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Abstract

We study several matrix diffusion processes constructed from a unitary Brownian

motion. In particular, we use the Stiefel fibration to lift the Brownian motion of the

complex Grassmannian to the complex Stiefel manifold and deduce a skew-product

decomposition of the Stiefel Brownian motion. As an application, we prove asymptotic

laws for the determinants of the block entries of the unitary Brownian motion.
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1 Introduction

The Brownian motion on the Lie group of complex unitary matrices, in short unitary

Brownian motion, is an extensively studied object in random matrix theory (see for

instance [8, 23] and references therein). In this paper we study several diffusion

processes naturally associated to this Brownian motion and show how they can be used

to compute the exact or asymptotic distribution of some functionals. In particular, we

emphasize the role of the Stiefel fibration over the complex Grassmannian space as an

effective computational tool. As an application of our methods we obtain for instance

the following result.

Theorem 1.1. Let

Ut =

(
Xt Yt

Zt Wt

)

be a Brownian motion on the unitary group U(n) with Zt ∈ Ck×k, 1 ≤ k ≤ n− 1. Assume

that detZ0 6= 0. One has then the polar decomposition

det(Zt) = %te
iθt

where 0 < %t ≤ 1 is a continuous semimartingale such that, in distribution, when

t → +∞,

%2t →
min(k,n−k)∏

j=1

Bj,max(k,n−k)

whereBa,b are independent beta random variables with parameters (a, b) and θt is a real-

valued continuous martingale such that the following convergence holds in distribution

when t → +∞
θt
t
→ Ck(n−k),

where Ck(n−k) is a Cauchy distribution of parameter k(n− k).

The study of the limit law of %t can be deduced from known results about the complex

Jacobi ensemble, see [26]. Therefore, our main contribution lies in the study of the

winding process θt. We note that for k = 1, the theorem therefore yields a Spitzer’s type

theorem (see [27]) for the windings of each of the entries of a unitary Brownian motion

(the choice of bottom left corner block for Z is arbitrary). Overall, the proof of Theorem

1.1 is rather long. An important step, interesting in itself, is to obtain the representation

θt = θ0 + itr(Dt) +

∫

w[0,t]

α

where Dt is a Brownian motion on the Lie algebra u(k), w is a Brownian motion on the

complex Grassmannian manifold Gn,k and α is an almost everywhere defined one-form

on Gn,k whose exterior derivative yields the Kähler form of Gn,k. To study the functional∫
w[0,t]

α which might be interpreted as a generalized stochastic area process in the sense
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Asymptotic windings of the block determinants of a unitary Brownian motion

of [6], we prove that
∫
w[0,t]

α is a time-changed Brownian motion with independent clock
∫ t

0
tr(w∗

sws)ds and finally study the distribution of this latter additive functional using a

Girsanov transform in the spirit of [6, 13, 30].

The paper is structured as follows. Section 2 mostly collects preliminary results.

We present the geometry of the Stiefel fibration over the complex Grassmannian space,

introduce a convenient set of coordinates and show how to obtain representations of

the Brownian motions on the Stiefel and complex Grassmannian spaces from a unitary

Brownian motion, see Theorem 2.1. We then study some related eigenvalue processes.

In Section 3, we take advantage of the Stiefel fibration over the complex Grassmannian

space to explicitly write a skew-product decomposition of the Stiefel Brownian motion.

Section 4 is devoted to the study of limit laws of some functionals of the unitary Brownian

motion and culminates with the proof of Theorem 1.1

Notations:

• If M ∈ Cn×n is a n× n matrix with complex entries, we will denote M∗ = M
T
its

adjoint.

• If zi = xi + iyi is a complex coordinate system, let

∂

∂zi
=

1

2

(
∂

∂xi
− i

∂

∂yi

)
,

∂

∂z̄i
=

1

2

(
∂

∂xi
+ i

∂

∂yi

)
.

• Throughout the paper we work on a filtered probability space (Ω, (Ft)t≥0, P ) that

satisfies the usual conditions.

• If X and Y are semimartingales, we denote
∫
XdY the Itô integral,

∫
X ◦ dY the

Stratonovich integral and
∫
dXdY or 〈X,Y 〉 the quadratic covariation.

• For matrix-valued semimartingales M and N , the quadratic variation
∫
dMdN is a

matrix such that
(∫

dMdN
)
ij
=
∑

`

∫
dMi`dN`j .

• If M is a semimartingale and η a one-form, then
∫
M [0,t]

η denotes the Stratonovich

line integral of η along the paths of M .

2 Some diffusions related to unitary Brownian motion

2.1 Stiefel fibration

Let n ∈ N, n ≥ 2, and k ∈ {1, . . . , n}. The complex Stiefel manifold Vn,k is the set of

unitary k-frames in Cn. In matrix notation we have

Vn,k = {M ∈ C
n×k|M∗M = Ik}.

As such Vn,k is therefore an algebraic compact embedded submanifold of Cn×k and

inherits from Cn×k a Riemannian structure. We note that Vn,1 is isometric to the unit

sphere S2n−1. There is a right isometric action of the unitary group U(k) on Vn,k, which

is simply given by the right matrix multiplication: Mg, M ∈ Vn,k, g ∈ U(k). The quotient

space by this action Gn,k := Vn,k/U(k) is the complex Grassmannian manifold. It is a

compact manifold of complex dimension k(n−k). We note that Gn,k can be identified with

the set of k-dimensional subspaces of Cn. In particular Gn,1 is the complex projective

space CPn−1. Since Gn,k and Gn,n−k can be identified with each other via orthogonal

complement, without loss of generality we will therefore assume throughout the paper

that k ≤ n− k , except when explicitly mentioned otherwise (see section 4.4).

Let us quickly comment on the Riemannian structure of Gn,k that we will be using

and that is induced from the one of Vn,k. From Example 2.3 in [4], there exists a

unique Riemannian metric on Gn,k such that the projection map π : Vn,k → Gn,k is a

EJP 26 (2021), paper 38.
Page 3/21

https://www.imstat.org/ejp



Asymptotic windings of the block determinants of a unitary Brownian motion

Riemannian submersion. From Example 2.5 in [4] and Theorem 9.80 in [7] the fibers of

this submersion are totally geodesic submanifolds of Vn,k which are isometric to U(k).

This therefore yields a fibration:

U(k) → Vn,k → Gn,k

which is often referred to as the Stiefel fibration, see [3, 22]. We note that for k = 1 it is

nothing else but the classical Hopf fibration considered from the probabilistic viewpoint

in [6]:

U(1) → S
2n−1 → CPn−1.

For further details on the Riemannian geometry of the complex Grassmannian manifolds

we also refer to [28, 29], see in particular Theorem 4 in [28].

2.2 Inhomogeneous coordinates on Gn,k

We consider the open set V̂n,k ⊂ Vn,k given by

V̂n,k =

{(
X

Z

)
∈ Vn,k, detZ 6= 0

}

and the smooth map p : V̂n,k → C(n−k)×k given by p

(
X

Z

)
= XZ−1. It is clear that for

every g ∈ U(k) and M ∈ Vn,k, p(Mg) = p(M). Since p is a submersion from V̂n,k onto its

image p(V̂n,k) = C(n−k)×k we deduce that there exists a unique diffeomorphism Ψ from

an open set of Gn,k onto C(n−k)×k such that

Ψ ◦ π = p. (2.1)

The map Ψ induces a (local) coordinate chart on Gn,k that we call inhomogeneous by

analogy with the case k = 1 which corresponds to the complex projective space. The

Riemannian metric of Gn,k is then transported to C(n−k)×k using the map Ψ. In the

sequel, we will denote C(n−k)×k endowed with this Riemannian metric by Ĝn,k in order

to emphasize the Riemannian structure that is used. Note that by construction Ĝn,k is

isometric to an open subset of Gn,k and that it differs from Gn,k by the sub-manifold at∞,

det(Z) = 0. In the case n = 2, k = 1, Gn,k = CP
1 and the above description corresponds

to the classical one-point compactification description CP
1 = C ∪ {∞}. We note that the

Stiefel fibration

U(k) → Vn,k → Gn,k

yields a fibration

U(k) → V̂n,k → Ĝn,k

that we still refer to as the Stiefel fibration. The projection map p : V̂n,k → Ĝn,k,(
X

Z

)
→ XZ−1 is then a Riemannian submersion with totally geodesic fibers isometric

to U(k).

2.3 Brownian motions on Ĝn,k and Vn,k

In this section, we show how the Brownian motions on Ĝn,k and Vn,k can be con-

structed from a Brownian motion on the unitary group U(n). In the following, we will

use the block notations as below: For any U ∈ U(n) and A ∈ u(n) we will write

U =

(
X Y

Z V

)
, A =

(
α β

γ ε

)
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where X, γ ∈ C(n−k)×k, Y, ε ∈ C(n−k)×(n−k), Z, α ∈ Ck×k, V, β ∈ Ck×(n−k). We recall that

the Lie algebra u(n) consists of all skew-Hermitian matrices

u(n) = {X ∈ C
n×n|X = −X∗},

which we equip with the inner product 〈X,Y 〉u(n) = − 1
2 tr(XY ). This induces a Rie-

mannian metric on U(n). Consider now on u(n) a Brownian motion (At)t≥0 and the

matrix-valued process (Ut)t≥0 that satisfy the Stratonovich stochastic differential equa-

tion: 



dUt = Ut ◦ dAt,

U0 =

(
X0 Y0

Z0 V0

)
, detZ0 6= 0.

(2.2)

The process (Ut)t≥0 is a Brownian motion onU(n) (which is not started from the identity).

If we write the block decomposition

Ut =

(
Xt Yt

Zt Vt

)

then, it is known that both of the processes X∗X and Z∗Z = Ik−X∗X belong to the well-

known family of (complex) matrix Jacobi processes that have already been extensively

studied in the literature, see for instance [9], [11], [13], [19] and [20]. In particular, one

can see that Z∗Z satisfies

d(Z∗Z) =
√
Z∗ZdB

√
Ik − Z∗Z +

√
Ik − Z∗ZdB∗√Z∗Z +

(
2kIk − 2nZ∗Z

)
dt

where B is a Ck×k Brownian motion.

Theorem 2.1. Let Ut =

(
Xt Yt

Zt Vt

)
, t ≥ 0 be the solution of (2.2).

1. The process

(
Xt

Zt

)

t≥0

is a Brownian motion on Vn,k;

2. We have P (inf{t > 0, detZt = 0} < +∞) = 0 and the process (wt)t≥0 := (XtZ
−1
t )t≥0

is a Brownian motion on Ĝn,k with generator 1
2∆Ĝn,k

, where

∆Ĝn,k
= 4

∑

1≤i,i′≤n−k,1≤j,j′≤k

(In−k + ww∗)ii′(Ik + w∗w)j′j
∂2

∂wij∂w̄i′j′
.

Proof. The first part of the theorem is straightforward to prove. Indeed, the map

Π : U(n) → Vn,k,

(
X Y

Z V

)
→
(
X

Z

)
is a Riemannian submersion with totally geodesic

fibers, therefore the process (Π(Ut))t≥0 is a Brownian motion on Vn,k. We now turn to the

proof of the second part of the theorem. We first note that, as noticed above, (Z∗
t Zt)t≥0

is a matrix Jacobi process and therefore, from known properties of those processes,

P (inf{t > 0, det(Z∗
t Zt) = 0} < +∞) = 0. We then turn to the study of w = XZ−1 which

is therefore well defined for all times. We need to introduce some notations. Let us

consider the block decomposition

At =

(
αt βt

γt εt

)
,
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with αt ∈ Ck×k. Note that αt, βt = −γ∗
t and εt are independent. From (2.2) we obtain

the following system of stochastic differential equations:

dX = X ◦ dα+ Y ◦ dγ = Xdα+ Y dγ +
1

2
(dXdα+ dY dγ)

dY = X ◦ dβ + Y ◦ dε = Xdβ + Y dε+
1

2
(dXdβ + dY dε)

dZ = Z ◦ dα+ V ◦ dγ = Zdα+ V dγ +
1

2
(dZdα+ dV dγ) (2.3)

dV = Z ◦ dβ + V ◦ dε = Zdβ + V dε+
1

2
(dZdβ + dV dε).

Using then Itô’s formula, long but routine computations yield

dw = d(XZ−1) = (Y dγ − wV dγ)Z−1. (2.4)

From this expression, after further computations, we deduce

dwijdw̄i′j′ =

k∑

`,m=1

(Y − wV )i`(Y − wV )i′m(dγZ−1)`j(dγZ
−1

)mj′

= 2((Y − wV )(Y − wV )∗)ii′((ZZ∗)−1)j′jdt

= 2(In−k + ww∗)ii′((ZZ∗)−1)j′jdt

= 2(In−k + ww∗)ii′(Ik + w∗w)j′jdt.

Therefore (wt)t≥0 is a diffusion with generator 1
2∆Ĝn,k

. Then, to conclude, we note that

it is indeed the Brownian motion on Ĝn,k because p is a Riemannian submersion with

totally geodesic fibers.

Remark 2.2. If we consider on C(n−k)×k the probability measure

dµ := cn,k det(Ik + w∗w)−ndw

with normalizing constant cn,k, then a direct computation shows that µ is the symmetric

and invariant measure for the diffusion (wt)t≥0, i.e. if f, g are smooth and compactly

supported functions on C(n−k)×k, then

∫

C(n−k)×k

(∆Ĝn,k
f)g dµ =

∫

C(n−k)×k

f(∆Ĝn,k
g) dµ

Remark 2.3. The complex Grassmannian Gn,k is a compact irreducible symmetric space

of rank k and the complex Stiefel manifold is a Riemannian homogeneous space (but is

not symmetric). As such, the Brownian motions on Gn,k and Vn,k and their distributions

and pathwise properties can be studied using representation theory and stochastic

differential geometry. The literature on those topics is nowadays quite substantial. We

for instance refer to the early works by Eugene Dynkin [14, 15] and Paul & Marie-Paule

Malliavin [24] or more recent presentations like [25] and the book [16] (see in particular

Chapter 8: Riemannian submersions and Symmetric spaces). In some sense, Theorem

2.1 provides a more pedestrian approach: We work in a specific choice of coordinates

within the algebra of complex matrices and describe the Gn,k and Vn,k Brownian motions

in those coordinates taking advantage of the additional structure given by the matrix

multiplication.
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2.4 Eigenvalue process

In this section, for later use, we collect some properties of the eigenvalues of the

process (Jt)t≥0 := (w∗
twt)t≥0 where (wt)t≥0 = (XtZ

−1
t )t≥0 is a Brownian motion on Ĝn,k

as in Theorem 2.1. We note that

Jt = w∗
twt = (Z−1

t )∗X∗
t XtZ

−1
t = (ZtZ

∗
t )

−1 − Ik

Therefore (Ik + J)−1 = ZZ∗, and the properties of J and its eigenvalues can be deduced

from the corresponding properties of the matrix Jacobi process ZZ∗ after basic algebraic
manipulations. In particular, one immediately has the following result.

Lemma 2.4. Let (Jt)t≥0 be given as above, then P(inf{t > 0, det(Jt) = 0} < +∞) = 0

and there exists a Brownian motion (Bt)t≥0 in Ck×k such that:

dJ =
√

Ik + JdB∗√Ik + J
√
J+

√
J
√
Ik + JdB

√
Ik + J+2(n−k+tr(J))(Ik+J)dt (2.5)

We explicitly note that the proof of P(inf{t > 0, det(Jt) = 0} < +∞) = 0 uses the fact

that k ≤ n− k.

Remark 2.5. The symmetric and invariant probability measure of the diffusion process

J can be easily obtained. Indeed, let w be a random variable on C(n−k)×k whose law is

the probability measure with density cn,k det(Ik + w∗w)−ndw. From Proposition 1 in [17]

one has for every bounded Borel function g and some normalization constant c′n,k that

E(g(w∗w)) = cn,k

∫

C(n−k)×k

g(w∗w) det(Ik + w∗w)−ndw

= c′n,k

∫

Ĥk

g(S) det(Ik + S)−n det(S)n−2kdS.

Thus, from Remark 2.2, the probability measure on the cone Ĥk of positive definite

Hermitian matrices with density c′n,k det(Ik + S)−n det(S)n−2kdS is the invariant and

symmetric probability measure for the diffusion process J .

Concerning the eigenvalues of J one obtains after applying techniques and results

from [11, 13, 18, 19] the following result:

Lemma 2.6. Let λ(t) = (λ1(t), . . . , λk(t)), t ≥ 0 be the eigenvalue process of the diffusion

matrix J . Assume that λ1(0) > · · · > λk(0), then the process λ(t) is non colliding, i.e.

P (∀ t ≥ 0, λ1(t) > · · · > λk(t)) = 1.

Moreover, we have

dλi = 2(1+λi)
√
λidB

i+2(1+λi)

(
n−2k+1−(2k−3)λi+2λi(1+λi)

∑

` 6=i

1

λi − λ`

)
dt, (2.6)

where (Bt)t≥0 is a Brownian motion in Rk.

Under the assumptions of the previous theorem, let us denote ρi =
1−λi

1+λi
, i = 1, . . . , k.

Note that ρ is the eigenvalue process of 2ZZ∗ − Ik. Then, as an application of Itô’s

formula, we have

dρi = −2
√

1− ρ2i dB
i − 2

(
(n− 2k + (n− 2k + 2)ρi) + 2

∑

` 6=i

1− ρ2i
ρ` − ρi

)
dt,

where (Bt)t≥0 is the same Brownian motion as in (2.6). Therefore, ρ is a diffusion process

with generator given by
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Ln,k = 2
k∑

i=1

(1− ρ2i )∂
2
i − 2

k∑

i=1

(
n− 2k + (n− 2k + 2)ρi + 2

∑

` 6=i

1− ρ2i
ρ` − ρi

)
∂i.

If we consider the Vandermonde function

h(ρ) =
∏

i>j

(ρi − ρj),

then we have for every smooth function f on [−1, 1]k that

Ln,kf = 2

(
1

h
Gn−2k,0(hf) +

1

6
k(k − 1) (3n− 4k + 2) f

)
.

where Ga,b :=
∑k

i=1(1 − ρ2i )∂
2
i − (a − b + (a + b + 2)ρi)∂i is a sum of Jacobi diffusion

operators on [−1, 1]. Therefore (ρ(t))t≥0 is a Karlin-McGregor diffusion associated to

a k-dimensional Jacobi process with independent components and conditioned by its

ground state. Using then the well-known Karlin-McGregor formula, see [2], one deduces

that for every t > 0, ρ(t) has a density with respect to the Lebesgue measure dx given by

e
1
3k(k−1)(3n−4k+2)t

∏
i>j(xi − xj)∏

i>j(ρi(0)− ρj(0))
det
(
pn−2k,0
t (ρi(0), xj)

)
1≤i,j≤k

1∆k
(x),

where pn−2k,0
t is the transition density of a one-dimensional Jacobi diffusion (see (4.4) for

a precise formula) and

∆k = {x ∈ [−1, 1]k,−1 ≤ x1 < · · · < xk ≤ 1}.

Moreover, when t → +∞, ρ(t) converges in distribution to the invariant probability

measure

dν = cn,k
∏

1≤i<j≤k

(xi − xj)
2

k∏

i=1

(1− xi)
n−2k 1∆k

(x)dx, (2.7)

where cn,k is again a normalization constant and it might be explicitly computed using

the well-known Selberg integral formula (see [1]).

3 Skew-product decomposition of the Brownian motion of the

Stiefel fibration

3.1 Connection form and horizontal Brownian motion on Vn,k

Let us consider the Stiefel fibration

U(k) → V̂n,k → Ĝn,k (3.1)

that was described in Sections 2.1 and 2.2. According to this fibration, one can see V̂n,k

as a U(k)-principal bundle over Ĝn,k. The next lemma gives a formula for the connection

form of this bundle.

Lemma 3.1. Consider on V̂n,k the u(k)-valued one form

ω :=
1

2

(
(X∗ Z∗)d

(
X

Z

)
− d(X∗ Z∗)

(
X

Z

))
=

1

2
(X∗dX − dX∗X + Z∗dZ − dZ∗Z) . (3.2)

Then, ω is the connection form of the bundle U(k) → V̂n,k → Ĝn,k.
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Proof. We first observe that if v =

(
X

Z

)
∈ Vn,k, then the tangent space to Vn,k at v is

given by

TvVn,k =

{(
A

B

)
∈ C

n×k, A∗X +X∗A+B∗Z + Z∗B = 0

}
.

Then, if θ ∈ uk, one easily computes that the generator of the one-parameter group

{q → qetθ}t∈R is given by the vector field on Vn,k whose value at v is

(
Xθ

Zθ

)
. Applying ω

to this vector field yields θ. To show that ω is the connection form it remains therefore

to prove that the kernel of ω is the horizontal space of the Riemannian submersion(
X

Z

)
→ XZ−1. This horizontal space at v, say Hv, is the orthogonal complement of

the vertical space at v, which is the subspace Vv of TvVn,k tangent to the fiber of the

submersion. The previous argument shows that

Vv =

{(
Xθ

Zθ

)
, θ ∈ u(k)

}
.

Therefore we have

Hv =

{(
A

B

)
∈ TvVn,k, ∀ θ ∈ u(k), tr (A∗Xθ +B∗Zθ) = 0

}
.

We deduce from this that

Hv =

{(
A

B

)
∈ TvVn,k, A

∗X +B∗Z = X∗A+ Z∗B

}
,

from which it is clear that ω|H = 0.

Our next goal is to describe the horizontal lift to V̂n,k of a Brownian motion on

Ĝn,k. We still denote by p : V̂n,k → Ĝn,k the Riemannian submersion. A continuous

semimartingale (Mt)t≥0 on V̂n,k is called horizontal if for every t ≥ 0,
∫
M [0,t]

ω = 0, where∫
M [0,t]

ω denotes the Stratonovich line integral of ω along the paths of M . If (Nt)t≥0

is a continuous semimartingale on Ĝn,k with N0 ∈ Ĝn,k, then if Ñ0 ∈ V̂n,k is such that

p(Ñ0) = N0, there exists a unique horizontal continuous semimartingale (Ñt)t≥0 on

V̂n,k such that p(Ñt) = Nt for every t ≥ 0. The semimartingale (Ñt)t≥0 is then called

the horizontal lift at Ñ0 of (Nt)t≥0 to V̂n,k. We refer to [5] or [16] for a more general

description of the horizontal lift of a semimartingale in the context of foliations.

We then consider on Ĝn,k the u(k)-valued one-form η given by

η :=
1

2

(
(Ik + w∗w)−1/2(dw∗ w − w∗dw)(Ik + w∗w)−1/2 (3.3)

−(Ik + w∗w)−1/2 d(Ik + w∗w)1/2 + d(Ik + w∗w)1/2 (Ik + w∗w)−1/2
)
.

Theorem 3.2. Let (wt)t≥0 be a Brownian motion on Ĝn,k started at w0 ∈ Ĝn,k as in

Theorem 2.1 and at =
∫
w[0,t]

η. Let

(
X0

Z0

)
∈ V̂n,k be such that X0Z

−1
0 = w0. The process

w̃t :=

(
wt

Ik

)
(Ik + w∗

twt)
−1/2Θt
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is the horizontal lift at

(
X0

Z0

)
of (wt)t≥0 to V̂n,k, where (Θt)t≥0 is the U(k)-valued solution

of the Stratonovich stochastic differential equation

{
dΘt = ◦dat Θt

Θ0 = (Z0Z
∗
0 )

−1/2Z0.

Proof. As before we denote by p the submersion

(
X

Z

)
→ XZ−1. It is easy to check that

for every t ≥ 0, p(w̃t) = wt and that w̃0 =

(
X0

Z0

)
. It is therefore enough to prove that w̃ is

a horizontal semimartingale, i.e. that
∫
w̃[0,t]

ω = 0. Denote

Xt = wt(Ik + w∗
twt)

−1/2Θt, Zt = (Ik + w∗
twt)

−1/2Θt

A long, but routine, computation shows that

1

2
(X∗

◦ dX − ◦dX
∗

X + Z
∗

◦ dZ − ◦dZ
∗

Z)

=−

1

2

(

◦dΘ∗Θ−Θ∗

◦ dΘ+Θ∗

(

◦ d(Ik + J)−1/2 (Ik + J)1/2 − (Ik + J)1/2 ◦ d(Ik + J)−1/2

)

Θ

+ Θ∗(Ik + J)−1/2(◦dw∗

w − w
∗

◦ dw)(Ik + J)−1/2Θ
)

.

where J = w∗w. Since ◦dΘ∗ = ◦dΘ−1 = −Θ−1 ◦ dΘΘ−1 and ◦dΘ = ◦daΘ with

◦da =
1

2
(Ik + J)−1/2(◦dw∗ w − w∗ ◦ dw)(Ik + J)−1/2

− 1

2

(
(Ik + J)−1/2 ◦ d(Ik + J)1/2 − ◦d(Ik + J)1/2 (Ik + J)−1/2

)

we conclude that
1

2
(X∗ ◦ dX − ◦dX∗X + Z∗ ◦ dZ − ◦dZ∗Z) = 0

and thus
∫
w̃[0,t]

ω = 0.

3.2 Skew-product decomposition of the Stiefel Brownian motion

We now turn to the description of the Brownian motion on V̂n,k as a skew-product.

Theorem 3.3. Let (wt)t≥0 be a Brownian motion on Ĝn,k started at w0 = X0Z
−1
0 ∈ Ĝn,k

as in Theorem 2.1 and let (Ωt)t≥0 be a Brownian motion on the unitary group U(k)

independent from (wt)t≥0. Let (Θt)t≥0 be the U(k)-valued solution of the Stratonovich

stochastic differential equation

{
dΘt = ◦dat Θt

Θ0 = (Z0Z
∗
0 )

−1/2Z0,

where at =
∫
w[0,t]

η. The process

(
wt

Ik

)
(Ik + w∗

twt)
−1/2Θt Ωt

is a Brownian motion on V̂n,k started at

(
X0

Z0

)
.
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Proof. We denote by ∆H the horizontal Laplacian and by ∆V the vertical Laplacian of the

Stiefel fibration; see [4] for the definitions of horizontal and vertical Laplacians. Since

the submersion V̂n,k → Ĝn,k is totally geodesic, the operators ∆H and ∆V commute (see

[4]). We note that the Laplace-Beltrami operator of V̂n,k is given by ∆V̂n,k
= ∆H +∆V

and that the horizontal lift of the Brownian motion on Ĝn,k is a diffusion with generator
1
2∆H, see [5]. The fibers of the submersion V̂n,k → Ĝn,k are isometric to U(k), thus if f

is a bounded Borel function on V̂n,k, one has

e
1
2 t∆Vf

(
X

Z

)
= E

(
f

(
XΩt

ZΩt

))
.

Since e
1
2 t∆V e

1
2 t∆H = e

1
2 t∆V̂n,k , we conclude from Theorem 3.2.

4 Limit theorems

Throughout the section, let (wt)t≥0 = (XtZ
−1
t )t≥0 be a Brownian motion on Ĝn,k

where

(
Xt

Zt

)

t≥0

is a Brownian motion on V̂n,k. Our goal is to prove Theorem 1.1. Without

loss of generality we will assume throughout the section that the eigenvalues of Z∗
0Z0 are

distinct; Even if the eigenvalues of the complex Jacobi process Z∗
t Zt are not distinct for

t = 0, they will be distinct for any t > 0, see [9, 11], and thus from the Markov property,

the limit Theorem 1.1 still holds.

4.1 Main limit theorem

We first give a limit theorem for the process
(∫ t

0
tr (w∗

sws)ds)
)
t≥0

that shall be used

in the next subsections. The method we use, a Girsanov transform, takes its root in

the paper by M. Yor [30] and was further developed in the situation of matrix Wishart

diffusions in [12] and in the situation of the real Jacobi matrix processes in Section 9.4.2

of the thesis [13]. Our result is the following:

Theorem 4.1. Let (Jt)t≥0 = (w∗
twt)t≥0. The following convergence holds in distribution

when t → +∞
1

t2

∫ t

0

tr(J)ds → X,

where X is a random variable on [0,+∞) with density
k(n−k)√
2πx3/2

e−
k2(n−k)2

2x (therefore X is

the inverse of a gamma distributed random variable).

The proof is rather long and will be decomposed in several steps. We first recall that

from Lemma 2.4, there exists a Brownian motion (Bt)t≥0 in Ck×k such that:

dJ =
√

Ik + JdB∗√Ik + J
√
J+

√
J
√
Ik + JdB

√
Ik + J+2(n−k+tr(J))(Ik+J)dt (4.1)

Lemma 4.2. We have

d(det(Ik+J)) = det(Ik+J)tr
(√

J(dB+ dB∗)
)
+2det(Ik+J)

(
k(n−k)+tr(J)

)
dt, (4.2)

and therefore

d(log det(Ik + J)) = tr
(√

J(dB+ dB∗)
)
+ 2k(n− k)dt. (4.3)

Proof. By Itô’s formula we have

d(det(Ik + J)) =

k∑

i,j=1

∂ det(Ik + J)

∂Jij
dJij +

1

2

k∑

i,j,i′,j′=1

∂2 det(Ik + J)

∂Jij∂Ji′j′
dJijdJi′j′ .
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First, we know that

∂ det(J)

∂Jij
=

∂
∑k

`=1 Ji`J̃i`
∂Jij

= J̃ij

where J̃ = det(J)(JT )−1 is the cofactor of J . Hence the first order term writes det(Ik +

J)tr((Ik + J)−1dJ). Next, we will use the following formula to compute the cross second

order derivatives:

∂2 det(J)

∂x∂y
= (det(J))

(
tr

(
J−1 ∂2J

∂x∂y

)
+tr

(
J−1 ∂J

∂x

)
tr

(
J−1 ∂J

∂y

)
−tr

(
J−1 ∂J

∂x
J−1 ∂J

∂y

))
.

Since ∂J
∂Jij

= Eij , clearly
∂2J

∂Jij∂Ji′j′
= 0. We also have J−1 ∂J

∂Jij
=
∑

`(J
−1)`iE`j and

tr
(
J−1 ∂J

∂Jij

)
= (J−1)ji. Hence

∂2 det(J)

∂Jij∂Ji′j′
= (det(J))

(
(J−1)ji(J

−1)j′i′ − (J−1)j′i(J
−1)ji′

)
,

and

∂2 det(Ik + J)

∂Jij∂Ji′j′
= (det(Ik+J))

(
((Ik+J)−1)ji((Ik+J)−1)j′i′−((Ik+J)−1)j′i((Ik+J)−1)ji′

)
.

Moreover, from (4.1) we know that

dJijdJi′j′ = 2dt

(
(J + J2)i′j(Ik + J)ij′ + (J + J2)ij′(Ik + J)i′j

)

Hence we have

d(det(Ik + J)) = det(Ik + J)tr((Ik + J)−1dJ)

+

k∑

i,j,i′,j′=1

det(Ik + J)

(
((Ik + J)−1)ji((Ik + J)−1)j′i′ − ((Ik + J)−1)j′i((Ik + J)−1)ji′

)

·
(
(J + J2)i′j(Ik + J)ij′ + (J + J2)ij′(Ik + J)i′j

)
dt

= det(Ik + J)tr((Ik + J)−1dJ)− 2(k − 1) det(Ik + J)tr(J)dt.

From (4.1) we know

tr((Ik + J)−1dJ) = tr
(√

J(dB+ dB∗)
)
+ 2k(n− k + tr(J))dt.

Hence

d(det(Ik + J)) = det(Ik + J) tr
(√

J(dB+ dB∗)
)
+ 2det(Ik + J)(k(n− k) + tr(J))dt.

As a direct consequence of d〈det(Ik + J), det(Ik + J)〉 = 4 det(Ik + J)2tr(J)dt, we obtain

(4.3) using Itô’s formula.

Lemma 4.3. For every α ≥ 0 the process

Mα
t = e2kα(n−k)t

(
det(Ik + J0)

det(Ik + Jt)

)α

exp

(
−2α2

∫ t

0

tr(J)ds

)

is a martingale.
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Proof. Consider the exponential local martingale

Mα
t := exp

(
− α

∫ t

0

tr(
√
J(dB+ dB∗))− 2α2

∫ t

0

tr(J)ds

)
,

where B is the Brownian motion as given in Theorem 4.2. From Lemma 4.2, we have

(
det(Ik + Jt)

det(Ik + J0)

)α

= exp

(
α

(∫ t

0

tr
(√

J(dB+ dB∗)
)
+ 2k(n− k)ds

))
,

and thus

Mα
t = e2kα(n−k)t

(
det(Ik + J0)

det(Ik + Jt)

)α

exp

(
−2α2

∫ t

0

tr(J)ds

)
.

From this expression, it is clear that there exists a constant C > 0 such that we almost

surely have |Mα
t | ≤ Ce2kα(n−k)t and thus the process (Mα

t )t≥0 is a martingale.

In the next lemma, we provide a formula for the Laplace transform of the functional∫ t

0
tr(J)ds using a Girsanov transform. In this computation, the transition kernel of

one-dimensional Jacobi diffusions naturally appears. We recall the formula for this

transition kernel. If we denote by pa,bt (x, y) the transition density, with respect to the

Lebesgue measure, of the diffusion with generator

2(1− x2)
∂2

∂x2
− 2 ((a+ b+ 2)x+ a− b)

∂

∂x

and initiated from x ∈ (−1, 1), then we have

pa,bt (x, y) = (1 + y)b(1− y)a
+∞∑

m=0

cm,a,be
−2m(m+a+b+1)tP a,b

m (x)P a,b
m (y), (4.4)

where cm,a,b = 2m+a+b+1
2a+b+1

Γ(m+a+b+1)Γ(m+1)
Γ(m+a+1)Γ(m+b+1) and where P a,b

m (x), m ∈ Z≥0 are the Jacobi

polynomials given by

P a,b
m (x) =

(−1)m

2mm!(1− x)a(1 + x)b
dm

dxm
((1− x)a+m(1 + x)b+m).

Lemma 4.4. For every α ≥ 0 and t > 0

E

(
e−2α2

∫ t
0
tr(J)ds

)

=Ce(
1
3k(k−1)(3n−4k+6α+2)−2k(n−k)α)t

∫

∆k

det



pn−2k,2α
t

(
1−λi(0)
1+λi(0)

, xj

)

(1 + xj)α




i,j

∏

i>j

(xi − xj) dx.

where

C =
∏

`

(1 + λ`(0))
α

2α

∏

i>j

(1 + λi(0))(1 + λj(0))

2(λj(0)− λi(0))

is the normalization constant, λ1(0), · · · , λk(0) are the ordered eigenvalues of J0, p
n−2k,2α
t

is given by the formula (4.4) and

∆k = {x ∈ [−1, 1]k,−1 ≤ x1 < · · · < xk ≤ 1}.
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Proof. Let α ≥ 0 and consider the probability measure Pα defined by

Pα|Ft
= Mα

t · P |Ft
.

We first note that

E

(
e−2α2

∫ t
0
tr(J)ds

)
= e−2k(n−k)αt

E
α

[(
det(Ik + Jt)

det(Ik + J0)

)α]
. (4.5)

From Girsanov theorem, the process

βt = Bt + 2α

∫ t

0

√
Jds

is under Pα a k × k-matrix-valued Brownian motion and we have

dJ =
√
Ik + Jdβ∗√Ik + J

√
J+

√
J
√
Ik + Jdβ

√
Ik + J+2 (n− k − 2αJ + tr(J)) (Ik+J)dt.

We now denote by λ(t) = (λi(t))1≤i≤k the eigenvalues of Jt, t ≥ 0. From the previous

equation satisfied by J we deduce that there exists a Brownian motion (Bt)t≥0 in Rk for

the probability measure Pα such that

dλi = 2(1+λi)
√
λidB

i+2(1+λi)

(
n−2k+1− (2k+2α−3)λi+2λi(1+λi)

∑

` 6=i

1

λi − λ`

)
dt.

(4.6)

Let us denote ρi =
1−λi

1+λi
, i = 1, . . . , k. Then, using Itô’s formula and the previous equation,

we have

dρi = −2
√

1− ρ2i dB
i − 2


(n− 2k − 2α+ (n− 2k + 6α+ 2)ρi) + 2

∑

` 6=i

1− ρ2i
ρ` − ρi


 dt.

Using then the formula for the density of non-colliding Jacobi processes, see [2], we

deduce that the process (ρ(t))t≥0 has, under P
α, a density with respect to the Lebesgue

measure dx given by

e
1
3k(k−1)(3n−4k+6α+2)t

∏
i>j(xi − xj)∏

i>j(ρi(0)− ρj(0))
det
(
pn−2k,2α
t (ρi(0), xj)

)
1≤i,j≤k

1∆k
(x).

We conclude then with (4.5).

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.4, we have for every α ≥ 0 and t > 0

E

(
e−2α2

∫ t
0
tr(J)ds

)
(4.7)

=Ce(
1
3k(k−1)(3n−4k+6α+2)−2k(n−k)α)t

∫

∆k

det



pn−2k,2α
t

(
1−λi(0)
1+λi(0)

, xj

)

(1 + xj)α




i,j

∏

i>j

(xi − xj) dx.

In order to analyze the large time behavior of this Laplace transform we we will use

the formula (4.4). We can write

pn−2k,2α
t (x, y)

=(1 + y)2α(1− y)n−2k
+∞∑

m=0

cm,n−2k+2αe
−2m(m+n−2k+2α+1)tPn−2k,2α

m (x)Pn−2k,2α
m (y),
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Similarly to [11], or Section 3.9.1 in [2], denoting as before ρi(0) = 1−λi(0)
1+λi(0)

we now

compute

det
(
pn−2k,2α
t (ρi(0), xj)

)
1≤i,j≤k

=
∑

σ∈Sk

sgn(σ)

k∏

i=1

pn−2k,2α
t (ρσ(i)(0), xi)

=
∑

σ∈Sk

sgn(σ)

k∏

i=1

[
(1− xi)

n−2k(1 + xi)
2α

×
+∞∑

m=0

cm,n−2k+2αe
−2m(m+n−2k+2α+1)tPn−2k,2α

m (ρσ(i)(0))P
n−2k,2α
m (xi)

]

=Vα(x)
∑

σ∈Sk

sgn(σ)

×
+∞∑

m1,··· ,mk=0

k∏

i=1

cmi,n−2k+2αe
−2mi(mi+n−2k+2α+1)tPn−2k,2α

mi
(ρσ(i)(0))P

n−2k,2α
mi

(xi)

where Vα(x) =
∏k

i=1(1− xi)
n−2k(1 + xi)

2α. We can now write

∑

σ∈Sk

sgn(σ)
+∞∑

m1,··· ,mk=0

k∏

i=1

cmi,n−2k+2αe
−2mi(mi+n−2k+2α+1)tPn−2k,2α

mi
(ρσ(i)(0))P

n−2k,2α
mi

(xi)

=

+∞∑

m1,··· ,mk=0

(
k∏

i=1

cmi,n−2k+2αe
−2mi(mi+n−2k+2α+1)tPn−2k,2α

mi
(xi)

)

×
∑

σ∈Sk

sgn(σ)
k∏

i=1

Pn−2k,2α
mi

(ρσ(i)(0))

=

+∞∑

m1,··· ,mk=0

(
k∏

i=1

cmi,n−2k+2αe
−2mi(mi+n−2k+2α+1)tPn−2k,2α

mi
(xi)

)

× det
(
Pn−2k,2α
mi

(ρj(0))
)
1≤i,j≤k

.

By skew-symmetrization, we can rewrite the previous sum as

∑

m1<···<mk

(
k∏

i=1

cmi,n−2k+2αe
−2mi(mi+n−2k+2α+1)t

)

× det
(
Pn−2k,2α
mi

(xj)
)
1≤i,j≤k

det
(
Pn−2k,2α
mi

(ρj(0))
)
1≤i,j≤k

.

Let us note that when t → +∞, the term of leading order in this sum corresponds to

(m1, · · · ,mk) = (0, 1, · · · , k − 1) and is given by
(

k∏

i=1

ci−1,n−2k+2α

)
e−

1
3k(k−1)(3n−4k+6α+2)t

× det
(
Pn−2k,2α
i−1 (xj)

)
1≤i,j≤k

det
(
Pn−2k,2α
i−1 (ρj(0))

)
1≤i,j≤k

(4.8)

On the other hand, from (4.7) one has for every λ ≥ 0 and t > 0 that

E

(
e−

λ
t2

∫ t
0
tr(J)ds

)

=Ce

(
1
3k(k−1)

(
3n−4k+6

√
λ√
2t

+2
)
−2k(n−k)

√
λ√
2t

)
t
∫

∆k

det


p

n−2k,2
√

λ√
2t

t (ρi(0), xj)

(1 + xj)
√

λ√
2t




i,j

∏

i>j

(xi − xj) dx.
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Using (4.8), one then deduces that for every λ ≥ 0,

lim
t→+∞

E

(
e−

λ
t2

∫ t
0
tr(J)ds

)
= C̃e−k(n−k)

√
2λ, (4.9)

where C̃ is a constant depending only on n, k, ρi(0). For λ = 0, E
(
e−

λ
t2

∫ t
0
tr(J)ds

)
= 1

and therefore C̃ = 1. One now concludes using an inverse Laplace transform that the

following convergence takes place in distribution when t → +∞

1

t2

∫ t

0

tr(J)ds → X,

where X is a random variable on [0,+∞) with density
k(n−k)√
2πx3/2

e−
k2(n−k)2

2x . We incidentally

note that X is therefore distributed as the hitting time of k(n− k) by a one-dimensional

Brownian motion, even though this does not seem to be readily explainable.

4.2 Asymptotics of a generalized stochastic area

By the definition of the one-form η in (3.3), we note that

∫

w[0,t]

tr(η) =
1

2
tr

[∫ t

0

(Ik + J)−1/2(◦dw∗ w − w∗ ◦ dw)(Ik + J)−1/2

]

=
1

2
tr

[∫ t

0

(Ik + J)−1/2(dw∗ w − w∗dw)(Ik + J)−1/2

]
(4.10)

where as before J = w∗w. From simple computations one can verify that

tr(dη) = ∂∂ log det(Ik + w∗w),

which implies that itr(dη) is the Kähler form on Ĝn,k. Therefore i
∫
w[0,t]

tr(η) can be, in

some sense, considered as a generalized stochastic area process on Ĝn,k; we refer to

[6] for further explanation on the terminology of generalized stochastic area. In the

proposition below we deduce large time limit distributions of such functionals.

Proposition 4.5. The following convergence holds in distribution when t → +∞
1

it

∫

w[0,t]

tr(η) → Ck(n−k),

where Ck(n−k) is a Cauchy distribution of parameter k(n− k).

Proof. Using (2.4), similarly to the proof of (4.1) one can check that

dw∗w − w∗dw =
√
Ik + JdB∗√Ik + J

√
J −

√
J
√
Ik + JdB

√
Ik + J

where (Bt)t≥0 is a k × k-matrix-valued Brownian motion. Therefore,

(Ik + J)−1/2(dw∗ w − w∗dw)(Ik + J)−1/2 = dB∗√J −
√
JdB

Consider then the diagonalization of J = V ΛV ∗, where V ∈ U(k) and Λ = diag{λ1, . . . , λk}.
We obtain

dB∗√J −
√
JdB = V (V −1dB∗V

√
Λ−

√
ΛV −1dBV )V −1.

Therefore from (4.10), we have in distribution that
∫

w[0,t]

tr(η) = iB∫ t
0
tr(J)ds
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where B is a one-dimensional Brownian motion independent from the process tr(J).

Therefore, for every λ > 0,

E

(
e−λ 1

i

∫
w[0,t]

tr(η)
)
= E

(
e
−λB∫ t

0 tr(J)ds

)
= E

(
e−

λ2

2

∫ t
0
tr(J)ds

)
.

We conclude then from (4.9) after straightforward computations

4.3 Asymptotic windings

We are now interested in the windings of the complex valued process det(Zt). We

first note that from Theorem 3.3, we have identity in law

det(Zt) = det(Ik + w∗
twt)

−1/2 detΘt detΩt.

We shall then use the following result.

Lemma 4.6. Let G be a connected compact Lie group ofm×mmatrices with Lie algebra

g. Let (Mt)t≥0 be a g-valued continuous semimartingale such that M0 = 0 and let (Ct)t≥0

be the G-valued solution of the Stratonovich stochastic differential equation

dCt = (◦dMt)Ct

Then, for t ≥ 0, detCt = (detC0) exp (tr(Mt)).

Proof. Let T > 0. Consider on the time interval [0, T ] the sequence of G-valued semi-

martingales (Cn
t )0≤t≤T inductively defined by

Cn
t = Cn

tk
exp

(
2n

T
(t− tk)(Mtk+1

−Mtk)

)
, tk ≤ t ≤ tk+1,

where tk = kT
2n , k = 0, . . . , 2n. From Theorem 2 in [21], the sequence of semimartingales

(Cn
t )0≤t≤T converges in probability to (Ct)0≤t≤T uniformly on [0, T ]. However,

det(Cn
t ) = det(Cn

tk
) exp

(
2n

T
(t− tk)tr(Mtk+1

−Mtk)

)
, tk ≤ t ≤ tk+1.

We deduce therefore by induction that

det(Cn
T ) = (detC0) exp (tr(MT )) .

Letting then n → +∞ yields the conclusion.

Using the previous lemma, we deduce the following:

Lemma 4.7. For every t ≥ 0, detΘt =
detZ0

| detZ0| exp
(∫

w[0,t]
tr(η)

)
.

Proof. We have

{
dΘt = ◦d

(∫
w[0,t]

η
)
Θt

Θ0 = (Z0Z
∗
0 )

−1/2Z0.

Thus from Lemma 4.6 we have detΘt =
detZ0

| detZ0| exp
(
tr
(∫

w[0,t]
η
))

.

We are now finally in position to prove one of our main results.
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Theorem 4.8. One has the polar decomposition

det(Zt) = %te
iθt

where 0 < %t ≤ 1 is a continuous semimartingale and θt is a continuous martingale such

that the following convergence holds in distribution when t → +∞

θt
t
→ Ck(n−k),

where Ck(n−k) is a Cauchy distribution of parameter k(n− k).

Proof. From the decomposition det(Zt) = det(Ik + w∗
twt)

−1/2 detΘt detΩt one deduces

from Lemmas 4.6 and 4.7 that

%t = det(Ik + Jt)
−1/2, iθt = iθ0 + tr(Dt) +

∫

w[0,t]

tr(η)

where Dt is a Brownian motion on u(k) independent from w and θ0 is such that eiθ0 =
detZ0

| detZ0| . The conclusion follows then from Proposition 4.5.

Let us remark that it is also possible to compute the asymptotic law of the radial part

%t. Indeed, from the previous proof, we know that %t = det(Ik + Jt)
−1/2 and the limit

distribution of the ordered eigenvalues of (Ik − J)(Ik + J)−1 is computed explicitly in

(2.7) to be a distribution with density

cn,k
∏

1≤i<j≤k

(xi − xj)
2

k∏

i=1

(1− xi)
n−2k 1∆k

(x)dx.

Using then the Selberg’s integral formula, one obtains that in distribution one has

%t → %∞,

where ρ∞ is a random variable such that for every s ≥ 0

E(%s∞) = c̃n,k

k−1∏

j=0

Γ
(
s
2 + j + 1

)

Γ
(
s
2 + n− k + j + 1

)

where c̃n,k is a normalization constant. Thus, using uniqueness of the Mellin transform,

one concludes that

%2∞ =

k∏

j=1

Bj,n−k

where Bj,n−k are independent beta random variables with parameters (j, n− k). This

recovers a result by A. Rouault (Proposition 2.4 in [26]).

4.4 The case k ≥ n− k

In this section, we prove Theorem 1.1 in the case of k ≥ n − k. Thus, unlike the

rest of the paper, we assume in this section that k ≥ n− k. This is essentially a duality

argument equivalent to the isomorphism Gn,k ' Gn,n−k. Let

U =

(
X Y

Z V

)
∈ U(n)
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with Z ∈ Ck×k, det(Z) 6= 0. Using X∗X + Z∗Z = Ik and XX∗ + Y Y ∗ = In−k we deduce

the following equality of spectrum

sp(Z∗Z) = sp(Y Y ∗) ∪ {1}

and that the eigenvalue 1 of Z∗Z has multiplicity at least 2k − n. In particular, we have

det(Z∗Z) = det(Y Y ∗)

and

tr[(ZZ∗)−1 − Ik] = tr[(Y Y ∗)−1 − In−k].

Consider now a Brownian motion

Ut =

(
Xt Yt

Zt Vt

)
∈ U(n)

with Z0 ∈ Ck×k, det(Z0) 6= 0. The process (U∗
t )t≥0 is also a Brownian motion on U(n).

Therefore, when t → +∞,

| det(Zt)|2 = | det(Y ∗
t )|2 →

n−k∏

j=1

Bj,k

For the study of the winding process of det(Zt), we notice that in the case k ≤ n − k

the only part of the proof of Theorem 4.8 that actually uses the fact that k ≤ n − k is

the proof of Theorem 4.1 (in the case k > n − k the stochastic differential equation

for J = w∗w is only defined up to the hitting time inf{t ≥ 0, det Jt = 0} < +∞ and

the Girsanov transform method fails). To handle the case k ≥ n − k, we note that

trJ = tr[(ZZ∗)−1−Ik] = tr[(Y Y ∗)−1−In−k]. Since the process (U
∗
t )t≥0 is also a Brownian

motion on U(n), one can use the argument of the proof of Theorem 4.1 to deduce that

1

t2

∫ t

0

tr[(Y Y ∗)−1 − In−k]ds → X,

where X is a random variable on [0,+∞) with density
k(n−k)√
2πx3/2

e−
k2(n−k)2

2x . Therefore, the

conclusion of Theorem 4.8 still holds in the case of k ≥ n− k.

4.5 On the moments of detZt

To conclude the paper with a possible view toward free probability that concerns

the limit n → ∞ with k = αn (see [10]) we show that it is possible to give a formula

for the mixed moments of the process detZt that can be deduced from the previous

computations.

Let

Ut =

(
Xt Yt

Zt Wt

)

be a Brownian motion on the unitary group U(n) with Zt ∈ Ck×k, 1 ≤ k ≤ n − 1.

Assume that detZ0 6= 0. Let now p, q ∈ N. As before, from the decomposition det(Zt) =

det(Ik + w∗
twt)

−1/2 detΘt detΩt one has from Lemmas 4.6 and 4.7 that

det(Zt) = %te
iθt

with

%t = det(Ik + Jt)
−1/2, iθt = iθ0 + tr(Dt) +

∫

w[0,t]

tr(η)
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where Dt is a Brownian motion on u(k) independent from w and θ0 is such that eiθ0 =
detZ0

| detZ0| . Therefore, using the martingale of Lemma 4.3 and the Girsanov transform as in

Lemma 4.4, we obtain:

E
(
(detZt)

p(detZt)
q
)
= E(%p+q

t ei(p−q)θt)

= E(det(Ik + Jt)
−(p+q)/2ei(p−q)θt)

= ei(p−q)θ0−k(p−q)2t
E

(
det(Ik + Jt)

−(p+q)/2e(p−q)
∫
w[0,t]

tr(η)
)

= ei(p−q)θ0−k(p−q)2t
E

(
det(Ik + Jt)

−(p+q)/2e
(p−q)iB∫ t

0 tr(J)ds

)

= ei(p−q)θ0−k(p−q)2t
E

(
det(Ik + Jt)

−(p+q)/2e−
(p−q)2

2

∫ t
0
tr(J)ds

)

=
ei(p−q)θ0−k(p−q)2t−k(n−k)|p−q|t

det(I + J0)
1
2 |p−q| E

1
2 |p−q|

(
det(Ik + Jt)

−min(p,q)
)

This last term can be computed because from the proof of Lemma 4.4, we have

E
1
2 |p−q|

(
det(Ik + Jt)

−min(p,q)
)

=Ce(
1
3k(k−1)(3n−4k+3|p−q|+2))t

∫

∆k

det



p
n−2k,|p−q|
t

(
1−λi(0)
1+λi(0)

, xj

)

(1 + xj)−min(p,q)




i,j

∏

i>j

(xi − xj) dx.

where C is a normalization constant depending only on p, q and the ordered eigenvalues

of J0, and p
n−2k,|p−q|
t is given by the formula (4.4). We note that if q = 0 the formula

simplifies considerably and yields

E ((detZt)
p) = (detZ0)

pe−kp2t−k(n−k)pt.
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