGL. Since k ∈ SGL means ‖gk+1‖ ≤ εg, the index
corresponding to the next successful iteration (if one exists) must be an element of
the index set SL. This implies that |SGL| ≤ |SL| + 1, where the 1 accounts for the
possibility that the last successful iteration (prior to termination) has an index in SGL.
Combining this bound with (2.14) yields

|S| = |SL|+ |SGG|+ |SGL| ≤
2(f0 − flow)

c
max

{
ε−1
H , ε−2

g εH , ε
−3
H

}
+ 1,

which completes the proof when we substitute for c from (2.11).

We now bound the number of unsuccessful iterations.

Lemma 2.5. The number of unsuccessful iterations that occur before an (εg, εH)-
stationary point is reached either is zero or else satisfies

|U| ≤
⌊

1 + logγ1

(
3(1− η)

LHδmax

)
+ logγ1 (εH)

⌋
|S|.(2.15)

Proof. If the number of successful iterations is zero, then the initial point must
be (εg, εH)-stationary and there are no unsuccessful iterations. Hence, let us proceed
under the assumption that |S| ≥ 1. Let us denote the successful iteration indices
as {k1, . . . , k|S|} := S. If the number of unsuccessful iterations is zero, then there
is nothing left to prove, so we may proceed under the assumption that there is at
least one unsuccessful iteration. Thus, we may consider arbitrary i ∈ {1, . . . , |S| − 1}
such that ki+1 − ki − 1 ≥ 1, that is, there is at least one unsuccessful iteration
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between iterations ki and ki+1. We seek a bound on ki+1 − ki − 1. From the update
formulas for the trust-region radius, one finds for all unsuccessful iteration indices
l ∈ {ki + 1, . . . , ki+1 − 1} that δl = γ1‖sl−1‖ ≤ γ1δl−1, so

δl ≤ min{γ2δki , δmax}γl−ki−1
1 ≤ δmaxγ

l−ki−1
1 .(2.16)

Moreover, for any unsuccessful iteration index l ∈ {ki + 1, . . . , ki+1− 1} we have from
Lemma 2.2 that δl > 3(1− η)εH/LH . Thus, for such l, (2.16) implies that

3(1− η)

LH
εH < δmaxγ

l−ki−1
1 =⇒ l − ki − 1 ≤ logγ1

(
3(1− η)εH
LHδmax

)
.

Consequently, using the specific choice l = ki+1 − 1, one finds that

ki+1 − ki − 1 ≤ 1 + logγ1

(
3(1− η)

LHδmax

)
+ logγ1(εH),

and because the left-hand side is an integer, we have

ki+1 − ki − 1 ≤
⌊

1 + logγ1

(
3(1− η)

LHδmax

)
+ logγ1(εH)

⌋
.(2.17)

Since i was chosen arbitrarily such that ki+1−ki−1 ≥ 1, the right-hand side in (2.17)
is at least 1 if there are any unsuccessful iterations between iteration k1 and k|S|.

Consider now the first successful iteration k1. We seek a bound on the number
of unsuccessful iterations prior to iteration k1. If there are no such unsuccessful
iterations, then there is nothing left to prove; hence, we may assume k1 ≥ 1. We have
that δk1≤γ

k1
1 δ0 ≤ γk11 δmax, and thus from Lemma 2.2 it follows that

min

{
δ0,

3γ1(1− η)

LH
εH

}
≤ δk1 ≤ γ

k1
1 δ0 ≤ γk11 δmax.

From the first two of these inequalities and the facts that γ1 ∈ (0, 1) and k1 ≥ 1, the
“min” on the left-hand side is not achieved by δ0, so we have

3γ1(1− η)

LH
εH ≤ γk11 δmax,

which, when we take into account that k1 is an integer, leads to

k1 ≤
⌊

1 + logγ1

(
3(1− η)

LHδmax

)
+ logγ1(εH)

⌋
.(2.18)

Under our assumption that k1 ≥ 1, the right-hand side of (2.18) is at least 1.
Since the iteration immediately prior to termination is k|S| (except in the trivial

case in which termination occurs at the initial point), we have

|U| = k1 +

|S|−1∑
i=1

(ki+1 − ki − 1).(2.19)

If U 6= ∅, we have that k1 ≥ 1 and/or at least one of the terms in the summation is
at least 1. We can in this case bound every term on the right-hand side of (2.19) by
the right-hand sides of (2.17) and (2.18) to deduce the result.
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The main result for iteration complexity of Algorithm 2.1 may now be proved.

Theorem 2.6. Under Assumption 1, the number of successful iterations (and
objective gradient and Hessian evaluations) performed by Algorithm 2.1 before an
(εg, εH)-stationary point is obtained satisfies

|S| = O
(
max

{
ε−3
H , ε−1

H , ε−2
g εH

})
,(2.20)

and the total number of iterations (and objective function evaluations) performed be-
fore such a point is obtained satisfies

|K| = O
(

log1/γ1

(
ε−1
H

)
max

{
ε−3
H , ε−1

H , ε−2
g εH

})
.(2.21)

Proof. Formula (2.20) follows from Lemma 2.4. Formula (2.21) follows from
Lemma 2.4, Lemma 2.5, and the fact that logγ1(εH) = log1/γ1(ε−1

H ).

If one chooses εH = ε
1/2
g in (2.20) and (2.21) as well as any positive scalar ε̄g ∈ R,

then Theorem 2.6 implies that, for all εg ∈ (0, ε̄g], one has

|S| = O
(
ε−3/2
g

)
and |K| = O

(
ε−3/2
g log1/γ1

(
ε−1/2
g

))
= Õ

(
ε−3/2
g

)
for the numbers of successful and total iterations, respectively. These correspond to
the results obtained for the line search method in [30, Theorem 5, Theorem 6]).

3. Iterative methods for solving the subproblems inexactly. This section
describes the algorithms needed to develop an inexact trust-region Newton method,
which will be presented and analyzed in section 4. A truncated CG method for
computing directions of descent is discussed in section 3.1 and an iterative algorithm
for computing directions of negative curvature is described in section 3.2.

3.1. A truncated CG method. We propose Algorithm 3.1 as an appropriate
iterative method for approximately solving the trust-region subproblem

min
s∈Rn

gT s+
1

2
sT (H + 2εI)s s.t. ‖s‖ ≤ δ,(3.1)

where g ∈ Rn is assumed to be a nonzero vector, H ∈ Sn is possibly indefinite,
ε ∈ (0,∞) plays the role of a regularization parameter, and δ ∈ (0,∞). Algorithm 3.1
is based on the CG method and builds on the Steihaug–Toint approach [31, 32]. (The
factor of 2 in the regularization term in (3.1) is intentional. For consistency in the
termination condition, the inexact trust-region Newton method in section 4 employs
a larger regularization term than the exact method analyzed in section 2.)

For the most part, Algorithm 3.1 is identical to traditional truncated CG. For
example, termination occurs in line 18 when the next CG iterate yj+1 would lie
outside the trust region, and we return s as the largest feasible step on the line
segment connecting yj to yj+1. In this situation, we also set outCG← bnd-norm to
indicate that s lies on the boundary of the trust-region constraint.

However, there are three key differences between Algorithm 3.1 and truncated CG.
First, the residual termination criterion in line 21 enforces the condition

‖(H + 2εI)s+ g‖ ≤ ζ

2
min{‖g‖, ε‖s‖},(3.2)

D
ow

nl
oa

de
d 

04
/1

2/
21

 to
 7

6.
11

6.
8.

16
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRUST-REGION NEWTON-CG WITH STRONG COMPLEXITY 529

which is stronger than the condition traditionally used in truncated CG (which typi-
cally has ζ

2‖g‖ for the right-hand side) and incorporates a criterion typical of Newton-
type methods with optimal complexity [10, 30] (which use ε‖s‖ for the right-hand
side). If this criterion is satisfied, then we return the current CG iterate as the
step (that is, we set s ← yj+1) and indicate that s lies in the interior of the trust
region and satisfies the residual condition (3.2) by setting outCG← int-res.

Second, traditional truncated CG terminates if a direction of nonpositive curva-
ture is encountered. Line 10 of Algorithm 3.1 triggers termination if a direction with
curvature less than or equal to ε is found for H+2εI, since this condition implies that
the curvature of H along the same direction is less than or equal to −ε. In this case,
we return a step s obtained by moving along the direction of negative curvature to
the boundary of the trust-region constraint and return outCG← bnd-neg to indicate
that s lies on the boundary because a direction of negative curvature was computed.

Third, unlike traditional truncated CG, which (in exact arithmetic) requires up
to a maximum of kmax = n iterations, line 4 allows for an alternative iteration limit
to be imposed. Regardless of which limit is used, if kmax iterations are performed, Al-
gorithm 3.1 returns s as the current CG iterate and sets outCG← int-max. This flag
indicates that the maximum number of iterations has been reached while remaining
in the interior of the trust region.

The lemma below motivates the alternative choice for kmax in line 4.

Lemma 3.1. Suppose εI ≺ H + 2εI � (M + 2ε)I for M ∈ [‖H‖,∞), and define

κ(M, ε) := (M + 2ε)/ε and J(M, ε, ζ) :=
1

2

√
κ(M, ε) ln

(
4κ(M, ε)3/2/ζ

)
,(3.3)

where ζ ∈ (0, 1) is input to Algorithm 3.1. If lines 3–7 were simply to set kmax ←∞,
then Algorithm 3.1 would terminate at either line 18 or line 22 after a number of
iterations (equivalently, matrix-vector products) equal to at most

min {n, J(M, ε, ζ)} = min
{
n, Õ

(
ε−1/2

)}
.(3.4)

Proof. Since H + 2εI � εI by assumption, a direction of curvature less than ε
for H + 2εI does not exist, meaning that termination in line 12 cannot occur. It
follows from the fact that εI ≺ H + 2εI � (M + 2ε)I and [30, proof of Lemma 11]
that CG would reach an iterate satisfying (3.2)—so that termination in line 22 would
occur—in at most the number of iterations given by (3.4). Of course, if termination
occurs earlier in line 18, the bound (3.4) still holds.

When employing the trust-region method of section 4 for minimizing f , Algo-
rithm 3.1 is invoked without knowing whether or not H + 2εI � εI. Nevertheless,
Lemma 3.1 allows us to make the following crucial observation.

Lemma 3.2. If the iteration limit in Algorithm 3.1 is exceeded (that is, termina-
tion occurs at line 28), then H � −εI.

Proof. If kmax is set to n in line 4 or line 6, then it would follow from standard CG
theory that Algorithm 3.1 cannot reach line 28, because either rj+1 = 0 for some j < n
(thus termination would have occurred at line 21) or else one of the other termination
conditions would have been activated before this point. Hence, kmax must have been
set in line 4 to some value less than n. In this case, it follows from Lemma 3.1, the
choice of M , and the choice of kmax in line 4 that H + 2εI � εI.

When Algorithm 3.1 returns because the inequality in line 10 holds, it is possible
that the objective function in (3.1) evaluated at the returned vector s is larger than
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Algorithm 3.1. Truncated CG Method for the Trust-Region Subproblem

1: Input: Nonzero g ∈ Rn; H ∈ Sn; regularization parameter ε ∈ (0,∞);
trust-region radius δ ∈ (0,∞); accuracy parameter ζ ∈ (0, 1); flag capCG ∈
{true, false}; and (if capCG = true) upper bound M ∈ [‖H‖,∞).

2: Output: trial step s and flag outCG indicating termination type.

3: if capCG = true then
4: Set kmax ← min

{
n, 1

2

√
κ ln

(
4κ3/2/ζ

)}
where κ← (M + 2ε)/2.

5: else
6: Set kmax ← n.
7: end if
8: Set y0 ← 0, r0 ← g, p0 ← −g, and j ← 0.
9: while j < kmax do

10: if pTj (H + 2εI)pj ≤ ε‖pj‖2 then
11: Compute σ ≥ 0 such that ‖yj + σ pj‖ = δ.
12: return s← yj + σ pj and outCG← bnd-neg.
13: end if
14: Set αj ← ‖rj‖2/(pTj (H + 2εI)pj).
15: Set yj+1 ← yj + αjpj .
16: if ‖yj+1‖ ≥ δ then
17: Compute σ ≥ 0 such that ‖yj + σ pj‖ = δ.
18: return s← yj + σ pj and outCG← bnd-norm.
19: end if
20: Set rj+1 ← rj + αj(H + 2εI)pj .

21: if ‖rj+1‖ ≤ ζ
2 min{‖g‖, ε‖yj+1‖} then

22: return s← yj+1 and outCG← int-res.
23: end if
24: Set βj+1 ← (rTj+1rj+1)/(rTj rj).
25: Set pj+1 ← −rj+1 + βj+1pj .
26: Set j ← j + 1.
27: end while
28: return s← ykmax and outCG← int-max.

its value at s = 0, a situation that is typically not possible when CG is used as a
subproblem solver in trust-region methods. This is because, although the inequality
in line 10 implies that pj is a direction of negative curvature for H, pj is not necessarily
a direction of negative curvature for the matrix H + 2εI that defines the quadratic
model in (3.1). Since, in this case, s is obtained by moving to the boundary of the
trust-region along the direction pj (similar to the behavior of Steihaug’s CG method
in [31] and needed for our complexity result), we require the following result, which
establishes that any step computed by Algorithm 3.1 possesses a decrease property
with respect to the nonregularized version of the quadratic model.

Lemma 3.3. The step s returned by Algorithm 3.1 satisfies

gT s+
1

2
sTHs ≤ −1

2
ε‖s‖2.

Proof. Basic CG theory ensures that for any j up to termination, the sequence
{gT yj + 1

2y
T
j (H + 2εI)yj} is monotonically decreasing. Since y0 = 0, we thus have
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gT yi +
1

2
yTi (H + 2εI)yi ≤ 0 for all i ∈ {0, 1, . . . , j}.(3.5)

Suppose outCG ∈ {bnd-norm, int-res, int-max}. From (3.5) and the fact (by
[31, Theorem 2.1]) that gT s+ 1

2s
T (H+2εI)s ≤ gT yj+ 1

2y
T
j (H+2εI)yj when outCG←

bnd-norm, we have

gT s+
1

2
sT (H + 2εI)s ≤ 0 ⇔ gT s+

1

2
sTHs ≤ −ε‖s‖2,

which implies the desired result.
Second, suppose that outCG← bnd-neg, meaning that Algorithm 3.1 terminates

because iteration j yields pTj (H+2εI)pj ≤ ε‖pj‖2. If j = 0, then the fact that p0 = −g
allows us to conclude that s = δ(p0/‖p0‖) = −δ(g/‖g‖), ‖s‖ = δ, and

1

2
sT (H + 2εI)s =

1

2
δ2
(
pT0 (H + 2εI) p0

)
/‖p0‖2 ≤

1

2
εδ2 =

1

2
ε‖s‖2,

from which it follows that

gT s+
1

2
sTHs = −δ‖g‖+

1

2
sT (H + 2εI)s− ε‖s‖2 ≤ −1

2
ε‖s‖2,

as desired. On the other hand, if j ≥ 1, then the fact that outCG← bnd-neg means
that s← yj+σpj with σ ≥ 0 such that ‖s‖ = δ. The CG process yields the following:

yi =

i−1∑
`=0

α`p` ∈ span {p0, . . . , pi−1} for all i ∈ {1, 2, . . . , j},(3.6a)

pTi (H + 2εI)p` = 0 for all {i, `} ⊆ {0, 1, . . . , j} with i 6= `,(3.6b)

rTi pj = −‖rj‖2 for all i ∈ {0, 1, . . . , j},(3.6c)

and yTi pi ≥ 0 for all i ∈ {0, 1, . . . , j}.(3.6d)

(Referring to Algorithm 3.1, the property (3.6a) follows from line 15; (3.6b) is the
well known conjugacy property; and (3.6c) is obtained by successively substituting for
pj , pj−1, . . . , pi+1 from line 25, using the property that rTi rl = 0 for l 6= i, and using
the definition of βj from line 24. For (3.6d), see [31, equation (2.13)].) Together, (3.6)
and s = yj + σpj imply

gT pj = rT0 pj= −‖rj‖2 ≤ 0,(3.7a)

sT (H + 2εI)s = yTj (H + 2εI)yj + σ2pTj (H + 2εI)pj ,(3.7b)

and ‖s‖2 = ‖yj‖2 + 2σyTj pj + σ2‖pj‖2 ≥ σ2‖pj‖2.(3.7c)

Combining (3.5), (3.7), σ ≥ 0, and pTj (H + 2εI)pj ≤ ε‖pj‖2 shows that

gT s+
1

2
sTHs = gT s+

1

2
sT (H + 2εI)s− ε‖s‖2

= gT yj +
1

2
yTj (H + 2εI)yj + σgT pj +

1

2
σ2pTj (H + 2εI)pj − ε‖s‖2

≤ 1

2
σ2pTj (H + 2εI)pj − ε‖s‖2 ≤

1

2
σ2ε‖pj‖2 − ε‖s‖2 ≤ −

1

2
ε‖s‖2,

which completes the proof.

Lemma 3.3 shows that if ε = εH , then the bound on the model decrease obtained
by the truncated CG step s is the same as the bound guaranteed by the global solution
computed for Algorithm 2.1 (see Lemma 2.1). However, we note that this decrease is
obtained by using a larger regularization term.
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Algorithm 3.2. Minimum Eigenvalue Oracle (MEO)

Input: g ∈ Rn; H ∈ Sn; regularization parameter ε ∈ (0,∞); trust-region radius
δ ∈ (0,∞); failure probability tolerance ξ ∈ (0, 1); and M ∈ [‖H‖,∞).
Output: Either (i) a vector s = ±δv satisfying

gT s ≤ 0, sTHs ≤ −1

2
ε‖s‖2, and ‖s‖ = δ,(3.8)

where v has been computed to satisfy ‖v‖ = 1 and vTHv ≤ −ε/2, or (ii) an
indication that H � −εI holds. The probability that the indication in case (ii)
is made yet H ≺ −εI is at most ξ. (The bound M may be needed for algorithm
termination; see Assumption 2 on page 532.)

3.2. A minimum eigenvalue oracle. The truncated CG algorithm presented
in section 3.1 is only one of the tools we need for our proposed inexact trust-region
Newton method. Two complicating cases require an additional tool.

The first case is when outCG = int-max is returned by Algorithm 3.1. In this
case, it must hold that the maximum allowed number of iterations satisfies kmax < n
and, as a consequence of Lemma 3.2, that H � −εI. Thus, there exists a direction
of sufficient negative curvature for H, and we need a means of computing one. The
second case is when Algorithm 3.1 terminates with outCG = int-res. In this case, we
only know that the curvature is not sufficiently negative along the directions computed
by the algorithm. However, it may still be true that H � −εI.

These two cases motivate the need for a minimum eigenvalue oracle that estimates
the minimum eigenvalue of H or else returns an indication that (with some desired
probability) no sufficiently negative eigenvalue exists. The oracle that we employ is
given by Algorithm 3.2.

4. An inexact trust-region Newton method. In this section, we propose a
trust-region Newton method that may use, during each iteration, an inexact solution
to the trust-region subproblem computed using the iterative procedures described in
section 3. The proposed algorithm is described in section 4.1, and a second-order
complexity analysis is presented in section 4.2.

4.1. The algorithm. Algorithm 4.1 can be viewed as an inexact version of
Algorithm 2.1. We aim at remaining close to the traditional Newton-CG approaches
in [31, 32] by having Algorithm 4.1 compute, when appropriate, a truncated CG step
in line 4. Once such a step is computed (or set to zero since the current iterate is first-
order stationary), Algorithm 4.1 deviates from traditional Newton-CG in the “else”
branch (line 10), which accounts for the two situations described in section 3.2, where
an additional check for a negative curvature direction is needed. (There is one minor
difference: when outCG = int-res, the MEO need be called only when ‖gk‖ ≤ εg.)

4.2. Complexity. As in [29], we make the following assumption on the MEO in
order to obtain complexity results for Algorithm 4.1.

Assumption 2. When Algorithm 3.2 is called by Algorithm 4.1, the number of
Hessian-vector products required is no more than

Nmeo = Nmeo(εH) := min
{
n, 1 +

⌈
Cmeoε

−1/2
H

⌉}
,(4.1)

where the quantity Cmeo depends at most logarithmically on ξ.
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Algorithm 4.1. Trust-Region Newton-CG Method (inexact version)

Require: Tolerances εg ∈ (0,∞) and εH ∈ (0,∞); trust-region adjustment param-
eters γ1 ∈ (0, 1), γ2 ∈ [1,∞), and ψ ∈ (1/γ2, 1]; initial iterate x0 ∈ Rn; initial
trust-region radius δ0 ∈ (0,∞); maximum trust-region radius δmax ∈ [δ0,∞); step
acceptance parameter η ∈ (0, 1); truncated CG accuracy parameter ζ ∈ (0, 1);
MEO failure probability tolerance ξ ∈ [0, 1); flag capCG ∈ {true, false}; and
upper bound M ∈ [Lg,∞).

1: for k = 0, 1, 2, . . . do
2: Evaluate gk and Hk.
3: if gk 6= 0 then
4: Call Algorithm 3.1 with input g = gk, H = Hk, ε = εH , δ = δk, ζ, capCG,

and (if capCG = true) M to compute sCG
k and output flag outCG.

5: else
6: Set sCG

k ← 0 and outCG← int-res.
7: end if
8: if outCG ∈ {bnd-neg,bnd-norm} or (‖gk‖ > εg and outCG = int-res) then
9: Set sk ← sCG

k .
10: else {that is, outCG = int-max or (‖gk‖ ≤ εg and outCG = int-res)}
11: Call Algorithm 3.2 with inputs g = gk, H = Hk, ε = εH , δ = δk, ξ, and M ,

obtaining either sk satisfying (3.8) or an indication that Hk � −εHI.
12: if Algorithm 3.2 predicts that Hk � −εHI then
13: return xk.
14: end if
15: end if
16: Compute the ratio of actual to predicted decrease in f defined as

ρk ←
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

17: if ρk ≥ η then
18: Set xk+1 ← xk + sk.
19: if ‖sk‖ ≥ ψδk then
20: Set δk+1 ← min {γ2δk, δmax}.
21: else
22: Set δk+1 ← δk.
23: end if
24: else
25: Set xk+1 ← xk and δk+1 ← γ1‖sk‖.
26: end if
27: end for

The following instances of Algorithm 3.2 satisfy Assumption 2.
• The Lanczos algorithm applied to H starting with a random vector uniformly

distributed on the unit sphere. For any ξ ∈ (0, 1), this satisfies the conditions
in Assumption 2 with Cmeo = ln(2.75n/ξ2)

√
M/2; see [29, Lemma 2].

• The CG algorithm applied to
(
H + εH

2 I
)
s = b, where b is a random vector

uniformly distributed on the unit sphere. For any ξ ∈ (0, 1), this offers
Assumption 2 with the same value of Cmeo as in the Lanczos-based approach;
see [29, Theorem 1].
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Since for each instance the conditions of Assumption 2 hold with Cmeo equal to the
given value, it follows that throughout a run of Algorithm 4.1, the conditions hold
with Cmeo = ln(2.75n/ξ2)

√
Lg/2. Algorithm 3.2 could also be implemented by means

of an exact (minimum) eigenvalue calculation of the Hessian. In that case, up to n
Hessian-vector products may be required to evaluate the full Hessian.

In the following analysis, we use similar notation as in section 2, although the
analysis here is notably different due to the randomness of the MEO. For consistency,
we use the same definitions of the index sets K, I, B, S, and U that appear in the
beginning of section 2.2; in particular, we define K as the index set of iterations
completed prior to termination. However, note that for Algorithm 4.1 these sets are
random variables, in the sense that for the same objective function and algorithm
inputs, they may have different realizations due to the randomness in Algorithm 3.2.
Thus, when we refer, for example, to k ∈ K, we are referring to k ∈ K for a given
realization of a run of Algorithm 4.1. We also prove bounds on quantities that are
shown to hold for all realizations of a run of the algorithm (for a given objective func-
tion and algorithm inputs). To emphasize that these bounds hold for all realizations,
their constants are written with a bar over the letter in the definition.

Our first result provides a lower bound on the reduction in the quadratic model
of the objective function achieved by each trial step.

Lemma 4.1. Consider any realization of a run of Algorithm 4.1. For all k ∈ K,

mk(xk)−mk(xk + sk) ≥ 1

4
εH‖sk‖2.

Proof. If sk = sCG
k , where sCG

k is computed from Algorithm 3.1, then it follows
by Lemma 3.3 that the desired bound holds. Now suppose that sk is computed from
Algorithm 3.2 in line 11. Since k ∈ K, Algorithm 4.1 does not terminate in iteration
k, and it follows from (3.8) that

mk(xk)−mk(xk + sk) = −gTk sk −
1

2
sTkHksk ≥ −

1

2
sTkHksk ≥

1

4
εH‖sk‖2,

as desired.

We can now show that a sufficiently small trust-region radius leads to a successful
iteration and provide a lower bound on the sequence of trust-region radii.

Lemma 4.2. Consider any realization of a run of Algorithm 4.1. For all k ∈ K,
if k ∈ U , then δk > 3(1 − η)εH/(2LH). Hence, by the trust-region radius update
procedure, it follows that for any realization of a run of Algorithm 4.1 that

δk ≥ δ̄min := min

{
δ0,

(
3γ1(1− η)

2LH

)
εH

}
∈ (0,∞) for all k ∈ K.(4.2)

Proof. For any realization of a run of the algorithm, we can follow the proof of
Lemma 2.2, using Lemma 4.1 in lieu of Lemma 2.1. Hence, the lower bound in (4.2)
holds, where δ̄min is independent of any particular realization of a run.

We now establish a bound on the objective reduction for a successful step.

Lemma 4.3. Consider any realization of a run of Algorithm 4.1. The following
hold for all successful iterations:

(i) If k ∈ B ∩ S, then

fk − fk+1 ≥
η

4
εHδ

2
k.
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(ii) If k ∈ I ∩ S, then ‖gk‖ > εg, outCG = int-res, and

fk − fk+1 ≥
η

4(7 + 2LH)
min

{
‖gk+1‖2ε−1

H , ε3H
}
.

Proof. For part (i), we combine k ∈ B ∩ S with Lemma 4.1 to obtain, as desired,

fk − fk+1 ≥ η (mk(xk)−mk(xk + sk)) ≥ η

4
εH‖sk‖2 =

η

4
εHδ

2
k.

Now consider part (ii). Note that since k ∈ I, sk cannot have been computed
from a call to Algorithm 3.2 in line 11, since such steps always have ‖sk‖ = δk. Thus,
sk = sCG

k . Moreover, from line 8 and the fact that k ∈ I, we have that ‖gk‖ > εg
and outCG = int-res, as desired. In turn, the fact that outCG = int-res implies
that (3.2) holds with H = Hk, g = gk, s = sk, and ε = εH so that

rk := (Hk + 2εH)sk + gk has ‖rk‖ ≤
ζ

2
εH‖sk‖.(4.3)

Combining this bound with (1.4b) and ζ ∈ (0, 1), we have

‖gk+1‖ = ‖gk+1 − gk − (Hk + 2εH)sk + rk‖
≤ ‖gk+1 − gk −Hksk‖+ 2εH‖sk‖+ ‖rk‖

≤ LH
2
‖sk‖2 +

(
4 + ζ

2

)
εH‖sk‖ ≤

LH
2
‖sk‖2 +

5

2
εH‖sk‖,

which can be rearranged to yield

LH
2
‖sk‖2 +

5

2
εH‖sk‖ − ‖gk+1‖ ≥ 0.

Reasoning as in the proof of Lemma 2.3, with 5
2εH replacing εH , we obtain

‖sk‖ ≥
− 5

2εH +

√(
5
2

)2
ε2H + 2LH‖gk+1‖
LH

=

−5 +
√

25 + 8LH‖gk+1‖ε−2
H

2LH

 εH .

By setting (a, b, t) = (5, 8LH , ‖gk+1‖ε−2
H ) in the inequality (2.8), we have

‖sk‖ ≥
(
−5 +

√
25 + 8LH

2LH

)
min

{
‖gk+1‖ε−2

H , 1
}
εH

=

(
8LH

2LH(5 +
√

25 + 8LH)

)
min

{
‖gk+1‖ε−1

H , εH
}

=

(
4

5 +
√

25 + 8LH

)
min

{
‖gk+1‖ε−1

H , εH
}

≥
(

2√
25 + 8LH

)
min

{
‖gk+1‖ε−1

H , εH
}
≥ 1√

7 + 2LH
min

{
‖gk+1‖ε−1

H , εH
}
,

which may be combined with k ∈ I ∩ S and Lemma 4.1 to obtain

fk − fk+1 ≥ η(mk(xk)−mk(xk+1)) ≥
1

4
ηεH‖sk‖2 ≥

η

4(7 + 2LH)
min

{
‖gk+1‖2ε−1

H , ε3H
}
,

which completes the proof.
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The next result is analogous to Lemma 2.4 and takes randomness in the MEO
into account.

Lemma 4.4. For any realization of a run of Algorithm 4.1, the number of suc-
cessful iterations performed before termination occurs satisfies

|S| ≤ K̄S(εg, εH) :=
⌊
C̄S max

{
ε−1
H , ε−2

g εH , ε
−3
H

}⌋
+ 1,(4.4)

where

C̄S :=
8(f0 − flow)

η
max

{
1

δ2
0

,
4L2

H

9γ2
1(1− η)2

, 7 + 2LH)

}
.(4.5)

Proof. For a given realization of a run of the algorithm, we can follow the reason-
ing of the proof for Lemma 2.4. In what follows, SL, SGG, and SGL are defined as in
the proof of Lemma 2.4. (As is the case for K, we note that these index sets are now
realizations of random index sets.)

Consider first k ∈ SL, and let us define the constant

c1 :=
η

4
min

{
δ2
0 ,

9γ2
1(1− η)2

4L2
H

,
1

7 + 2LH

}
.(4.6)

We can use Lemma 4.3 to conclude that k ∈ K∩B, so that ‖sk‖ = δk. By combining
Lemma 4.3(i), Lemma 4.2, and (4.6), we have for k ∈ SL that

fk − fk+1 ≥
η

4
εHδ

2
k ≥

η

4
min

{
δ2
0εH ,

9γ2
1(1− η)2

4L2
H

ε3H

}
≥ c1 min

{
εH , ε

3
H

}
.(4.7)

For k ∈ SGG, we have from Lemma 4.3 (either (i) or (ii)) and Lemma 4.2 that

fk − fk+1 ≥
η

4
min

{
δ2
0εH ,

9γ2
1(1− η)2

4L2
H

ε3H ,
1

7 + 2LH
ε2gε
−1
H ,

1

7 + 2LH
ε3H

}
≥ c1 min

{
εH , ε

3
H , ε

2
gε
−1
H

}
.(4.8)

By following the reasoning that led to (2.14), we obtain from (4.7) and (4.8) that

|SL|+ |SGG| ≤
(
f0 − flow

c1

)
max

{
ε−1
H , ε−2

g εH , ε
−3
H

}
.

As in the proof of Lemma 2.4, we have that |SGL| ≤ |SL|+ 1, so that

|S| = |SL|+ |SGG|+ |SGL| ≤
2(f0 − flow)

c1
max

{
ε−1
H , ε−2

g εH , ε
−3
H

}
+ 1.

The desired bound follows by substituting the definition (4.6) into this bound. To
complete the proof, we note that the right-hand side of (4.4) is identical for any
realization of the algorithm run with the same inputs.

We now provide a bound on the maximum number of unsuccessful iterations.

Lemma 4.5. For any realization of a run of Algorithm 4.1, the number of unsuc-
cessful iterations performed before termination occurs either is zero or else satisfies

|U| ≤
⌊

1 + logγ1

(
3(1− η)

2LHδmax

)
+ logγ1 (εH)

⌋
(|S|+ 1).(4.9)

D
ow

nl
oa

de
d 

04
/1

2/
21

 to
 7

6.
11

6.
8.

16
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRUST-REGION NEWTON-CG WITH STRONG COMPLEXITY 537

Proof. For a given realization of a run of the algorithm, the bound follows from
the argument in the proof of Lemma 2.5 with two changes. First, Lemma 4.2 is used
in place of Lemma 2.2. Second, we do not know that the iteration immediately prior
to termination must be a successful iteration for Algorithm 4.1, as was the case for
Algorithm 2.1. However, using the argument in the proof of Lemma 2.5 along with
Lemma 4.2 shows that if a sequence of consecutive unsuccessful iterations is taken
after the final successful iteration, there can be no more than⌊

1 + logγ1

(
3(1− η)

2LHδmax

)
+ logγ1(εH)

⌋
such iterations in this sequence, since otherwise an additional successful iteration
would be performed. Taking this fact into account leads to the extra 1 on the right-
hand side of (4.9) as compared to (2.15).

We assume in our remaining complexity results that the following common-sense
rule is used in the implementation of Algorithm 4.1.

Implementation Strategy 4.1. For any realization of a run of Algorithm 4.1,
suppose k ∈ K is an index of an iteration such that (i) Algorithm 3.2 is called in
line 11 and returns a negative curvature direction sk for Hk and (ii) the step sk is
subsequently rejected (that is, k ∈ U). Then, the negative curvature direction (call it
v = vk) used to compute sk is stored and used until the next successful iteration. Until
then, every call to Algorithm 3.2 is replaced by an access to vk, scaled appropriately
to compute sk with norm δk.

This strategy implies that Algorithm 4.1 cannot terminate following a sequence
of unsuccessful iterations if any one of them yields a direction of sufficiently negative
curvature. In practice, this means that Algorithm 4.1 calls Algorithm 3.2 at most once
between successful iterations. In the next iteration complexity result, this assumption
is used to obtain the probabilistic result for returning an (εg, εH)-stationarity point.

Theorem 4.6. Under Assumption 1, for any realization of a run, the number of
successful iterations (and objective gradient evaluations) performed by Algorithm 4.1
before termination occurs satisfies (with K̄S(εg, εH) defined in (4.4))

|S| ≤ K̄S(εg, εH) = O
(
max

{
ε−3
H , ε−1

H , ε−2
g εH

})
,(4.10)

and the total number of iterations (and objective function evaluations) performed be-
fore termination occurs satisfies

|K| ≤
⌊

1 + logγ1

(
3(1− η)

2LHδmax

)
+ logγ1(εH)

⌋ (
K̄S(εg, εH) + 1

)
= O

(
log1/γ1(ε−1

H ) max
{
ε−3
H , ε−1

H , ε−2
g εH

})
.

(4.11)

If capCG = false, then ‖gk‖ ≤ εg holds at termination. In any case, given Implemen-
tation Strategy 4.1, the vector xk returned by Algorithm 4.1 is an (εg, εH)-stationary

point with probability at least (1− ξ)K̄S(εg,εH).

Proof. The results in (4.10) and (4.11) follow from Lemma 4.4 and Lemma 4.5.
If capCG = false, then the flag output by Algorithm 3.1 has outCG 6= int-max.
Combining this fact with line 8 of Algorithm 4.1 allows us to conclude that ‖gk‖ ≤ εg
when termination occurs in this case.
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Suppose that Implementation Strategy 4.1 is used. Then, the vector xk returned
by Algorithm 4.1 is not an (εg, εH)-stationary point only if the MEO (Algorithm 3.2)
makes an inaccurate indication of near-positive-definiteness, which, each time it is
called, can occur with probability at most ξ. Our goal now is to prove that the
vector xk returned by Algorithm 4.1 is an (εg, εH)-stationary point with probability

at least (1 − ξ)K̄S(εg,εH). To that end, for all k ∈ N, let P̃k be the probability that
the algorithm reaches iteration k and xk is not (εg, εH)-stationary. Similarly, for all
k ∈ N, let Pk be the probability that the algorithm reaches iteration k and xk is not
(εg, εH)-stationary, yet the algorithm terminates in iteration k due to an inaccurate
indication from the MEO. It follows from the aforementioned property of the MEO
in this setting that Pk ≤ ξP̃k for all k ∈ N. Thus, since it is trivially true that

P̃k +

k−1∑
i=0

Pi ≤ 1 for all k ∈ N,

it follows that

Pk ≤ ξP̃k ≤ ξ

(
1−

k−1∑
i=0

Pi

)
for all k ∈ N.(4.12)

We now define Mk to be the number of calls to the MEO that have occurred up
to and including iteration k for any k ∈ N. Let us now prove by induction that∑k
i=0 Pi ≤ 1 − (1 − ξ)Mk for all k ∈ N. For k = 0, the claim holds trivially both

when M0 = 0 (in which case P0 = 0) and when M0 = 1 (in which case P0 ≤ ξ). Now
suppose that the claim is true for some k ∈ N; we aim to prove that it remains true for
k+ 1. If the algorithm reaches iteration k+ 1 in which xk+1 is not (εg, εH)-stationary
and the MEO is not called in iteration k + 1, then Mk+1 = Mk and Pk+1 = 0, so by
the induction hypothesis it follows that

k+1∑
i=0

Pi =

k∑
i=0

Pi ≤ 1− (1− ξ)Mk = 1− (1− ξ)Mk+1 ,

as desired. On the other hand, if the algorithm reaches iteration k + 1, the iterate
xk+1 is not (εg, εH)-stationary, and the MEO is called in iteration k+1, then Mk+1 =
Mk + 1, and along with (4.12) and the induction hypothesis it follows that

k+1∑
i=0

Pi =

k∑
i=0

Pi + Pk+1

≤
k∑
i=0

Pi + ξ

(
1−

k∑
i=0

Pi

)

= ξ + (1− ξ)
k∑
i=0

Pi

≤ ξ + (1− ξ)
(
1− (1− ξ)Mk

)
= 1− (1− ξ)Mk+1 = 1− (1− ξ)Mk+1 ,

as desired, again. Since |S| is an upper bound on the number of successful steps,
which in turn bounds the number of calls to MEO when Implementation Strategy 4.1
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is used, we have Mk ≤ |S| ≤ K̄S(εg, εH) for all k. We conclude that the probability
that the algorithm terminates incorrectly due to an incorrect indication from MEO on
any iteration is bounded above by 1− (1− ξ)K̄S(εg,εH). Consequently, the probability
that the algorithm outputs an (εg, εH)-stationary point is at least (1− ξ)K̄S(εg,εH), as
claimed.

Finally, we state a complexity result for the number of Hessian-vector products.
For simplicity, we focus on the case of a small tolerance εg.

Theorem 4.7. Let Assumption 1 and Assumption 2 hold, and suppose that Im-

plementation Strategy 4.1 is used. Suppose that εH = ε
1/2
g with εg ∈ (0, 1). Then, for

any realization of a run of Algorithm 4.1, the total number of Hessian-vector products
performed satisfies the following:

(i) If capCG = false, then the number of Hessian-vector products is bounded by

n|K|+Nmeo(εH)|K̄S (εg, εH) | = nÕ(ε−3/2
g ).

(ii) If capCG = true, then the number of Hessian-vector products is bounded by

min{n, J(Lg, εH , ζ)}|K|+Nmeo(εH)|K̄S(εg, εH)| = min
{
n, ε−1/4

g

}
Õ
(
ε−3/2
g

)
.

Proof. First, suppose capCG = false. Then, for any k ∈ K in any realization of
a run of the algorithm, the maximum number of Hessian-vector products computed
by the truncated CG algorithm is n. In addition, over any realization of a run, the
maximum number of Hessian-vector products computed by the MEO is Nmeo(εH)
(see (4.1)) each of the (at most) |K̄S(εg, εH)| times it is called. Since the number of
Hessian-vector products performed by Algorithm 4.1 is the sum of these two, we have

proved the left-hand side of part (i). For the estimate nÕ(ε
−3/2
g ), we use εH = ε

1/2
g ,

the bound on K from Theorem 4.6, the estimate of Nmeo from Assumption 2, and the

fact that max{ε−3
H , ε−1

H , ε−2
g εH} = max{ε−3/2

g , ε
−1/2
g } = ε

−3/2
g when εg ∈ (0, 1).

For part (ii), we use the same estimates as well as the estimate of J(Lg, εH , ζ)

from Lemma 3.1 and (1.4c), noting that both |K| and K̄S(εg, εH) are Õ(ε
−3/2
g ) while

J(Lg, εH , ζ) and Nmeo are both min{n, Õ(ε
−1/4
g )}.

Note that for n� ε
−1/4
g , the bound in part (ii) of this theorem is Õ(ε

−7/4
g ), which

is a familiar quantity in the literature on the operation complexity required to find

an (εg, ε
1/2
g )-stationary point [1, 6, 30].

Theorem 4.7 illustrates the benefits of using a capped truncated CG routine in
terms of attaining good computational complexity guarantees. As a final remark,
we expect the “cap” of Algorithm 3.1 to be triggered only in rare cases, due to the
conservative nature of the CG convergence bounds that gave rise to this cap.

5. Practical considerations. Having presented an analysis of the theoretical
complexity of our inexact trust-region Newton-CG approach, we consider several prac-
tical issues that arise in developing a computational implementation of this method.

The randomness inherent in Algorithm 3.2 is central to the complexity analysis
of Algorithm 4.1 that was presented in section 4. Since the randomness carries with
it a small probability of failure of Algorithm 3.2, two unsavory situations can occur
that lead to “failure modes” for Algorithm 4.1. First, suppose that Algorithm 3.2 is
called in line 11 because ‖gk‖ ≤ εg and outCG = int-res. In this case, if capCG =
true and Algorithm 3.2 predicts that λmin(Hk) ≥ −εH , then with probability up
to ξ this indication is incorrect, and a direction of sufficiently negative curvature
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actually exists but was not found. Second, suppose that Algorithm 3.2 is called
because outCG = int-max. Here, it is again possible with probability up to ξ that
the indication λmin(Hk) > −εH will be made, even though we know from Lemma 3.2
that λmin(Hk) ≤ −εH . This second case can occur even when ‖gk‖ > εg, meaning
that termination can occur at a point that is not even εg-stationary. Note, however,
that in a given iteration the probability of these two situations is bounded by ξ,
which appears only logarithmically in the constant Cmeo of Assumption 2, and thus
can be chosen to be extremely small. We can avoid this second case by replacing
Algorithm 3.1 with the alternative truncated CG method of [29, Algorithm 1], which
computes and returns a negative curvature direction whenever it detects that one
exists. This “implicitly capped” method is more complicated to describe than the
“explicitly capped” version of CG that we consider here, so in this paper we opted
for simplicity of description at the expense of a (small) probability of failure in the
subsequent call to Algorithm 3.2.

Our experiments with the inexact algorithms reported in section 6 use the ran-
domized Lanczos procedure of [21, 22]. In practice, Algorithm 3.2 is rarely invoked
by Algorithm 4.1—in the vast majority of test problems, it is invoked only once on
the last iteration of Algorithm 4.1 as a final check that the Hessian is approximately
positive semidefinite. Rather than explicitly capping the number of iterations to the
value described in Assumption 2 and the comments that follow it, we use an adaptive
criterion to decide when a close approximation to the minimum eigenvalue has been
detected. Specifically, we stop at iteration l if λl−t−λl ≤ 10−5, where t = min{l, n, 10}
and λl is the estimate of the minimum eigenvalue at the lth iteration of randomized
Lanczos. It makes sense to use such a tight tolerance, since Algorithm 3.2 is rarely
invoked by Algorithm 4.1, so that the cost of doing a careful check for approximate
semidefiniteness is worthwhile.

In our implementations of the truncated CG procedure (Algorithm 3.1), we use
the quantity n̄ := min{n+2, 1.2n} in place of n in determining the maximum number
of iterations kmax. This relaxation can be beneficial in practice since loss of conjugacy
due to numerical rounding can result in a zero residual not being attained by CG after
n steps. Typically, a small number of additional iterations beyond n suffices to obtain
a more accurate solution. Another key parameter in this algorithm, the value ζ used
as a convergence threshold for the residual, is set to .25 in our tests. (We discuss the
settings of the parameters in Algorithm 4.1 in the next section.)

6. Computational experiments. We implemented several variants of trust-
region Newton methods in MATLAB, as follows.

• TR-Newton. An implementation of Algorithm 2.1 with the trust-region sub-
problem solved using a Moré–Sorensen approach [24].

• TR-Newton (no reg.). The same as TR-Newton, except that the regulariza-
tion term involving εH is omitted from the subproblem objective (2.2). This
variant demonstrates the effect of this regularization term on the practical
performance of TR-Newton.

• TR-Newton-CG-explicit. An implementation of Algorithm 4.1 with an ex-
plicit cap on the number of CG iterations (that is, capCG = true).

• TR-Newton-CG-explicit (no reg.). The same as TR-Newton-CG-explicit, ex-
cept that the regularization term involving εH is omitted from the subproblem
objective, again to illustrate the impact of this regularization.

• TR-Newton-CG. An implementation of Algorithm 4.1 without an explicit cap
(that is, capCG = false).
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• TR-Newton-CG (no reg.). The same as TR-Newton-CG, except that the
regularization term involving εH is omitted from the subproblem objective.
This method is the most similar to traditional trust-region Newton-CG with
Steihaug–Toint stopping rules for the CG routine. The only differences with
the latter approach is that, for consistency with the other methods, we use
the stopping test on line 21 of Algorithm 3.1 and still use the MEO (Algo-
rithm 3.2) to ensure convergence to an (εg, εH)-stationary point (with high
probability).

• TRACE. The trust-region algorithm with guaranteed optimal complexity pro-
posed and analyzed in [11].

For the six instances of our algorithms, we used a regularization of 2εH while
computing the Newton-type step. We set γ1 = γ−1

2 = 0.5, ψ = 0.75, η = 0.1,
ζ = 0.25, δmax = 1020, and δ0 = 10.

Our experiments show that the empirical performance of these methods is similar
in terms of the number of iterations, function evaluations, and gradient evaluations
required to locate an (εg, εH)-stationary point. In particular, the performance of the
Newton-CG variants in terms of iterations, function and gradient evaluations is almost
unaffected by the presence of a cap. A second observation is that the regularization
term in the trust-region subproblem objective in Algorithm 4.1, which is required to
ensure optimal iteration and operation complexity properties for this method, has a
noticeable effect on practical performance, mostly in terms of Hessian-vector products.
We discuss this effect further below.

We tested the algorithms using problems from the CUTEst test collection [17].
Many problems in this benchmark come with different size options. If the default
size (according to the sizes that come with the distribution, downloaded July 1, 2020)
was in the range [100,1000], then we used the default size. Otherwise, we choose the
size closest to the range [100,1000] from the default value. This resulted in a test
set of 233 problems. In order to focus on the results of experiments for the larger
problems in the set, the following discussion and presentation of results considers only
the problems with n ≥ 100; this is a test set of 109 problems.

Figure 6.1 shows performance profiles for various metrics [13]. The horizontal
axis is capped at τ = 10 in order to distinguish the performance of the methods more
clearly. We considered two termination tolerances. In the first set of experiments,
corresponding to the left column of plots in Figure 6.1, termination was declared
when the algorithm encountered a (10−5, 10−5/2)-stationary point. In the second set
of experiments (the right column of plots in Figure 6.1) we terminate at (10−5, 10−5)-
stationary points. In both sets of runs, we imposed an iteration limit of 104. For the
trust-region Newton-CG methods, we also imposed an overall Hessian-vector product
limit of 104n: A run was declared to be unsuccessful if this limit is reached without
a stationary point of the specified precision being found. Although not evident from
the performance profiles due to the cap on τ , all algorithms solved at least 101 test
problems out of 109 for both stationarity tolerances, a reliability of about 93%.

Figure 6.1 shows the performance of all algorithms to be similar in terms of
required iterations and gradient evaluations. We do, however, see significant differ-
ences in the number of Hessian-vector products required for the four TR-Newton-CG
methods. The variants with no regularization term in the subproblems outperform
the others in this respect; recall that these variants do not possess optimal complex-
ity guarantees. The practical significance of this difference in performance depends
on the cost of computing a gradient relative to the cost of a Hessian-vector prod-
uct. If gradient evaluations are significantly more expensive, our results suggest no
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Fig. 6.1. Performance profiles for iterations (top), gradient evaluations (middle), and Hessian-
vector products (bottom). A termination tolerance of (εg , εH) = (10−5, 10−5/2) is used for the left
column, and a termination tolerance of (εg , εH) = (10−5, 10−5) is used for the right column.

substantial difference in computation time between the four Newton-CG methods.
On the other hand, if Hessian-vector products are expensive relative to gradients,
there may be a significant increase in run time as a result of including the regular-
ization term. We remark that the vast majority of the Hessian-vector products in
the Newton-CG variants were computed in Algorithm 3.1: on all problems but three,
Algorithm 3.2 was only called at the last iteration to assess termination.

7. Conclusion. We have established that, with a few critical modifications, the
popular trust-region Newton-CG method can be equipped with second-order com-
plexity guarantees that match the best known bounds for second-order methods for
solving smooth nonconvex optimization problems. We derived iteration complex-
ity results for both exact and inexact variants of the approach, and for the inexact
variant we leveraged iterative linear algebra techniques to obtain strong operation
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complexity guarantees (in terms of gradient computations and Hessian-vector prod-
ucts) that again match the best known methods in the literature. Finally, we showed
that the practical effects of including these modifications can be relatively minor.

Our results could be modified to obtain alternative complexity results for ap-
proximate εg-stationary points. For instance, we could modify Algorithm 3.1 by
monitoring the decrease rate of the residual norm in a way that the number of CG
iterations is subject to an implicit cap [29], in place of the explicit cap used here (when
capCG = true). With appropriate modifications in Algorithm 4.1, and under the as-
sumptions of Theorem 4.7, one could establish a deterministic operation complexity

bound of Õ(ε
−7/4
g ) for reaching an εg-stationary point. However, the resulting method

is significantly more delicate to implement and must be paired with Algorithm 3.2 to
be endowed with a second-order complexity analysis.
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