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Abstract Twenty years ago, E.R. Fernholz introduced the notion of “functional gen-
eration” to construct a variety of portfolios solely in terms of the individual com-
panies’ market weights. I. Karatzas and J. Ruf recently developed another approach
to the functional construction of portfolios which leads to very simple conditions
for strong relative arbitrage with respect to the market. Here, both of these notions
are generalized in a pathwise, probability-free setting; portfolio-generating functions,
possibly less smooth than twice differentiable, involve the current market weights as
well as additional bounded-variation functionals of past and present market weights.
This leads to a wider class of functionally generated portfolios than was heretofore
possible to analyze, to novel methods for dealing with the “size” and “momentum”
effects, and to improved conditions for outperforming the market portfolio over suit-
able time horizons.
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1 Introduction

The concept of “functionally generated portfolios” was introduced by Fernholz
[9, 11] and has been one of the essential components of stochastic portfolio theory;
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see Fernholz and Karatzas [12] for an overview. Portfolios generated by appropriate
functions of the individual companies’ market weights have wealth dynamics which
can be expressed solely in terms of these weights and do not involve any stochastic
integration. Constructing such portfolios does not require any statistical estimation
of parameters, or any optimization. Completely observable quantities such as the cur-
rent values of “market weights”, whose temporal evolution is modelled in terms of
continuous semimartingales, are the only ingredients needed for building these port-
folios. Once this structure has been discerned, the underpinning mathematics involves
just simple calculus. Then the goal is to construct such portfolios that outperform a
reference portfolio, for example the market, under suitable structural conditions.

Karatzas and Ruf [14] recently discovered a new functional generation of trad-
ing strategies which they call “additive”, as opposed to Fernholz’s “multiplicative
generation”. This new methodology weakens the assumptions on the market: asset
prices and market weights are continuous semimartingales, and trading strategies are
constructed from “regular” functions of these semimartingales. Strategies generated
in this additive manner require simpler conditions for strong relative arbitrage with
respect to the market over appropriate time horizons; see also Fernholz et al. [10].

In a different but related development, Follmer [13] showed almost 40 years ago
that certain aspects of Itd calculus can be developed “path by path” without any prob-
abilistic structure, and in particular, without any semimartingale assumption. Once
a given function has finite quadratic variation/covariation along a given nested se-
quence of partitions over a fixed time interval of finite length, change-of-variable for-
mulas can be proved by Taylor expansions in a surprisingly simple way. Then Wiirmli
[25] introduced in this setting the concept of local times and the corresponding path-
wise Tanaka formula. This allows the change-of-variable formula to be applied to
less regular functions by involving appropriately defined pathwise local times. Such
local times have been further developed recently; see Cont and Perkowski [3], Davis
et al. [4], Kim [15] and Perkowski and Promel [19].

In this paper, we generalize both additive and multiplicative functional genera-
tion of trading strategies in several ways. First, we use pathwise 1t6 calculus to show
how to construct trading strategies, generated additively or multiplicatively from a
given function, depending on the market weights and in a manner completely devoid
of probability considerations. The only analytic structure we impose is that market
weights admit continuous covariations in a pathwise sense. Second, we allow gener-
ating functions that depend on an additional argument of finite variation. Introduc-
ing new arguments other than the market weights provides extra flexibility for con-
structing portfolios; see Ruf and Xie [20], Schied et al. [21], Strong [23]. We present
various types of such arguments so that a variety of new trading strategies can be
generated from a function depending on them; these strategies yield new sufficient
conditions for outperforming the market. We also apply the pathwise Tanaka formula
to construct portfolios from generating functions rougher than heretofore possible.
The classical 1t6 formula applies to functions which are at least twice differentiable,
whereas the Tanaka formula only requires absolute continuity. Thus, usage of the
latter broadens the class of portfolio-generating functions considerably.

We also provide new sufficient conditions for strong relative arbitrage via ad-
ditively and multiplicatively generated trading strategies. The existing condition in
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Karatzas and Ruf [14] requires the generating function to be “Lyapunov”, or the cor-
responding “Gamma function” to be nondecreasing. By contrast, the new conditions
in this paper depend on the intrinsic nondecreasing structure of the generating func-
tion itself. This shows that trading strategies outperforming the market can be gener-
ated from a much richer collection of functions depending on the market weights and
an additional argument of finite variation. We provide some interesting examples of
such strategies and an empirical analysis of them.

The paper is structured as follows. Section 2 presents elements of pathwise Ito—
Tanaka calculus and the relevant notion of local time needed for our purposes. Sec-
tion 3 defines trading strategies and regular functions, then discusses how to generate
the former from the latter in ways both additive and multiplicative. Section 4 gives
sufficient conditions for such strategies to generate strong arbitrage relative to the
market. Section 5 provides examples of trading strategies generated from entropic
functions, and corresponding sufficient conditions for strong arbitrage. Section 6 con-
tains empirical results regarding the portfolios discussed in Sect. 5, and Sect. 7 offers
some concluding remarks.

2 Pathwise Ito—Tanaka calculus
2.1 Multidimensional pathwise It6 formula

In what follows, we let X = (Xy,..., Xz) be an RY_valued continuous function,
representing a vector of quantities defined on [0, T'], for a fixed 7" > 0, whose values
change over time. We require the components of X to admit continuous covariations
in the pathwise sense with respect to a given, refining sequence (T},),eN of partitions
of the interval [0, T']. The sequence (T}),cN is such that each partition is of the form
T, :{Ozté") <t1(") < - <t1(\7()’£r,1) =T} forneNaswellasT; C T, C---, and
the mesh size | T, | := max e, |7j4+1 — ;| decreases to zero as n — oo.

We fix such a sequence T = (T,),cn of partitions for the remainder of the
paper. Here and below, ¢; and ;41 are consecutive points in the partition Ty, i.e.,
tj <tjy1, Ty N (), tj41) = @. Also, when we write ¢; € T,, and ¢; <t simultane-
ously, we set ¢j,1 =t when j is the biggest index satisfying #; < ¢. With this nota-
tion, the notion of pathwise quadratic covariation of X along (T,),cn is defined as
follows.

Definition 2.1 A continuous function X : [0, T] — R¢ has pathwise quadratic co-
variation along (T,,),en if for all 1 <i, k <d, the limit as n — oo of the sequence

E (Xi(tj+1) — Xi(0)) (X (tj1) — X (1)), neN,
tjGTn
1<t

exists in R for all ¢ € [0, T'] and the resulting mapping, denoted by 7 — [X;, Xz](¢),
is continuous. We call [ X;, Xi] the pathwise quadratic covariation of X; and X and
denote the pathwise quadratic variation of X; by [X;] := [X;, X;] as usual.
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We stress that the existence of pathwise covariations and quadratic variations for
the components of X depends heavily on the choice of the sequence (T},),en of
partitions. Cont [1, Example 5.3.2 and the arguments following it] illustrates this
fact. We also note that the existence of pathwise covariations and quadratic variations
is required for Itd’s formula to hold in a pathwise sense.

We shall need a higher-dimensional pathwise It6 formula with an extra “input” as
additional argument. For this purpose, we let A = (Aq, ..., Ap) : [0, T] — R™ be
a function of finite variation and consider f : R? x R” — R as well as the quantity
fX1(@®),..., Xq@), A1(?), ..., Ay (t)) that depends on time ¢ € [0, T']. We say that
such a function f is in C/" (RY x R™; R) if it is j times continuously differentiable
with respect to the first d and r times continuously differentiable with respect to the
last m components. We also denote by 9; f, 9; x f the first- and second-order partial
derivatives for the first d components of f (1 <i,k <d) and by D, f the first partial
derivative with respect to the (d + £)-th component of f, for the last m components
of f (1 <f<m).

We present now the following version of the pathwise 1t6 formula involving both
components X and A. It can be proved using the Taylor expansion as in the proof of
Follmer’s original result, which can be found in the Appendix of [22].

Proposition 2.2 Fix a continuous function X : [0, T] — R? having pathwise quad-
ratic covariations along (Ty),eN and a continuous function A : [0, T] — R™, all of
whose components have finite variation. Then for every f:R? x R™ — R of class
C?>!, the pathwise change of variable formula

F(X@), A®) — (X (©0), A0)) / Za F(X (), A))dX;(s)

i=1

m t
+ Z/O Dy f(X(s), A(s))dAg(s)
=1

+- Z/ 2 f (X (), A9))d[Xi, Xk(s)
2.1

holds for all t € [0, T]. Here, the last two integrals in (2.1) are of the Lebesgue—
Stieltjes type, and the first, so-called “Follmer—Ito” integral is defined as the point-
wise limit

/ Za F(X(5), A(5))dX; (s)

d
= lim Y Y 8 f(X (), AGH)(Xi(tj1) = Xi (1))
tjGTH i=l1
ljfl
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2.2 Pathwise local time and Tanaka formula

For a given subset V of a Euclidean space, C ([0, T']; V) denotes the space of contin-
uous V-valued functions defined on [0, T'], whereas CBV ([0, T']; V) stands for the
space of those functions in C ([0, T'], V) whose components are of bounded variation.

For X € C([0, T]; R), we recall the notion of quadratic variation of X along
(T,)nen as introduced by Follmer [13].

Definition 2.3 A function X € C([0, T'], R) is said to have finite quadratic variation
along T = (T,),en if the sequence p" := theTn | X (1) — X(tj)ler,_/, n €N, of
measures converges vaguely to a locally finite measure u without atoms; here §; de-
notes the Dirac measure at t € [0, T']. We write Q(T) for the collection of all contin-
uous functions having quadratic variation along T and denote by [X]() := ([0, t])
the quadratic variation of X on [0, T'] for ¢ € [0, T].

For a sequence of measures ("),en on [0, T'], vague convergence is equivalent
to the pointwise convergence of their cumulative distribution functions at all conti-
nuity points of the limiting distribution function; and if the latter is continuous, the
convergence is uniform. Thus we are led to the following remark which guarantees
in particular that the quadratic variation [X] of X as in Definition 2.3 coincides for
d =1 with that of X in Definition 2.1.

Remark 2.4 X € C([0, T1; R) belongs to the collection Q(T) of Definition 2.3 if and
only if there exists a continuous function [X] such that
DX ) — X == [X10) 2.2)

leTn
1<t

for every ¢ € [0, T']. If this holds, the convergence in (2.2) is uniform.

Remark 2.5 The assumption on the sequence (T, ),en of partitions that the mesh
size ||T, || goes to zero as n — oo is stronger than the assumption usually imposed
in other works involving pathwise local time. For example, in [3, 4, 19], the authors
define the “oscillation” of the function X along a partition T,, as

osc(X,T,):=max max [X(s)—X(@)|

lj ETV, r,se[tj,t_,-_,_|]

and require osc(X, T,) — 0 as n — oo instead of the mesh size going to zero. This is
because it is enough to work with Lebesgue partitions generated by X when defining
the pathwise local time and deriving the pathwise Tanaka formula. Since the function
X is uniformly continuous on the compact interval [0, T'], the decrease to zero of the
mesh size implies that the oscillation of X also shrinks to zero.

One reason for imposing here the stronger condition on (T}),cN is to follow the
definition of pathwise quadratic covariation/variation in Definition 2.1. Another rea-
son is that we are going to involve additional continuous functions A when generating
trading strategies and the oscillation of A also has to shrink to zero along (T},),eN-
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In other words, by using the “mesh” assumption instead of the “oscillation”, we can
get rid of such a “dependence” of the sequence (T, ),en on both X and A.

The very first definition of pathwise local time was given in the unpublished
diploma thesis of Wiirmli [25]. This original local time is called “L2-local time”
of a path X along a sequence T = (T, ),en of partitions. Using that notion, Wiirmli
established the expression (2.6) below for f in H 2(R; R), the Sobolev space of func-
tions in L2 (R; R) which are twice weakly differentiable. Since then, many versions
of pathwise Tanaka formulas (generalized It6 formulas) and different definitions of
local times have been introduced and studied; they vary according to the regularity
of the path X, the function f and the notion of “convergence for local time”. Weaker
convergence in defining a local time requires more regularity on the part of the func-
tion f. Some of these versions are in Perkowski and Promel [19, Sect. 2] and Davis et
al. [4] for continuous paths with quadratic variation. Similar results for rougher paths
(with finite p-th variation, p > 2) can be found in Cont and Perkowski [3, Sect. 3]
and in Kim [15]. We present here a version of local time and Tanaka’s formula which
is most appropriate in our setting.

We adopt throughout the notation

(a,b], a<b, 2.3)

@t =V6a,  bea

used in [3, 4, 15, 19]. Then we have the following definition of continuous local time.

Definition 2.6 We say that X € C([0, T]; R) has a continuous local time along
T = (T,),en if the “discrete local times”

xis LX) = > Lix,, ;1@ X = (2.4)

leTn
tjft

converge as n — oo uniformly in x to a continuous limit x L,X’T(x) for every fixed
t € [0, T] and the resulting mapping (¢, x) LlX’T(x) is jointly continuous. We call
this limit continuous local time of X along T and write £°(T) for the collection of
functions X in C ([0, T']; R) which admit a continuous local time along T.

The existence of a continuous local time for “typical price paths” is shown in
[19, Theorem 3.5]. To simplify notation, we write L,X (x), or simply L;(x), whenever
the context is unambiguous. With this definition, we have the following version of
the pathwise Tanaka formula, which is Theorem 2.6 of [19].

Proposition 2.7 Let X € L°(T) and f : R — R be absolutely continuous with
right-continuous Radon—Nikodym derivative [’ of finite variation. Then the one-
dimensional Follmer—Ito integral is defined as the pointwise limit

t
/0 FI(X@)dX ()= lim > f'(X)) (X4 = X)), (2.5)
t;eTy,
tj<t
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and we have the generalized change-of-variable formula

13
FX0) = f(XO0) = /0 F1(X(9)dX(s)+ /R Liodf' (), 0<1<T. (26)

3 Trading strategies generated pathwise

We place ourselves from now on in a frictionless equity market with a fixed num-
ber d > 2 of companies. We consider S = (S, ..., Sy) € C([0, T1; [0, 00)4), where
S; (1) represents the capitalization of the i-th company at time ¢ € [0, T]. Here we
take S;(0) > 0 and allow S; (¢) to vanish at some time ¢t > O foreachi =1, ...,d; but
we assume that the total capitalization X (¢) := S1(¢) + - - - + S4(¢) does not vanish at
any time t € [0, T'].

With these ingredients, we define another vector i = (i1, ..., ug)’ of continuous
functions that consists of the companies’ market weights,

S0 Si ()

H = S S S SO+ 150

tel0,Tli=1,...,d. @3.1)

We assume that the components of p admit finite quadratic covariations [;, ],
1 <i,j<d,along (T,),eN.

We also consider A = (A, ..., Ay,) € CBV ([0, T]; R™) along with the vector u
of market weights. For the purposes of this section, the components of A model the
evolution of an observable, but non-tradable quantity related to the market weights.
In what follows, we consider functions of the form G(u(-), A(-)). Examples of A
appear in (4.2), (4.3) below. With this notation, we have the following definition of
trading strategy with respect to the pair (1, A) in the manner of [14].

Definition 3.1 For the market weights pu, suppose that & = (¢4, ...,9,)" is a d-di-
mensional function for which the “Follmer-Itd integral”

. . d d
fo P()dp(r) = fo D 0= lim Y Y i) (i) — i e))
i=1

tjETn i=1
1j=-
with respect to p exists in R. We write ¢ € £(u) to express this. We say that

¥ € L(p) is a trading strategy with respect to  if it is “self-financing” in the sense
that its value V7 () := Zflzl 9 () (+) satisfies

. d
Vi =V = fo D i (0d (o).
i=1

Above, 1; () stands for the ratio of number of shares of asset i held at time ¢ by
the trading strategy 6, divided by the number of outstanding shares of asset i. Since
wi(t) is the market weight of this asset, ¥ (¢)u;(¢) is the (relative) dollar amount
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430 I. Karatzas, D. Kim

invested in asset i, divided by the total capitalization of the entire market at time ¢;
and Vﬁ(t) is the relative value of ¢ to the market portfolio, that is, the total dollar
amount of investment across all assets of ¢ divided by the total capitalization of the
entire market. “Self-financing” means that there are neither infusions nor withdrawals
of capital; gains are re-invested, losses have to be absorbed.

The pathwise It6 formula (2.1) suggests that integrands ¢ € L£(u) of the special
form 9 (1) = 8f (u(t), A(t)), for some function f € C>!(R4+™;R), play an impor-
tant role for integrators u € C ([0, T']; Rd) that admit finite quadratic covariations
[mi, ], 1 <1, j <d,along (Ty),en. This gives rise to the following definition.

Definition 3.2 For the given pair (i, A) of market weights u € C([0, T]; Rd) and
A € CBV([0, T]; R™), we say that G € C(R? x R™; R) is regular if

(i) there exists a function VG = (V,G, ..., V4G) : R? x R™ — R such that the
vector ¥ = (¥4, ..., ¥y)’ with components

9:(1) == ViG(n(), A®)), i=1,...,d,0<1<T, (3.2)

isin £(u), and
(i) the continuous function

re() = G(u(0). A(0)) — G(u(). AL)) + /0 VG(u(s). A))dp(s). (3.3)
which we call the Gamma function of G, has finite variation on [0, T'].

Example 3.3 As foretold in the discussion preceding Definition 3.2, any function G
in CZ1(RY x R™; R) is regular for the pair (u, A). If we then set

Bi (1) == VG (@), A(D)) :== 8;G(u(1), A1), i=1,...,d,0<t<T,

the resulting & = (91, ..., %) is in L(u) by Proposition 2.2. Furthermore, we can
apply the pathwise Itd formula (2.1) to G to deduce that I'C in (3.3) can be cast in
the notation of Proposition 2.2 as

réo=-y /0 DG (u(s). A®)dA(s) (3.4)
=1

1 &
3 ) /0 07k (11(9), A())dlii, wel(s).

ik=1

Regular functions as in Example 3.3 must be sufficiently smooth (at least C>1) for
the pathwise Itd formula to apply. However, usage of the pathwise Tanaka formula
accommodates regular functions which are less smooth.

Example 3.4 To use the pathwise Tanaka formula of Proposition 2.7 in place of the

pathwise Itd6 formula of Proposition 2.2, we need a more specific form of regular
function G than that of Example 3.3. We assume that i and A have the same dimen-
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sion d and that each component u; belongs to £¢(T), i.e., admits a continuous local
time, fori =1, ...,d. Then we set

Xii=pi—A;,  i=1,....d, (3.5)

and assume that each X; is also in £°(T). For any absolutely continuous functions
fi with right-continuous Radon-Nikodym derivatives f; of finite variation for every
i=1,...,d, we define the function G(m, a) := Z;{:I fi(mi — a;) for (m,a) € R
and evaluate it along the pair (u, A) as

a

d
G (), A) Z (Xi0) =Y filwi®) = Ai®)),  0<t<T. (3.6)

i=1 i=1

We claim that the function G in (3.6) is regular for the pair (u, A). To see this, we
start by noting that we are only able to consider such G represented as the sum of
individual functions f; fori =1, ..., d because there is no “multidimensional Tanaka
formula” that can be applied to G directly. However, we can apply Proposition 2.7 to
each component f; (X;(-)) separately and sum up to obtain

G (1), A1) = G(1(0), A(0))

+Z</ (Xi(s))dX; (s)+[L,X"(x)dﬂ(x)). (3.7)

Furthermore, the Follmer—It6 integral in (3.7) defined via (2.5) can be decomposed
as

t
/(; ﬁ/(Xi(S))dXi(S)ani)H;O Z I (Xi (@) (i (tj41) — pi () (3.8)
tjETn

1j<t

—lim (XG0 (i) — Aiep))  G)
tjETn

1<t

because the limit (3.9) exists as A is in CBV ([0, T]; R?). Thus the limit (3.8) also
exists and we denote (3.8) and (3.9) as fot fl/(X,- ($))dpi(s) and fot fl/(X,- (5))dA;(s),
respectively. Then by setting

9:(1) = ViG(n(), A®)) = f1(Xi (1)),  i=1,....d, (3.10)

for0 <t <T, we see that % € L(1t), and on account of (3.7) and (3.8), the function
in (3.3) is seen to be of bounded variation as it takes the form

d d
rG(z)=Z/ 0,»(s)dA,-(s)—Z/Lﬁ’”‘f"')(x)dﬂ(x), 0<:t<T. (3.1
i=170 i=1 /R

From now on, we only consider C>! regular functions as in Example 3.3, or
regular functions G of the form (3.6) in Example 3.4.
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432 I. Karatzas, D. Kim

3.1 Additively generated trading strategies

We should like now to introduce an additively generated trading strategy, starting
from a regular function in the pathwise sense. This requires a result from [14]. For
any function G which is regular for the pair (i, A), where u is the vector of market
weights and A in CBV ([0, T]; R™), we consider the vector ¢ with components

%) =ViG(u(),AC)),  i=1,....d (3.12)
as in (3.2) and the vector ¢ = (@1, ..., @q)" with
gi() =91 —0"(t)—C©), i=1,....d, 0<t<T (3.13)

as its components. Here,

; d
Q" (1):=V" (1) -V’ (0) - f > Bi(s)dpui(s) (3.14)
0 =1

is the so-called “defect of self-financibility” at time ¢ € [0, T] of the integrand 9 in
(3.12), and V#(¢) the “value” of the strategy ¢ as in Definition 3.1, whereas

d

C0):= Y ViG(1(0), A©))1i (0) — G(1(0), A0)) (3.15)
i=1

is the so-called “defect of balance” at time # = O for the regular function G. By
analogy with Proposition 2.3 of [14], the vector ¢ = (@1, ..., @) of (3.13), (3.12)
defines a trading strategy with respect to .

Definition 3.5 We say that the trading strategy ¢ from (3.13), (3.12) is additively
generated by G : RY x R™ — R, which is assumed to be regular for the pair (i, A).

Proposition 3.6 Consider the trading strategy ¢ generated additively as in (3.13) by
a regular function G for the pair (., A). This strategy has value

V‘p(t)=G(M(t),A(t))+FG(t), 0<t<T, (3.16)
as in Definition 3.2, and its components can be represented, fori =1, ...,d, as
d

6i(1) = ViG(u(0), A + T @) + G(u(0). A)) Z SOV (i), A®))

d
— V) + VG (D), AD) = Y 15OV (1), AD)). 3.17)
j=1

Proof The proof does not involve any usage of an It6 or Tanaka formula; it is exactly
the same as that of Proposition 4.3 of [14] if we change G (u(z)) and D;G(u(t))
there into G (u(t), A(t)) and V;G(u(t), A(¢)) in our present context. Il
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Trading strategies generated pathwise by market weights 433

The decomposition (3.16) suggests that we can think of the quantity I'C(-) in
(3.3), (3.4) or (3.11) as expressing the “cumulative earnings” of the strategy ¢ in
(3.13) around the “baseline” G (u(-), A(:)).

Remark 3.7 (1) When the function G in Proposition 3.6 is “balanced”, i.e., if

QU

(n(@®), A®)) Z (O ViG(u@), A®)), 0<r<T, (3.18)

the additively generated trading strategy ¢ of (3.17) takes the simpler form
0i() =V;G(u(), AN) +T10),  i=1,....d. (3.19)

(ii) For an additively generated trading strategy ¢ with positive value V¥ > 0, the
corresponding portfolio weights are defined as

) (pz(f)lh(f)_ @i ()i (1) i=1.....d.

Ve YL eiow)
or, with the help of (3.16) and (3.17), as

ViG(u(t), A(t)) — Z‘,Ll wi(OV;G(u(r), A(t))
G(u(), A@®) +T%@)

;i (1) =m(t)(1 + ) (3.20)

3.2 Multiplicatively generated trading strategies

Next we introduce the notion of a multiplicatively generated trading strategy. We
suppose that G : R? x R” — R is regular as in Definition 3.2 for the pair (i1, A),
where p is the vector of market weights and A in CBV ([0, T']; R™), and that the
scalar function 1/G(u(-), A(:)) is locally bounded. This holds for example if G is
bounded away from zero. We consider the vector n = (1, ..., ng)’ with components

©dTS() )
() =V;G ), A G, A(D)
ni () (RO) 0)6"?(/0 G(u(n), A1)

in the notation of (3.3), (3.12). The integral is well defined as 1/G(u(-), A()) is
assumed to be locally bounded. Moreover, 1 is in £(u) since o = VG (u, A) € L(u)
from Definition 3.2 and the exponential term is a locally bounded function. We turn
n into a trading strategy ¥ = (Y1, ..., ¥4)  as before by setting

=1,...,d, (3.21)

1//1' :Zni_Qn_C(O), i=17"°7d7 (322)
in the manner of (3.13) and with Q", C(0) defined as in (3.14) and (3.15).

Definition 3.8 The trading strategy v = (¥, ..., ¥g)’ of (3.22), (3.21) is said to be
multiplicatively generated by the regular function G for the pair (u, A).
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The following result is a multiplicative counterpart of Proposition 3.6. The proof
is in the Appendix.

Proposition 3.9 Consider the trading strategy ¥ = (Y1, ..., Vq) generated as in
(3.22) by G € C>'(RY x R™; R) which is regular for (u, A), with a suitable func-
tion A € CBV ([0, T]; R™) such that 1/G(u(-), A(+)) is locally bounded. The value
generated by this strategy is given by

dra(s)
G(u(s), A(s))

in the notation of (3.3). This strategy ¥ can be represented fori =1,...,d as

t
VW(t)zc(M(t),A(t))exp</ >>o, 0<t<T (3.23)
0

ViG(n(), A@)) — Z‘le (VG (), A))
G(u(n), A1)

vi(1) = V"’(t)(l + > (3.24)

For the trading strategy ¥ multiplicatively generated from the less smooth func-
tion G in Example 3.4 and with the notation of (3.6), (3.10), we have a result similar
to Proposition 3.9. The proof, given in the Appendix, requires additional attention
and computation as there is no “product rule” that can be applied to such functions.

Theorem 3.10 The trading strategy  generated multiplicatively as in (3.22) by the
regular function G of the form (3.6) can be also represented as in (3.24) and has
value V9 as in (3.23).

Remark 3.11 (i) When the function G of Theorem 3.10 is “balanced” as in (3.18),
the strategy v in (3.24) takes the simpler form

t G
wi(t)=z9i(t)exp</ &) i=1,....d. (3.25)
o G(u(s), A(s))

(ii) The portfolio weights corresponding to i are similarly defined as
Vi (1) i (1)
S i (Omi(0)

fori =1,...,d. Here, the last expression follows with the help of (3.23) and (3.24).
For a “balanced” function G as in (3.18), this last expression simplifies to

M) = wi ()0 (1)
' G(u(t), A@t))’

I1;(¢) :=

9 (1) — X5, uj(r>0,-(r>>

’ m( T TG0, A0)

i=1,....d.

4 Sufficient conditions for strong relative arbitrage

We consider the vector i = (i, ..., ug) of market weights as in (3.1). For a given
trading strategy ¢ with respect to u, let us recall the value V¥ = Zflzl @i from
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Definition 3.1. For some fixed T, € (0, T'], we say that ¢ is a strong arbitrage relative
to the market over the interval [0, 7] if we have

Vt) >0, Vrel0,T.],  alongwith V¥(T.) > V¥(0). .1

The value V?(-) of a trading strategy generated functionally, either additively or
multiplicatively, admits a simple representation in terms of the generating function G
and the derived function I'¢ as in (3.16), (3.23). This simple representation provides
in turn sufficient conditions for strong relative arbitrage with respect to the market,
for example as in [14, Theorems 5.1 and 5.2]. In this section, we find such conditions
on trading strategies generated by a regular function G (u(-), A(-)), which depends
not only on the vector of market weights w, but also on an additional finite-variation
process A related to . We also give new sufficient conditions leading to strong rela-
tive arbitrage for strategies generated both additively and multiplicatively, which are
different from [14, Theorems 5.1 and 5.2].

We have not yet specified the function A € CBV ([0, T]; R™), so it is time to
consider some plausible candidates. A first one would be the vector

A=[ul= [l (w2l s [al) (4.2)

of quadratic variations for the market weights. We can also think of a more general
candidate, namely the S;' -valued covariation process of market weights. Here, S;}' is
the collection of symmetric, nonnegative definite d x d matrices, and we use double
brackets [[ ]] to distinguish this d?-dimensional vector from “4.2),1.e.,

A=[nll,  Aij=1[mi, 1)l l<i,j=d. (4.3)

Choosing A as in (4.3), we can match the integrators of the two integrals in (3.4) and
the resulting expression for ' (-) can then be cast as one integral.

There are many other functions of finite variation which can be candidates for the
process A. We list some examples below:

1) The moving average i of i defined fori =1,...,d by

Lo miyds + 1 [2 5 wi0ds,  1€]0.5),

i (t) == L
5 [i_s mi(s)ds, tels, TI.

2) The running maximum p* and the running minimum g, of the market weights,
with the components /L,’.‘(t) = maxo<s<s i (), Wi (f) 1= ming<s<; 1 (s), respec-
tively, fori =1,...,d.

3) The vector L () = (L"' (@), ..., L («)) of pathwise local times L' (&) of
;i at some real number @ € (0, 1), fori =1, ...,d, as defined in Sect. 2.2.

Since the vectors ji, u*, i1y and L" (o) are d-dimensional, m = d holds for these
choices of A. Empirical results using the moving average [ are given in [21, Sect. 3].
The running maximum p* and minimum w, appear in Sects. 5 and 6. The vector
L"(ar) of pathwise local times plays an important role in Examples 4.4, 4.9.

We first consider conditions leading to strong relative arbitrage with respect to the
market with a general A as the second input of the generating function G. Then we
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present some examples of G with specific finite-variation functions A chosen from
among the above candidates, and provide empirical results for these examples.

4.1 Additively generated strong relative arbitrage

We start with a condition leading to additively generated strong arbitrage, which is
similar to [14, Theorem 5.1].

Proposition 4.1 Fix a function G : R? x R™ — [0, 00) which is regular for the pair
(w, A), and such that the function T'¢(-) in (3.3) is nondecreasing. For some real
number Ty > 0, suppose that

I (T > G(r(0), A(0)). (4.4)

Then the trading strategy ¢ additively generated by G as in Definition 3.5 is a strong
arbitrage relative to the market over every interval [0,t] with T, <t <T.

Proof Since I'C(-) is nondecreasing, we obtain from (3.16) that
Ve()=G(n@), A®)) +T%1) >T%0)=0  foreveryt € [0, T.].
We also have
V() = G(@). A®) +TC(1) = TE(T) > G(1(0), A(0)) = V¥(0)
for every ¢ € [Ty, T]. The last equality holds because I'% (0) = 0. O

Remark 4.2 With A = [[t]] as in (4.3), the function FG(~) of (3.4) is nondecreasing
when

_Z/< o5 31k> (1(), [T11())dl i, 1 j1(s)

i,k=1

is nondecreasing. Here, D( o denotes the first-order partial derivative operator with
respect to the (i, k)-th entry of [[]]. We can substitute from (4.3), (3.4) into (4.4) to
obtain the more explicit form

T
—Z / (D(,k)+2a ) (15, L)) d i, 151(5) > G((0), [[1]1(0))

i,k=1

of the condition (4.4) for strong relative arbitrage. Thus unlike the situation of
[14, Theorem 3.7], we can have a nondecreasing I'G and a chance for achieving
strong relative arbitrage even without “concavity” of G in u.

Remark 4.3 Suppose the arguments p and A are “additively separated” in the smooth

regular function G € CZI(RY x R™: R) of Example 3.3. This means that there exist
two functions K and H such that K depends only on () and H only on A(¢) and

G(u®), A)) =K (u®)+ H(A®), Viel0,T]. (4.5)
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Then Bi%kG(u(t),A(t)) = ai%kK(u(t)) and D,G(u(t), A(t)) = DyH(A(t)) hold.
Substituting these expressions into (3.4), we obtain

m T*
ro(r,) = —Z/O Dy H(A(s))dAg(s)
=1

-5 Z/ kK w(s))dl i, 1il(s), (4.6)

and from (3.16) of Proposition 3.6, the relative value process of the additively gener-
ated trading strategy ¢ from G can be expressed as

VO(T,) = K ((T) + H(AT)) + T, V¥(0) = K (1(0) + H(A(0)).
4.7

After inserting (4.6), (4.7) into (4.1) and rearranging terms in such a manner that the
left-hand side contains only terms involving K, the strong arbitrage condition (4.1)
takes the form

K (u(Ty) — K (n(0)) — 5 Z/ 07 K ((9))dli, 1kl (s) > By (A(TY)), (4.8)
where
By (A(T)) := —H(A(Ty)) + H(A(0)) +Z/ D¢H (A(s))d Ag(s).

When we apply the pathwise Itd formula of Proposition 2.2 to the function H (A(?)),
0 <t < T, the right-hand side of the above expression vanishes. Hence the require-
ment (4.8) becomes

K (u(T) — 5 Z / 07 K (1(9))dlpi, pil(s) > K ((0)),

and we are in very similar situation as in [14, Theorem 5.1].

To be more precise, if K takes nonnegative values and is a “Lyapunov function”
in the sense that FK(t) = —% Zikzl fot ai%kK(u(s))d[ui,uk](s) is nondecreasing,
then the requirement ' (T,) > K (14(0)) ensures strong relative arbitrage over every
interval [0, ] with T, <¢ < T. Thus in this “separated” case, we cannot achieve more
than the result in [14, Theorem 5.1], as all terms on the right-hand side of (4.8) that
involve H vanish. This is because when we generate additively the trading strategy ¢
in (3.13) from a regular function G € CZI(RY x R™; R), only the partial derivatives
of G with respect to the market weights in (3.12) are involved in @, and this makes
the H-term in (4.5) meaningless in generating ¢. Therefore, in order to be able to
find new sufficient conditions for strong relative arbitrage, we need forms of G more
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sophisticated than (4.5). All the examples of G we develop in this paper from now
onwards are of such more elaborate forms.

Concave functions such as x — —x2 and x > —xlogx, when used to generate
trading strategies, produce nondecreasing functions I'® in (3.4); this is because such
functions have negative semidefinite Hessians 392G = (0; kG)1<i k<d>» Which play
the role of integrand in the last integral of (3.4). Such concavity is known to lead
to “diversity-weighted” investment strategies as explained in [9, Definition 3.4.1].
However, these concave functions had to be twice differentiable to apply Itd’s rule.
Now we can use concave but not differentiable functions, while still being able to
generate portfolios with the help of the Tanaka formula. Typical such examples are
X+ —xT = —max(x,0) and x = —x~ := —min(x, 0).

Example 4.4 Consider a constant o € (0, 1) and the function
flx) = ——(x—Ot)+ x eR,

which satisfies the conditions in Proposition 2.7. Then for the pair (u, A) with A =0,
we have X = pin (3.5) and can set f = f; fori =1,...,d to obtain the analogue

QU

Gp®)=1- (i ) (4.9)

i=1

of (3.6), which is nonnegative by construction. Here, « plays the role of a threshold
on the market weights: we only include in our generating function those stocks whose
market weights exceed the level «. From (3.10) and (3.11), for 0 <t < T,

d
9i()=—1yymze). i=1.....d. and T90=) Li@. (.10
i=l1

Note that ' (-) is nondecreasing and increases whenever a market weight hits the
threshold «. The strategy ¢ additively generated as in (3.13) can be represented as

d
0i() = —Lyuza) + O LuzaitjO + V@),  i=1....d, (411
j=1

by Proposition 3.6 and has value

d d
VO =1-3 (0 —a) +Y L@, 0<i<T.

i=1 i=1

Since I'¥ is nondecreasing, we can use the condition in Proposition 4.1: Strong arbi-
trage relative to the market exists over every interval [0, ] with T, <t < T satisfying

d

For) =3 L@ >GuO®)=1- (10 —a)"

i=1 i=1

QU
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In the expression of ¢;(¢) in (4.11), the sum Z‘;:l Ly y=a} + V%(t) is a universal
term, the same for all indices i = 1,...,d. Thus ¢ invests one currency unit less
to this universal baseline amount for those “big-capitalization stocks” whose market
weights exceed the threshold «. Therefore we can interpret the strategy ¢ of (4.11)
as outperforming the market by investing more in “small-capitalization stocks”. This
is in broad agreement with results in stochastic portfolio theory to the effect that
“tilting” in favor of small capitalization stocks, as opposed to their larger brethren,
can lead to superior results under appropriate conditions.

Example 4.5 In Example 4.4, we compared the individual market weights w; () with
a fixed constant « to determine whether to include them in the generating function
or not. Now we extend this idea by comparing current with past market weights. To
be specific, we want our trading strategy to depend on the difference between w(t)
and u(t — 8) for some fixed § > 0. To do this, we enlarge the domain of each u;
from [0, T'] to [—§, T']. This can be done because even before we start investing in
our strategy at time ¢t = 0, there must be past stock prices and past market weights.
We simply attach these past data to the left of the time line so as to extend its domain.

Furthermore, since the evolution of (¢ — §) is as rough as the original path w(¢),
we need to make it smoother. Thus we take the moving average of market weights
over a very small time interval [f — &, ¢ —§ + 6] for some small 6 satisfying 0 < 6 < &,
and we use this moving average instead of (¢ — §). Therefore we introduce for each
i=1,...,d as an estimate of y; (t — &) the function of finite variation

1 t—38+6
Ai(t) = 5[ wi(s)ds, 0<t<T.
t—48

Now we introduce the nonnegative quantity

QU

Gp®)=1- (- A®)", 0=i=T.

i=1

This includes those stocks whose current market weight w; (¢) is bigger than or equal
to its (estimate of) past market weight u; (z — §). This G is also very similar to that of
(4.9), with the difference that the threshold « is replaced by the stock-specific level
A;(t), capturing the “momentum effect”. In this manner, we compute the quantities
of (3.10), (3.11) as

Di(0) = =L in=4:00)» i=1,....d,

reae) =— Z/ L ()5 4; ) A A (s)+ZL(‘” 4)(0), 4.12)

i=1

with the continuous local time L%~ (0) of u; — A; at the origin as in Defini-
tion 2.6. In the integral above, the integrand 1., s)>4,(s)} 1S a quantity observable
at time s, whereas the integrator d A; (s) represents the increment of the moving av-
erage of u; over the time interval [s — §, s — § + 6], also an observable value at
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time s. Therefore this integral can be computed at any time between 0 and 7', even
though integrand and integrator are from different times. The last term in (4.12) is
nondecreasing, but the integral term is generally not monotone.

The trading strategy ¢ additively generated in the manner of (3.13) and its value
V¥ can now be represented by Proposition 3.6 as

@i (1) = =L ()= A; (1))

d
+) Lsozaop O+ V@), i=1,....d, (4.13)
j=l1

d

VB =1-3" (i) — Ain)"

1

i=
d . d
i—Ai
—Z/ o)z dAi () + Y L4 (0).
. 0
i=1

i=1

Since the function I'?(-) of (4.12) is no longer monotone, it is hard to formulate
appropriate conditions for strong relative arbitrage in this context. We note, however,
that the strategy @ in (4.13) invests one unit of currency less in stocks whose current
market weight is bigger than or equal to its (estimate of) past value.

From (3.16), the value V¥(¢) at time ¢ of the additively generated trading strat-
egy ¢ in (3.13) has two additive components, G (u(), A(t)) and ' (¢). In Proposi-
tion 4.1, we derived the strong arbitrage condition from the “nondecrease” of G ),
but there is no a priori reason to differentiate between G (u(¢), A(¢)) and I' G, If
t— G(u(t), A(t)) is nondecreasing, it is possible derive a strong arbitrage condition
like Proposition 4.1, switching the roles of G(u(t), A(¢)) and % (¢). However, it
is difficult to find functions G for which ¢ — G (u(t), A(t)) is monotone, because G
must depend on the market weights 1 (-) and these fluctuate all the time. Thus we have
to “extract a nondecreasing structure” from the generating function G (u(-), A(-)) and
use this structure, instead of G itself, to derive a new strong arbitrage condition. This
is done as follows.

Theorem 4.6 Fix a regular function G : R¢ x R™ — [0, 00) for the pair (w, A) such
that the following conditions are satisfied:

1) V() =G(u(-), AQ) +TC(¢) =0, withTY() as in (3.3) or (3.4);
(ii) there exists a function F(u(-), A(+)) satisfying G(u(t), A@t)) > F(u(t), A(z))
forall t € [0, T and the mapping t — F(u(t), A(t)) is nondecreasing;
(iii) TY(-) > —k holds for some constant k.

For some real number T, > 0, suppose that
F(u(Ty), A(Ty)) > G(11(0), A(0)) + k. (4.14)

Then the additively generated strategy ¢ of Definition 3.5 is a strong arbitrage relative
to the market over every interval [0, t] with T, <t <T.
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Proof The first inequality of (4.1) is satisfied due to (i). From (ii), (iii) and (3.16),
(4.14), we obtain also the second inequality of (4.1) since for every ¢ € [T, T1,

Ve = G(u(n), A®) + TC) = F (), A1) — «
> F(u(T2). A(T,) — & > G(1(0), A(0))
=V¥(0). O

In Theorem 4.6, the function F(u(-), A(-)) can be seen as the “nondecreasing
structure extracted from G”. This result states that the generating function G can
lead to strong arbitrage relative to the market without necessarily being “Lyapunov”
as in [14, Theorem 5.1]. There can be a strong relative arbitrage even if I'C(-) is
nonincreasing. This is intuitively plausible already on the basis of the representa-
tion (3.16) when G (i (-), A(-)) grows faster than o) decays. Some applications of
Theorem 4.6 appear in Sect. 5 (Examples 5.4 and 5.6).

4.2 Multiplicatively generated strong relative arbitrage

To simplify arguments, we assume in this subsection that the regular function G has
nonnegative values and satisfies G (1 (0), A(0)) = 1. This can be achieved by replac-
ing G by G/G(u(0), A(0)) if G(u(0), A(0)) >0, 0orby G +1if G(t(0), A(0)) =0.

Theorem 4.7 Let us fix G : R? x R” — [, Bl with 0 <o < 1 < B < 0o which is
regular for the pair (i, A) and for which TC in (3.3) is nondecreasing. For some real
number T, > 0, suppose that

() > Blog 1 (4.15)
o

Then the multiplicatively generated strategy r of Definition 3.8 is a strong arbitrage
relative to the market over every interval [0,t] with T, <t <T.

Proof First, we note that VY () > 0 from (3.23). Taking logarithms on both sides of
(3.23), we obtain for all T, <t < T that

dare 1
©)  Joga + <1 ()

t
oo _dros)
log V (t)—logG(M(f)’A(t))Jr/O G(1u(5). A$)) ~ p

1 ¢ "
zloga—l—BI‘ (T) > 0=10og G((0), A(0)) =log V¥ (0),

and the result follows. Here G(u(0), A(0)) = 1 by the normalization imposed
on G. O

Remark 4.8 Since the market weights u;, i = 1,...,d, and the continuous function
A are bounded on the compact interval [0, T], a regular function G as in Example 3.3
or Example 3.4, depending on the pair (i, A), is also bounded. Thus the boundedness
condition in Theorem 4.7 just requires the lower bound « to be strictly positive. Also,
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in (4.15), tighter bounds «, 8 for G yield smaller T satisfying the arbitrage condition
(4.15). See Remark 5.2 for further discussion regarding the bounds on G in the case
of specific entropy functions.

Example 4.9 Recall the generating function G of (4.9) in Example 4.4 and add a
small constant € > 0 to have

d

Gr®)=0+e) =Y (u®) —a)",

i=1

with the same ¢ and the same Gamma function as in (4.10). The reason for inserting
the constant € > 0 is to ensure the uniform bounds € < G(u(-)) < 1 + € regardless
of the choice of @ € (0, 1), so that 1/G is locally bounded. The trading strategy
multiplicatively generated by this G as in Definition 3.8 can be represented as

d
Vi) = =K OLyymza) + Y KOl mzaij () + V) (4.16)
j=1

fori =1,...,d by Theorem 3.10, and its value is given as

d

Vi = ((1 +eo) = (i) - a)*)K(r),

i=1

K1) :=ex </ Lﬂl(a) )
N 51 sl wo-—at )

From Theorem 4.7, strong arbitrage with respect to the market exists over every in-
terval [0, t] with 7, <t < T satisfying the inequality

— (i 0) — ot

€

d
. 1
ré,) = ZL’ﬁ (@) > (1 +¢)log
i=1

In the manner of Example 4.4, the strategy Y in (4.16) invests K (¢) units of cur-
rency less than the “baseline amount” Z K(f)]l{uj(t)za}ﬂj (t) + V?(¢) in those
“big-capitalization stocks” whose market welght exceeds the threshold « at time 7.
Because K (-) is nondecreasing, ¥ keeps investing less and less money to those “big-
capitalization stocks” as time goes by, and the “size effect” increases gradually.

The conditions of Theorem 4.7 resemble those of Proposition 4.1. We also have
the following formulation, which is similar to Theorem 4.6.

Theorem 4.10 Fix a regular function G : R? x R™ — (0, 00) for the pair (i, A)
such that the following conditions hold:

(i) there exists an F : R4t™M — (0, 00) such that G(u(), A(t)) = F(u(t), A(t)) for
all t € [0, T] and the mapping t — F(u(t), A(t)) is nondecreasing;
(i) TC() is nonincreasing and ree) > —« holds for some positive constant k.
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For some real number T, > 0, suppose that

K
Y S 4.17
0g F(u(T), AT) > T —ras -

Then the multiplicatively generated strategy  of Definition 3.8 is a strong arbitrage
relative to the market over every interval [0, t] with T, <t <T.

Proof First note that I'C(-) is nonpositive due to (ii) and I'? (0) = 0. Again, from
(3.23), we have

tdre
o2 V¥ (1) = o G, A) + [ ot
> log F(u(1), A(t)) .
= log L), B min0§s§t G(/’L(s)’A(S))
K

> log F (1), A(D) —

ming<s<; F(u(s), A(s))

= log F(1(T), A(T) = oo > 0=log VY (0

forall T, <t <T by (i), (ii) and (4.17). O
The example that follows provides a condition for strong relative arbitrage more
general than [14, Example 5.5] by deploying an additional function A into the gener-

ating function G. We specifically use A = u* = (uj, ..., u}), the vector consisting
of the running maxima of the market weights ;Ll’.‘ (1) :=maxp<s<s 1i(s),i=1,...,d.

Example 4.11 For fixed constants ¢ € R and p > 0, consider

™=~

GEP (u(@), w*(0) =c— Y (mi()) — p Z pi (O ()

i=1

I
-

i

I
M&

(ki) = p Zuz (1) max pui(s).

1 i=1

This is the same as Q(©) in [14, Example 5.5] except for the last term. Note that G ©-7)
takes values in the interval [c — (1 + p), ¢ — %(1 + p)1. Straightforward computation
of partial derivatives gives for i = 1,...,d that D;G P (u(t), u*(1)) = —pui (1),

0GP (u(0), 1 (1) = —2414(0) — piaE (1), 02,GP) (u(r), 1*(1)) = —2, and using
these expressions along with (3.4), we obtain

. d ! :
FG«,m(t):Z/O pri()dpl(s) + Y [uil(0).
i=1 i=l

As pf(-) is nondecreasing and pu;(-) > 0, the integral is always nonnegative and
nondecreasing in ¢, which makes pGer (-) nondecreasing and nonnegative. Also, the
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nondecreasing .} (-) is flat off the set {s > 0: ; (s) = ] (s)} so that

t
[z = [ i =3 (@) - (0)).

d
ro“ =2 ; () = (1)) + Z[‘“ ).

Since G*7:P) > 0, we consider the case ¢ = 1 4+ p from now on. Arguing as in the
proof of Proposition 4.1, the condition

d
g;(“z(“ (17 ©)%) + Z[Mz](T)>G(l+pp)(M(0)M(O)) (4.18)

where GUFP-P) (11(0), *(0)) = (1 + p)(1 — Zle(m (0))%) > 0, yields a strategy
which is a strong arbitrage relative to the market on [0, T]. If we compare the condi-
tion (4.18) with the condition (5.4) of [14, Example 5.5], i.e.,

d

d
Z wl() > 1= 3 ()% (4.19)

i=1

there is a trade-off between the left- and right-hand sides. The presence of the extra
nondecreasing term (p/2) Zle ((ul’.‘(T))2 - (ul’.‘(O))z) in (4.18) guarantees that its
left-hand side grows faster than the left-hand side of (4.19) as T increases; but we
also have a bigger constant on the right-hand side of (4.18), namely

d d

(1+ p)(l -3 (ui<0>)2> > 1= (wi(0)”.

i=1 i=1

Thus by choosing the value of p wisely, we can obtain bounds for the times 7" for
which there is a strong relative arbitrage with respect to the market over [0, 7'] which
are better than those of [14, Example 5.5].

Additional interesting applications of Theorems 4.7 and 4.10 appear in Sect. 5.

5 Examples of entropic functions

In this section, we present some examples of trading strategies additively and multi-
plicatively generated from variants of the “entropy function”, and the corresponding
conditions for strong relative arbitrage introduced in Sect. 4. Empirical results regard-
ing these examples are given in the next section.

Consider the Gibbs entropy function

H(x)=-) xilogx;,  xe(0.1), (5.1)
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with values in (0, logd). Being nonnegative, twice differentiable and concave, this
is one of the most frequently used functions in stochastic portfolio theory. See
[9, 12, 14] for its usage in generating portfolios and also [20, 21] for some variants
of portfolios generated by this function.

Example 5.1 In order to compare the trading strategy generated by the original en-
tropy function with those generated from variants of functions related to it, we first
derive and summarize the former strategy. Consider the “shifted entropy”

d
G(u() = Zuz(t)log(pm(t)) —logp— Y wi®)logui(t)  (5.2)

i=1 i=1

for some given constant p > 1. This coincides with the original entropy H (u(t))
in (5.1) when p = 1; the reason for inserting the additive constant is explained in
the following remark. From (3.4), (3.17) and (3.24), the additively generated trading
strategy ¢ and the multiplicatively generated i from G can be represented as

i (1) = —log (pu: (1)) + (1),

B LdT%(s) _
Yi(t) = —exp ( /0 GOr (S))> log (pui (1)), (5.3)

fori=1,...,d, where

G / dli)(s)
0= Z 2u6s)

is nondecreasing in . The values of these trading strategies are given via (3.16) and
(3.23). Note that ¢ and v in (5.3) have relatively simple forms because G in (5.2) is
“almost balanced”, in the sense that

d
G(pO) =1=)"1j()3;G(u())

j=1

holds; compare this with (3.18), and (5.3) with (3.19) and (3.25). Then the condition
(4.4) for additively generated strong arbitrage in Proposition 4.1 becomes

LT dples)
YWY (01 (0)), 54
Zfo 2i(s) ;‘*( ) log (ppi (0) (5.4)

whereas the condition (4.15) for multiplicatively generated strong arbitrage in Theo-
rem 4.7 is

> Blog

Z /T* dlwil(s) — >4 | i (0) log(ppei (0))
2,“1 (s) o ’

Here, the constants «, 8 are the lower and upper bounds on G in Theorem 4.7.
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Remark 5.2 The construction of trading strategies described in the previous sections
does not require any optimization or statistical estimation of parameters. However, the
relative performance of trading strategies with respect to the market can be improved
by introducing a parameter, or set of parameters, in the generating function G. To
achieve strong relative arbitrage faster, or to find the smallest T, satisfying (5.4),
or more generally (4.4), it helps to be able to make smaller the “threshold” value
G (1 (0), A(0)) on the right-hand side of the inequality, while keeping the “growth
rate” of ['9 () fixed.

It is in this spirit that we introduced the parameter p in (5.2). Inserting p > 1 in-
side the logarithm makes the initial value G(w(0)) smaller by the amount log p;
at the same time, this does not affect T'C(.), as subtracting a constant from
G does not change any derivatives of G. However, if we pick p so large that

— Zfizl wi(t)logui(t) <log p holds at some time ¢, then G(u(t), A(t)) has a neg-

ative value. Theoretically, — Zle wi(t)log ui(t) has the minimum value of O only
when one of the market weights is equal to 1 and all the other weights vanish, which
does not happen in the real world. Empirically, — Z;‘;] wi(t)logu;i(t) is always
bounded away from zero, and we can guarantee this condition theoretically by impos-
ing a weak condition on the market weights. For example, restricting the maximum
value of the market weights, say max; u;(-) < 0.5, yields an additional condition on

the market weights: there must be an index j € {1, ..., d} such that
(t) > 0.5 0<t<T
W =g—1r  T==0

as Z;j:l i = 1. Then the value of — Z?:l wi(t)log u; () is at least —% log %
and hence bounded away from 0 at all times. Finding a suitable value of p > 1 while
maintaining G (u(-)) bounded away from 0 by « should be done statistically and de-
pends on d, the number of stocks. It is quite straightforward that G (u(-)) is bounded
from above by some constant 8 as x +— —x logx has the maximum value 1/e. An
empirical estimation of such p can be found in the next section.

Making the initial value of G (u(0), A(0)) small while keeping the growth rate of
I'G(-) is also beneficial for calculating the “excess return rate” of a trading strategy ¢
with respect to the market. This quantity can be defined as

Ve(@t) — V¥(0)

RY(t) := 7o)

. te(0,T], (5.5)

and from (3.16), this can be represented as

G(u(), A1) +T%(1) — G(u(0), A(0))

@ —
B0 = G(1(0), A(0))

for an additively generated strategy. So if we make the denominator G (u(0), A(0))
smaller while keeping the value of ['?(r) in the numerator, we can obtain larger
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excess return rates for ¢. In the following examples, we use this method to decrease
G (1(0), A(0)) by inserting an appropriate constant p in G whenever possible.

The following two examples use for A two “polar opposite” functions of finite
variation, the running maximum M}k and minimum p,;, respectively, of the market
weights.

Example 5.3 Consider an entropic function of the type

d

G (1), A®) =G (u(0), u*(1) :==—log p — Y i@ log (1. (5.6)

i=1
As before, p > 1 is a constant and the initial value

d

G (1(0), 1*(0)) = —log p — Y _ 14i(0) log 14; (0)
i=1

is the same as in Example 5.1. We then obtain the derivatives, for 1 <i, j <d,
G(u(), p* (1) =—logui(®). 97 ;G(u(), n* 1)) =

_ it)
i)’

DG (pu(t), w* (1))

From (3.4), and the fact that M? (s) increases only when p;(s) = ;Ll’.‘ (s), we also have

d d
F%)—Z/ ““;(()) = (6@~ ) = L -1
i=1 i=1

As G is linear in w;(-), the second-order partial derivatives with respect to w; of
G vanish and the nondecreasing structure of I" G(.) comes solely from ;L;."(~). Also
from (3.16) and (3.17), the trading strategy ¢ generated additively from G in (5.6) is
expressed as

d
¢i()=—log(puf@®) +)_uj —1. i=1....d,
j=1

and the value of ¢ is given as
d d
Ve ==Y wi®)log (puj )+ Y uit)—1.
i=1 i=1
The strong relative arbitrage condition (4.4) in Proposition 4.1 takes the form
d d
D KT > 1= pi0)log (i (0).
i=1 i=1
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On the other hand, from (3.23) and (3.24), the trading strategy ¥ generated multi-
plicatively by G in (5.6) is given as

i) =—K®log (puf(n),  i=1,....d,

and the associated value is

d
Vi) =—K®))_ pi()log (pui (1)),

i=1
g dui(s)
K(t)::exp(—/z L >
0 =1 >

j=1 1 (s)log(pp(s))

The strong relative arbitrage condition (4.15) in Theorem 4.7 takes the form

— >4 | i (0) log(ppei (0))

d
> ui(T) > 1+ Blog »

i=1

Here «, B are again lower and upper bounds on G and depend on p and the condi-
tion imposed on the market weights. Empirical results regarding this example can be
found in the next section.

The function I'%(-) which represents the “cumulative earnings” of the next ex-
ample is nonincreasing; but surprisingly, the empirical values V¥(-) and V¥ (-) of
trading strategies grow asymptotically in the long run as the value of G grows, as
indicated in the empirical results of the next section. Thus in this case, it is more
appropriate to apply Theorems 4.6 and 4.10 regarding the strong arbitrage condition.

Example 5.4 Consider the function

d
G(1(0), A®)) 1= G (1), s () i=—Tlog p — Y i) log i (). (5.7)

i=1

As before, p is a constant and the initial value G (u(0), 1«(0)) is the same as in
previous examples. Similarly as before, (3.4) gives

d t d t d
16 (1) = / wiG) ) = / 1 dpiyi(s) = S =1, (58
() ; el () ; | 1du () glu () (5.8)

which is a nonpositive and nonincreasing function of 7.
We first consider the trading strategy ¢ additively generated from G, which is

d

0i(1) = —log (puwi) + D psj =1, i=1,....d, (5.9)
j=1
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by (3.17). Note that ¢; (t) admits the lower bound

d
@i (1) = —1log p —10g f1si (1) + pai (1) + D praj(t) — 1
j=1
J#
> —log p —log 11 (0) + 11 (0) — 1, (5.10)

because x — —logx + x is decreasing for x € (0, 1), and thus ¢; (¢) is positive if
log(pwi(0)) < u;(0) — 1. By (3.16), the value of ¢ is given as

d d
VO@r)=—logp— > pi(t) log s (1) + (Zu*im - 1>. (5.11)

i=1 i=1

While I'6(r) = Z?:l Wxi (1) — 1, the last term on the right-hand side of (5.11), is
nonincreasing, the second term — Zle i (t)log s (f) asymptotically increases as
t — —log i (¢) is nondecreasing. Actually, as we can see in the next section, the
value of ¢ grows in the long run. We apply Theorem 4.6, rather than Proposition 4.1,

to find a strong arbitrage condition, because I'® (-) here is not nondecreasing.
To apply Theorem 4.6, we first need to show that V¥(-) > 0. From (5.10), we get

d
—log 4 (1) > —Zﬂ*i(l) —log 14 (0) + p; (0) = —1 — log 11; (0) + 1 (0)
j=1

,,,,,,,,,,

fori =1,...,d. The last inequality follows from the fact that x > —logx + x is
decreasing for x € [0, 1]. Then we also obtain

d
—Zm(t)logﬂ*i(l) >—1—1log max p;(0)+ max pu;(0),
J:l,...,d J:l’_“,d

i=1

because — Z;‘!:l Wi (1) log w4 (¢) is the weighted average of (—log iy (t))1<i<q With
weights u; () with Z;jzl wi(t) = 1. Thus V¥(¢) in (5.11) admits the lower bound

Ve(@)>—logp —2— logmax p ; (0) +max w; (0)
J J

for any ¢ € [0, T], and V¥(-) > 0 is guaranteed when

p< e—Z—IOgman wj(0)+max; u;(0) (512)
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holds. Regarding the second condition of Theorem 4.6, we have

d

G (@), () = —log p = Y i (1) log pi (1)
i=1
d
> —logp— ) ui(n)log max (1)
=1

= —logp — max log (1) = F(u(t), ux0).  (5.13)

.....

Now the mapping ¢ — 14 (¢) is nonincreasing so that F (i (¢), i« (t)) is nondecreas-
ing in ¢. Finally, the last condition of Theorem 4.6 follows easily from (5.8), as

ree) >—1=: —«. (5.14)

Thus Theorem 4.6 shows that the additively generated strategy ¢ in (5.9) is a strong
arbitrage relative to the market over every interval [0, t] with T, <t < T satisfying
the condition

d

> 1i(0)log i (0) — _max_log ,i(T,) > 1.
=t

Next, from (3.24), the trading strategy ¥ multiplicatively generated by G in (5.7)
is represented as

Yi() =—K@®)log (ppsi (1)),  i=1,....d,

with the value

vV = —K(z)Zula)log(pu*l(r))

K(t) _exp< / dryi(s) )
j 1 (8)log(presj(s))

For the strong arbitrage condition, we apply Theorem 4.10. Since F (u(t), u«(t)) and
k from (5.13), (5.14) satisfy the conditions (i), (ii) (with an appropriate choice of p
to make F positive), the strong relative arbitrage condition (4.17) becomes

-1
=L, log p+maxi— . qlogu;(0)

Remark 5.5 In Remark 5.2, We need to find a suitable value for p satisfying an
inequality, for instance — Zl 1 i () log ui(t) = log p for all t € [0, T] in Exam-
ple 5.1, to ensure G > 0. This inequality usually depends on the values w;(¢),
t € [0, T], which are not observable at time 0. Thus we need to impose some condi-
tion on the market weights, or statistically analyse historical market data to find an
appropriate value for p, before we can construct the trading strategy.
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However, in Example 5.4, due to its unique structure, we can analytically find
a suitable value of p without any statistical estimation at time ¢ = 0. Indeed, from
(5.13), we have that

,,,,,

and setting

1
pP=
max;—1,.. a1 (0)

guarantees the condition G (u(t), u«(¢)) > 0 for all ¢ € [0, T]. Note that this p can
be calculated from quantities observable at time 0. Actually, p satisfying (5.12) also
guarantees the nonnegativity of G because

G(1(), 1 () = V() = G(1(), (D) +T9() =0

due to the nonpositivity of I'?(-). Of course, one can perform a statistical estima-
tion of p using past market data to obtain a better value of p while satisfying both
G(n(), nx()) = 0and V¥(-) > 0.

The next example provides yet another application of Theorem 4.6.

Example 5.6 Fix a positive constant r such that the initial market weights satisfy

1
wi@<—. i=l...d (5.15)

As the p;(0) are observable before we construct a trading strategy, we can find such
an r at the moment we start investing. Then we consider the function

G (), AD) = G (1), s (1)
d
=—p= Y ui®log( = ruilog (). (5.16)
i=1

As in Remark 5.5, we can pre-determine the value of the constant p without any
statistical estimation because of the inequalities

d
G (1), (D) = —p — ;uim tog max (= ryta; (0log (rie; 1)

> —p—log jmax | ( — s j (1) log (r s (t)))

= F (1), s (1)) (5.17)

= —p~log max_ (=rnj@log(rn; @),  ¥ie[o,T].

,,,,,

@ Springer



452 I. Karatzas, D. Kim

The first inequality uses that —log is decreasing, the second that Zfl 1u,- (t)=1.

The last inequality holds because x > —rx log(rx) is increasing on [0, - ] and

0=<pi() =pi(0) = L (5.18)
re

holds due to (5.15). Note that F (1¢(¢), «(¢)) defined in (5.17) is nondecreasing in ¢
as 1 > Uy (1) and = —r 4 (1) log(r 4 (¢)) are nonincreasing. Then the choice

p=—log max_ ( — r11(0) log (m,»(O))), (5.19)

,,,,,

which is completely observable at time 0, guarantees that G (u(-), i« (+)) is always
nonnegative. Next, after some computation, we obtain the partial derivatives

86 (1), (1) = ~10g (= rai (1) 10g (it (1) ) = 1, (520

wi(t)log(r s (1)) + wi(t)
Wi (1) log(’"ﬂ*i ()

kG (1), me(0) =0, DiG(n(), pa(t)) = —

for 1 <i,k <d. We note that 9; G (i (), u«(t)) > 1 holds again because the mapping

x — —rxlog(rx) is increasing from O to % in the interval [0 ] From (3.4) and the

‘re
fact that p; (s) increases only when u; (s) = 14 (s), we obtain

rog) = /( —)d i (8); 5.21
(t) Z IOg(V/L*,(S)) H (S) ( )

this is a nonincreasing function of ¢ because 0 < 1 + m < 1 holds due to
(5.18). The function I'C admits the lower bound

rée = / Ldpsi(s) + / .
® ; 0 Hai (5) ; o log(ris(s)) Hai (s

QU

d d d
=D wai () = Y wai )+ ) Liy (i (1) Z (i (0)
i=1 i=1 i=1

d
>—1-Y" Li,(1i(0) = —«, (5.22)
i=1
with the notation

. Y du 1 ™ dv |
Li,(x) ::/ = —/ = —Li(rx).
o log(ru) rJy logv r

Here, Li(x) = f(f lgg”u represents the logarithmic integral function. Note that Li, (x)

takes negative values and decreases from 0 to —oo for x € [0, %). The inequality in
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(5.22) holds because of the inequality

fhsi () + Lir (psi (1) = 0 (5.23)

which holds under (5.18). We also note that « defined in (5.22) satisfies

d
—1+> 0 =0=<k <1l
i=1

from the same inequality (5.23). On the other hand, by (3.17), the trading strategy ¢
additively generated from G is expressed as

0i(0) = —p —log ( = rit(n)og (rusi (1))

+Z/ ( 1og<m*,<s>>>d“ ) 20

Finally, by (3.16), the value of ¢ is given as

d
Ve ==p = Y wi)log (= rui(nlog (ri 1))

i=1

* Z/ ( log(rllv*z (S)))du*i o

and admits the lower bound

.....

from (5.17) and (5.22). Consequently, the choice

p=—log nllaxd<—r,u,-(0)log (m,-(O))) —x (5.25)

i=1,...,

guarantees V?(-) > 0 and also satisfies (5.19). We emphasize here again that p de-
fined in (5.25) depends only on the initial market weights 1;(0); thus no statistical
estimation of p is required. Using the same technique as in (5.17), we obtain

@i (1) > —p—logml_ax<—rui(O)log(rM,-(O))) — k=0, i=1,...,d,

from (5.24) and (5.25), so this trading strategy is “long-only”.
As we showed above that all conditions of Theorem 4.6 are satisfied, the additively
generated strategy ¢ in (5.24) is a strong arbitrage relative to the market over every
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interval [0, ¢] with T, <t < T satisfying, with « as in (5.22), the condition

log max (= rui(T2)log (rui (L))

i=l1,...,

d
<Y i) log (= rui(0) log (rizi 0))) ~ k.

i=1

We move on to the trading strategy ¥ multiplicatively generated by G in (5.16).
From (3.24), (3.23) as well as (5.20) and (5.21), we have

Vi) = —K (1) <p +1og (= 7 (1) 10g (1t (r)))), i=1,....d,

with the value function

d

VY =—K(@) (p + ) wi()log ( — 1 i (1) 10 (r fs (r)))>,

i=1

d o1 1+ 1%
K(t) ‘= exp < _ / 0g(rpxi (5)) dl/L*[ (S)) )
; 0 P+ 30 11 (1) log(—r 11y (1) 10g(r it (1))

As I'C in (5.21) is nonincreasing, we again use Theorem 4.10. We already have

F(u(t), nu«(t)) and k defined in (5.17) and (5.22) which satisfy the conditions (i),
(ii). Thus the strong arbitrage condition (4.17) becomes

log ( —p—log max ( — s (Ty) log (m*j(T*)))>

} 1+ Y% Lir (i (0))
—p —logmax;(—ru;(0)log(ru;(0))

6 Empirical results

We present now some empirical results regarding the behavior of the additively gen-
erated portfolios in Sect. 5, using historical data. We first analyse the values V¢ (-)
of these portfolios with respect to the market by decomposing them with generat-
ing functions G and corresponding Gamma functions I'C in (3.16). In particular, we
demonstrate empirically that all the portfolios in Sect. 5 outperform the market. We
show also that the different choices of the parameter p, explained in Remark 5.2,
indeed significantly influence the performance of the resulting portfolios.

6.1 Data description and notation

To simulate a perfect “closed market”, we constructed a “universe” with d = 1085
stocks which had been continuously traded during 4528 consecutive trading days
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between 2000 January 1st and 2017 December 31st. These 1085 stocks were chosen
from those listed at least once among the constituents of the S&P 1500 index in this
period and did not undergo mergers, acquisitions, bankruptcies, etc.

Remark 6.1 This selection of 1085 stocks is somewhat biased, in the sense that we
are looking ahead into the future at time ¢ = 0 by blocking out those stocks which
will go bankrupt in the future. However, the reason for this biased selection is to
keep the number d of stocks constant all the time which is the essential assumption
of our “closed” market model. If we compose our portfolio from d = 1500 stocks
included in the S&P 1500 index at the beginning, remove one stock whenever it goes
bankrupt, or take in a new stock whenever it is newly added to the index, the number
d of stocks in our portfolio fluctuates over time and the generating function G would
be discontinuous whenever d changes.

One possible solution to this problem is to consider an “open market”. We first fix
the value of d, say d = 1500 at the beginning, keep track of price dynamics of all
stocks in the market (which should be composed of more than d stocks, say D stocks
with D > d), rank them by market capitalization and construct our portfolio using the
top d = 1500 among D stocks. In this way, we keep the same number d of compa-
nies all the time, but considering ranked market weights always involves a “leakage”
issue. As explained in [9, Chaps. 4.2, 4.3] and [14, Example 6.2], this refers to the
loss incurred when we have to sell a stock that has been relegated from the top d
to the lower capitalization index. Even worse, as we want to invest only in the top
d among D companies in this open market, our trading strategy ¢ = (¢1,...,9p)
should satisfy ¢;(#) = 0 whenever the i-th company fails to be included in the top
d at time . However, we do not know yet how to construct such trading strate-
gies.

Thus it is not easy to set up a perfect empirical model, and we decided to select
d = 1085 stocks in a biased manner which fits better our theoretical model described
in the previous sections.

We obtained daily closing prices and total number of outstanding shares of these
stocks from the CRSP and Compustat data sets. The data can be found at https://
wrds-web.wharton.upenn.edu/wrds/. We used R and C++ to program our portfolios.

As we used daily data for N = 4528 days, we discretized the time interval via
O=fy<ti<---<ty_1=T.Forle{l, 2, ..., N}, we summarize our notations:

1) Si(t¢): the capitalization (daily closing price multiplied by total number of out-
standing shares) of i-th stock at the end of day #.

2) X(ty) := Zflzl S;i (t¢): the total capitalization of d stocks at the end of day ¢,.
This quantity also represents the dollar value of the market portfolio at the end of day
te with the initial wealth X (0).

3) wi(te) := % the i-th market weight at the end of day ;.
4) m; (t¢): the additively generated portfolio weight of the i-th stock at the end of
day ¢¢; this can be computed using (3.20). Note that Z?:l 7i(te) = 1.
5) W (tp): the total value of the portfolio at the end of day #, calculated as in (6.1)
below. Then W (t;)m;(z;) represents the amount of money invested by our portfolio

in the i-th stock at the end of day ¢,.
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As the capitalization of the i-th stock at the beginning of day #, should be equal
to S;(t¢—1), the capitalization of the same stock at the end of the last trading day
te—1, we also deduce that X (¢p—1), u;i(te—1), i (te—1) and W (t,_1) represent the total
capitalization, the i-th market weight, the i-th additively generated portfolio weight
and the monetary value of the portfolio at the beginning of day ¢, respectively.

The transaction, or rebalancing, of our portfolio on day #, is made at the begin-
ning of day 7¢, using the market weights p; (f,—1) at the end of the last trading day.
We compute 7 (f¢—1) from w;(t—1) via (3.20) and redistribute the generated value
W (t,—1) according to these weights m; (t,—1). Then the monetary value of the portfo-
lio W (#,) at the end of day ¢, can be calculated as

Si (lz)
W(te) = W(lz 7 (te— 1) (6.1)

In order to compare the performance of our portfolios to the market portfolio, we
set our initial wealth as W (0) = X (0) and compare the evolutions of X(-) and W(-).
Once the initial amount W (0) invested in our portfolio is determined, its monetary
value can be obtained recursively by (6.1). However, W(-) can also be defined with
the trading strategy ¢; (-) in (3.13) or (3.17) as

d
W= Siei(). (6.2)
i=1

Then the value V¥(-) of Definition 3.1 and (3.16) has another representation as the
ratio between the money value of our portfolio and total market capitalization, i.e.,

V“’()—Z%()uz()—Z% O va((;

Thus, the expression “value of a trading strategy (or portfolio) with respect to the mar-
ket” makes sense. Furthermore, the excess return rate R¥(-) of the portfolio defined
in (5.5) can be represented as
W)
VeO-V9O) 3ol WO-Z(0) (
V#(0) 1 Q)

RY() = =V —1),

and the expression “excess return rate with respect to the market” also makes sense.
Here, V¥(0) = 1 because we set W (0) = X(0). In the last part of the following sub-
section, we show the evolution of W (-) for several portfolios and compare their per-
formance.

6.2 Empirical results

We first decompose the value functions V¢ (-) of the trading strategies additively gen-
erated from the functions G in the entropic examples (Examples 5.1, 5.3, 5.4 and 5.6)
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18- — Function G 18- — Function G
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(a) Example 5.1, original entropy (b) Example 5.3, entropy with running maximum
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i
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(c) Example 5.4, entropy with running minimum (d) Example 5.6, iterated entropy

Fig. 1 Decomposition of value function of additively generated trading strategies

into the generating function component G (i1(-), A(-)) and the corresponding Gamma
function 'Y (-). For ease of comparison, we normalize all generating functions so that
G (1(0), A(0)) = 1 and shift up the Gamma functions by 1 in Fig. 1.

Figure 1 confirms that all trading strategies additively generated in Sect. 5 out-
perform the market, as the values V¥ (red lines in the figure) gradually increase. In
panels (a) and (b), the growth of V¥ comes from the growth of the Gamma func-
tion. In contrast, the values of the strategies grow in panels (c) and (d) as the func-
tion G increases substantially, even though the corresponding Gamma function de-
creases. In panel (d), we set the parameter r = 5 as this is the largest integer sat-
isfying (5.15); the initial market weight data give us max; u; (0) = 0.065 < 1/(Se).
We chose the same parameter p = 9 (see Remark 5.2) in all panels for fair com-
parison, but this is a very sloppy choice for (a), (b) and (c). If we choose the
value of p elaborately by using statistical estimation in each of these examples,
the portfolio performance is improved, as Fig. 2 demonstrates in the case of Ex-
ample 5.1.

Figure 2 shows the values of additively generated portfolios in Example 5.1 with
different choices of the parameter p. We observe that strategies with bigger values
of p perform better, as described in Remark 5.2. From the data, the Gibbs entropy
— 232815 wi(t)log ;i (t) of the market weights ranged from 4.954 to 5.726 during
4528 days. Thus p =90 is a safe estimation for p which guarantees the nonnegativity
of G in (5.2), as log90 < 4.5 < 4.954.

Finally, the “dollar values” W(-) of the portfolios from the four examples of
Sect. 5, defined as in (6.2), are illustrated in Fig. 3, along with the total market value
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Fig. 2 Value of additively

generated trading strategies 4
from Example 5.1 with different
values of p

Value

0 1000 2000 3000 1000

Day
Fig. 3 (Normalized) Dollar i )
. 12- — Iterated entropy with minimum with r=5, p=9 (Example 6.6)
values of portfolios over 18
years " — Original entropy with p=90 (Example 6.1)
1071 Entropy with maximum, p=67 (Example 6.3)
o-
Entropy with minimum, p=99 (Example 6.4)
a-
- — Total market capitalization for 1085 stocks
7-
)
Z e
3
S
a s5-

0 1000 2000 3000 4000
Day

Y (+) of d = 1085 stocks from the start of 2000 to the end of 2017. Dollar values are
normalized, replacing W(-) by W(-)/W(0). In Fig. 3, while the market capitaliza-
tion approximately doubles during 18 years, the dollar values of all other portfolios
grow by more than 4.5 times. Parameters are appropriately chosen using statistical
estimation for each portfolio.

7 Conclusion

Karatzas and Ruf [14] introduced an additive functional generation of trading strate-
gies as an alternative to the original multiplicative functional portfolio generation ini-
tiated by E.R. Fernholz. That new approach weakens the assumption on asset prices
from Itd processes to continuous semimartingales, characterizes the class of functions
called Lyapunov functions which generate trading strategies that can outperform the
market, and gives a very simple sufficient condition for such outperformance.
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The present paper generalizes these two approaches to functional generation even
further. Its results can be summarized as follows:

1) We show how to generate, both additively and multiplicatively, trading strate-
gies without any probabilistic assumptions on the market model. This is done by
using pathwise It calculus, and the only analytical assumption we impose is that the
market weights admit continuous covariations in a pathwise sense.

2) We extend the class of functions which generate trading strategies by introduc-
ing as an input, in addition to the vector of market weights, an argument of finite
variation. Inserting this in the generating function gives extra flexibility for portfolio
construction. While this has already been done in the existing literature by Ruf and
Xie [20], Schied et al. [21], we present several new examples demonstrating what this
extra argument can accomplish when it comes to simple sufficient conditions leading
to strong arbitrage relative to the market.

3) We also extend the class of functions which generate additive and multiplica-
tive strong relative arbitrage by presenting new sufficient conditions. These allow the
function to be not Lyapunov, or not concave with respect to the market weights. We
also offer empirical results of portfolios which outperform the market.

4) We extend the class of portfolio-generating functions from twice differentiable
to absolutely continuous functions with the help of the pathwise Tanaka formula. This
involves the concept of local time and yields new interesting types of portfolios and
strong relative arbitrage conditions.

While we generalize here the functional generation of portfolios in several re-
spects, we suggest some new questions and directions. First, this paper assumes a
“closed market”; in other words, the number d of stocks is fixed. In this respect, it
fails to represent or resemble the real market. As explained in Remark 6.1, an “open
market” models the real world better. To construct trading strategies in such an open
market, the notion of “piecewise semimartingales of stochastic dimension” in Strong
[24] might be an appropriate starting point. Secondly, the path-dependent functional
It6 calculus of Dupire [5] or Cont and Fournié [2] can be used to generate portfolios,
as has been done in Schied et al. [21]. However, all examples of such portfolios gen-
erated from path-dependent functionals we can think of can also be constructed in the
manner we described in this paper, by introducing an additional functional argument
A of bounded variation with the help of Follmer’s pathwise formula. Are there ad-
ditional novel examples of portfolios generated from a functional depending on the
entire history of market weights, where the use of Dupire’s path-dependent functional
calculus is essential? It might be useful here to work in the framework of Ekren et al.
[6, 7, 8], or Ledo and Ohashi [16], Ledo et al. [17, 18]; these are avenues we intend
to explore.
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Appendix: Proofs

Proof of Proposition 3.9 We follow the argument in [14, Proposition 4.8], using the
pathwise It6 formula instead of the standard It6 formula for semimartingales. With

X6 .:exp</t ﬂ) (A1)
' 0 G(u(s), A(s)) '

in (3.23), the pathwise It6 formula (Proposition 2.2) yields
G (1), AW)K (1) = G(1(0), A))K (0) + f Z 0;G(1(s), A$))K ()i (s)

f K(s)dFG(s)+/ ZD G (1u(5), A(9)) K (5)d A;(s)

/Zza (1), AG))K ()l 151(5)

i=1 j=1

r d
= G(u(0), A(0))K (0) + / D 4G (u(s), A®)K (5)dpi(s)

0 =1

. d
=G(M(0),A(0))K(O)+/ Zm(S)dMi(S)

=G (1n(0), A0) K(0)+f Zlﬁz ($)dpi(s).

Here, the second equality uses the expression in (3.4) and the last equality relies on
[14, Proposition 2.3]. Since (3.23) holds at time zero, it follows that (3.23) holds at
any time ¢ € [0, T']. The justification for (3.24) is exactly the same as that of [14,
Proposition 4.8]. U

Proof of Theorem 3.10 For any absolutely continuous function f with a right-
continuous Radon-Nikodym derivative f’ of finite variation and any two real num-
bers a and b, applying integration by parts with the notation (2.3) gives

f)— fla)= /ab f'(x)dx
S F@ b = 0)°dx = —f'(x)b — )2 + [, (0 —0)df' @), ifa <b
— [ F' b =) dx = f')b = 0|2y = [0 —0df (%), ifb<a
Fl@b=a)+ [, b —xdf @), ifa<b

f/(a)(b—a)—f(b’a](b—x)df/(x), ith<a

= fll@®-a)+ /R]lqa,b]} )b — xldf’ (x). (A2)
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We then recall (3.5), (3.6), (A.1) and consider the telescoping expansion

G (1), A@)K (1) = G(1(0). A(0)) K (0)

d
=3 3 (A0 K@ — fi(Xip)K )
i=1 tje'JI',,
i<t

d
=D > (X)) (K@) — K@) (A3)
i=l t;eT,

t/<t

B3> (fi(Xittj0) = fi(Xi) ) K 1)) (A4)
i=1 leTn
tjft

Then we further expand the last double sum (A.4) as

d
> Y (AXs0) - (X)) K@)

i=1 [jET,,
tj<t
d
=Y > (f/(xl-(r,-))K(rﬂ(Xi(er)—Xi<t,-))
i=1 tjGTn
tj<t
+ /R Lgx,;. %, 101X —le(t,-)df,-’(x)>
d
Z Z (Xi () K () (i (1) — i (2))) (A5)
i=1 'Jl‘
—Z D HXip)Kap(Aitiin) — Ait))) (A.6)
i=1 l‘jETn
tj<t
+Z > Kt / LT (o) = LY T o) df (), (A7)
i=11;eT,
tj<t

where the first equation is from (A.2), and the second follows from (3.5) and (2.4).
Next, we show that the sum of (A.3), (A.6) and (A.7) vanishes as n — o0. First,
since lim,_, || T, || = O, the limit of (A.3) is a Lebesgue—Stieltjes integral

d t t
) fo £ (X1 (9))dK (5) = /0 G (1(s), A5))dK (5).
i=1
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because f;(X;(-)) is bounded on the compact interval [0, T] for eachi =1,...,d.
From (3.11), the change-of-variable formula for Lebesgue—Stieltjes integrals gives

t t t
/ G(,u(s),A(s))dK(s):/ K(s)dl"G(s)=/ K(s)(dT{ (s) —dTS (s)), (A.8)
0 0 0

where
d . d
INU0) ::Z/O 9 (s)d A (s), r$ (1) ::Z/RL,X" 0)df! (x).
i=1 i=1

It follows that the limit of (A.6) is — Zle fé K (5)%;(s)dA;(s). On the other hand,
the last integral of (A.8) can be expressed as the limit

t
fo K($)dT5 ()= lim > K@)(I5 (tj41) =5 (1))
tjGT,,
tj<t

d
= Jim 37 > K@) /R (L 0 = L ()df] ),
i=1 t;eTy,
[/'S[

which coincides with the limit of (A.7). Therefore, the limits of (A.3), (A.6) and (A.7)
are zero, whereas the remaining term of (A.4) is (A.5), whose limit we denote as

d . d ot
> fo F (X)) K ()dpi(s) =y /0 ni ($)dpui(s),
i=1 i=1

from (3.6) and (3.21). We obtain in this way that

d
G(,U«(l‘)’ A(f))K(t) - G(M(O), A(O))K(O) = Z/O i (s)d i (s)
i=1

d
=Z/ Vi(s)dpmi(s),
i=170

where the last equality follows from Z?:l wi(-) =1 and (3.22). The result (3.23)
then follows from the self-financibility of ¢ and the relationship

d

d
VV(0) =) i) (0) =Y (3:(0) — C(0))1; (0) = G (1(0), A(0) K (0).

i=1 i=1

Finally, (3.24) can be justified in the same manner as Proposition 3.9. O
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