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We study the radial parts of the Brownian motions on Kdhler and quaternion Kéhler
manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a conse-
quence a sharp Cheeger-Yau-type lower bound for the heat kernels of such manifolds

and also sharp Cheng'’s type estimates for the Dirichlet eigenvalues of metric balls.

1 Introduction

It is by now well established that on Riemannian manifolds the study of the radial
parts of the Brownian motions allows to prove the sharp Cheeger-Yau lower bound
[7] for the heat kernel, and as a consequence the sharp Cheng's estimate [8] for the
eigenvalues of metric balls, see the paper [10] and the book [9]. Those methods were
then extended in the framework of RCD spaces in [12] and adapted to sub-Riemannian
manifolds in [4]. The goal of the present paper is to use similar probabilistic techniques
to prove a sharp Cheeger-Yau heat kernel lower bound on Kéahler and quaternion
Kahler manifolds. In Kdhler manifold such techniques are available due to a recent
Laplacian comparison theorem proved by Ni-Zheng [13]. In quaternion Kédhler mani-

folds, we prove a sharp Laplacian comparison theorem that allows us to apply those
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2 F. Baudoin and G. Yang

techniques. Concerning the sharp lower bounds for the heat kernels, our results are then
the following.

In Kihler manifolds we obtain

Theorem 1.1 (Cheeger-Yau estimate on Kahler manifolds, see Theorem 4.3). Let M be
a Kéhler manifold with complex dimension m (i.e., the real dimension is 2m). Assume
that H > 4k and that Rict > (2m — 2)k for some k € R, where H denotes the holomorphic
sectional curvature and Ric* the orthogonal Ricci curvature. Then, denoting by pRx,y)
the Dirichlet heat kernel of M on a metric ball of radius R > 0 one has for every t > 0

and x, y inside of the ball,

PR, y) > ¢*R(0,dx,y)),

where q’f’R is the Dirichlet heat kernel of a metric ball of radius R in the Kdhler model

of holomorphic sectional curvature 4k.

The Kahler model for k = 0 is the complex flat space C™, for k = 1 it is the
complex projective space CP™ and for k = —1, it is the complex hyperbolic space CH™.

In quaternion Kahler manifolds, we obtain

Theorem 1.2 (Cheeger-Yau estimate on quaternion Kéhler manifolds, see Theorem 4.5).
Let M be a quaternion Kdhler manifold with quaternionic dimension m (i.e., the real
dimension is 4m). Assume that Q > 12k and that Rict > (4m —4)k for some k € R, where
Q denotes the quaternionic sectional curvature and Ric' the orthogonal Ricci curvature.
Then, denoting by p2(x, y) the Dirichlet heat kernel of M on a metric ball of radius R > 0

one has for every t > 0 and x, y inside of the ball,

p(x,y) > ¢¥R(0,dx,y)),

where q’;'R is now the Dirichlet heat kernel of a metric ball of radius R in the quaternion

Kahler model of quaternionic sectional curvature 12k.

The quaternion Kahler model for k¥ = 0 is the quaternionic flat space H™, for
k =1 it is the quaternionic projective space HP™ and for k = —1, it is the quaternionic
hyperbolic space HH™.

We note that since Kahler or quaternionic Kdhler manifolds are Riemannian

manifolds, the classical Cheeger-Yau lower bound [7] is available. However, the Rie-
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Brownian Motions and Heat Kernel Lower Bounds on Kédhler and Quaternion XKdhler Manifolds 3

mannian model spaces spheres and hyperbolic spaces are not Kdhler or quaternionic
Kahler models (except for m = 1), therefore the two above theorems are sharper.

The paper is organized as follows. In Section 2, we introduce the basic defini-
tions and notations used throughout the paper. We also study the Brownian motions
on the Kédhler and quaternion Kéhler models. Such study is important, since those
Brownian motions provide the model processes with respect to which we aim to develop
a comparison theory. In particular, the radial parts of those Brownian motions are
one-dimensional diffusions whose generators can explicitly be computed. A summary
of those generators is given in Section 2.3. In Section 3 we establish sharp Laplacian
comparison theorems on Kihler and quaternionic Kdhler manifolds. The Kéhler case is
known and due to Ni-Zheng [13]. We give a slightly different and self-contained proof
that is easy to adapt to the quaternion Kéhler case. The quaternion Kéhler case is new.
Both of those Laplacian comparison theorems are sharp in the sense that we obtain
an equality for the model spaces. Section 4 is devoted to the proof of the comparison
theorems. Using the approach by Ichihara [10] we prove, thanks to the results proved
in the previous sections, the sharp Cheeger-Yau lower bounds for the heat kernels. As
an easy consequence we deduce a sharp Cheng's type estimate for the 1st eigenvalue of

metric balls.

2 Brownian Motion on Kihler and Quaternion Kiahler Model Manifolds

In this section we fix notations and give some reminders about Kdhler and quaternion
Kihler manifolds and study the Brownian motions on the model spaces of those
geometries. Brownian motions on Kdhler models and quaternion Kdhler models have
already been studied in disparate places in the literature, so that the present section is
essentially a survey of known results. However, our goal is a unified presentation that
has interest on its own. We refer to [2], [3], and [5] and the references therein for further
details.

2.1 Basic definitions

Kahler and quaternion Kédhler manifolds are Riemannian manifolds equipped with some
invariant (1,1) tensors preserving the metric and inducing a complex or quaternionic
structure. In this paper, we will take the point of view of real Riemannian geometry
to study those structures. A detailed presentation of this viewpoint about Kéhler and
quaternion Kéhler manifolds is given in Chapters 2 and 14 of the book by Besse [6] to

which we refer for further references.
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4 F. Baudoin and G. Yang

Throughout the paper, let (M, g) be a smooth complete Riemannian manifold.

Denote by V the Levi-Civita connection on M.

2.1.1 Kdhler manifolds
Definition 2.1. The manifold (M, g) is called a Kahler manifold, if there exists a
smooth (1, 1) tensor J on M that satisfies the following:

e ForeveryxeM,andX,Y e T,M, g,(J, X,Y) =—g,X,J,Y);

e Forevery x € M, JZ = —Idg 5

o VJ=0.

The map J is called a complex structure.

On Kahler manifolds, we will be considering the following type of curvatures.
Let

R(X,Y,Z, W) = g((VxVy — VyVx — Vix y)Z, W)

be the Riemannian curvature tensor of (M, g). The holomorphic sectional curvature of
the Kahler manifold (M, g, J) is defined as

R(X,JX,JX,X)

H(X) = 9K, X2

The orthogonal Ricci curvature (see [14]) of the Kdhler manifold (M, g,J) is
defined for a vector field X such that g(X,X) = 1 by

Rict (X, X) = Ric(X,X) — H(X),
where Ric is the usual Riemannian Ricci tensor of (M, g).

2.1.2 Quaternion Kdhler manifolds
In the paper we shall use the following definition of quaternion Kédhler manifold, see [6,
Chapter 14].

Definition 2.2. The manifold (M, g) is called a quaternion Kdhler manifold, if there
exists a covering of M by open sets U; and, for each i, 3 smooth (1,1) tensors I,.J,K on
U; such that
e For every x € U, and X,Y € TM, 9,0, X,Y) = —g,(X,L,Y), g,(J,X,Y) =
—9x(X,J,Y), 9,(K, X, V) = —g,(X, K, Y);

e Foreveryx e U, IZ =J2 =KZ=ILJ,K, = —Tdg
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e Foreveryx € U;, and X € T,M VyxI, VyJ, V4K € span{l,J, K};
e For every x € U; N Uj, the vector space of endomorphisms of T,M generated

by I,,J,. K, is the same for i and j.

It is worth noting that in some cases like the quaternionic projective spaces for
topological reasons the tensors I, .J, K may not be defined globally. However, span{I, J, K}
may always be defined globally according to the last bullet point.

On quaternion Kahler manifolds, we will be considering the following curva-

tures. As above, let
R(X,Y,Z,W) = g(VxVy — VyVx — Vix y))Z, W)
be the Riemannian curvature tensor of (M, g). We define the quaternionic sectional

curvature of the quaternionic K&hler manifold (M, g,J) as

RX,IX,IX,X)+ RX,JX,JX,X) + R(X,KX,KX, X)

a0 = 9(X, X)?

We define the orthogonal Ricci curvature of the quaternionic Kéhler manifold
M, g,1,J,K) for a vector field X such that g(X,X) =1 by

Rict (X, X) = Ric(X, X) — Q(X),
where Ric is the usual Riemannian Ricci tensor of (M, g).

2.2 Model spaces and their Brownian motions

The constant curvature model spaces of Riemannian geometry are the Euclidean spaces,
the spheres and the hyperbolic spaces. Euclidean spaces are Kihler if the dimension is
even and quaternion Ké&hler if the dimension is a multiple of 4. The only spheres and
hyperbolic spaces that are Kahler are the 2D ones. The only spheres and hyperbolic
spaces that are quaternion Kahler are the 4D ones. In order to develop a comparison
geometry for the Brownian motion in higher dimensional Kdhler or quaternion Kéahler
geometry, one therefore needs to first study the Brownian motion on the models of
those geometries. In this section, we review the Kdhler and quaternion K&hler model
spaces and their Brownian motions. All of those model spaces are rank one Riemannian
symmetric spaces. As such, see [1], the radial parts of the Brownian motions are

diffusion processes.
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6 F. Baudoin and G. Yang

2.2.1 Kdhler models
Flat model. The flat model of a Kdhler manifold is

C"={(zy, - .2p), 21, 2y € C}

equipped with its standard Hermitian inner product. The complex structure J in that
case is just the component-wise multiplication by i. The Brownian motion (W,)., on C™

is the diffusion process associated with the Laplace operator

m

32 i
Aem =42 55 :Z_§+_'

=1 T

where x; is the real part of z;, y; its imaginary part and

(3 .3) a 1(8 .3)
— 1), —===-\—+t1—).
8Xi Byl Bzi 2 aXl aYl

One has
w,= (2,2,

where the Zi's are independent complex Brownian motions on C. The radial part of W
defined by

is itself a diffusion process with Bessel generator

92 2m—1 9

Lom= o + 22—~ 2
c or? r or

We note that the radial part of the Lebesgue measure on C™ then writes the following:

ﬂm

2 p2m-lgre p>0.
(m — 1)l

dﬂcm =

Positively curved model. The positively curved model of a K&hler manifold is the

complex projective space CP™. It can be constructed as follows. Consider the unit sphere

SZm+1 ={z= (Zl"“ ,zm_H) € Cm+1/ izl = 1}.
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Brownian Motions and Heat Kernel Lower Bounds on Kédhler and Quaternion XKdhler Manifolds 7

There is an isometric group action of S! = U(1) on S?*!, which is defined by
ew . (er ... ’Zerl) — (elézll . ,ezezmﬂ).

The quotient space S?™*+1/U(1) is defined as CP™ and the projection map = :
§2m+l . CP™ is a Riemannian submersion with totally geodesic fibers. The Kéhler
structure on CP™ is inherited from the one in C™*! through this construction.

To parametrize points in CP™ \ {0}, it is convenient to use the local inhomoge-
neous coordinates given by w; = zj/zm+1, 1<j<m,zeCnl, Z, 1 # 0. The point oo on
CP™ corresponds to z,, , = 0.

The submersion = allows one to construct the Brownian motion on CP™ from the
Brownian motion on §*”*!. Indeed, let (Z,),-, be a Brownian motion on the Riemannian
sphere S?"+1 ¢ C™*! started at the north pole. We call north pole the point with
complex coordinates z; = O,--- 1 Zymyy = L Since P(3t > 0,Z™*1(t) = 0) = 0, one can

use the local description of the submersion 7 in inhomogeneous coordinates to deduce

that
Z1 zm
Wt= L Pttt ¢ )r t>0r (1)
+1 +1 =
(Zl" z;"

is a Brownian motion on CP™, that is, is a diffusion process with generator

2

9
Acpm = 4(1 + |w?) Z S +401 + [Ww®)RR,
i1 Wk

where

m

R= ZJaW

The radial part of W defined by

Zi2 1
r, = arctan |W,| = arctan z ;m;l”z = arctan(zm—H',/l - |Z{"+1|2)
t

i=1

is a diffusion process with Jacobi generator

2

32 +((2m — 2)cotr+200t2r)—

Lepm =
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8 F. Baudoin and G. Yang

We note that Lepm = L™ 10 where £™10 is the Jacobi operator studied in the appendix

of [5]. In particular, the spectrum of CP™ is given by
Sp(CP™) = {4k(k +m), k > 1}.

Finally, we note that the radial part of the Riemannian volume measure writes

m

b
diicpm = m_1

(sinr)?™2sin2r)dr, 0<r< %
Negatively curved model. The negatively curved model of a Kéhler manifold is the
complex hyperbolic space CH™. It can be constructed as follows. Let us consider the

complex hyperboloid
H2m+1 {Ze(cm-‘rl |21|2 "+|Zm|2—|Zm+1|2=_1}C(Cm+1'

The group U(1) acts isometrically on #2™*!. The quotient space of #2™*! by this
action is defined to be CH™ and the projection map 7 : H?™*+! — CH™ is a Riemannian
submersion with totally geodesic fibers. Thus, as a differential manifold, the complex
hyperbolic space CH™ is simply the open unit ball in C™ with a Riemannian metric
inherited from the previous submersion. The Kdhler structure on CH™ is inherited from
the one in C™*! through the above construction.

To parametrize CH™, one can use the global inhomogeneous coordinates given
by w; = z]-/zerl where (zy,... 1 Zmi1) € #H2m+1 In those coordinates, the Laplace

operator of CH™ can be written as follows:

2

Acgm = 4(1 — |w?) — +4(1 - [w)RR,
Za Wi dWy
where
n 9
R R
2 5w

The Brownian motion (W;),.o on CH™ is the diffusion with generator Acgym. As

for the case of CP™, it may be represented in inhomogeneous coordinates as

1
Wt:( fzt+1""' i;j-l)’ t=0,
Zt Zt
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Brownian Motions and Heat Kernel Lower Bounds on Kédhler and Quaternion XKdhler Manifolds 9

where (Z},---,Z"*!) is a Brownian motion on #%™*1. The radial part of W defined by

" ;
|Zé|2 1 m+1,2
r, = arctanh|W,| = arctanh Z W = arctanh IZ;n—HIw/ 1z 2 =1

i=1

is a diffusion process with hyperbolic Jacobi generator

92 9
Legm = Pyl + ((2m — 2) cothr + 2 coth 2r)5.

Finally, we note that the radial part of the Riemannian volume measure writes

m

ducgm = ' (sinhr)?™ 2 sinh(2r)dr, r> 0.

T
(m—1)
2.2.2 Quaternion Kdhler models

Flat model. Let H be the non-commutative field of quaternions
H={q=t+xI+yJ+2zK, (t,x,y,2) € R},

where I,J,K satisfy I? = J? = K> = IJK = —1. For q = t + xI + yJ + zK € H, we denote
by g = t — xI — yJ — zK its conjugate, |q|* = t? + x* + y? + z? its squared norm and
Im(q) = (x,y,z) € R? its imaginary part.

The quaternionic structure I,J, K in that case is the component-wise multiplica-
tion by I,J, K, respectively. The Brownian motion (W,),. on H™ is the diffusion process

associated with the Laplace operator

m

%2 92 3% 32
Agm =Y — +—+— + —.
. Ezaﬁ ax? ' ay? | 972

i=1 i i i

One can represent
W, = (Q%,... ,Q;"),

where the Q''s are independent complex Brownian motions on H. The radial part of W
defined by
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10 F. Baudoin and G. Yang

is a diffusion process with Bessel generator

P L am-10
H™ = 9r2 roor

We note that the radial part of the Lebesgue measure on H™ then writes

n,Zm

2— r4m_1dr, r>0.
2m —1)!

dMHm =

Positively curved model. The positively curved model of a Kahler manifold is the
quaternionic projective space HP™. It can be constructed as follows. Consider the unit
sphere

S = {g =@y, Gmy) € H™ Nl = 1)

The group of unit quaternions is isomorphic to the Lie group SU(2). Thus, there is an

isometric group action of SU(2) on S*”*+3, which is defined by

qa-Gy 1 Gmp1) = @41 1 Q)

The quotient space S*™+3/SU(2) is defined as the quaternionic projective space
HP™ and the projection map = : S¥™*+3 — HP™ is a Riemannian submersion with totally
geodesic fibers. The quaternion Kéhler structure on HP™ is inherited from the one in
H™*! through this construction.

To parametrize points in HP™\ {oco}, we use the local inhomogeneous coordinates
given by w; = q&ﬁrlqm, 1<j<m,qeH" q,.; #0. The point co on HP™ corresponds
to g,,,1 = 0 and one can identify HP™ with H™ U {oo}.

As before, the submersion 7w allows to construct the Brownian motion on HP™
from the Riemannian Brownian motion on S*"*3. Indeed, let (Q;).. be a Brownian
motion on the Riemannian sphere S*™*3 < H™*! started at the north pole. We call
here north pole the point with quaternionic coordinates g, = 0,---,q,,,; = 1. Since
P@3t > 0,Q™t1(t) = 0) = 0, one deduces that

w, = (@phal, - @rhlar), t=o, (2)
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Brownian Motions and Heat Kernel Lower Bounds on Kdhler and Quaternion Kidhler Manifolds 11

is a Brownian motion on HP™, that is, is a diffusion process with generator

0

ow;

m
—8(1+ [w|®)Re [ D w;
j=1 J

m 2
Avom =41+ [W]?)2> Re —————

In real coordinates, we have w; = t; + x;,I 4+ y;J + z;K and

The radial part of W defined by

1
/ +1
r, = arctan |W,| = arctan(m 1—1|af |2)
t

is a diffusion process with Jacobi generator

92 B)
Liypm = —5 4m — 4) cotr + 6 cot 2r)—.
e = 5+ (( ) cotr + o

We note that Lgpm = £2m~1! where £2m~11 is the Jacobi operator studied in the

appendix of [5]. In particular, the spectrum of HP™ is given by
Sp(HP™) = {4k(k +2m + 1),k > 1}.

Finally, we note that the radial part of the Riemannian volume measure writes

2m

' (sinr)*™*sin2rddr, 0<r< %

dgpn = 2o D

Negatively curved model. The positively curved model of a Kdhler manifold is the
quaternionic hyperbolic space HH™. It can be constructed as follows. Let us consider

the quaternionic hyperboloid
Q4m+3 — {q e Hm-i-l, |q1|2 N |qm|2 _ |qm+1|2 — _1} C Hm+1'

The group SU(2) acts isometrically on Q*™*3, The quotient space of Q*"*+3 by
this action is defined to be HH™ and the projection map = : Q*"*t3 — HH™ is a
Riemannian submersion with totally geodesic fibers. The quaternion K&hler structure

on HH™ is inherited from the one in H™*1,
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12 F. Baudoin and G. Yang

To parametrize HH™, we use the global inhomogeneous coordinates given by
w; = qr_nlﬂqj where (qy,...,qy, 1) € Q*m+3 1Tn those coordinates, the Laplace operator of

HH™ can be written as follows:
m
Appm = 4(1 — 23R 8(1 IR —
—Y |W|)Ze(aka )+(+|Wl)ej_zlw

The Brownian motion (W,),.o on HH™ is the diffusion with generator Agzm. It

can be represented as
w,=(@hHal, - @rthlar), t=o,

where (Q,) . is a Brownian motion on Q*"*3,
The radial part of W defined by

1
r, = arctanh|W,| = arctanh{ ———,/|Q*™|2 — 1
[oXiany

is a diffusion process with hyperbolic Jacobi generator

32
Lygggm = ) + ((4m — 4) cothr + 6 coth 2r)—

Finally, we note that the radial part of the Riemannian volume measure writes

2m

_ 7 . am—4 _; 3
duggm = —4(2m Y (sinhr) sinh(2r)°dr, r>0.

We refer to [2] and [3] and references therein for complementary details.

2.3 Summary of the model spaces

For later use, and as a summary, we collect the results about the model spaces that
will be used later. Additionally, in those model spaces the holomorphic/quaternionic
sectional curvatures and orthogonal Ricci curvatures defined earlier may be computed

explicitly and yield the following results:
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Brownian Motions and Heat Kernel Lower Bounds on Kdhler and Quaternion Kahler Manifolds 13

TAaBLE 1 Radial Laplacians in Kdhler model spaces

M Radial Laplacian Radial measure
82 | 2m-1 39 m _
cm Lem = pred + ”; b ducm = Zh rém=1ldr
a2 m . — .
Cp™ Lepm = 5’? +((2m — 2) cotr + 2 cot 2r) - ducpm = Gaegy (sin r2m=2gin(2r) dr

n2 - m . — .
CH™ Legm = 867 + ((2m — 2) cothr + 2 coth 2r)% ducgm = ﬁ (sinh r)2™~2 ginh(2r) dr

TABLE 2 Curvatures of Kdhler model spaces

M H Rict
cm 0 0
cpm 4 2m — 2

TaBLE 3 Radial Laplacians in quaternion Kéhler model spaces

M Radial Laplacian Radial measure
32 | 4am-1 3 2m B
H™ Lym = 55 + 05— 45 dupgm = 2 gy N dr
n2 2m . _ .
HP™ Lygpm = 367 + ((4m — 4) cotr + 6 cot 2r)% dugpm = m (sinr¥m—%sin(2r)3 dr

HH™ Lypm = U5 + (4m — 4) cothr + 6coth2n) & duppm = gy (sinhr)*™~ 4 sinh(2r)? dr

TABLE 4 Curvatures of the quaternion Kahler model spaces

M Q Rict
H™ 0 0
Hp™ 12 iam — 4
HH™ 12 —(dm — 4)

3 Laplacian Comparison Theorems

This subsection is devoted to the proofs of the sharp Laplace comparison theorems in
Kahler and quaternion Kdhler manifolds. The main technical tool is the classical index
lemma. In the Kédhler case, the comparison theorem is due to Ni-Zheng [13] but seems to

be new in the quaternion Kdhler case.
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14 F. Baudoin and G. Yang

We introduce the comparison function.

Vkcot Vkr if k> 0,
F(k,r) = % if k=0, (3)
J|k|lcoth/|klr if k <O.

3.1 Kihler case

Let (M, g,J) be a complete Kdhler with complex dimension m (i.e., the real dimension
is 2m). We denote by d(x,y) the Riemannian distance between x,y € M and by A the
Laplace-Beltrami operator on M. The following Laplacian comparison theorem was
proved in [13]. As before, we denote by H the holomorphic sectional curvature of M

and by Ric™ its orthogonal Ricci curvature.

Theorem 3.1 (Ni-Zheng [13]). Let k € R. Assume that H > 4k and that Rict > 2m—2)k.
Let x, € M and denote r(x) = d(x,,x). Then, pointwise outside of the cut-locus of x,

and everywhere in the sense of distributions, one has
Ar < (2m — 2)F(k,r) + 2F (k, 2r).

Proof. The result can be found in [13]. We provide here a self-contained proof not only
for completeness but also because the structure of our proof will be generalized to the
quaternionic Kédhler case which is new.

We can assume m > 2 since for the case m = 1, the statement reduces to
the classical Laplacian comparison theorem in Riemannian geometry. Let x, € M and
X # Xg, which is not in the cut-locus of x;. Let y : [0,7(x)] — M be the unique length
parametrized geodesic connecting x; to x. At x, we consider an orthonormal frame
{X;(x),--+ ,X,,,(x)} such that

X, (x) =y (r(x), X,(x) = Jy'(r(x)).
We then have
2m
Ar(x) = D" V2r(X;(x), X;(x)).
i=1

We divide the above sum into three parts: V2r(X;(x),X;(x)), V?r(X,(x),X,(x)), and
2 V2r(X;(x), X;(x)). The 1st term V2r(X; (x), X, (x)) is zero because X, (x) = y'(r(x)).
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We now estimate the 2nd term. Note that the vector field defined along y by Jy’ is
parallel because J is parallel and y is a geodesic, thus satisfies V,,y" = 0. We consider

then the vector field defined along y by

5(4k, t) Iy

X(y(t) = s@k, 1) 4

where

sin vkt ifk>0,
sinh \/[k|t ifk <O.

From the index lemma we have

r(x) - - -
VArG00, %000 < [ (19,%,9,8) — (R 0%, y)) de
1
< o
= Sk, )2

RS S
= s(4k, r(x))2

r(x)
[ (s@k 02~ sk 02 ®ey', 30071 a
0

r(x)
/ (5’(4k, £)? — aks(4k, t)z) dt
0

< 2F(k, 2r(x)).

Finally, we estimate the last term leing Vzr(Xi(X),Xi(x)). In order to proceed,
we denote by {Xj, - ,X,,,} the vector fields along y obtained by parallel transport of

{X53(x),--- ,X,,,(x)}. We observe that everywhere along y, the family

{V/:JV/'X3, e 1X2m}

is an orthonormal frame. We consider then the vector field defined along y by

sk, t)

X;(y () = m

X(y(®),i=3,---,2m.
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16 F. Baudoin and G. Yang

From the index lemma we obtain

2m 2m r(x) . . o
i=3 i=3

2m

1 r(x) -~
< ST Z/O (s’(k, % — sk, O*(R(y', XD)X;, V’>) de
! =3

1 r(x) ) ) , 2m e
= W/o ((Zm ~ sl — sk D) Z?;(R()/ X)X, y') | de

<1
= s(k,T(x)2

2m -2 [T® ) )
SW/O (5 (k,t) —kﬁ(k,t) )dt

r(x)
/ ((2m —2)s'(k, 1) — s(k, t)*Rict(y/, J/)) dt
0

< (2m - 2)F(k, r(x)).
Therefore, we conclude
Ar(x) < (2m — 2)F(k, r(x)) + 2F (k, 2r(x)).
Finally, proving that everywhere in the sense of distributions, one has
Ar < (2m — 2)F(k,r) + 2F(k, 2r),

is similar to the corresponding proof in the Riemannian case (which relies on Calabi

lemma), so we skip the details. |

It is remarkable that the theorem is sharp on the model spaces C™,CP™ and
CH™. On C™, one has k = 0 and

@m — 2F(k, ) + 2F(k, 2r) = 2 =1

On CP™, one has k =1 and

(2m — 2)F(k,r) + 2F(k,2r) = (2m — 2) cotr + 2 cot 2r,
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and on CH™, one has k = —1 and
(2m — 2)F(k,r) + 2F(k,2r) = (2m — 2) cothr + 2 coth 2r.

3.2 Quaternion Kihler case

Let now (M, g,I,J,K) be a complete quaternion Kéhler with quaternionic dimension
m (i.e., the real dimension is 4m). We also denote by d(x,y) the Riemannian distance
between x,y € M and by A the Laplace-Beltrami operator on M. As before, we denote by

Q the quaternionic sectional curvature of M and by Ric" its orthogonal Ricci curvature.

Theorem 3.2. Let k € R. Assume that Q > 12k and that Rict > (4m — dk. Let
Xy € M and denote r(x) = d(xy, x). Then, pointwise outside of the cut-locus of x,, and

everywhere in the sense of distributions, one has
Ar < (4m — 4)F(k,r) + 6F(k, 2r).

Proof. The proof proceeds as in the K&hler case but is slightly more involved. As
before, we can assume m > 2 since for the case m = 1, the statement reduces to
the classical Laplacian comparison theorem in Riemannian geometry. Let x, € M and
X # Xy, which is not in the cut-locus of x. Let y : [0,r(x)] — M be the unique length
parametrized geodesic connecting x, to x At x, we consider an orthonormal frame
{X,(x),- - ,Xy,,(x)} such that

X (x) =y (r(x), X,(x) = Iy'(r(x)), X3(x) = Jy'(r(x), X,(x) = Ky'(r(x)).

We then have
am
Ar(x) = Z V2r(X; (%), X;(x)).
i=1
We divide the above sum into three parts: Vzr(X1 (x), X, (x)), Z?:z Vzr(Xi (x), X;(x)),
and finally Zg}) Vzr(Xi(X),Xi(X)). The 1st term Vzr(Xl (x),X,(x)) is zero because
X,(x) = y'(r(x)). Estimating the 2nd term requires more work than in the Kéhler
case because the vectors Iy’,Jy’ and Ky’ might not be parallel along y. Let us denote
by X,,X,, and X, the vector fields along y obtained by parallel transport along y of
X,(x),X;(x), and X, (x). Since along y one has

v, I1,V,J,V,K e span{Il,J, K}

1202 [udY 2| Uo J8sn Jnonosuuo) Jo AlsisAlun Aq 881.588S/66 L BeUIUIWI/SE0 L 0 |/I0P/8lo1Ee-80UBAPE/UIWI/WO9 dnoolwepese//:sd)y Wol) papeojumod



18 F. Baudoin and G. Yang

we deduce that along y one has
span{X,, X5, X,} = span{Iy’,Jy’,Ky'}.
Moreover, {X,, X3,X,} and {Iy’,Jy’,Ky’} are both orthonormal along y. One deduces

R(y/rXZIXZI )//) + R()//'X3/X3, )//) + R(]///X4,X4r J//)
=R(/" Iy, Iy',y) + R(",Jy" . Jy",v) + R(y', Ky, Ky', ¥")

=Q(y").
As a consequence, if we consider the vector field defined along y by

s(4k, t)

Xi(y(®) = s@k, 7(0)

X:(y(),1=2,3,4,

we obtain by the same computation as in the proof of theorem 3.1

4
> V2r(X;(x), X;(x)) < 6F(k, 2r(x)).
i=2

The estimate of the term Z:ﬁs Vzr(Xi(X),Xi(X)) is similar as in the proof of Theorem 3.1,

so we skip the details for conciseness. |

As in the Kéhler case, it is remarkable that the theorem is sharp on the model
spaces H™, HP™ and HH™.

4 Comparison Theorems for Radial Processes and Applications
4.1 1t6 formula for radial processes on Riemannian manifolds

To fix notations, we 1st recall the well-known Kendall theorem [11] about the It6 formula
for the radial parts of Brownian motions on a Riemannian manifold. Throughout this
subsection, (M, g) is a complete Riemannian manifold and A denotes the Laplace-
Beltrami operator. Let ((X;);q, (Py)ycy) be the diffusion process generated by A, that
is, the Brownian motion on M. Take x; € M and set r(x) := d(x,, x). We denote by Cut(x,)
the cut-locus of x;. Let ¢ be the life time of X.
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Theorem 4.1 (Kendall [11]). For each x; € M, there exist a non-decreasing continuous
process I, which increases only when X, € Cut(xy), and a Brownian motion g, on R with
(B); = 2t such that

tAL
r(Xpne) = r(Xo) + By + / Ar(Xg)ds —1,,, (5)
0

holds P, -almost surely.

4.2 Comparison theorems on Kidhler manifolds

Let (M, g,J) be a complete Kéhler with complex dimension m. Let ((X;);~q, (Py)ycn) be
the Brownian motion on M. As before, we fix a point x; € M. For x; € M, we consider

the solution of the stochastic equation

t
pF = d(xg, %) + /0 ((2m — 2)F(k, p¥) + 2F(k, 2p§)) ds + 28,

where g is a standard Brownian motion under P, .

With Laplacian comparison theorems and It6's formula (5) in hands, it is possi-
ble to apply mutatis mutandis the general available comparison methods developed in
the Riemannian case for instance by Ichihara [10]. We also refer to Sections 3.5, 3.6, and

4.5 in the book [9] by Hsu. This yields the following basic comparison result.

Theorem 4.2. Let k € R. Assume that H > 4k and that Rict > (2m — 2)k. Then, for
x,€M,R>0,ands<R

le{d(XO'Xt) <s t<tg}=> Py, {p{‘ <s, t< r,’g},

where 15 is the hitting time of the geodesic ball in M with center x; and radius R and r}f
the hitting time of the level R by p¥.

4.2.1 Cheeger-Yau-type lower bound for the heat kernel
A 1st corollary of Theorem 4.2 is a Cheeger-Yau-type lower bound for the heat kernel.
It gives a sharp lower bound for the Dirichlet heat kernel on balls in terms of the heat

kernel of a corresponding Kédhler model space.
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We introduce the following notation. For k € R, let L, be the diffusion operator

given by
% + ((2m — 2)Vk cot Vkr + 2vk cot 2vkr) 2. ifk>0
L={ i ams ifk=0

L+ (2m — 2)/Ik| coth /TkIr + 2/k| coth 2,/k[r) & if k <0

and let u; be the measure

(mﬂ% (sin vkr)2™=2 sin(2vkr) dr ifk>0
dig = {25y 2™ dr ifk=0

(sinh /|k|r)?™~2 sinh(2,/|k|r) dr ifk < 0.

7Tm
(m—=1)!k|m-1/2
Note that the operator L is symmetric with respect to the measure u;. With the

notations of Section 2.3, we have

L_y 1) = Legm, regm)r Lo hg) = Lem, uem), Ly, 1) = Lepm, epm)-

Moreover, depending on the sign of k, (L;, ;) is obtained from (L, u;), (Lo, o) Or
(L_y, ;) by a simple rescaling by /|k|.

Theorem 4.3 (Cheeger—Yau-type heat kernel lower bound). Let k € R. Assume that
H > 4k and that Rict > (2m — 2)k. Let R > 0. Let ((Xf)tzo, (Py)xeB(xo.R)) be a Brownian
motion on B(xy, R) with Dirichlet boundary condition. Let pR(t,x,y) be its heat kernel
with respect to the Riemannian volume measure u. Let now qllj (t,r,ry) be the heat kernel
with respect to pu; of the diffusion on [0, R] with generator L; and Dirichlet boundary

condition at R. Then, for every ¢ > 0 and x; € B(xy,R)
PRt x0,%1) = g (2,0, d(xq, x))).
Proof. From theorem 4.2, one has

N
/ pR(tthY)dM(Y) > / qllz(tr d(XOIXI)r r)dﬂk(r)'
B(x9,S) 0

When s — 07, one has

1(B(xg, ) ~ %sm ~ 11, (10, 51).
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On the other hand, from the Lebesgue differentiation theorem one has

1

: R R R
im ——— P x,y)duly) =p (it x,,x9) =p (L, Xy, X;)
50+ 1(B(X, ) JBxg.s) ! 170 071

and

1

S
lim PRICES) /O i (t, d(xg, %1), N (r) = g (8, d(xg, %,), 0) = g (¢, 0, d(xg, X7)).-

The conclusion follows. |

4.2.2 Cheng’s estimates for Dirichlet eigenvalues on metric balls
Anice corollary of the Cheeger—Yau-type heat kernel lower bound is a Cheng's type upper
bound for the Dirichlet eigenvalues of Riemannian balls in terms of the eigenvalues of

Riemannian balls in the corresponding Kéhler model.

Proposition 4.4 (Cheng’s type estimates). Let k € R. Assume that H > 4k and that
Rict > (2m — 2)k. Let R > 0. For xy € M let A,(By(xy, R)) denote the 1st Dirichlet
eigenvalue of the Riemannian ball B(x,,R) and let A;(m, k, R) denote the 1st Dirichlet
eigenvalue of the operator L, on the interval [0, R] with Dirichlet boundary condition at

R. Then, for every x, e Mand R > 0
)"I(B(XOIR)) S A'l(rnr k!R)

Proof. From spectral theory, one has

+o0
PRt x,y) =D e i(x))¢(p),
j=1

where the ;s are the Dirichlet eigenvalues of B(x,, R) and the ¢;'s the eigenfunctions.
One has a similar spectral expansion for qlg(t, ro, 7). Thus, from Corollary 4.3, when

t — —+oo one must have 1; < A,(m, k, R). [ |

4.3 Comparison theorems on quaternion Kdahler manifolds

In the quaternionic Kéhler framework the comparison theorems of Cheeger-Yau-type
and of Cheng's type might be obtained in a similar way as in the Kdhler case. The

difference is the model diffusion with respect to which the comparison is made.
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Let (M, g,I,J,K) be a complete quaternion Kédhler with quaternionic dimension

m and for k € R consider the following diffusion operator

% + ((4m — 9)Vk cot Vkr + 6Vk cot 2vkr) . ifk>0
R if k=0

L+ ((4m — 4)/Tk coth /TkIr + 6,/k| coth 2,/k[r) & if k <0

and measure

2m

m (Sin \/Er)4m_4 Sin(Z\/ET')3 dr ifk>0

dfiy = | 25 ¥ Ndr ifk=0

ooz (sinh V/kin*m* sinh(2y/[kir)® dr if k < 0.
Note that the operator L, is symmetric with respect to the measure ji; and that

with the notations of Section 2.3, we therefore have

(-Z_llﬂ/_]) = (Lyggm, Lggm), (ior/lo) = (Lygm, kgm), (i'llﬂ/l) = (Lgpm, ypm)-

As in the Kahler case, depending on the sign of k, (Zk,ﬁk) is obtained from (f,l,;ll),

(ZO, flg) or (i,l,,zl) by a simple rescaling by /|k|
By applying the same methods as before, we obtain the following results.

Theorem 4.5 (Cheeger—Yau-type lower bound). Let k € R. Assume that Q > 12k and
that Rict > (4m — 4)k. Let R > 0. Let (X200 Py)xeBxo,r)) D€ @ Brownian motion on
B(x,, R) with Dirichlet boundary condition. Let pf(t, x, y) be its heat kernel with respect
to the Riemannian volume measure p. Let now Zif(t, r,,Ty) be the heat kernel with respect
to ji;, of the diffusion on [0, R] with generator I; and Dirichlet boundary condition at R.
Then, for every t > 0 and x; € B(xy, R)

pR(tIXOle) z qllj(t: Ol d(XOIXI))'

Proposition 4.6 (Cheng's type estimates). Let k € R. Assume that Q > 12k and that
Rict > (4m — 4)k. Let R > 0. For Xg € M let A;(By(xq,R)) denote the 1st Dirichlet
eigenvalue of the Riemannian ball B(x,, R) and let Xl(m,k, R) denote the 1st Dirichlet

eigenvalue of the operator f,k on the interval [0, R] with Dirichlet boundary condition at
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R. Then, for every x, e Mand R > 0
A (B(xg,R)) < A,(m,k,R).
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