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We study the radial parts of the Brownian motions on Kähler and quaternion Kähler

manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a conse-

quence a sharp Cheeger–Yau-type lower bound for the heat kernels of such manifolds

and also sharp Cheng’s type estimates for the Dirichlet eigenvalues of metric balls.

1 Introduction

It is by now well established that on Riemannian manifolds the study of the radial

parts of the Brownian motions allows to prove the sharp Cheeger–Yau lower bound

[7] for the heat kernel, and as a consequence the sharp Cheng’s estimate [8] for the

eigenvalues of metric balls, see the paper [10] and the book [9]. Those methods were

then extended in the framework of RCD spaces in [12] and adapted to sub-Riemannian

manifolds in [4]. The goal of the present paper is to use similar probabilistic techniques

to prove a sharp Cheeger–Yau heat kernel lower bound on Kähler and quaternion

Kähler manifolds. In Kähler manifold such techniques are available due to a recent

Laplacian comparison theorem proved by Ni–Zheng [13]. In quaternion Kähler mani-

folds, we prove a sharp Laplacian comparison theorem that allows us to apply those
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2 F. Baudoin and G. Yang

techniques. Concerning the sharp lower bounds for the heat kernels, our results are then

the following.

In Kähler manifolds we obtain

Theorem 1.1 (Cheeger–Yau estimate on Kähler manifolds, see Theorem 4.3). Let M be

a Kähler manifold with complex dimension m (i.e., the real dimension is 2m). Assume

that H ≥ 4k and that Ric⊥ ≥ (2m−2)k for some k ∈ R, where H denotes the holomorphic

sectional curvature and Ric⊥ the orthogonal Ricci curvature. Then, denoting by pR
t (x, y)

the Dirichlet heat kernel of M on a metric ball of radius R > 0 one has for every t > 0

and x, y inside of the ball,

pR
t (x, y) ≥ qk,R

t (0, d(x, y)),

where qk,R
t is the Dirichlet heat kernel of a metric ball of radius R in the Kähler model

of holomorphic sectional curvature 4k.

The Kähler model for k = 0 is the complex flat space C
m, for k = 1 it is the

complex projective space CPm and for k = −1, it is the complex hyperbolic space CHm.

In quaternion Kähler manifolds, we obtain

Theorem 1.2 (Cheeger–Yau estimate on quaternion Kähler manifolds, see Theorem 4.5).

Let M be a quaternion Kähler manifold with quaternionic dimension m (i.e., the real

dimension is 4m). Assume that Q ≥ 12k and that Ric⊥ ≥ (4m−4)k for some k ∈ R, where

Q denotes the quaternionic sectional curvature and Ric⊥ the orthogonal Ricci curvature.

Then, denoting by pR
t (x, y) the Dirichlet heat kernel of M on a metric ball of radius R > 0

one has for every t > 0 and x, y inside of the ball,

pt(x, y) ≥ qk,R
t (0, d(x, y)),

where qk,R
t is now the Dirichlet heat kernel of a metric ball of radius R in the quaternion

Kähler model of quaternionic sectional curvature 12k.

The quaternion Kähler model for k = 0 is the quaternionic flat space H
m, for

k = 1 it is the quaternionic projective space HPm and for k = −1, it is the quaternionic

hyperbolic space HHm.

We note that since Kähler or quaternionic Kähler manifolds are Riemannian

manifolds, the classical Cheeger–Yau lower bound [7] is available. However, the Rie-
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 3

mannian model spaces spheres and hyperbolic spaces are not Kähler or quaternionic

Kähler models (except for m = 1), therefore the two above theorems are sharper.

The paper is organized as follows. In Section 2, we introduce the basic defini-

tions and notations used throughout the paper. We also study the Brownian motions

on the Kähler and quaternion Kähler models. Such study is important, since those

Brownian motions provide the model processes with respect to which we aim to develop

a comparison theory. In particular, the radial parts of those Brownian motions are

one-dimensional diffusions whose generators can explicitly be computed. A summary

of those generators is given in Section 2.3. In Section 3 we establish sharp Laplacian

comparison theorems on Kähler and quaternionic Kähler manifolds. The Kähler case is

known and due to Ni–Zheng [13]. We give a slightly different and self-contained proof

that is easy to adapt to the quaternion Kähler case. The quaternion Kähler case is new.

Both of those Laplacian comparison theorems are sharp in the sense that we obtain

an equality for the model spaces. Section 4 is devoted to the proof of the comparison

theorems. Using the approach by Ichihara [10] we prove, thanks to the results proved

in the previous sections, the sharp Cheeger–Yau lower bounds for the heat kernels. As

an easy consequence we deduce a sharp Cheng’s type estimate for the 1st eigenvalue of

metric balls.

2 Brownian Motion on Kähler and Quaternion Kähler Model Manifolds

In this section we fix notations and give some reminders about Kähler and quaternion

Kähler manifolds and study the Brownian motions on the model spaces of those

geometries. Brownian motions on Kähler models and quaternion Kähler models have

already been studied in disparate places in the literature, so that the present section is

essentially a survey of known results. However, our goal is a unified presentation that

has interest on its own. We refer to [2], [3], and [5] and the references therein for further

details.

2.1 Basic definitions

Kähler and quaternion Kähler manifolds are Riemannian manifolds equipped with some

invariant (1, 1) tensors preserving the metric and inducing a complex or quaternionic

structure. In this paper, we will take the point of view of real Riemannian geometry

to study those structures. A detailed presentation of this viewpoint about Kähler and

quaternion Kähler manifolds is given in Chapters 2 and 14 of the book by Besse [6] to

which we refer for further references.
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4 F. Baudoin and G. Yang

Throughout the paper, let (M, g) be a smooth complete Riemannian manifold.

Denote by ∇ the Levi-Civita connection on M.

2.1.1 Kähler manifolds

Definition 2.1. The manifold (M, g) is called a Kähler manifold, if there exists a

smooth (1, 1) tensor J on M that satisfies the following:

• For every x ∈ M, and X, Y ∈ TxM, gx(JxX, Y) = −gx(X, JxY);

• For every x ∈ M, J2
x = −IdTxM

;

• ∇J=0.

The map J is called a complex structure.

On Kähler manifolds, we will be considering the following type of curvatures.

Let

R(X, Y, Z, W) = g((∇X∇Y − ∇Y∇X − ∇[X,Y])Z, W)

be the Riemannian curvature tensor of (M, g). The holomorphic sectional curvature of

the Kähler manifold (M, g, J) is defined as

H(X) =
R(X, JX, JX, X)

g(X, X)2
.

The orthogonal Ricci curvature (see [14]) of the Kähler manifold (M, g, J) is

defined for a vector field X such that g(X, X) = 1 by

Ric⊥(X, X) = Ric(X, X) − H(X),

where Ric is the usual Riemannian Ricci tensor of (M, g).

2.1.2 Quaternion Kähler manifolds

In the paper we shall use the following definition of quaternion Kähler manifold, see [6,

Chapter 14].

Definition 2.2. The manifold (M, g) is called a quaternion Kähler manifold, if there

exists a covering of M by open sets Ui and, for each i, 3 smooth (1, 1) tensors I, J, K on

Ui such that

• For every x ∈ Ui, and X, Y ∈ TxM, gx(IxX, Y) = −gx(X, IxY), gx(JxX, Y) =
−gx(X, JxY), gx(KxX, Y) = −gx(X, KxY);

• For every x ∈ Ui, I2
x = J2

x = K2
x = IxJxKx = −IdTxM

;
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 5

• For every x ∈ Ui, and X ∈ TxM ∇X I, ∇XJ, ∇XK ∈ span{I, J, K};
• For every x ∈ Ui ∩ Uj, the vector space of endomorphisms of TxM generated

by Ix, Jx, Kx is the same for i and j.

It is worth noting that in some cases like the quaternionic projective spaces for

topological reasons the tensors I, J, K may not be defined globally. However, span{I, J, K}
may always be defined globally according to the last bullet point.

On quaternion Kähler manifolds, we will be considering the following curva-

tures. As above, let

R(X, Y, Z, W) = g((∇X∇Y − ∇Y∇X − ∇[X,Y])Z, W)

be the Riemannian curvature tensor of (M, g). We define the quaternionic sectional

curvature of the quaternionic Kähler manifold (M, g, J) as

Q(X) =
R(X, IX, IX, X) + R(X, JX, JX, X) + R(X, KX, KX, X)

g(X, X)2
.

We define the orthogonal Ricci curvature of the quaternionic Kähler manifold

(M, g, I, J, K) for a vector field X such that g(X, X) = 1 by

Ric⊥(X, X) = Ric(X, X) − Q(X),

where Ric is the usual Riemannian Ricci tensor of (M, g).

2.2 Model spaces and their Brownian motions

The constant curvature model spaces of Riemannian geometry are the Euclidean spaces,

the spheres and the hyperbolic spaces. Euclidean spaces are Kähler if the dimension is

even and quaternion Kähler if the dimension is a multiple of 4. The only spheres and

hyperbolic spaces that are Kähler are the 2D ones. The only spheres and hyperbolic

spaces that are quaternion Kähler are the 4D ones. In order to develop a comparison

geometry for the Brownian motion in higher dimensional Kähler or quaternion Kähler

geometry, one therefore needs to first study the Brownian motion on the models of

those geometries. In this section, we review the Kähler and quaternion Kähler model

spaces and their Brownian motions. All of those model spaces are rank one Riemannian

symmetric spaces. As such, see [1], the radial parts of the Brownian motions are

diffusion processes.
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6 F. Baudoin and G. Yang

2.2.1 Kähler models

Flat model. The flat model of a Kähler manifold is

C
m =

{

(z1, · · · , zm), z1, · · · , zm ∈ C
}

equipped with its standard Hermitian inner product. The complex structure J in that

case is just the component-wise multiplication by i. The Brownian motion (Wt)t≥0 on C
m

is the diffusion process associated with the Laplace operator

�Cm = 4

m
∑

i=1

∂2

∂zi∂ z̄i

=
m

∑

i=1

∂2

∂x2
i

+
∂2

∂y2
i

,

where xi is the real part of zi, yi its imaginary part and

∂

∂zi

=
1

2

(

∂

∂xi

− i
∂

∂yi

)

,
∂

∂ z̄i

=
1

2

(

∂

∂xi

+ i
∂

∂yi

)

.

One has

Wt =
(

Z1
t , · · · , Zm

t

)

,

where the Zi’s are independent complex Brownian motions on C. The radial part of W

defined by

rt = |Wt| =

√

√

√

√

m
∑

i=1

|Zi
t|2

is itself a diffusion process with Bessel generator

LCm =
∂2

∂r2
+

2m − 1

r

∂

∂r
.

We note that the radial part of the Lebesgue measure on C
m then writes the following:

dμCm = 2
πm

(m − 1)!
r2m−1dr, r ≥ 0.

Positively curved model. The positively curved model of a Kähler manifold is the

complex projective space CPm. It can be constructed as follows. Consider the unit sphere

S
2m+1 = {z = (z1, · · · , zm+1) ∈ C

m+1, ‖z‖ = 1}.
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 7

There is an isometric group action of S1 = U(1) on S
2m+1, which is defined by

eiθ · (z1, · · · , zm+1) = (eiθz1, · · · , eiθzm+1).

The quotient space S
2m+1/U(1) is defined as CPm and the projection map π :

S
2m+1 → CPm is a Riemannian submersion with totally geodesic fibers. The Kähler

structure on CPm is inherited from the one in C
m+1 through this construction.

To parametrize points in CPm \ {∞}, it is convenient to use the local inhomoge-

neous coordinates given by wj = zj/zm+1, 1 ≤ j ≤ m, z ∈ C
n+1, zm+1 �= 0. The point ∞ on

CPm corresponds to zm+1 = 0.

The submersion π allows one to construct the Brownian motion on CPm from the

Brownian motion on S
2m+1. Indeed, let (Zt)t≥0 be a Brownian motion on the Riemannian

sphere S
2m+1 ⊂ C

m+1 started at the north pole. We call north pole the point with

complex coordinates z1 = 0, · · · , zm+1 = 1. Since P(∃t ≥ 0, Zm+1(t) = 0) = 0, one can

use the local description of the submersion π in inhomogeneous coordinates to deduce

that

Wt =
(

Z1
t

Zm+1
t

, · · · ,
Zm

t

Zm+1
t

)

, t ≥ 0, (1)

is a Brownian motion on CPm, that is, is a diffusion process with generator

�
CPm = 4(1 + |w|2)

m
∑

k=1

∂2

∂wk∂wk

+ 4(1 + |w|2)RR,

where

R =
m

∑

j=1

wj

∂

∂wj

.

The radial part of W defined by

rt = arctan |Wt| = arctan

√

√

√

√

m
∑

i=1

|Zi
t|2

|Zm+1
t |2

= arctan

(

1

|Zm+1
t |

√

1 − |Zm+1
t |2

)

is a diffusion process with Jacobi generator

LCPm =
∂2

∂r2
+ ((2m − 2) cot r + 2 cot 2r)

∂

∂r
.
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8 F. Baudoin and G. Yang

We note that L
CPm = Lm−1,0 where Lm−1,0 is the Jacobi operator studied in the appendix

of [5]. In particular, the spectrum of CPm is given by

Sp(CPm) = {4k(k + m), k ≥ 1} .

Finally, we note that the radial part of the Riemannian volume measure writes

dμ
CPm =

πm

(m − 1)!
(sin r)2m−2 sin(2r) dr, 0 ≤ r ≤

π

2
.

Negatively curved model. The negatively curved model of a Kähler manifold is the

complex hyperbolic space CHm. It can be constructed as follows. Let us consider the

complex hyperboloid

H2m+1 = {z ∈ C
m+1, |z1|2 + · · · + |zm|2 − |zm+1|2 = −1} ⊂ C

m+1.

The group U(1) acts isometrically on H2m+1. The quotient space of H2m+1 by this

action is defined to be CHm and the projection map π : H2m+1 → CHm is a Riemannian

submersion with totally geodesic fibers. Thus, as a differential manifold, the complex

hyperbolic space CHm is simply the open unit ball in C
m with a Riemannian metric

inherited from the previous submersion. The Kähler structure on CHm is inherited from

the one in C
m+1 through the above construction.

To parametrize CHm, one can use the global inhomogeneous coordinates given

by wj = zj/zm+1 where (z1, . . . , zm+1) ∈ H2m+1. In those coordinates, the Laplace

operator of CHm can be written as follows:

�
CHm = 4(1 − |w|2)

m
∑

k=1

∂2

∂wk∂wk

+ 4(1 − |w|2)RR,

where

R =
m

∑

j=1

wj

∂

∂wj

.

The Brownian motion (Wt)t≥0 on CHm is the diffusion with generator �
CHm . As

for the case of CPm, it may be represented in inhomogeneous coordinates as

Wt =
(

Z1
t

Zm+1
t

, · · · ,
Zm

t

Zm+1
t

)

, t ≥ 0,
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 9

where (Z1
t , · · · , Zm+1

t ) is a Brownian motion on H2m+1. The radial part of W defined by

rt = arctanh|Wt| = arctanh

√

√

√

√

m
∑

i=1

|Zi
t|2

|Zm+1
t |2

= arctanh

(

1

|Zm+1
t |

√

|Zm+1
t |2 − 1

)

is a diffusion process with hyperbolic Jacobi generator

L
CHm =

∂2

∂r2
+ ((2m − 2) coth r + 2 coth 2r)

∂

∂r
.

Finally, we note that the radial part of the Riemannian volume measure writes

dμCHm =
πm

(m − 1)!
(sinh r)2m−2 sinh(2r) dr, r ≥ 0.

2.2.2 Quaternion Kähler models

Flat model. Let H be the non-commutative field of quaternions

H = {q = t + xI + yJ + zK, (t, x, y, z) ∈ R
4},

where I, J, K satisfy I2 = J2 = K2 = IJK = −1. For q = t + xI + yJ + zK ∈ H, we denote

by q = t − xI − yJ − zK its conjugate, |q|2 = t2 + x2 + y2 + z2 its squared norm and

Im(q) = (x, y, z) ∈ R
3 its imaginary part.

The quaternionic structure I, J, K in that case is the component-wise multiplica-

tion by I, J, K, respectively. The Brownian motion (Wt)t≥0 on H
m is the diffusion process

associated with the Laplace operator

�Hm =
m

∑

i=1

∂2

∂t2
i

+
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

.

One can represent

Wt =
(

Q1
t , · · · , Qm

t

)

,

where the Qi’s are independent complex Brownian motions on H. The radial part of W

defined by

rt = |Wt| =

√

√

√

√

m
∑

i=1

|Qi
t|2
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10 F. Baudoin and G. Yang

is a diffusion process with Bessel generator

L
Hm =

∂2

∂r2
+

4m − 1

r

∂

∂r
.

We note that the radial part of the Lebesgue measure on H
m then writes

dμHm = 2
π2m

(2m − 1)!
r4m−1dr, r ≥ 0.

Positively curved model. The positively curved model of a Kähler manifold is the

quaternionic projective space HPm. It can be constructed as follows. Consider the unit

sphere

S
4m+3 = {q = (q1, · · · , qm+1) ∈ H

m+1, ‖q‖ = 1}.

The group of unit quaternions is isomorphic to the Lie group SU(2). Thus, there is an

isometric group action of SU(2) on S
4m+3, which is defined by

q · (q1, · · · , qm+1) = (qq1, · · · , qqm+1).

The quotient space S
4m+3/SU(2) is defined as the quaternionic projective space

HPm and the projection map π : S4m+3 → HPm is a Riemannian submersion with totally

geodesic fibers. The quaternion Kähler structure on HPm is inherited from the one in

H
m+1 through this construction.

To parametrize points in HPm \{∞}, we use the local inhomogeneous coordinates

given by wj = q−1
m+1qm, 1 ≤ j ≤ m, q ∈ H

n+1, qm+1 �= 0. The point ∞ on HPm corresponds

to qm+1 = 0 and one can identify HPm with H
m ∪ {∞}.

As before, the submersion π allows to construct the Brownian motion on HPm

from the Riemannian Brownian motion on S
4m+3. Indeed, let (Qt)t≥0 be a Brownian

motion on the Riemannian sphere S
4m+3 ⊂ H

m+1 started at the north pole. We call

here north pole the point with quaternionic coordinates q1 = 0, · · · , qm+1 = 1. Since

P(∃t ≥ 0, Qm+1(t) = 0) = 0, one deduces that

Wt =
(

(Qm+1
t )−1Q1

t , · · · , (Qm+1
t )−1Qm

t

)

, t ≥ 0, (2)
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 11

is a Brownian motion on HPm, that is, is a diffusion process with generator

�
HPm = 4(1 + |w|2)2

m
∑

k=1

Re

(

∂2

∂wk∂wk

)

− 8(1 + |w|2)Re

⎛

⎝

m
∑

j=1

wj

∂

∂wj

⎞

⎠ .

In real coordinates, we have wi = ti + xiI + yiJ + ziK and

∂

∂wi

:=
1

2

(

∂

∂ti

−
∂

∂xi

I −
∂

∂yi

J −
∂

∂zi

K

)

.

The radial part of W defined by

rt = arctan |Wt| = arctan

(

1

|Qm+1
t |

√

1 − |Qm+1
t |2

)

is a diffusion process with Jacobi generator

LHPm =
∂2

∂r2
+ ((4m − 4) cot r + 6 cot 2r)

∂

∂r
.

We note that LHPm = L2m−1,1 where L2m−1,1 is the Jacobi operator studied in the

appendix of [5]. In particular, the spectrum of HPm is given by

Sp(HPm) = {4k(k + 2m + 1), k ≥ 1} .

Finally, we note that the radial part of the Riemannian volume measure writes

dμHPm =
π2m

4(2m − 1)!
(sin r)4m−4 sin(2r)3 dr, 0 ≤ r ≤

π

2
.

Negatively curved model. The positively curved model of a Kähler manifold is the

quaternionic hyperbolic space HHm. It can be constructed as follows. Let us consider

the quaternionic hyperboloid

Q4m+3 = {q ∈ H
m+1, |q1|2 + · · · + |qm|2 − |qm+1|2 = −1} ⊂ H

m+1.

The group SU(2) acts isometrically on Q4m+3. The quotient space of Q4m+3 by

this action is defined to be HHm and the projection map π : Q4m+3 → HHm is a

Riemannian submersion with totally geodesic fibers. The quaternion Kähler structure

on HHm is inherited from the one in H
m+1.
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12 F. Baudoin and G. Yang

To parametrize HHm, we use the global inhomogeneous coordinates given by

wj = q−1
m+1qj where (q1, . . . , qm+1) ∈ Q4m+3. In those coordinates, the Laplace operator of

HHm can be written as follows:

�HHm = 4(1 − |w|2)2
m

∑

k=1

Re

(

∂2

∂wk∂wk

)

+ 8(1 + |w|2)Re

⎛

⎝

m
∑

j=1

wj

∂

∂wj

⎞

⎠ .

The Brownian motion (Wt)t≥0 on HHm is the diffusion with generator �HHm . It

can be represented as

Wt =
(

(Qm+1
t )−1Q1

t , · · · , (Qm+1
t )−1Qm

t

)

, t ≥ 0,

where (Qt)t≥0 is a Brownian motion on Q4m+3.

The radial part of W defined by

rt = arctanh|Wt| = arctanh

(

1

|Qm+1
t |

√

|Qm+1
t |2 − 1

)

is a diffusion process with hyperbolic Jacobi generator

L
HHm =

∂2

∂r2
+ ((4m − 4) coth r + 6 coth 2r)

∂

∂r
.

Finally, we note that the radial part of the Riemannian volume measure writes

dμHHm =
π2m

4(2m − 1)!
(sinh r)4m−4 sinh(2r)3 dr, r ≥ 0.

We refer to [2] and [3] and references therein for complementary details.

2.3 Summary of the model spaces

For later use, and as a summary, we collect the results about the model spaces that

will be used later. Additionally, in those model spaces the holomorphic/quaternionic

sectional curvatures and orthogonal Ricci curvatures defined earlier may be computed

explicitly and yield the following results:
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 13

TABLE 1 Radial Laplacians in Kähler model spaces

M Radial Laplacian Radial measure

C
m LCm = ∂2

∂r2 + 2m−1
r

∂
∂r dμCm = 2 πm

(m−1)! r2m−1dr

CPm LCPm = ∂2

∂r2 + ((2m − 2) cot r + 2 cot 2r) ∂
∂r dμCPm = πm

(m−1)! (sin r)2m−2 sin(2r) dr

CHm LCHm = ∂2

∂r2 + ((2m − 2) coth r + 2 coth 2r) ∂
∂r dμCHm = πm

(m−1)! (sinh r)2m−2 sinh(2r) dr

TABLE 2 Curvatures of Kähler model spaces

M H Ric⊥

C
m 0 0

CPm 4 2m − 2

CHm -4 −(2m − 2)

TABLE 3 Radial Laplacians in quaternion Kähler model spaces

M Radial Laplacian Radial measure

H
m LHm = ∂2

∂r2 + 4m−1
r

∂
∂r dμHm = 2 π2m

(2m−1)! r4m−1dr

HPm LHPm = ∂2

∂r2 + ((4m − 4) cot r + 6 cot 2r) ∂
∂r dμHPm = π2m

4(2m−1)! (sin r)4m−4 sin(2r)3 dr

HHm LHHm = ∂2

∂r2 + ((4m − 4) coth r + 6 coth 2r) ∂
∂r dμHHm = π2m

4(2m−1)! (sinh r)4m−4 sinh(2r)3 dr

TABLE 4 Curvatures of the quaternion Kähler model spaces

M Q Ric⊥

H
m 0 0

HPm 12 4m − 4

HHm -12 −(4m − 4)

3 Laplacian Comparison Theorems

This subsection is devoted to the proofs of the sharp Laplace comparison theorems in

Kähler and quaternion Kähler manifolds. The main technical tool is the classical index

lemma. In the Kähler case, the comparison theorem is due to Ni–Zheng [13] but seems to

be new in the quaternion Kähler case.
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14 F. Baudoin and G. Yang

We introduce the comparison function.

F(k, r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√
k cot

√
kr if k > 0,

1
r if k = 0,
√

|k| coth
√

|k|r if k < 0.

(3)

3.1 Kähler case

Let (M, g, J) be a complete Kähler with complex dimension m (i.e., the real dimension

is 2m). We denote by d(x, y) the Riemannian distance between x, y ∈ M and by � the

Laplace–Beltrami operator on M. The following Laplacian comparison theorem was

proved in [13]. As before, we denote by H the holomorphic sectional curvature of M

and by Ric⊥ its orthogonal Ricci curvature.

Theorem 3.1 (Ni–Zheng [13]). Let k ∈ R. Assume that H ≥ 4k and that Ric⊥ ≥ (2m−2)k.

Let x0 ∈ M and denote r(x) = d(x0, x). Then, pointwise outside of the cut-locus of x0,

and everywhere in the sense of distributions, one has

�r ≤ (2m − 2)F(k, r) + 2F(k, 2r).

Proof. The result can be found in [13]. We provide here a self-contained proof not only

for completeness but also because the structure of our proof will be generalized to the

quaternionic Kähler case which is new.

We can assume m ≥ 2 since for the case m = 1, the statement reduces to

the classical Laplacian comparison theorem in Riemannian geometry. Let x0 ∈ M and

x �= x0, which is not in the cut-locus of x0. Let γ : [0, r(x)] → M be the unique length

parametrized geodesic connecting x0 to x. At x, we consider an orthonormal frame

{X1(x), · · · , X2m(x)} such that

X1(x) = γ ′(r(x)), X2(x) = Jγ ′(r(x)).

We then have

�r(x) =
2m
∑

i=1

∇2r(Xi(x), Xi(x)).

We divide the above sum into three parts: ∇2r(X1(x), X1(x)), ∇2r(X2(x), X2(x)), and
∑2m

i=3 ∇2r(Xi(x), Xi(x)). The 1st term ∇2r(X1(x), X1(x)) is zero because X1(x) = γ ′(r(x)).
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 15

We now estimate the 2nd term. Note that the vector field defined along γ by Jγ ′ is

parallel because J is parallel and γ is a geodesic, thus satisfies ∇γ ′γ ′ = 0. We consider

then the vector field defined along γ by

X̃(γ (t)) =
s(4k, t)

s(4k, r(x))
Jγ ′(t),

where

s(k, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sin
√

kt if k > 0,

t if k = 0,

sinh
√

|k|t if k < 0.

(4)

From the index lemma we have

∇2r(X2(x), X2(x)) ≤
∫ r(x)

0

(

〈∇γ ′X̃, ∇γ ′X̃〉 − 〈R(γ ′, X̃)X̃, γ ′〉
)

dt

≤
1

s(4k, r(x))2

∫ r(x)

0

(

s
′(4k, t)2 − s(4k, t)2〈R(γ ′, Jγ ′)Jγ ′, γ ′〉

)

dt

≤
1

s(4k, r(x))2

∫ r(x)

0

(

s
′(4k, t)2 − 4ks(4k, t)2

)

dt

≤ 2F(k, 2r(x)).

Finally, we estimate the last term
∑2m

i=3 ∇2r(Xi(x), Xi(x)). In order to proceed,

we denote by {X3, · · · , X2m} the vector fields along γ obtained by parallel transport of

{X3(x), · · · , X2m(x)}. We observe that everywhere along γ , the family

{γ ′, Jγ ′, X3, · · · , X2m}

is an orthonormal frame. We consider then the vector field defined along γ by

X̃i(γ (t)) =
s(k, t)

s(k, r(x))
Xi(γ (t)), i = 3, · · · , 2m.
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16 F. Baudoin and G. Yang

From the index lemma we obtain

2m
∑

i=3

∇2r(Xi(x), Xi(x)) ≤
2m
∑

i=3

∫ r(x)

0

(

〈∇γ ′ X̃i, ∇γ ′ X̃i〉 − 〈R(γ ′, X̃i)X̃i, γ
′〉
)

dt

≤
1

s(k, r(x))2

2m
∑

i=3

∫ r(x)

0

(

s
′(k, t)2 − s(k, t)2〈R(γ ′, X̃ ′

i)X̃i, γ
′〉
)

dt

≤
1

s(k, r(x))2

∫ r(x)

0

(

(2m − 2)s′(k, t)2 − s(k, t)2
2m
∑

i=3

〈R(γ ′, X̃ ′
i)X̃i, γ

′〉
)

dt

≤
1

s(k, r(x))2

∫ r(x)

0

(

(2m − 2)s′(k, t)2 − s(k, t)2Ric⊥(γ ′, γ ′)
)

dt

≤
2m − 2

s(k, r(x))2

∫ r(x)

0

(

s
′(k, t)2 − ks(k, t)2

)

dt

≤ (2m − 2)F(k, r(x)).

Therefore, we conclude

�r(x) ≤ (2m − 2)F(k, r(x)) + 2F(k, 2r(x)).

Finally, proving that everywhere in the sense of distributions, one has

�r ≤ (2m − 2)F(k, r) + 2F(k, 2r),

is similar to the corresponding proof in the Riemannian case (which relies on Calabi

lemma), so we skip the details. �

It is remarkable that the theorem is sharp on the model spaces C
m,CPm and

CHm. On C
m, one has k = 0 and

(2m − 2)F(k, r) + 2F(k, 2r) =
2m − 1

r
.

On CPm, one has k = 1 and

(2m − 2)F(k, r) + 2F(k, 2r) = (2m − 2) cot r + 2 cot 2r,
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 17

and on CHm, one has k = −1 and

(2m − 2)F(k, r) + 2F(k, 2r) = (2m − 2) coth r + 2 coth 2r.

3.2 Quaternion Kähler case

Let now (M, g, I, J, K) be a complete quaternion Kähler with quaternionic dimension

m (i.e., the real dimension is 4m). We also denote by d(x, y) the Riemannian distance

between x, y ∈ M and by � the Laplace–Beltrami operator on M. As before, we denote by

Q the quaternionic sectional curvature of M and by Ric⊥ its orthogonal Ricci curvature.

Theorem 3.2. Let k ∈ R. Assume that Q ≥ 12k and that Ric⊥ ≥ (4m − 4)k. Let

x0 ∈ M and denote r(x) = d(x0, x). Then, pointwise outside of the cut-locus of x0, and

everywhere in the sense of distributions, one has

�r ≤ (4m − 4)F(k, r) + 6F(k, 2r).

Proof. The proof proceeds as in the Kähler case but is slightly more involved. As

before, we can assume m ≥ 2 since for the case m = 1, the statement reduces to

the classical Laplacian comparison theorem in Riemannian geometry. Let x0 ∈ M and

x �= x0, which is not in the cut-locus of x. Let γ : [0, r(x)] → M be the unique length

parametrized geodesic connecting x0 to x At x, we consider an orthonormal frame

{X1(x), · · · , X4m(x)} such that

X1(x) = γ ′(r(x)), X2(x) = Iγ ′(r(x)), X3(x) = Jγ ′(r(x)), X4(x) = Kγ ′(r(x)).

We then have

�r(x) =
4m
∑

i=1

∇2r(Xi(x), Xi(x)).

We divide the above sum into three parts: ∇2r(X1(x), X1(x)),
∑4

i=2 ∇2r(Xi(x), Xi(x)),

and finally
∑4m

i=5 ∇2r(Xi(x), Xi(x)). The 1st term ∇2r(X1(x), X1(x)) is zero because

X1(x) = γ ′(r(x)). Estimating the 2nd term requires more work than in the Kähler

case because the vectors Iγ ′, Jγ ′ and Kγ ′ might not be parallel along γ . Let us denote

by X2, X3, and X4 the vector fields along γ obtained by parallel transport along γ of

X2(x), X3(x), and X4(x). Since along γ one has

∇γ ′ I, ∇γ ′J, ∇γ ′K ∈ span{I, J, K}
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18 F. Baudoin and G. Yang

we deduce that along γ one has

span{X2, X3, X4} = span{Iγ ′, Jγ ′, Kγ ′}.

Moreover, {X2, X3, X4} and {Iγ ′, Jγ ′, Kγ ′} are both orthonormal along γ . One deduces

R(γ ′, X2, X2, γ ′) + R(γ ′, X3, X3, γ ′) + R(γ ′, X4, X4, γ ′)

=R(γ ′, Iγ ′, Iγ ′, γ ′) + R(γ ′, Jγ ′, Jγ ′, γ ′) + R(γ ′, Kγ ′, Kγ ′, γ ′)

=Q(γ ′).

As a consequence, if we consider the vector field defined along γ by

X̃i(γ (t)) =
s(4k, t)

s(4k, r(x))
Xi(γ (t)), i = 2, 3, 4,

we obtain by the same computation as in the proof of theorem 3.1

4
∑

i=2

∇2r(Xi(x), Xi(x)) ≤ 6F(k, 2r(x)).

The estimate of the term
∑4m

i=5 ∇2r(Xi(x), Xi(x)) is similar as in the proof of Theorem 3.1,

so we skip the details for conciseness. �

As in the Kähler case, it is remarkable that the theorem is sharp on the model

spaces H
m,HPm and HHm.

4 Comparison Theorems for Radial Processes and Applications

4.1 Itô formula for radial processes on Riemannian manifolds

To fix notations, we 1st recall the well-known Kendall theorem [11] about the Itô formula

for the radial parts of Brownian motions on a Riemannian manifold. Throughout this

subsection, (M, g) is a complete Riemannian manifold and � denotes the Laplace–

Beltrami operator. Let ((Xt)t≥0, (Px)x∈M) be the diffusion process generated by �, that

is, the Brownian motion on M. Take x0 ∈ M and set r(x) := d(x0, x). We denote by Cut(x0)

the cut-locus of x0. Let ζ be the life time of X.
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 19

Theorem 4.1 (Kendall [11]). For each x1 ∈ M, there exist a non-decreasing continuous

process lt, which increases only when Xt ∈ Cut(x0), and a Brownian motion βt on R with

〈β〉t = 2t such that

r(Xt∧ζ ) = r(X0) + βt +
∫ t∧ζ

0
�r(Xs)ds − lt∧ζ (5)

holds Px1
-almost surely.

4.2 Comparison theorems on Kähler manifolds

Let (M, g, J) be a complete Kähler with complex dimension m. Let ((Xt)t≥0, (Px)x∈M) be

the Brownian motion on M. As before, we fix a point x0 ∈ M. For x1 ∈ M, we consider

the solution of the stochastic equation

ρk
t = d(x0, x1) +

∫ t

0

(

(2m − 2)F(k, ρk
s ) + 2F(k, 2ρk

s )

)

ds +
√

2βt,

where β is a standard Brownian motion under Px1
.

With Laplacian comparison theorems and Itô’s formula (5) in hands, it is possi-

ble to apply mutatis mutandis the general available comparison methods developed in

the Riemannian case for instance by Ichihara [10]. We also refer to Sections 3.5, 3.6, and

4.5 in the book [9] by Hsu. This yields the following basic comparison result.

Theorem 4.2. Let k ∈ R. Assume that H ≥ 4k and that Ric⊥ ≥ (2m − 2)k. Then, for

x1 ∈ M, R > 0, and s ≤ R

Px1

{

d(x0, Xt) < s, t ≤ τR

}

≥ Px1

{

ρk
t < s, t ≤ τk

R

}

,

where τR is the hitting time of the geodesic ball in M with center x0 and radius R and τk
R

the hitting time of the level R by ρk.

4.2.1 Cheeger–Yau-type lower bound for the heat kernel

A 1st corollary of Theorem 4.2 is a Cheeger–Yau-type lower bound for the heat kernel.

It gives a sharp lower bound for the Dirichlet heat kernel on balls in terms of the heat

kernel of a corresponding Kähler model space.
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20 F. Baudoin and G. Yang

We introduce the following notation. For k ∈ R, let Lk be the diffusion operator

given by

Lk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂2

∂r2 + ((2m − 2)
√

k cot
√

kr + 2
√

k cot 2
√

kr) ∂
∂r if k > 0

∂2

∂r2 + 2m−1
r

∂
∂r if k = 0

∂2

∂r2 + ((2m − 2)
√

|k| coth
√

|k|r + 2
√

|k| coth 2
√

|k|r) ∂
∂r if k < 0

and let μk be the measure

dμk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

πm

(m−1)!km−1/2 (sin
√

kr)2m−2 sin(2
√

kr) dr if k > 0

2 πm

(m−1)! r2m−1dr if k = 0

πm

(m−1)!|k|m−1/2 (sinh
√

|k|r)2m−2 sinh(2
√

|k|r) dr if k < 0.

Note that the operator Lk is symmetric with respect to the measure μk. With the

notations of Section 2.3, we have

(L−1, μ−1) = (LCHm , μCHm), (L0, μ0) = (LCm , μCm), (L1, μ1) = (LCPm , μCPm).

Moreover, depending on the sign of k, (Lk, μk) is obtained from (L1, μ1), (L0, μ0) or

(L−1, μ1) by a simple rescaling by
√

|k|.

Theorem 4.3 (Cheeger–Yau-type heat kernel lower bound). Let k ∈ R. Assume that

H ≥ 4k and that Ric⊥ ≥ (2m − 2)k. Let R > 0. Let ((XR
t )t≥0, (Px)x∈B(x0,R)) be a Brownian

motion on B(x0, R) with Dirichlet boundary condition. Let pR(t, x, y) be its heat kernel

with respect to the Riemannian volume measure μ. Let now qR
k (t, r1, r2) be the heat kernel

with respect to μk of the diffusion on [0, R] with generator Lk and Dirichlet boundary

condition at R. Then, for every t > 0 and x1 ∈ B(x0, R)

pR(t, x0, x1) ≥ qR
k (t, 0, d(x0, x1)).

Proof. From theorem 4.2, one has

∫

B(x0,s)
pR(t, x1, y)dμ(y) ≥

∫ s

0
qR

k (t, d(x0, x1), r)dμk(r).

When s → 0+, one has

μ(B(x0, s)) ∼
πm

m!
s2m ∼ μk([0, s]).
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Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds 21

On the other hand, from the Lebesgue differentiation theorem one has

lim
s→0+

1

μ(B(x0, s))

∫

B(x0,s)
pR(t, x1, y)dμ(y) = pR(t, x1, x0) = pR(t, x0, x1)

and

lim
s→0+

1

μk([0, s])

∫ s

0
qR

k (t, d(x0, x1), r)dμk(r) = qR
k (t, d(x0, x1), 0) = qR

k (t, 0, d(x0, x1)).

The conclusion follows. �

4.2.2 Cheng’s estimates for Dirichlet eigenvalues on metric balls

A nice corollary of the Cheeger–Yau-type heat kernel lower bound is a Cheng’s type upper

bound for the Dirichlet eigenvalues of Riemannian balls in terms of the eigenvalues of

Riemannian balls in the corresponding Kähler model.

Proposition 4.4 (Cheng’s type estimates). Let k ∈ R. Assume that H ≥ 4k and that

Ric⊥ ≥ (2m − 2)k. Let R > 0. For x0 ∈ M let λ1(B0(x0, R)) denote the 1st Dirichlet

eigenvalue of the Riemannian ball B(x0, R) and let λ1(m, k, R) denote the 1st Dirichlet

eigenvalue of the operator Lk on the interval [0, R] with Dirichlet boundary condition at

R. Then, for every x0 ∈ M and R > 0

λ1(B(x0, R)) ≤ λ1(m, k, R).

Proof. From spectral theory, one has

pR(t, x1, y) =
+∞
∑

j=1

e−λjtφj(x1)φj(y),

where the λj’s are the Dirichlet eigenvalues of B(x0, R) and the φj’s the eigenfunctions.

One has a similar spectral expansion for qR
k (t, r0, r). Thus, from Corollary 4.3, when

t → +∞ one must have λ1 ≤ λ1(m, k, R). �

4.3 Comparison theorems on quaternion Kähler manifolds

In the quaternionic Kähler framework the comparison theorems of Cheeger–Yau-type

and of Cheng’s type might be obtained in a similar way as in the Kähler case. The

difference is the model diffusion with respect to which the comparison is made.
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22 F. Baudoin and G. Yang

Let (M, g, I, J, K) be a complete quaternion Kähler with quaternionic dimension

m and for k ∈ R consider the following diffusion operator

L̃k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂2

∂r2 + ((4m − 4)
√

k cot
√

kr + 6
√

k cot 2
√

kr) ∂
∂r if k > 0

∂2

∂r2 + 4m−1
r

∂
∂r if k = 0

∂2

∂r2 + ((4m − 4)
√

|k| coth
√

|k|r + 6
√

|k| coth 2
√

|k|r) ∂
∂r if k < 0

and measure

dμ̃k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

π2m

4(2m−1)!k2m−1/2 (sin
√

kr)4m−4 sin(2
√

kr)3 dr if k > 0

2 π2m

(2m−1)! r4m−1dr if k = 0

πm

(m−1)!|k|2m−1/2 (sinh
√

|k|r)4m−4 sinh(2
√

|k|r)3 dr if k < 0.

Note that the operator L̃k is symmetric with respect to the measure μ̃k and that

with the notations of Section 2.3, we therefore have

(L̃−1, μ̃−1) = (L
HHm , μ

HHm), (L̃0, μ̃0) = (L
Hm , μ

Hm), (L̃1, μ̃1) = (L
HPm , μ

HPm).

As in the Kähler case, depending on the sign of k, (L̃k, μ̃k) is obtained from (L̃1, μ̃1),

(L̃0, μ̃0) or (L̃−1, μ̃1) by a simple rescaling by
√

|k|
By applying the same methods as before, we obtain the following results.

Theorem 4.5 (Cheeger–Yau-type lower bound). Let k ∈ R. Assume that Q ≥ 12k and

that Ric⊥ ≥ (4m − 4)k. Let R > 0. Let ((XR
t )t≥0, (Px)x∈B(x0,R)) be a Brownian motion on

B(x0, R) with Dirichlet boundary condition. Let pR(t, x, y) be its heat kernel with respect

to the Riemannian volume measure μ. Let now q̃R
k (t, r1, r2) be the heat kernel with respect

to μ̃k of the diffusion on [0, R] with generator L̃k and Dirichlet boundary condition at R.

Then, for every t > 0 and x1 ∈ B(x0, R)

pR(t, x0, x1) ≥ q̃R
k (t, 0, d(x0, x1)).

Proposition 4.6 (Cheng’s type estimates). Let k ∈ R. Assume that Q ≥ 12k and that

Ric⊥ ≥ (4m − 4)k. Let R > 0. For x0 ∈ M let λ1(B0(x0, R)) denote the 1st Dirichlet

eigenvalue of the Riemannian ball B(x0, R) and let λ̃1(m, k, R) denote the 1st Dirichlet

eigenvalue of the operator L̃k on the interval [0, R] with Dirichlet boundary condition at
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R. Then, for every x0 ∈ M and R > 0

λ1(B(x0, R)) ≤ λ̃1(m, k, R).
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