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Abstract. In this note, we study the sub-Laplacian of the 15-dimensional octonionic anti-de
Sitter space which is obtained by lifting with respect to the anti-de Sitter fibration the Lapla-
cian of the octonionic hyperbolic space OH'. We also obtain two integral representations
for the corresponding subelliptic heat kernel.
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1 Introduction and results

In this note we study the sub-Laplacian and the corresponding sub-Riemannian heat kernel of
the octonionic anti-de Sitter fibration

ST < AdS'*(0) — OH*.
This paper follows the previous works [2, 3, 10] which respectively concerned:

1. The complex anti-de Sitter fibrations:

St < AdS**1(C) — CH™.

2. The quaternionic anti-de Sitter fibrations:

S? < AdS*"3(H) — HH".

The 15-dimensional anti-de Sitter fibration is the last model space that remained to be
studied of a sub-Riemannian manifold arising from a H-type semi-Riemannian submersion over
a rank-one symmetric space, see the Table 3 in [4].

Similarly to the complex and quaternionic case, the sub-Laplacian is defined as the lift on
AdS?? (0) of the Laplace-Beltrami operator of the octonionic hyperbolic space OH'. However,
in the complex and quaternionic case the Lie group structure of the fiber played an important
role that we can not use here, since the fiber S7 is not a group. Instead, we make use of some
algebraic properties of S” that were already pointed out and used by the authors in [1] for the
study of the octonionic Hopf fibration:

S” s 5 opP!.

Let us briefly describe our main results. Due to the cylindrical symmetries of the fibration,
the heat kernel of the sub-Laplacian only depends on two variables: the variable r which is the
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Riemannian distance on QH'! (the starting point is specified with inhomogeneous coordinate in
Section 3) and the variable n which is the Riemannian distance starting at a pole on the fiber S7~.
We prove in Proposition 3.1 that in these coordinates, the radial part of the sub-Laplacian L
writes

or? or On?

As a consequence of this expression for the sub-Laplacian, we are able to derive two equivalent
formulas for the heat kernel. The first formula, see Proposition 4.1, reads as follows: for r» > 0,
nel0,m),t>0

L:a——i—(7(:oth7’—i—7tanhr)2—i—temh2 <6 +6€ot7788>

o0
pe(r,n) = / s¢(n, 1) qe,15 (cosh 7 cosh u) sinh® u du,
0

where s; is the heat kernel of the Jacobi operator

2

+ 6 cot 9
a2 Ton

Agr =
with respect to the measure sin® 7 dn, and where ¢; 15 is the Riemannian heat kernel on the 15-
dimensional real hyperbolic space H'® given in (4.1). The second formula, see Proposition 4.2,
writes as follows:

pe(rym) / / G1(n, ¢, 1) qr.9(cosh r cosh u) sin® p du dg,

where ¢; 9 is Riemannian heat kernel on the 9-dimensional hyperbolic space H® and G¢(n, ¢, u)
is given in (4.3).

Similarly to [2, 3, 10], it might be expected that explicit integral representations of the
heat kernel might be used to study small-time asymptotics, inside and outside of the cut-locus.
Integral representations of heat kernels can also be used to obtain sharp heat kernel estimates,
see [7]. Those applications of the heat kernel representations we obtain will possibly be addressed
in a future research project.

2 The octonionic anti-de Sitter fibration

Let

7

0= x:ijej,xjeR ,
Jj=0

be the division algebra of octonions (see [9] for explicit representations of this algebra). We
recall that the multiplication rules are given by

€i€j = €5 if i= ,
€i€j = € if ] = U,
eie; = —0ije0 + €;jkCk otherwise,

where ¢;; is the Kronecker delta and ¢;j;, is the completely antisymmetric tensor with value 1
when ijk = 123,145,176, 246, 257,347,365 (also see [1]). The octonionic norm is defined for
x € O by

] = chQ-
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The octonionic anti-de Sitter space AdSl5(@) is the quadric defined as the pseudo-hyperbolic
space by:

AdS®(0) = {(z,y) € 0%, ||(z,y)|lp = —1},
where
|, )IB = [zl = Iyl

In real coordinates we have z = 25:0 Trjej, Yy = Z;:o y;e;, and the pseudo-norm can be
written as

Ty 4Ty — o —

As such, AdS'®(Q) is embedded in the flat 16-dimensional space R®® endowed with the Lo-
rentzian real signature (8,8) metric

ds? =dad + - +da? —dyd — - — dy.

Consequently, AdS®(0) is naturally endowed with a pseudo-Riemannian structure of signa-
ture (8,7).

Let OH! denote the octonionic hyperbolic space. The map m: AdS'®(Q) — OH!, given by
(2,9) = [z : y] = y~ 'z is a pseudo-Riemannian submersion with totally geodesic fibers isometric
to the seven-dimensional sphere S7. Notice that, as a topological manifold, OH" can therefore
be identified with the unit open ball in Q. The pseudo-Riemannian submersion 7 yields the
octonionic anti-de Sitter fibration

ST < AdS"(0) — OH!.

For further information on semi-Riemannian submersions over rank-one symmetric spaces, we
refer to [6].

3 Cylindrical coordinates and radial part of the sub-Laplacian

The sub-Laplacian L on AdS'®(0) we are interested in is the horizontal Laplacian of the Rieman-
nian submersion 7: AdS'®>(Q) — OH!, i.e., the horizontal lift of the Laplace-Beltrami operator
of OH'. Tt can be written as

L= Ujas150) + L, (3.1)

where [J AdS™5(0) is the d’Alembertian, i.e., the Laplace—Beltrami operator of the pseudo-Rie-
mannian metric and Ay is the vertical Laplacian. Since the fibers of 7 are totally geodesic and
isometric to S ¢ AdS'?(0), we note that DAdsl5(@) and Ay are commuting operators, and we
can identify

Ay = Agr. (3.2)

The sub-Laplacian L is associated with a canonical sub-Riemannian structure on AdS'®(0)
which is of H-type, see [4].

To study L, we introduce a set of coordinates that reflect the cylindrical symmetries of the
octonionic unit sphere which provides an explicit local trivialization of the octonionic anti-de
Sitter fibration. Consider the coordinates w € QH', where w is the inhomogeneous coordinate
on OH! given by w = 3y~ 'z, with 2,y € AdS'(0Q). Consider the north pole p € S7 and take
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Y1,...,Y7 to be an orthonormal frame of TpS7. Let us denote exp, the Riemannian exponential
map at p on S7. Then the cylindrical coordinates we work with are given by

expy (Li 6i¥i)w expy (X1, 6Y)

V1—p? ’ V1—p?
where p = ||w|| and ||0| = /0] +--- + 07 < 7.

A function f on AdSK’((O)) is called radial cylindrical if it only depends on the two coordinates

(w,01,...,607) — ( ) € AdS™(0),

(p,m) € 10,1) x [0, 7] where n = \/ZZ 16?. More precisely f is radial cylindrical if there exists
a function g so that

f (@00 (SLOT)w e, (SL009)Y _
Vi—Z | i )7

We denote by D the space of smooth and compactly supported functions on [0,1) x [0, 7).
Then the radial part of L is defined as the operator L such that for any f € D, we have

L(fot) = (Lf) 0. (3.3)

We now compute Lin cylindrical coordinates.

Proposition 3.1. The radial part of the sub-Laplacian on AdS'(Q) is given in the coordinates
(r,m) by the operator

~ 9 0 5 [ 02 0
L= 2 (7coth7’+7tanhr)a—+tanh (8 5 —1—660‘57]8 >

where r = tanh™! p is the Riemannian distance on QH' from the origin.

Proof. Note that the radial part of the Laplace—Beltrami operator on the octonionic hyperbolic
space OH" is

2

0
572 + (7cothr 4+ 7tanhr)—

A =
OH! or’

and the radial part of the Laplace-Beltrami operator on S7 is
2

By =2

0
+ 6 cot 3.4
o (3.4)
Since the octonionic anti-de Sitter fibration defines a totally geodesic submersion with base
space OH"' and fiber S7, the semi-Riemannian metric on AdS'®(Q) is locally given by a warped
product between the Riemannian metric of OQH! and the Riemannian metric on S7. Hence the
radial part of the d’Alembertian becomes

~ 0? 0 0? 0
Uaasts o) = 52 + (7cothr + 7tanhr)ar g(r) o +6cot178 (3.5)

for some smooth function g to be computed.

On the other hand, from the isometric embedding AdS'®(0Q) c O x O, the d’Alembertian on
AdS'(Q) is a restriction of the d’Alembertian on @ x @ ~ R®#® in the sense that for a smooth
f: AdSP(0) - R

Daastso)f = D@X@f7Adsl5(©)’
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where Joxo = /oo (22 — £5) and for 2,y € O such that [|y||* — [|lz]* > 0, f*(z,y) =

For the specific choice of the function f(x,y) = yi1, one easily

x y
f(\/IIyHLIIIHQ’ \/HyHLllﬂﬂHQ)'
computes that D@X@f;‘Adsls(@)) (z,y) = 15y, thus

Oaasts ) f (@, y) = 15y1.

For the point with coordinates

CXDPp (23:1 0;Yi)w exp, (ZZ:1 0;Y;)

) € AdS¥(0)

one has

cos
n=—F—
V1 — p?

We therefore deduce that

= coshrcos 7.

EIAdsls(@)(coshrcos 1) = 15 coshr cosn.

Using the formula (3.5), after a straightforward computation, this yields g(r) = — and

therefore

cosh? r

~ 0? 0 1 0? 0
DAdSIS(@) = ﬁ + (7C0th7” + 7133,1’1117")5 — m <6772 + 6 cot 7]877>
~ 1 ~
=A — Agr.
oH! cosh? r s

Finally, to conclude, one notes that the sub-Laplacian L is given by the difference between the
Laplace-Beltrami operator of AdS®(Q) and the vertical Laplacian. Therefore by (3.1) and (3.2),

~ = P 0? 0 9 0? 0
L =Dpag150) + Ds7 = 2 + (7cothr + 7tanhr)§ + tanh®r <8772 + 6 cot nan> . n
Remark 3.2. As a consequence of the previous result, we can check that the Riemannian
measure of AdS'(Q) in the coordinates (r,7), which is the symmetric and invariant measure
for L is given by
7
dp = %0 sinh” r cosh”  sin® 5y dr dn. (3.6)

(See also Remark 2 in [1], which corresponds to the case of the octonionic Hopf fibration.)

4 Integral representations of the subelliptic heat kernel

In this section, we give two integral representations of the subelliptic heat kernel associated
with L. We denote by p¢(r,n) the heat kernel of L issued from the point r = n = 0 with respect
to the measure (3.6). We remark that studying the subelliptic heat kernel associated with Lis
enough to study the heat kernel of L, because due to (3.3) the heat kernel hi(w, ) of L issued
from the point with cylindric coordinates w = 0, § = 0 is then given by

hi(w, 0) = py(tanh™ JJuwl, [|6]]).



6 F. Baudoin and G. Cho

4.1 First integral representation

We denote by s; the heat kernel of the operator

~ 0? 0
Agr = = +6cotn—
s7 on? 17077
with respect to the reference measure sin®7ndn. The operator AS7 belongs to the family of
Jacobi diffusion operators which have been extensively studied in the literature, see for instance
the appendix in [5] and the references therein. In particular, the spectrum of Agr is given by

Sp(—A«y) = {m(m+6), m € N},

and the eigenfunction corresponding to the eigenvalue m(m+6) is P;?/ 2:5/2 (cosn) where P,%/ 25/2

is the Jacobi polynomial

_1\m qm
P5/25/2 () — (=1) 1 g2)5/2m
e 2mm) (1 — 2)°/* dz™ (=)

As a consequence, one has the following spectral decomposition for the heat kernel:

190 Ham+7 2
_ 1 2 ml(m +5)![(m + 3)!] —m(m+6)t p5/2,5/2( . 5/2,5/2
s¢(n,u) = p mEZO @m +6)1(2m + 5)! e P (cosm) Py (cosu).

Proposition 4.1. Forr >0, n € [0,7], and t > 0 we have

o0
pe(r,m) = / st(n, iu)qs.15(cosh r cosh u) sinh® u du,
0

where

—49t 7
e 1 d 2
hs) — _ —s% /4t 4.1
r.15(coshs) (2m)7 47rt< Sinhsds> © (4.1)

is the Riemannian heat kernel on the 15-dimensional real hyperbolic space H.

Proof. Since 7: AdSl5(Q) — OH! is a (semi-Riemannian) totally geodesic submersion, the
operators [y 4q15(g) and Agr commute. Thus

etL — et(DAd515(©)+AS7) — et£S7etDAdSIS(®)_

We deduce that the heat kernel of L can be written as

s
O
pe(r,n) = / si(mu)p, 7 (r,u) sin® wdu, (4.2)
0

where s; is the heat kernel of (3.4) with respect to the measure sin®ndn, n € [0,7), and

6 .
Dy Ads12(0) (r,u) the heat kernel at (0,0) of [y4q15 ) with respect to the measure in (3.6), i.e.,

7
du(r,u) = % sinh” 7 cosh” rsin® w dr du, r € [0,00), u € [0, 7).

In order to write (4.2) more precisely, let us consider the analytic change of variables 7: (r,n) —
(r,in) that will be applied on functions of the type f(r,n) = h(r)e™, with h smooth and
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compactly supported on [0,00) and A > 0. Then as we saw in the proof of Proposition 3.1 one
can see that

E‘Adsls(@)(f o 7') = (&wa) oT,

where

Ams = Do + Ap, Ap=——

cosh? r

Then, one deduces
etz(f or) = otB7 etDAdsls(@)(f oT) = otBgr ((etﬁlﬂlm f) o 7_) _ (eftﬁpetgmﬂf) f) o
Now, since for every f(r,n) = h(r)e ™,
(35150 £)(0,0) = (e'2) (£ 0 771)(0,0),
one deduces that for a function h depending only on u,
" Oaas15(0) .6 = ; inh®
h(u)p, (r,u) sin® udu = h(—iu)gt,15(cosh r cosh w) sinh® u du.
0 0
Therefore, coming back to (4.2), one infers that using the analytic extension of s; one must have
T DAdsl5(®) -6 o o . . 16
se(n, u)p, (r,u) sin® udu = s¢(n, —iu)qe,15(cosh r cosh u) sinh” v du,
0 0

where ¢ 15 is the Riemannian heat kernel on the real hyperbolic space H'® given in (4.1). |

4.2 Second integral representation

Proposition 4.2. Forr >0, n € [0,x], and t > 0 we have

T o0
pe(rym) = / / Gt(n, ¢, u)qs9(coshr coshu) sin® pdude.
0 Jo

where qi 9 is the 9-dimensional Riemannian heat kernel on the hyperbolic space H?

e 16t 1 d\* _.
h = el —s?/4t
qt,9(cosh s) (2m)4 /At <sinhs ds) ¢ ’
and
1
Gi(n, o, u) = §5 Z e~ (MmH6)+33)t (o5 ) + isinn cos o)™ cosh((m + 3)u). (4.3)
m>0

Proof. The strategy of the following method appeals to some results proved in [8]. Firstly, we

decompose the subelliptic heat kernel in the n variable with respect to the basis of normalized
~ 2

eigenfunctions of Agr = 59—772 —+ 6 cot 778%. Accordingly,

pt(’l“, 77) = Z fm(t’r)hm(n)a

m>0
where for each m, h,, is given by

15

s
/0 (cosn + isinn cos p)™sin® p dp
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and f,,(t,-) solves the following heat equation

0 0? 0 9
afm(tﬁ) = <8r2 + (7 cothr 4+ 7tanh T)E — m(m + 6)tanh 7"> fm(t,7)
o 9 m(m+6)
= <8r2 + (7cothr + 7tanhr)a + EpE m(m + 6)> fm(t ).

We consider then the operator

0? 0  m(m+06)

L, ::ﬁ—F(?cothr—F?tanhr)E—i- + 49,

cosh? r

which was studied in [8, p. 229]. From [8, Theorem 2], with a = 3+ 3,8 = =, we deduce
that the solution to the wave Cauchy problem associated with the subelliptic Laplacian is given
f € Cg°(OH") by

_ —sinhs 1 d ! Ay
cos o/~ L) (7)) =~ <Smhs ds) o B 000 s

where

(1= (w,y))>rm/2 1
(1 = (w,y))m/? cosh?(d(w, y))\/coshz(s) — cosh?(d(w, y))

1 cosh(d(w,y)) — cosh(s))
2’ 2 cosh(d(w,y)) ’

Km(sv w, y) =

X o <m+3,—m—3,

where o Fy is the Gauss hypergeometric function and dy stands for the Lebesgue measure in RS,
Using the spectral formula

1 2
el = / e s /(4) cog (5\/ —L) ds
Vart Jr ’

which holds for any non positive self-adjoint operator, we deduce that the solution to the heat
Cauchy problem associated with L,,:

efm(m+6)t772t

etlm w = — / ds(— sinh s)e5"/(41)
() =Tt [ as(sihy
1 d\* dy
X [ ——— Kp(s,w,9) f(y) ———%-
<smhsds> OH1 ( ) )(1 _ HZ/H2)8
Performing integration by parts 4-times,
1 d\* . dy
ds(—sinh s - — ) e/ Kn(s,w,9)f(y)—3
/]R ( ) (smhs ds) OH1! ( 2 )(1 - ||y||2)8

dy 1 d\* _.
- YW [ gs(—sinhs)K;n L) et
/@m ! (y)tuH?)S/R (= sinh ) Kon(s,w, 9) (sinhsds> ¢

=2 [t [T oo ( d)4e-52/‘“.

(1 - Hy||2)8 d(w,y) sinh s ds

Thus we get

d o
o ()(0) = 207 [ ) deoshs)Ko(s,0,)avalcosh ).
ot (1= |lyl|?)” Jaow
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As a result, the subelliptic heat kernel of L,, reads

d o0
y28/ d(cosh s) Ky, (s,0,y)g 9(cosh s)
(L= lwlP?)” Jaco)

= drsinh7rcosh7r/ d(cosh s) Ky, (s,0,y)q9(cosh s).

By changing the variable cosh s = coshr cosh u for u > 0, the last expression becomes

11— coshu

> 1
dr sinh” r cosh” 7"/ o <m +3,—m — 3, 5 5 ) qt,9(coshr cosh u) du.
0

Therefore p;(r,n) has the integral representation

o0 1 1— cosh
9 Z e—(m(m+6)+33)thm(n) / oy <m +3,—m — 3, 3 CQOSU’> qt,9(coshr cosh u) du.
m>0 0

Now, notice that o F; (m +3,—m—3, %; %) is simply the Cheybyshev polynomial of the
first kind

11—
Tm+3($) :2F1 <m+37 _m_35272x>7

for all x € C. Therefore, one has

1 1—cosh
o (m +3,—m—3, X C2OSU> = Tyn+3(coshu) = cosh((m + 3)u),
and the proof is over. [ |
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