The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration

Fabrice BAUDOIN and Gunhee CHO

Department of Mathematics, University of Connecticut, 196 Auditorium Road, Storrs, CT 06269-3009, USA

E-mail: fabrice.baudoin@uconn.edu, gunhee.cho@uconn.edu

Abstract. In this note, we study the sub-Laplacian of the 15-dimensional octonionic anti-de Sitter space which is obtained by lifting with respect to the anti-de Sitter fibration the Laplacian of the octonionic hyperbolic space $\mathbb{O}H^1$. We also obtain two integral representations for the corresponding subelliptic heat kernel.

Key words: sub-Laplacian; 15-dimensional octonionic anti-de Sitter space; the anti-de Sitter fibration

2020 Mathematics Subject Classification: 58J35; 53C17

1 Introduction and results

In this note we study the sub-Laplacian and the corresponding sub-Riemannian heat kernel of the octonionic anti-de Sitter fibration

$$\mathbb{S}^7 \hookrightarrow \mathrm{AdS}^{15}(\mathbb{O}) \to \mathbb{O}H^1.$$

This paper follows the previous works [2, 3, 10] which respectively concerned:

1. The complex anti-de Sitter fibrations:

$$\mathbb{S}^1 \hookrightarrow \mathrm{AdS}^{2n+1}(\mathbb{C}) \to \mathbb{C}H^n.$$

2. The quaternionic anti-de Sitter fibrations:

$$\mathbb{S}^3 \hookrightarrow \mathrm{AdS}^{4n+3}(\mathbb{H}) \to \mathbb{H}H^n.$$

The 15-dimensional anti-de Sitter fibration is the last model space that remained to be studied of a sub-Riemannian manifold arising from a H-type semi-Riemannian submersion over a rank-one symmetric space, see the Table 3 in [4].

Similarly to the complex and quaternionic case, the sub-Laplacian is defined as the lift on $AdS^{15}(\mathbb{O})$ of the Laplace–Beltrami operator of the octonionic hyperbolic space $\mathbb{O}H^1$. However, in the complex and quaternionic case the Lie group structure of the fiber played an important role that we can not use here, since the fiber \mathbb{S}^7 is not a group. Instead, we make use of some algebraic properties of \mathbb{S}^7 that were already pointed out and used by the authors in [1] for the study of the octonionic Hopf fibration:

$$\mathbb{S}^7 \hookrightarrow \mathbb{S}^{15} \to \mathbb{O}P^1$$
.

Let us briefly describe our main results. Due to the cylindrical symmetries of the fibration, the heat kernel of the sub-Laplacian only depends on two variables: the variable r which is the

F. Baudoin and G. Cho

Riemannian distance on $\mathbb{O}H^1$ (the starting point is specified with inhomogeneous coordinate in Section 3) and the variable η which is the Riemannian distance starting at a pole on the fiber \mathbb{S}^7 . We prove in Proposition 3.1 that in these coordinates, the radial part of the sub-Laplacian \tilde{L} writes

$$\tilde{L} = \frac{\partial^2}{\partial r^2} + (7 \coth r + 7 \tanh r) \frac{\partial}{\partial r} + \tanh^2 r \left(\frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta} \right).$$

As a consequence of this expression for the sub-Laplacian, we are able to derive two equivalent formulas for the heat kernel. The first formula, see Proposition 4.1, reads as follows: for $r \ge 0$, $\eta \in [0, \pi), t > 0$

$$p_t(r,\eta) = \int_0^\infty s_t(\eta, iu) q_{t,15}(\cosh r \cosh u) \sinh^6 u \, du,$$

where s_t is the heat kernel of the Jacobi operator

$$\tilde{\triangle}_{\mathbb{S}^7} = \frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta}$$

with respect to the measure $\sin^6 \eta \, d\eta$, and where $q_{t,15}$ is the Riemannian heat kernel on the 15-dimensional real hyperbolic space \mathbb{H}^{15} given in (4.1). The second formula, see Proposition 4.2, writes as follows:

$$p_t(r,\eta) = \int_0^{\pi} \int_0^{\infty} G_t(\eta,\varphi,u) q_{t,9}(\cosh r \cosh u) \sin^5 \varphi \, \mathrm{d}u \, \mathrm{d}\varphi,$$

where $q_{t,9}$ is Riemannian heat kernel on the 9-dimensional hyperbolic space \mathbb{H}^9 and $G_t(\eta, \varphi, u)$ is given in (4.3).

Similarly to [2, 3, 10], it might be expected that explicit integral representations of the heat kernel might be used to study small-time asymptotics, inside and outside of the cut-locus. Integral representations of heat kernels can also be used to obtain sharp heat kernel estimates, see [7]. Those applications of the heat kernel representations we obtain will possibly be addressed in a future research project.

2 The octonionic anti-de Sitter fibration

Let

2

$$\mathbb{O} = \left\{ x = \sum_{j=0}^{7} x_j e_j, \ x_j \in \mathbb{R} \right\},\,$$

be the division algebra of octonions (see [9] for explicit representations of this algebra). We recall that the multiplication rules are given by

$$e_i e_j = e_j$$
 if $i = 0$,
 $e_i e_j = e_i$ if $j = 0$,
 $e_i e_j = -\delta_{ij} e_0 + \epsilon_{ijk} e_k$ otherwise,

where δ_{ij} is the Kronecker delta and ϵ_{ijk} is the completely antisymmetric tensor with value 1 when ijk = 123, 145, 176, 246, 257, 347, 365 (also see [1]). The octonionic norm is defined for $x \in \mathbb{O}$ by

$$||x||^2 = \sum_{j=0}^{\ell} x_j^2.$$

The octonionic anti-de Sitter space $AdS^{15}(\mathbb{O})$ is the quadric defined as the pseudo-hyperbolic space by:

$$AdS^{15}(\mathbb{O}) = \{(x, y) \in \mathbb{O}^2, ||(x, y)||_{\mathbb{O}}^2 = -1\},\$$

where

$$||(x,y)||_{\mathbb{O}}^2 := ||x||^2 - ||y||^2.$$

In real coordinates we have $x = \sum_{j=0}^{7} x_j e_j$, $y = \sum_{j=0}^{7} y_j e_j$, and the pseudo-norm can be written as

$$x_0^2 + \cdots + x_7^2 - y_0^2 - \cdots - y_7^2$$
.

As such, $AdS^{15}(\mathbb{O})$ is embedded in the flat 16-dimensional space $\mathbb{R}^{8,8}$ endowed with the Lorentzian real signature (8,8) metric

$$ds^{2} = dx_{0}^{2} + \dots + dx_{7}^{2} - dy_{0}^{2} - \dots - dy_{7}^{2}.$$

Consequently, $AdS^{15}(\mathbb{O})$ is naturally endowed with a pseudo-Riemannian structure of signature (8,7).

Let $\mathbb{O}H^1$ denote the octonionic hyperbolic space. The map $\pi \colon \mathrm{AdS}^{15}(\mathbb{O}) \to \mathbb{O}H^1$, given by $(x,y) \mapsto [x:y] = y^{-1}x$ is a pseudo-Riemannian submersion with totally geodesic fibers isometric to the seven-dimensional sphere \mathbb{S}^7 . Notice that, as a topological manifold, $\mathbb{O}H^1$ can therefore be identified with the unit open ball in \mathbb{O} . The pseudo-Riemannian submersion π yields the octonionic anti-de Sitter fibration

$$\mathbb{S}^7 \hookrightarrow \mathrm{AdS}^{15}(\mathbb{O}) \to \mathbb{O}H^1.$$

For further information on semi-Riemannian submersions over rank-one symmetric spaces, we refer to [6].

3 Cylindrical coordinates and radial part of the sub-Laplacian

The sub-Laplacian L on $AdS^{15}(\mathbb{O})$ we are interested in is the horizontal Laplacian of the Riemannian submersion $\pi \colon AdS^{15}(\mathbb{O}) \to \mathbb{O}H^1$, i.e., the horizontal lift of the Laplace–Beltrami operator of $\mathbb{O}H^1$. It can be written as

$$L = \Box_{\text{AdS}^{15}(\mathbb{O})} + \triangle_{\mathcal{V}},\tag{3.1}$$

where $\square_{\mathrm{AdS}^{15}(\mathbb{O})}$ is the d'Alembertian, i.e., the Laplace–Beltrami operator of the pseudo-Riemannian metric and $\triangle_{\mathcal{V}}$ is the vertical Laplacian. Since the fibers of π are totally geodesic and isometric to $\mathbb{S}^7 \subset \mathrm{AdS}^{15}(\mathbb{O})$, we note that $\square_{\mathrm{AdS}^{15}(\mathbb{O})}$ and $\triangle_{\mathcal{V}}$ are commuting operators, and we can identify

$$\Delta_{\mathcal{V}} = \Delta_{\mathbb{S}^7}.\tag{3.2}$$

The sub-Laplacian L is associated with a canonical sub-Riemannian structure on $AdS^{15}(\mathbb{O})$ which is of H-type, see [4].

To study L, we introduce a set of coordinates that reflect the cylindrical symmetries of the octonionic unit sphere which provides an explicit local trivialization of the octonionic anti-de Sitter fibration. Consider the coordinates $w \in \mathbb{O}H^1$, where w is the inhomogeneous coordinate on $\mathbb{O}H^1$ given by $w = y^{-1}x$, with $x, y \in AdS^{15}(\mathbb{O})$. Consider the north pole $p \in \mathbb{S}^7$ and take

F. Baudoin and G. Cho

 Y_1, \ldots, Y_7 to be an orthonormal frame of $T_p \mathbb{S}^7$. Let us denote \exp_p the Riemannian exponential map at p on \mathbb{S}^7 . Then the cylindrical coordinates we work with are given by

$$(w, \theta_1, \dots, \theta_7) \mapsto \left(\frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right) w}{\sqrt{1-\rho^2}}, \frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right)}{\sqrt{1-\rho^2}}\right) \in AdS^{15}(\mathbb{O}),$$

where $\rho = ||w||$ and $||\theta|| = \sqrt{\theta_1^2 + \dots + \theta_7^2} < \pi$.

A function f on $AdS^{15}(\mathbb{O})$ is called radial cylindrical if it only depends on the two coordinates $(\rho, \eta) \in [0, 1) \times [0, \pi]$ where $\eta = \sqrt{\sum_{i=1}^7 \theta_i^2}$. More precisely f is radial cylindrical if there exists a function g so that

$$f\left(\frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right) w}{\sqrt{1-\rho^2}}, \frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right)}{\sqrt{1-\rho^2}}\right) = g(\rho, \eta).$$

We denote by \mathcal{D} the space of smooth and compactly supported functions on $[0,1) \times [0,\pi)$. Then the radial part of L is defined as the operator \widetilde{L} such that for any $f \in \mathcal{D}$, we have

$$L(f \circ \psi) = (\widetilde{L}f) \circ \psi. \tag{3.3}$$

We now compute \widetilde{L} in cylindrical coordinates.

Proposition 3.1. The radial part of the sub-Laplacian on $AdS^{15}(\mathbb{O})$ is given in the coordinates (r, η) by the operator

$$\widetilde{L} = \frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} + \tanh^2 r \left(\frac{\partial^2}{\partial \eta^2} + 6\cot \eta \frac{\partial}{\partial \eta}\right),\,$$

where $r = \tanh^{-1} \rho$ is the Riemannian distance on $\mathbb{O}H^1$ from the origin.

Proof. Note that the radial part of the Laplace–Beltrami operator on the octonionic hyperbolic space $\mathbb{O}H^1$ is

$$\widetilde{\triangle}_{\mathbb{O}H^1} = \frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r},$$

and the radial part of the Laplace–Beltrami operator on \mathbb{S}^7 is

$$\widetilde{\triangle}_{\mathbb{S}^7} = \frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta}.$$
(3.4)

Since the octonionic anti-de Sitter fibration defines a totally geodesic submersion with base space $\mathbb{O}H^1$ and fiber \mathbb{S}^7 , the semi-Riemannian metric on $\mathrm{AdS}^{15}(\mathbb{O})$ is locally given by a warped product between the Riemannian metric of $\mathbb{O}H^1$ and the Riemannian metric on \mathbb{S}^7 . Hence the radial part of the d'Alembertian becomes

$$\widetilde{\Box}_{AdS^{15}(\mathbb{O})} = \frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} + g(r)\left(\frac{\partial^2}{\partial \eta^2} + 6\cot \eta \frac{\partial}{\partial \eta}\right),\tag{3.5}$$

for some smooth function g to be computed.

On the other hand, from the isometric embedding $AdS^{15}(\mathbb{O}) \subset \mathbb{O} \times \mathbb{O}$, the d'Alembertian on $AdS^{15}(\mathbb{O})$ is a restriction of the d'Alembertian on $\mathbb{O} \times \mathbb{O} \simeq \mathbb{R}^{8,8}$ in the sense that for a smooth $f \colon AdS^{15}(\mathbb{O}) \to \mathbb{R}$

$$\square_{\mathrm{AdS}^{15}(\mathbb{O})} f = \square_{\mathbb{O} \times \mathbb{O}} f^*_{/\mathrm{AdS}^{15}(\mathbb{O})},$$

where $\square_{\mathbb{O}\times\mathbb{O}} = \sum_{i=0}^{7} \left(\frac{\partial^2}{\partial x_i^2} - \frac{\partial^2}{\partial y_i^2}\right)$ and for $x,y \in \mathbb{O}$ such that $||y||^2 - ||x||^2 > 0$, $f^*(x,y) = f\left(\frac{x}{\sqrt{||y||^2 - ||x||^2}}, \frac{y}{\sqrt{||y||^2 - ||x||^2}}\right)$. For the specific choice of the function $f(x,y) = y_1$, one easily computes that $\square_{\mathbb{O}\times\mathbb{O}}f^*_{/\mathrm{AdS}^{15}(\mathbb{O})}(x,y) = 15y_1$, thus

$$\square_{\mathrm{AdS}^{15}(\mathbb{O})} f(x,y) = 15y_1.$$

For the point with coordinates

$$\left(\frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right) w}{\sqrt{1-\rho^2}}, \frac{\exp_p\left(\sum_{i=1}^7 \theta_i Y_i\right)}{\sqrt{1-\rho^2}}\right) \in AdS^{15}(\mathbb{O})$$

one has

$$y_1 = \frac{\cos \eta}{\sqrt{1 - \rho^2}} = \cosh r \cos \eta.$$

We therefore deduce that

$$\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})}(\cosh r \cos \eta) = 15 \cosh r \cos \eta.$$

Using the formula (3.5), after a straightforward computation, this yields $g(r) = -\frac{1}{\cosh^2 r}$ and therefore

$$\widetilde{\Box}_{\text{AdS}^{15}(\mathbb{O})} = \frac{\partial^2}{\partial r^2} + (7 \coth r + 7 \tanh r) \frac{\partial}{\partial r} - \frac{1}{\cosh^2 r} \left(\frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta} \right)$$
$$= \widetilde{\triangle}_{\mathbb{O}H^1} - \frac{1}{\cosh^2 r} \widetilde{\triangle}_{\mathbb{S}^7}.$$

Finally, to conclude, one notes that the sub-Laplacian L is given by the difference between the Laplace-Beltrami operator of $AdS^{15}(\mathbb{O})$ and the vertical Laplacian. Therefore by (3.1) and (3.2),

$$\widetilde{L} = \widetilde{\Box}_{\mathrm{AdS^{15}}(\mathbb{O})} + \widetilde{\triangle}_{\mathbb{S}^7} = \frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} + \tanh^2 r \left(\frac{\partial^2}{\partial \eta^2} + 6\cot \eta \frac{\partial}{\partial \eta}\right). \qquad \blacksquare$$

Remark 3.2. As a consequence of the previous result, we can check that the Riemannian measure of $AdS^{15}(\mathbb{O})$ in the coordinates (r, η) , which is the symmetric and invariant measure for \tilde{L} is given by

$$d\overline{\mu} = \frac{\pi^7}{90} \sinh^7 r \cosh^7 r \sin^6 \eta \, dr \, d\eta. \tag{3.6}$$

(See also Remark 2 in [1], which corresponds to the case of the octonionic Hopf fibration.)

4 Integral representations of the subelliptic heat kernel

In this section, we give two integral representations of the subelliptic heat kernel associated with \tilde{L} . We denote by $p_t(r,\eta)$ the heat kernel of \tilde{L} issued from the point $r=\eta=0$ with respect to the measure (3.6). We remark that studying the subelliptic heat kernel associated with \tilde{L} is enough to study the heat kernel of L, because due to (3.3) the heat kernel $h_t(w,\theta)$ of L issued from the point with cylindric coordinates w=0, $\theta=0$ is then given by

$$h_t(w,\theta) = p_t(\tanh^{-1} ||w||, ||\theta||).$$

F. Baudoin and G. Cho

4.1 First integral representation

We denote by s_t the heat kernel of the operator

$$\tilde{\triangle}_{\mathbb{S}^7} = \frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta}$$

with respect to the reference measure $\sin^6 \eta \, d\eta$. The operator $\tilde{\triangle}_{\mathbb{S}^7}$ belongs to the family of Jacobi diffusion operators which have been extensively studied in the literature, see for instance the appendix in [5] and the references therein. In particular, the spectrum of $\tilde{\triangle}_{\mathbb{S}^7}$ is given by

$$\mathbf{Sp}(-\tilde{\triangle}_{\mathbb{S}^7}) = \{ m(m+6), m \in \mathbb{N} \},\$$

and the eigenfunction corresponding to the eigenvalue m(m+6) is $P_m^{5/2,5/2}(\cos \eta)$ where $P_m^{5/2,5/2}$ is the Jacobi polynomial

$$P_m^{5/2,5/2}(x) = \frac{(-1)^m}{2^m m! (1-x^2)^{5/2}} \frac{\mathrm{d}^m}{\mathrm{d}x^m} (1-x^2)^{5/2+m}.$$

As a consequence, one has the following spectral decomposition for the heat kernel:

$$s_t(\eta, u) = \frac{1}{\pi} \sum_{m=0}^{+\infty} \frac{2^{4m+7} m! (m+5)! [(m+3)!]^2}{(2m+6)! (2m+5)!} e^{-m(m+6)t} P_m^{5/2, 5/2}(\cos \eta) P_m^{5/2, 5/2}(\cos u).$$

Proposition 4.1. For $r \ge 0$, $\eta \in [0, \pi]$, and t > 0 we have

$$p_t(r,\eta) = \int_0^\infty s_t(\eta, \mathrm{i}u) q_{t,15}(\cosh r \cosh u) \sinh^6 u \, \mathrm{d}u,$$

where

6

$$q_{t,15}(\cosh s) := \frac{e^{-49t}}{(2\pi)^7 \sqrt{4\pi t}} \left(-\frac{1}{\sinh s} \frac{d}{ds} \right)^7 e^{-s^2/4t}$$
(4.1)

is the Riemannian heat kernel on the 15-dimensional real hyperbolic space \mathbb{H}^{15} .

Proof. Since $\pi\colon \mathrm{AdS}^{15}(\mathbb{O})\to \mathbb{O}H^1$ is a (semi-Riemannian) totally geodesic submersion, the operators $\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})}$ and $\widetilde{\triangle}_{\mathbb{S}^7}$ commute. Thus

$$\mathrm{e}^{t\widetilde{L}} = \mathrm{e}^{t(\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})} + \widetilde{\triangle}_{\mathbb{S}^7})} = \mathrm{e}^{t\widetilde{\triangle}_{\mathbb{S}^7}} \mathrm{e}^{t\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})}}.$$

We deduce that the heat kernel of L can be written as

$$p_t(r,\eta) = \int_0^{\pi} s_t(\eta, u) p_t^{\widetilde{\Box}_{AdS^{15}(0)}}(r, u) \sin^6 u \, du, \tag{4.2}$$

where s_t is the heat kernel of (3.4) with respect to the measure $\sin^6 \eta \, d\eta$, $\eta \in [0, \pi)$, and $p_t^{\widetilde{\square}_{AdS^{15}(\mathbb{O})}}(r, u)$ the heat kernel at (0,0) of $\widetilde{\square}_{AdS^{15}(\mathbb{O})}$ with respect to the measure in (3.6), i.e.,

$$d\mu(r, u) = \frac{\pi^7}{90} \sinh^7 r \cosh^7 r \sin^6 u \, dr \, du, \qquad r \in [0, \infty), \qquad u \in [0, \pi].$$

In order to write (4.2) more precisely, let us consider the analytic change of variables $\tau: (r, \eta) \to (r, i\eta)$ that will be applied on functions of the type $f(r, \eta) = h(r)e^{-i\lambda\eta}$, with h smooth and

compactly supported on $[0, \infty)$ and $\lambda > 0$. Then as we saw in the proof of Proposition 3.1 one can see that

$$\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})}(f \circ \tau) = \left(\widetilde{\triangle}_{\mathbb{H}^{15}}f\right) \circ \tau,$$

where

$$\widetilde{\triangle}_{\mathbb{H}^{15}} = \widetilde{\triangle}_{\mathbb{O}H^1} + \frac{1}{\cosh^2 r} \widetilde{\triangle}_P, \qquad \widetilde{\triangle}_P = \frac{\partial^2}{\partial \eta^2} + 6 \coth \eta \frac{\partial}{\partial \eta}.$$

Then, one deduces

$$\mathrm{e}^{t\widetilde{L}}(f\circ\tau)=\mathrm{e}^{t\widetilde{\triangle}_{\mathbb{S}^7}}\mathrm{e}^{t\widetilde{\square}_{\mathrm{AdS}^{15}(\mathbb{O})}}(f\circ\tau)=\mathrm{e}^{t\widetilde{\triangle}_{\mathbb{S}^7}}\big(\big(\mathrm{e}^{t\widetilde{\triangle}_{\mathbb{H}^{15}}}f\big)\circ\tau\big)=\big(\mathrm{e}^{-t\widetilde{\triangle}_{P}}\mathrm{e}^{t\widetilde{\triangle}_{\mathbb{H}^{15}}}f\big)\circ\tau.$$

Now, since for every $f(r, \eta) = h(r)e^{-i\lambda\eta}$,

$$\left(e^{t\widetilde{\square}_{AdS^{15}(\mathbb{O})}}f\right)(0,0) = \left(e^{t\widetilde{\triangle}_{\mathbb{H}^{15}}}\right)\left(f\circ\tau^{-1}\right)(0,0),$$

one deduces that for a function h depending only on u,

$$\int_0^{\pi} h(u) p_t^{\widetilde{\square}_{AdS^{15}(\mathbb{O})}}(r, u) \sin^6 u \, du = \int_0^{\infty} h(-iu) q_{t, 15}(\cosh r \cosh u) \sinh^6 u \, du.$$

Therefore, coming back to (4.2), one infers that using the analytic extension of s_t one must have

$$\int_0^{\pi} s_t(\eta, u) p_t^{\Box_{\text{AdS}^{15}(\mathbb{O})}}(r, u) \sin^6 u \, du = \int_0^{\infty} s_t(\eta, -iu) q_{t,15}(\cosh r \cosh u) \sinh^6 u \, du,$$

where $q_{t,15}$ is the Riemannian heat kernel on the real hyperbolic space \mathbb{H}^{15} given in (4.1).

4.2 Second integral representation

Proposition 4.2. For $r \geq 0$, $\eta \in [0, \pi]$, and t > 0 we have

$$p_t(r,\eta) = \int_0^{\pi} \int_0^{\infty} G_t(\eta,\varphi,u) q_{t,9}(\cosh r \cosh u) \sin^5 \varphi \, du \, d\varphi.$$

where $q_{t,9}$ is the 9-dimensional Riemannian heat kernel on the hyperbolic space \mathbb{H}^9 :

$$q_{t,9}(\cosh s) := \frac{e^{-16t}}{(2\pi)^4 \sqrt{4\pi t}} \left(\frac{1}{\sinh s} \frac{d}{ds}\right)^4 e^{-s^2/4t},$$

and

$$G_t(\eta, \varphi, u) = \frac{15}{8} \sum_{m \ge 0} e^{-(m(m+6)+33)t} (\cos \eta + i \sin \eta \cos \varphi)^m \cosh((m+3)u). \tag{4.3}$$

Proof. The strategy of the following method appeals to some results proved in [8]. Firstly, we decompose the subelliptic heat kernel in the η variable with respect to the basis of normalized eigenfunctions of $\tilde{\Delta}_{S^7} = \frac{\partial^2}{\partial \eta^2} + 6 \cot \eta \frac{\partial}{\partial \eta}$. Accordingly,

$$p_t(r,\eta) = \sum_{m>0} f_m(t,r)h_m(\eta),$$

where for each m, h_m is given by

$$h_m(\eta) = \frac{15}{16} \int_0^{\pi} (\cos \eta + i \sin \eta \cos \varphi)^m \sin^5 \varphi \,d\varphi$$

and $f_m(t,\cdot)$ solves the following heat equation

$$\frac{\partial}{\partial t} f_m(t,r) = \left(\frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} - m(m+6)\tanh^2 r\right) f_m(t,r)
= \left(\frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} + \frac{m(m+6)}{\cosh^2 r} - m(m+6)\right) f_m(t,r).$$

We consider then the operator

$$L_m := \frac{\partial^2}{\partial r^2} + (7\coth r + 7\tanh r)\frac{\partial}{\partial r} + \frac{m(m+6)}{\cosh^2 r} + 49,$$

which was studied in [8, p. 229]. From [8, Theorem 2], with $\alpha = 3 + \frac{m}{2}$, $\beta = -\frac{m}{2}$, we deduce that the solution to the wave Cauchy problem associated with the subelliptic Laplacian is given $f \in C_0^{\infty}(\mathbb{O}H^1)$ by

$$\cos\left(s\sqrt{-L_m}\right)(f)(w) = \frac{-\sinh s}{(2\pi)^4} \left(\frac{1}{\sinh s} \frac{\mathrm{d}}{\mathrm{d}s}\right)^4 \int_{\mathbb{O}H^1} K_m(s, w, y) f(y) \frac{\mathrm{d}y}{\left(1 - ||y||^2\right)^8},$$

where

$$K_m(s, w, y) = \frac{(1 - \overline{\langle w, y \rangle})^{3+m/2}}{(1 - \langle w, y \rangle)^{m/2}} \frac{1}{\cosh^3(d(w, y))\sqrt{\cosh^2(s) - \cosh^2(d(w, y))}} \times {}_2F_1\left(m + 3, -m - 3, \frac{1}{2}; \frac{\cosh(d(w, y)) - \cosh(s)}{2\cosh(d(w, y))}\right),$$

where ${}_2F_1$ is the Gauss hypergeometric function and dy stands for the Lebesgue measure in \mathbb{R}^8 . Using the spectral formula

$$e^{tL} = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-s^2/(4t)} \cos\left(s\sqrt{-L}\right) ds,$$

which holds for any non positive self-adjoint operator, we deduce that the solution to the heat Cauchy problem associated with L_m :

$$e^{tL_m}(f)(w) = \frac{e^{-m(m+6)t-7^2t}}{\sqrt{4\pi t}(2\pi)^4} \int_{\mathbb{R}} ds(-\sinh s)e^{-s^2/(4t)} \times \left(\frac{1}{\sinh s} \frac{d}{ds}\right)^4 \int_{\mathbb{O}H^1} K_m(s, w, y)f(y) \frac{dy}{(1-||y||^2)^8}.$$

Performing integration by parts 4-times,

$$\int_{\mathbb{R}} ds(-\sinh s) \left(\frac{1}{\sinh s} \frac{d}{ds}\right)^{4} e^{-s^{2}/(4t)} \int_{\mathbb{O}H^{1}} K_{m}(s, w, y) f(y) \frac{dy}{\left(1 - ||y||^{2}\right)^{8}}
= \int_{\mathbb{O}H^{1}} f(y) \frac{dy}{(1 - ||y||^{2})^{8}} \int_{\mathbb{R}} ds(-\sinh s) K_{m}(s, w, y) \left(\frac{1}{\sinh s} \frac{d}{ds}\right)^{4} e^{-s^{2}/4t}
= 2 \int_{\mathbb{O}H^{1}} f(y) \frac{dy}{\left(1 - ||y||^{2}\right)^{8}} \int_{d(w, y)}^{\infty} d(\cosh(s)) K_{m}(s, w, y) \left(\frac{1}{\sinh s} \frac{d}{ds}\right)^{4} e^{-s^{2}/4t}.$$

Thus we get

$$e^{tL_m}(f)(0) = 2e^{-(m(m+6)+33)t} \int_{\mathbb{O}H^1} f(y) \frac{\mathrm{d}y}{(1-||y||^2)^8} \int_{d(0,y)}^{\infty} \mathrm{d}(\cosh s) K_m(s,0,y) q_{t,9}(\cosh s).$$

As a result, the subelliptic heat kernel of L_m reads

$$\frac{\mathrm{d}y}{(1-||y||^2)^8} \int_{d(0,y)}^{\infty} \mathrm{d}(\cosh s) K_m(s,0,y) q_{t,9}(\cosh s)$$
$$= \mathrm{d}r \sinh^7 r \cosh^7 r \int_r^{\infty} \mathrm{d}(\cosh s) K_m(s,0,y) q_{t,9}(\cosh s).$$

By changing the variable $\cosh s = \cosh r \cosh u$ for $u \ge 0$, the last expression becomes

$$dr \sinh^7 r \cosh^7 r \int_0^\infty {}_2F_1\left(m+3,-m-3,\frac{1}{2};\frac{1-\cosh u}{2}\right) q_{t,9}(\cosh r \cosh u) du.$$

Therefore $p_t(r, \eta)$ has the integral representation

$$2\sum_{m>0} e^{-(m(m+6)+33)t} h_m(\eta) \int_0^\infty {}_2F_1\left(m+3,-m-3,\frac{1}{2};\frac{1-\cosh u}{2}\right) q_{t,9}(\cosh r \cosh u) \,\mathrm{d}u.$$

Now, notice that ${}_2F_1\left(m+3,-m-3,\frac{1}{2};\frac{1-\cosh u}{2}\right)$ is simply the Cheybyshev polynomial of the first kind

$$T_{m+3}(x) = {}_{2}F_{1}\left(m+3, -m-3, \frac{1}{2}; \frac{1-x}{2}\right),$$

for all $x \in \mathbb{C}$. Therefore, one has

$$_{2}F_{1}\left(m+3,-m-3,\frac{1}{2};\frac{1-\cosh u}{2}\right) = T_{m+3}(\cosh u) = \cosh((m+3)u),$$

and the proof is over.

Acknowledgements

F.B. is partially funded by the NSF grant DMS-1901315.

References

- [1] Baudoin F., Cho G., The subelliptic heat kernel of the octonionic Hopf fibration, *Potential Anal.*, to appear, arXiv:1904.08568.
- [2] Baudoin F., Demni N., Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration, *Arch. Math. (Basel)* **111** (2018), 399–406, arXiv:1802.04199.
- [3] Baudoin F., Demni N., Wang J., The horizontal heat kernel on the quaternionic anti-de Sitter spaces and related twistor spaces, *Potential Anal.* **52** (2020), 281–300, arXiv:1805.06796.
- [4] Baudoin F., Grong E., Molino G., Rizzi L., H-type foliations, arXiv:1812.02563.
- [5] Baudoin F., Wang J., Stochastic areas, winding numbers and Hopf fibrations, *Probab. Theory Related Fields* **169** (2017), 977–1005, arXiv:1602.06470.
- Bădiţoiu G., Ianuş S., Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces,
 Differential Geom. Appl. 16 (2002), 79–94, arXiv:math.DG/0005228.
- [7] Eldredge N., Precise estimates for the subelliptic heat kernel on *H*-type groups, *J. Math. Pures Appl.* **92** (2009), 52–85, arXiv:0810.3218.
- [8] Intissar A., Ould Moustapha M.V., Explicit formulae for the wave kernels for the Laplacians $\Delta_{\alpha\beta}$ in the Bergman ball B^n , $n \ge 1$, Ann. Global Anal. Geom. 15 (1997), 221–234.
- [9] Tian Y., Matrix representations of octonions and their applications, *Adv. Appl. Clifford Algebras* **10** (2000), 61–90, arXiv:math.RA/0003166.
- [10] Wang J., The subelliptic heat kernel on the anti-de Sitter space, *Potential Anal.* 45 (2016), 635–653, arXiv:1204.3642.