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Abstract

We study the radial part of sub-Riemannian Brownian motion in the context of totally

geodesic foliations. Itô’s formula is proved for the radial processes associated to

Riemannian distances approximating the Riemannian one. We deduce very general

stochastic completeness criteria for the sub-Riemannian Brownian motion. In the

context of Sasakian foliations and H-type groups, one can push the analysis further,

and taking advantage of the recently proved sub-Laplacian comparison theorems one

can compare the radial processes for the sub-Riemannian distance to one-dimensional

model diffusions. As a geometric application, we prove Cheng’s type estimates for the

Dirichlet eigenvalues of the sub-Riemannian metric balls, a result which seems to be

new even in the Heisenberg group.
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Radial processes for sub-Riemannian Brownian motions

1 Introduction

In the context of Riemannian manifolds the study of the radial part of Brownian

motion yields new proofs and sheds new light on several well-known theorems of Rieman-

nian geometry; see for instance the paper [20] and the book [19] for an overview. Our

goal in the present paper is to extend those techniques to the context of sub-Riemannian

manifolds. In the last few years, the study of Brownian motion on sub-Riemannian mani-

folds has attracted a lot of interest, see [6], [7], [14] and [26], and several applications to

the study of heat semigroup gradient bounds and functional inequalities on pathspaces

have been obtained. Despite those numerous works the probabilistic study of the radial

part of the sub-Riemannian Brownian motion is not yet developed. Taking advantage

of the sub-Laplacian comparison theorems recently proved in [9], it is now possible to

pursue such a study.

In this paper we focus on two classes of sub-Riemannian manifolds. The first one is

the class of sub-Riemannian manifolds whose horizontal distribution is the horizontal dis-

tribution of some Riemannian foliation with totally geodesic leaves. The sub-Riemannian

geometry of such structures is by now well understood, thanks to the works [8], [16]

and [17]. A key insight is to approximate the sub-Riemannian distance d0 by a family

of Riemannian distances dε, ε > 0 which converges to d0 as ε → 0. The sub-Laplacian

comparison theorems associated to dε obtained in that context are very general but with

the drawback that there is no limit when ε → 0, meaning that we can not deduce a result

for the sub-Laplacian of the sub-Riemannian distance itself. One of the main results we

obtain for the radial processes is Theorem 3.1, giving its Itô formula. Let (ξt)t≥0 be the

sub-Riemannian Brownian motion on a Riemannian manifold equipped with a totally

geodesic foliation, and let ∆H be the sub-Laplacian (see the next section for the precise

definitions). Denote by rε the dε-distance from a fixed point x0 and by ζ the lifetime of

the process. Then

rε(ξt∧ζ) = rε(ξ0) + βε
t∧ζ +

∫ t∧ζ

0

∆Hrε(ξs)ds− lεt∧ζ

where lεt is a non-decreasing continuous process which increases only when ξt is in the

dε cut-locus of x0 and where βε
t is a martingale on R, starting from 0, with d 〈βε〉 ≤ 2 dt.

This decomposition is the sub-Riemannian analogue of Kendall’s well-known result [22].

However, note that βε
t in this result is not a Brownian motion, unlike in the Riemannian

case. Even if βε
t is not a Brownian motion, we are still able in Section 4 to prove very

general stochastic completeness criteria, see Theorem 4.3.

The second class of sub-Riemannian manifolds we will focus on is the class of Sasakian

foliations. Sasakian foliations are a special class of totally geodesic foliations for which

the leaves have dimension one. In that particular class of examples, it was proved in

[9, 23] that it is possible to prove sharp sub-Laplacian comparison theorems for ∆Hrε
which actually have a limit when ε → 0. As a consequence, we are able to study the

radial process with respect to the sub-Riemannian distance itself. Let n be the dimension

of the horizontal distribution. Our main result is the comparison Theorem 5.2. It states

that under natural curvature lower bounds (expressed in terms of constants k1 and k2),

one has in a weak sense,

r0(ξt) ≤ ξ̃t

where ξ̃ is a one-dimensional diffusion with generator

Lk1,k2
=
(

FSas(r, k1) + (n− 2)FRie(r, k2)
) ∂

∂r
+

∂2

∂r2
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Radial processes for sub-Riemannian Brownian motions

and FSas, FRie are the explicit functions defined by

FRie(r, k) =











√
k cot

√
kr if k > 0,

1/r if k = 0,
√

|k| coth
√

|k|r if k < 0,

(1.1)

and

FSas(r, k) =



























√
k(sin

√
kr −

√
kr cos

√
kr)

2− 2 cos
√
kr −

√
kr sin

√
kr

if k > 0,

4/r if k = 0,
√

|k|(
√

|k|r cosh
√

|k|r − sinh
√

|k|r)
2− 2 cosh

√

|k|r +
√

|k|r sinh
√

|k|r
if k < 0.

(1.2)

For instance, in the case of the 3-dimensional Heisenberg group, which is a Sasakian

manifold for which n = 2 and k1 = 0, k2 = 0 one can see that

L0,0 =
4

r

∂

∂r
+

∂2

∂r2
.

As a consequence, the sub-Riemannian radial part of the sub-Riemannian Brownian

motion in the Heisenberg group can be controlled by a 5-dimensional Bessel processes.

Note that the dimension 5 here is not too surprising since 5 is the MCP dimension of the

Heisenberg group (see [9, Section 3.6] for further comments about the MCP dimension

in that context). As a corollary of our comparison theorem, we obtain a Cheng’s type

estimate for the Dirichlet eigenvalues of sub-Riemannian metric balls, see Section 5.2.

In the case k1 = k2 = 0, which thus includes the Heisenberg group, our result becomes

the following.

Theorem 1.1. Let M be a sub-Riemannian manifold associated to a Sasakian foliation,

with horizontal distribution of dimension n, and which satisfies the above comparison

result with k1 = k2 = 0. For x0 ∈ M and R > 0, let λ1(B0(x0, R)) denote the first Dirichlet

eigenvalue of the sub-Riemannian ball B0(x0, R) and let λ̃1(d,R) denote the first Dirichlet

eigenvalue of the Euclidean ball with radius R in Rd.

Then, for every x0 ∈ M and R > 0

0 < λ1(B0(x0, R)) ≤ λ̃1(n+ 3, R).

The structure of the paper is as follows. In Sections 2, 3 and 4 we consider the

general case of totally geodesic Riemannian foliations. After introducing the necessary

background on such manifolds in Section 2, we describe the diffusion and drift part of

the sub-Riemannian radial process in Section 3. Such a representation allows us to give

a criterion for non-explosion of the sub-Riemannian Brownian motion in Section 4, which

is more general than previous criteria for stochastic completeness found in [8] and [18].

Finally, we use the sharp comparison theorem available to us for the case of Sasakian

manifolds and H-type groups to prove results on the first Dirichlet eigenvalues and on

exit times of sub-Riemannian balls in Section 5.

2 Preliminaries and assumptions

In this preliminary section we introduce the geometric framework and recall some of

the general sub-Laplacian comparison theorems obtained in [9].

2.1 Totally geodesic Riemannian foliations and canonical variation

Let (M, g) be a complete Riemannian manifold of dimension n + m equipped with

a foliation F with m-dimensional leaves. We only consider such manifolds with n ≥ 2

EJP 25 (2020), paper 97.
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Radial processes for sub-Riemannian Brownian motions

and m ≥ 1. Let V be the integrable subbundle tangent to the leaves of F and write

its orthogonal complement with respect to g as H. We will assume that the foliation is

Riemannian and with totally geodesic leaves, which is equivalent to the assumptions

that

(LXg)(Z,Z) = 0, (LZg)(X,X) = 0, X ∈ Γ∞(H), Z ∈ Γ∞(V),

where L stands for the Lie derivative. For further details about totally geodesic foliations

we refer to [5]. We will also consider the canonical variation gε of the Riemannian

metric g defined by

gε = gH ⊕ 1

ε
gV , gH = g|H, gV = g|V, ε > 0.

We let dε be the Riemannian distance associated to gε. The limit ε → 0 is called the sub-

Riemannian limit. Throughout this paper, we will assume that H is bracket-generating,

i.e. we assume that elements in Γ∞(H) together with all possible iterated brackets of

such vector fields span the entire tangent bundle TM. If this is the case, the limiting

distance d0(x, y) = limε↓0 dε(x, y) will always be finite, is called the sub-Riemannian

distance and has the following alternative realization. An absolutely continuous curve

γ : [0, t1] → M is called horizontal if γ̇(t) ∈ Hγ(t) for almost every t ∈ [0, t1]. It is clear that

the length on horizontal curves only depends on gH. The bracket-generating condition

ensures that any pair of points can be connected by a horizontal curve and the distance

d0(x, y) can be realized as the infimum of the lengths of all horizontal curves connecting

the pair of points.

For any fixed x ∈ M, define rε(y) = dε(x, y) for any ε ≥ 0. We further assume that

there are no non-trivial abnormal minimizers for the sub-Riemannian limit; note that

this is known to always hold in the Sasakian case [2, Chapt. 8]. The cut locus Cutε(x)

is defined such that y ∈ M \ Cutε(x) if there exists a unique, non-conjugate, length-

minimizing geodesic from x to y relative to gε. The global cut locus of M is defined

by

Cutε(M) = {(x, y) ∈ M×M, y ∈ Cutε(x)} .

So far, the geometry and topology of Cut0(M) is only poorly understood. However,

the following is known:

Lemma 2.1 ([1], [24]). Let ε ≥ 0. The following statements hold:

(a) The distance function x → dε(x0, x) is locally semi-concave in M \ {x0}. In particular,

it is twice differentiable almost everywhere.

(b) The set M \ Cutε(x0) is open and dense in M.

(c) The function (x, y) → dε(x, y)
2 is smooth on M×M \ Cutε(M).

The following theorem can be found in [10].

Theorem 2.2 ([10]). Let x, y ∈ M with y /∈ Cut0(x). Then there exists an open neigh-

bourhood V of y and ε′ > 0 such that V ∩ Cutε(x) = ∅ for all 0 ≤ ε < ε′. Furthermore,

the map

(ε, z) 7→ rε(z) = dε(x, z) (2.1)

is smooth for (ε, z) ∈ [0, ε′) × V . In particular, we have uniform convergence rε → r0
together with their derivatives of arbitrary order on compact subsets of M \ Cut0(x).
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2.2 Sub-Laplacian comparison theorems for the Riemannian approximations

The Riemannian gradient will be denoted by ∇ and the Riemannian volume by µ (that

is, for ε = 1) and we write the horizontal gradient as ∇H, which is the projection of

∇ onto H. The horizontal (or sometimes called sub-Riemannian) Laplacian ∆H is the

generator of the symmetric closable bilinear form:

EH(f, g) = −
∫

M

〈∇Hf,∇Hg〉H dµ, f, g ∈ C∞
0 (M).

Note that using the volume of any of the Riemannian structures for ε > 0 would give the

same form and thus the same generator. The hypothesis that H is bracket generating

implies that the horizontal Laplacian ∆H is locally subelliptic and the completeness

assumption on g implies that ∆H is essentially self-adjoint on the space of smooth and

compactly supported functions (see for instance [5]). Estimates on ∆Hrε outside of the

cut-locus have been obtained in [9] and rely on the control of some tensors associated to

a canonical connection (the Bott connection). The exact definition of those tensors is

not relevant in the present paper, so for conciseness we omit the details, but refer to [9].

Such tensors were denoted RicH, J
2, and Tr(J2

Z). Throughout the Sections 2, 3 and 4

we assume that globally on M, for every X ∈ Γ∞(H) and Z ∈ Γ∞(V),

RicH(X,X) ≥ ρ1(rε)‖X‖2H,

−〈J2X,X〉H ≤ κ(rε)‖X‖2H, −1

4
Tr(J2

Z) ≥ ρ2(rε)‖Z‖2V ,
(2.2)

for some continuous functions ρ1, ρ2, κ with κ > 0 and ρ2 ≥ 0. We moreover always

assume that the foliation is of Yang-Mills type (see [9]). The main results obtained in [9]

under those assumptions are the following:

Theorem 2.3 ([9]). Let x0 ∈ M be fixed and for ε > 0 let rε(x) = dε(x0, x). Let x ∈ M,

x 6= x0 and x not in the dε cut-locus of x0. Let G : [0, rε(x)] → R≥0 be a differentiable

function which is positive on (0, rε(x)] and such that G(0) = 0. We have

∆Hrε(x) ≤
1

G(rε(x))2

∫ rε(x)

0

(

nG′(s)2 −
[(

ρ1(s)−
1

ε
κ(s)

)

Γ(rε)(x)

+ ρ2(s)Γ
V(rε)(x)

]

G(s)2
)

ds.

Corollary 2.4 ([9]). Assume that the functions ρ1, κ, ρ2 are constant. Denote

κε = min
(

ρ1 −
κ

ε
,
ρ2
ε

)

.

For x 6= x0 ∈ M, not in the dε cut-locus of x0,

∆Hrε(x) ≤



























√
nκε cot

(

√

κε

n
rε(x)

)

, if κε > 0,

n

rε(x)
, if κε = 0,

√

n|κε| coth
(

√

|κε|
n

rε(x)
)

, if κε < 0.

(2.3)

3 Itô’s formula for radial processes

Let ((ξt)t≥0, (Px)x∈M) be the subelliptic diffusion process generated by ∆H and let

ζ denote its lifetime. We will refer to ξ as the horizontal Brownian motion of the

foliation or as the sub-Riemannian Brownian motion (in particular, here our Brownian
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motion is normalized to have ∆H as its generator, rather than 1
2∆H). Note that ξ

admits a smooth heat kernel pt(x, y) by the hypoellipticity of ∆H. Take x0 ∈ M and set

rε(x) := dε(x0, x). We denote the open gε-metric ball of radius r centered at x by Bε
r(x),

where ε ∈ [0,∞). The goal of this subsection is to show the following Itô formula for the

radial processes rε(ξt):

Theorem 3.1. Let ε > 0 be fixed. For each x1 ∈ M, if ξ0 = x1, then there exists a

non-decreasing continuous process lεt which increases only when ξt ∈ Cutε(x0) and a

martingale βε
t on R with quadratic variation satisfying d 〈βε〉 ≤ 2 dt (so in particular

〈βε〉t ≤ 2t) such that

rε(ξt∧ζ) = rε(x1) + βε
t∧ζ +

∫ t∧ζ

0

∆Hrε(ξs)ds− lεt∧ζ (3.1)

holds Px1
-almost surely.

We begin the proof with some preparatory lemmas. For the remainder of this section

ε > 0 will be fixed. The following is the usual Itô formula for a smooth function in a local

chart. Let U be an open local chart of M in which we have ∆H =
∑n

i=1 X
2
i +X0 with a

family of vector fields X0, X1, . . . , Xn on U , and let ξt satisfy the stochastic differential

equation

dξt =

n
∑

i=1

√
2Xi(ξt) ◦ dW i

t +X0(ξt)dt, (3.2)

where (W 1
t , . . . ,W

n
t ) is a Brownian motion on Rn. Here (W 1

t , . . . ,W
n
t ) is a standard

Euclidean Brownian motion, generated by 1
2 the Laplacian, which explains the factors of√

2 in the SDE. Let τ be the first exit time from U of ξt, i.e. τ := inf{t ≥ 0 | ξt /∈ U}.
Lemma 3.2. For any U -valued random variable S independent ofW and smooth function

f : U → R, we have

f(ξt∧τ ) = f(S) +

n
∑

i=1

√
2

∫ t∧τ

0

Xif(ξs)dW
i
s +

∫ t∧τ

0

∆Hf(ξs)ds,

PS-almost surely.

Next we show the following two auxiliary lemmas which concern the occupation time

of ξt at singular points of rε. The proof is almost the same as the one for Riemannian

manifolds, but we give it for completeness.

Lemma 3.3. For ε > 0, the set {t ∈ [0,∞) | ξt ∈ Cutε(x0)} has Lebesgue measure zero

Px1
-almost surely.

Proof. Since there is a heat kernel pt, the law of ξt under Px1
is absolutely continuous

with respect to µ. In addition, we have µ(Cutε(x0)) = 0 (see [11], for instance). By

combining these facts with Fubini’s theorem, we obtain

Ex1

[
∫ ∞

0

1{ξs∈Cutε(x0)}
ds

]

=

∫ ∞

0

Px1
{ξs ∈ Cutε(x0)} ds = 0.

Hence

∫ ∞

0

1{ξs∈Cutε(x0)}
ds = 0 Px1

-almost surely, and this is nothing but the conclu-

sion.

Lemma 3.4. Px0
{ξt = x0 at some t ∈ (0,∞)} = 0.
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Proof. We begin with noting that by definition the horizontal Laplacian ∆H is the gener-

ator of the Dirichlet form:

EH(f, g) = −
∫

M

〈∇Hf,∇Hg〉H dµ, f, g ∈ D(EH).

Observe also that µ(B0
r (x0)) ≤ µ(Bε

r(x0)) ≤ Cεr
n for small r > 0. This yields that {x0}

is exceptional by applying [25, Theorem 3]. The assumption of the theorem in [25] is

satisfied since the Brownian motion ξ is associated with the Dirichlet form (EH,D(EH))

and the distance d0 coincides with the intrinsic distance associated with EH. Then, by
[13, Theorem 4.1.2] and [13, Lemma 4.2.4], {x0} is polar. Thus the claim holds.

For R = (R1, R2) with R1 > R−1
2 > 0, we define stopping times T

(i)
Ri

(i = 1, 2) and TR

by

T
(1)
R1

:= inf {t ≥ 0 | rε(ξt) ≥ R1} ,
T

(2)
R2

:= inf {t ≥ 0 | rε(ξt) ≤ 1/R2 } ,
TR := T

(1)
R1

∧ T
(2)
R2

,

where a ∧ b = min{a, b} for a, b ∈ R ∪ {±∞}. We take R2 sufficiently large so that

dε(x0,Cutε(x0)) > R−1
2 holds, and from now on, we fix R1 and R2 until the final part of

the proof of Theorem 3.1. Let us define a set A by

A :=

{

(x, y) ∈ M×M

∣

∣

∣

∣

dε(x0, x) ∈ [R−1
2 , R1], dε(x0, y) = (3R2)

−1

and dε(x, y) = dε(x0, x)− dε(x0, y)

}

.

Note that A is compact since dε(x, y) is continuous as a function of x and y. For (x, y) ∈ A,

y is on a minimal geodesic joining x0 and x. In addition, A ∩ Cutε(M) = ∅ holds since we

can extend the minimal geodesic from x to y with keeping its minimality. By combining

these facts, we conclude

δ1 := inf {dε(x, x′) + dε(y, y
′) | (x, y) ∈ A, (x′, y′) ∈ Cutε(M)} ∧ 1

3R2
> 0.

Since we can take ρ1, ρ2, κ to be constants on Bε
R1+(3R2)−1(x0), Corollary 2.4 yields that

there is a continuous function V : (0, R1 + (3R2)
−1) → [0,∞) such that

∆Hdε(x, ·)(y) ≤ V (dε(x, y)) (3.3)

holds for x ∈ Bε
(3R2)−1(x0) and y ∈ Bε

R1
(x0) \ Cutε(x). Set V̄ := sup(3R2)−1≤r≤R1

V (r).

Lemma 3.5. Let x ∈ Cutε(x0) ∩Bε
R1

(x0) and δ ∈ (0, δ1). Set

T̃ := inf{t ≥ 0 | dε(x, ξt) ≥ δ}.

Then

Ex

[

dε(x0, ξt∧T̃∧TR
)− dε(x0, x)− (t ∧ T̃ ∧ TR)V̄

]

≤ 0.

Proof. We choose a point x̃0 ∈ M as follows: Take a minimal geodesic γ : [0, rε(x)] → M

from x0 to x and define x̃0 := γ((3R2)
−1). Then (x0, x̃0) ∈ A holds by construction.

Moreover, by the choice of δ > 0, ξt /∈ Cutε(x̃0) for all t ∈ [0, T̃ ∧TR) under Px. For y ∈ M,

let

r̃+(y) := dε(x0, x̃0) + dε(x̃0, y).

By the choice of x̃0, we have r̃+(x) = dε(x0, x). Moreover, by the triangle inequality,

r̃+(y) ≥ dε(x0, y) for all y ∈ M. By the definition of V we have

∆Hr̃+(y) ≤ V (dε(x̃0, y))

EJP 25 (2020), paper 97.
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holds for y ∈ BR1
(x0) \ Cutε(x̃0). Note that V (dε(x̃0, ξt)) ≤ V̄ holds for all t ∈ [0, T̃ ∧ TR)

since we have

1

3R2
≤ dε(x0, ξt)− dε(x0, x̃0) ≤ dε(x̃0, ξt) ≤ dε(x̃0, x) + dε(x, ξt) ≤ R1

by the choice of R2 and δ1. Therefore

dε(x0, ξt∧T̃∧TR
)− dε(x0, x)− (t ∧ T̃ ∧ TR)V̄

≤ dε(x0, ξt∧T̃∧TR
)− r̃+(ξ0)−

∫ t∧T̃∧TR

0

V (dε(x̃0, ξs))ds

≤ r̃+(ξt∧T̃∧TR
)− r̃+(ξ0)−

∫ t∧T̃∧TR

0

∆Hr̃+(ξs)ds.

Since r̃+ is smooth on Bε
δ(x), the last term is a martingale and thus its expectation is

zero. Hence the claim follows.

For δ ∈ (0, δ1), we define a sequence of stopping times (Sδ
k)m∈N and (T δ

k )m∈N0
by

T δ
0 := 0,

Sδ
k := TR ∧ inf{t ≥ T δ

k−1 | ξt ∈ Cutε(x0)},
T δ
k := TR ∧ inf{t ≥ Sδ

k | dε(ξSδ
k
, ξt) ≥ δ} ∧ (Sδ

k + δ).

Proposition 3.6. The process rε(ξt∧TR
)− rε(ξ0)− (t ∧ TR)V̄ is a supermartingale.

Proof. By virtue of the strong Markov property of ξ, it suffices to show

Ex

[

rε(ξt∧TR
)− rε(ξ0)− (t ∧ TR)V̄

]

≤ 0

for each 0 ≤ s < t. By Lemma 3.5, for all n ∈ N

Ex

[

rε(ξt∧T δ
k
)− rε(ξt∧Sδ

k
)−

(

t ∧ T δ
k − t ∧ Sδ

k

)

V̄
∣

∣

∣
FSδ

k

]

≤ 0.

We apply the Itô formula to rε(ξt) on t ∈ [T δ
k−1, S

δ
k]. By (3.3), we have

∆Hrε(ξt∧Sδ
k
) ≤ V̄

for t > T δ
k−1. These observations yield

Ex

[

rε(ξt∧Sδ
k
)− rε(ξt∧T δ

k−1

)−
(

t ∧ Sδ
k − t ∧ T δ

k−1

)

V̄
∣

∣

∣
FT δ

k−1

]

≤ 0.

It remains to show T δ
k → TR as k → ∞ in order to conclude the claim by the dominated

convergence theorem. If lim
k→∞

T δ
k =: T∞ < TR occurs, then T δ

k − Sδ
k > 0 converges to 0 as

k → ∞. In addition, d(ξSδ
k
, ξT δ

k
) = δ must hold for infinitely many k ∈ N. However, the

combination of these contradicts the fact that the sample path ξt is uniformly continuous

on [0, T∞]. Hence lim
k→∞

T δ
k = TR as k → ∞.

Corollary 3.7. rε(ξt∧TR
) is a semimartingale.

Remark 3.8. Repeating the last argument in the proof of Proposition 3.6 implies that,

for each fixed t > 0, t ∧ T δ
k = t ∧ TR holds for sufficiently large k almost surely.

Lemma 3.9. lim
δ→0

∞
∑

k=1

|T δ
k − Sδ

k| = 0 almost surely.
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Proof. For δ > 0, let us define random subsets Hδ and H of [0, TR) by

Hδ := {t ∈ [0, TR) | there exists t′ ∈ [0, TR) satisfying |t− t′| ≤ δ and ξt′ ∈ Cutε(x0)} ,
H := {t ∈ [0, TR) | ξt ∈ Cutε(x0)} .

Since the sample path of ξ is continuous and Cutε(x0) is closed, H is closed and H =

∩δ>0Hδ holds. By the definition of Sδ
k and T δ

k , we have

H ⊂
∞
⋃

m=1

[Sδ
k, T

δ
k ] ⊂ Hδ.

Hence the monotone convergence theorem yields that, for any T > 0,

lim sup
δ→0

∞
∑

m=1

|T δ
k ∧ T − Sδ

k ∧ T | ≤ lim
δ→0

∫ T

0

1Hδ
(t)dt =

∫ T

0

1H(t)dt = 0

almost surely, where the last equality follows from Lemma 3.3.

Lemma 3.10. Let U be a local chart ofM on which∆H =
∑n

i=1 X
2
i +X0 holds with a fam-

ily of vector fields {Xi}ni=0 on U and ξt satisfies the stochastic differential equation (3.2)

with a Brownian motion (W 1
t , . . . ,W

n
t ). Let τ1 and τ2 be stopping times with τ1 < τ2 so

that ξt is in U whenever t ∈ [τ1, τ2]. Then the martingale part of rε(ξt∧TR∧τ2)− rε(ξTR∧τ1)

coincides with
√
2

n
∑

i=1

∫ t∧TR∧τ2

TR∧τ1

Xirε(ξs)dW
i
s . (3.4)

Moreover, the quadratic variation of the martingale part of rε(ξt∧TR
)− rε(ξ0) is bounded

from above by 2t.

Proof. We first remark that the integrand Xirε(ξs) of the Itô stochastic integral (3.4)

is well-defined by virtue of Lemma 3.3. Moreover,
∑n

i=1 |Xirε(ξs)|2 ≤ 1 holds for a.e. s

Px1
-almost surely. By the martingale representation theorem, there exists an Rn-valued

adapted process η such that the martingale part of rε(ξt∧TR∧τ2)− rε(ξTR∧τ1) equals

n
∑

i=1

∫ t∧TR∧τ2

τ1∧TR

ηisdW
i
s .

Let us define a (local) martingale Nt by

Nt :=
n
∑

i=1

∫ t∧TR∧τ2

TR∧τ1

ηisdW
i
s −

√
2

n
∑

i=1

∫ t∧TR∧τ2

TR∧τ1

Xirε(ξs)dW
i
s .

Using the stopping times Sδ
k and T δ

k , the quadratic variation 〈N〉t of N is expressed as

follows:

〈N〉τ2 =

d
∑

i=1

∞
∑

k=1

(

∫ Sδ
k∧TR∧τ2

T δ
k−1

∧TR∧τ1

|ηi(t)−
√
2Xirε(ξt)|2dt

+

∫ T δ
k∧TR∧τ2

Sδ
k∧TR∧τ1

|ηit −
√
2Xirε(ξt)|2dt

)

. (3.5)

Since ξt /∈ Cutε(x0) if t ∈ (T δ
k−1, S

δ
k), Lemma 3.2 yields

∫ Sδ
k∧TR∧τ2

T δ
k−1

∧TR∧τ1

|ηit −
√
2Xirε(ξt)|2dt = 0
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for k ∈ N and i = 1, . . . , n. For the second term in the right-hand side of (3.5) we have

∞
∑

k=1

∫ T δ
k∧TR∧τ2

Sδ
k∧TR∧τ1

|ηit −
√
2Xirε(ξt)|2dt ≤ 2

∫

⋃
∞

k=1
[Sδ

k∧TR∧τ1,T δ
k∧TR∧τ2]

(

|ηt|2 + 2
)

dt. (3.6)

Since η is locally square-integrable on [0,∞) almost surely, Lemma 3.9 yields that the

right hand side of (3.6) tends to 0 as δ ↓ 0. Hence 〈N〉τ2 = 0 and the first assertion

follows. The second assertion can be obtained by decomposing ξt through a sequence of

stopping times into sample paths each of which is contained in a local chart and using

the strong Markov property.

We are final ready to prove our Itô formula for the radial process.

Proof of Theorem 3.1. On the basis of Corollary 3.7, we denote the martingale part of

rε(ξt∧TR
) by βε,R

t . By virtue of (3.3) and Lemma 3.3, the integral of s 7→ ∆Hrε(ξs) on a

subset of [0, t ∧ TR] is well-defined. Set Iδ :=
⋃∞

n=1[S
δ
k, T

δ
k ] and let us define lε,δ,Rt by

lε,δ,Rt := −rε(ξt∧TR
) + rε(ξ0) + βε,R

t∧TR

+

∫

[0,t∧TR]\Iδ

∆Hrε(ξs)ds+ |[0, t ∧ TR] ∩ Iδ|V̄ ,

where the modulus indicates the Lebesgue measure of the set. By Lemmas 3.2 and 3.10,

lε,δ,R is constant on [0, TR] \ Iδ. Moreover, Proposition 3.6 yields that lε,δ,Rt is non-

decreasing in t, and in particular lε,δ,Rt ≥ 0. By Lemma 3.3, ∆Hrε(ξs)1Ic
δ
(ξs) converges to

∆Hrε(ξs) as δ ↓ 0 for a.e. s ∈ [0, t ∧ TR] Px1
-a.s. Thus, Fatou’s lemma together with (3.3)

and Lemma 3.9 yields

0 ≤ lim sup
δ↓0

lε,δ,Rt ≤ −rε(ξt∧TR
) + rε(ξ0) + βε,R

t∧TR
+

∫ t∧TR

0

∆Hrε(ξs)ds.

This inequality and (3.3) ensure that s 7→ ∆Hrε(ξs) belongs to L1([0, t ∧ TR]) Px1
-a.s.

Thus, Lemma 3.9 implies that lε,Rt := lim
δ↓0

lε,δ,Rt exists and

rε(ξt∧TR
) = rε(ξ0) + βε,R

t∧TR
+

∫ t∧TR

0

∆Hrε(ξs)ds− lε,Rt

holds for all t ≥ 0 Px1
-a.s. By Lemma 3.4, we can take the limit R2 → ∞ in the last

identity in a compatible way. Then the conclusion follows by taking the limit R1 → ∞.

Indeed, it is not difficult to see that lεt can increase only when ξt ∈ Cutε(x0) from the

corresponding property for lε,δ,Rt . Moreover, by Lemma 3.10 and the Markov property,

we have that 〈βε〉t − 〈βε〉s ≤ 2t− 2s for s < t, so that d 〈βε〉 ≤ 2 dt.

4 Comparison of radial processes and stochastic completeness

on general foliations

4.1 Comparison of radial processes

We first recall the definition of a model Riemannian manifold that was introduced by

E. Greene and H. Wu, see [15].

Definition 4.1. Let h : [0,+∞) → (0,+∞) be a smooth function which is positive on

(0,+∞) and such that h(0) = 0, h′(0) = 1. Denote K(r) = −h′′(r)/h(r). The Riemannian

manifold MK = [0,+∞)× Sn with Riemannian metric

g = dr2 + h(r)2gSn

is called the Riemannian model space with radial curvature K(r), where gSn denotes the

standard metric on Sn.
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As before, we fix a point x0 ∈ M. For x1 ∈ M, we consider the solution of the

stochastic differential equation

ξ̃εt = dε(x0, x1) + n

∫ t

0

h′(ξ̃εs)

h(ξ̃εs)
ds+ βε

t (4.1)

where βε is the martingale defined in Theorem 3.1.

Theorem 4.2. Define ξ̃εt as in (4.1) and write K(r) = −h′′(r)/h(r). Assume that

min

{

ρ1(r)−
κ(r)

ε
,
ρ2(r)

ε

}

≥ nK(r).

Let ((ξt)t≥0, (Px)x∈M) be the horizontal Brownian motion on M generated by ∆H.

Then, for any R ≥ dε(x0, x1) and any non decreasing function φ on [0, R),

Ex1

[

φ(dε(x0, ξ
ε
t )), t < τεR

]

≤ Ex1

[

φ(ξ̃εt ), t < τ εR
]

,

where τ εR is the hitting time of R by ξ̃ε.

Proof. It follows from Theorem 3.1 and the Ikeda-Watanabe comparison theorem [21]

that for t < τεR, one has Px1
a.s.

dε(x0, ξt) ≤ ξ̃εt .

The result follows then immediately.

4.2 Stochastic completeness criterion

In this section we prove a general non-explosion criterion for the horizontal Brownian

(ξt)t≥0 as a consequence of the sub-Laplacian comparison Theorem 2.3. Recall that

the functions ρ1, ρ2, κ are defined through the assumptions (2.2) and in particular that

ρ2 ≥ 0.

Theorem 4.3. Suppose that for some ε > 0 there exists a non-decreasing function

K : [0,+∞) → (0,+∞) satisfying
∫ +∞

0
K(s)−1/2ds = +∞ and such that for every s ≥ 0

ρ1(s)−
κ(s)

ε
≥ −K(s).

Then (ξt)t≥0 does not explode.

Proof. Without loss of generality, we can assume that ξ0 = x1 for some x1 6= x0, so that

rε(ξ0) > 0. Let

f(x) =

∫ x

0

K(s)−1/2ds,

and note that f is continuous, strictly increasing, and proper. Then f(rε(ξt)) is semi-

martingale on (0,∞), and non-explosion of f(rε(ξt)) implies non-explosion of ξt. Note

that f ′(x) = 1/
√

K(x), which is bounded from above by a positive constant (namely

1/
√

K(0)), and f ′′(x) = − K′(x)
2K3/2(x)

, where K ′ is understood as a positive measure, so that

f ′′ ≤ 0 in the sense of distributions.

From Corollary 2.4, we know that

∆Hrε(x) ≤
√

nK(rε(x)) coth
(

√

K(rε(x))rε(x)
)

in the sense of distributions. Let Ft be the semi-martingale on (0,∞) given by the

solution to the SDE

dFt =
1

√

K(rε(ξt))
dβε

t +
√
n coth

(

√

K(f−1(Ft))f
−1(Ft)

)

dt; F0 = f(rε(ξ0)),
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where βε
t is the martingale part of rε(ξt) and f−1 is the inverse of f(x). Then since −f is

convex, we can apply the (extended) Itô rule, starting with the decomposition of rε(ξt)

from Theorem 3.1, (and standard SDE comparison) to see that f(rε(ξt)) is bounded from

above by Ft. Now the diffusivity of the above SDE satisfied by Ft is bounded, and the

drift is bounded when Ft ≥ 1, so Ft cannot explode. It follows that f(rε(ξt)) and hence ξt
also cannot explode, completing the proof.

In particular, this implies that a natural type of quadratic curvature decay condition

implies stochastic completeness, analogously to the well-known Riemannian situation.

More precisely, we have the following.

Corollary 4.4. Suppose that for some ε > 0, there exists c1 > 0 such that

ρ1(s)−
κ(s)

ε
≥ −(c21s

2 + c1)

holds for all s > 0. Then (ξt)t≥0 does not explode.

5 Comparison theorems for the radial processes on Sasakian

manifolds

In this section we study in more detail specific foliations on which the theory can

be pushed further. The foliations we consider are called Sasakian foliations. Those

are well-studied co-dimension one totally geodesic foliations with additional structure

described in [9, Section 3] (we also for instance refer to [4] and the references inside for

further details).

5.1 Comparison of radial processes

In this section, we use the sub-Laplacian comparison theorem on Sasakian manifolds

foliations in [9] to get estimates for radial parts of the horizontal Brownian motion. In

the Riemannian case the method we use is due to K. Ichihara [20]. In the case where

the Ricci curvature is bounded from below by a constant, the method yields the sharp

Cheeger-Yau lower bound [12] for the heat kernel.

We first briefly recall the sub-Laplacian comparison theorem proved in [9] to which

we refer for further details. Recall the comparison functions FRie and FSas given as in

respectively (1.1) and (1.2).

Theorem 5.1 ([9]). Let (M,F , g) be a Sasakian foliation with sub-Riemannian distance

d0. Let x0 ∈ M and define r0(x) = d(x0, x). Assume that for some k1, k2 ∈ R

KH,J(v, v) ≥ k1, RicH,J⊥(v, v) ≥ (n− 2)k2, v ∈ H, ‖v‖g = 1.

Then outside of the d0 cut-locus of x0 and globally on M in the sense of distributions,

∆Hr0 ≤ FSas(r, k1) + (n− 2)FRie(r, k2).

The tensors KH,J and RicH,J⊥ are defined in [9]. We omit here their definition for

conciseness since they will not be relevant in our analysis except as criteria to get the

sub-Laplacian comparison theorem.

As before, we fix a point x0 ∈ M. For x1 ∈ M, we consider the solution of the

stochastic differential equation

ξ̃t = d0(x0, x1) +

∫ t

0

(

FSas(ξ̃s, k1) + (n− 2)FRie(ξ̃s, k2)
)

ds+
√
2βt

where β is a standard Brownian motion under Px1
.
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Theorem 5.2. Let (M,F , g) be a Sasakian foliation with sub-Riemannian distance d0.

Assume that for some k1, k2 ∈ R,

KH,J(v, v) ≥ k1, RicH,J⊥(v, v) ≥ (n− 2)k2, v ∈ H, ‖v‖g = 1.

Let ((ξt)t≥0, (Px)x∈M) be the horizontal Brownian motion on M generated by ∆H. Then,

for x1 ∈ M, R > 0, and s ≤ R

Px1

{

d0(x0, ξt) < s, t ≤ τR
}

≥ Px1

{

ξ̃t < s, t ≤ τ̃R
}

,

where τR is the hitting time of the d0-geodesic ball in M with center x0 and radius R and

τ̃R the hitting time of the level R by ξ̃.

Proof. Let φ be a non-increasing function on [0, R] which is compactly supported on [0, s].

We set

u(t, x) = Ex [φ(d0(x0, ξt)), t ≤ τR]

and

u0(t, r) = Er

[

φ(ξ̃t), t ≤ τ̃R
]

.

We then have














u ∈ C∞((0,+∞)×B0(x0, R))
∂u

∂t
= ∆Hu

u(0, x) = φ(d0(x0, x)), u(t, x) = 0 if x ∈ ∂B0(x0, R)

and














u0 ∈ C∞((0,+∞)× [0, R))
∂u0

∂t
= Lu0

u0(0, r) = φ(r), u0(t, r) = 0 if r = R,

where

L =
(

FSas(r, k1) + (n− 2)FRie(r, k2)
) ∂

∂r
+

∂2

∂r2
.

Similarly to Lemma 2.1 in [20], u0(t, r) is non-increasing in r.

For t ≥ 0, x ∈ B0(x0, R) denote v(t, x) = u0(t, d0(x0, x)). For x ∈ B0(x0, R) \ Cutx0
(M),

one has then from Theorem 5.1,

∆Hv(t, x) =
∂2u0

∂r2
(t, d0(x0, x)) + ∆Hr0(x)

∂u0

∂r
(t, d0(x0, x))

≥ ∂2u0

∂r2
(t, d0(x0, x)) +

(

FSas(d0(x0, x), k1) + (n− 2)FRie(d0(x0, x), k2)
)∂u0

∂r
(t, d0(x0, x))

≥ Lu0(t, d0(x0, x)) =
∂u0

∂t
(t, d0(x0, x)) =

∂v

∂t
(t, x).

Therefore, by using the semi-concavity of the sub-Riemannian distance and arguing as in

the proof of Theorem 10.1 in [3], one deduces that in the sense of distributions one has

for t ≥ 0, x ∈ B0(x0, R),
∂v

∂t
(t, x) ≤ ∆Hv(t, x)

Since

v(0, x) = φ(d0(x0, x)), v(t, x) = 0 if x ∈ ∂B0(x0, R),

a standard parabolic comparison theorem yields

v(t, x) ≤ u(t, x).

Taking φ = 1 on [0, s) yields the conclusion.
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As a first corollary we deduce exit time estimates:

Corollary 5.3. Under the same assumptions as in Theorem 5.2 one has

Ex1
[τR] ≥ Ex1

[τ̃R].

As a second corollary we deduce estimates for the integrals of the Dirichlet heat

kernel on sub-Riemannian balls:

Corollary 5.4. Let (M,F , g) be a Sasakian foliation. Assume that for some k1, k2 ∈ R

KH,J(v, v) ≥ k1, RicH,J⊥(v, v) ≥ (n− 2)k2, v ∈ H, ‖v‖g = 1.

FixR > 0 and let ((ξRt )t≥0, (Px)x∈B0(x0,R)) be the horizontal Brownian motion onB0(x0, R)

generated by ∆H and with Dirichlet boundary condition. Write its heat kernel with

respect to the Riemannian volume measure µ as pR(t, x, y). Let qR(t, r1, r2) be the heat

kernel with respect to the Lebesgue measure on [0, R] of the diffusion with generator

Lk1,k2
=
(

FSas(r, k1) + (n− 2)FRie(r, k2)
) ∂

∂r
+

∂2

∂r2
(5.1)

with Dirichlet boundary condition at R. Then, for every s < R, t > 0 and x1 ∈ B0(x0, s)

∫

B0(x0,s)

pR(t, x1, y)dµ(y) ≥
∫ s

0

qR(t, d(x0, x1), r)dr.

It is interesting to note that Corollary 5.4 does not yield a lower bound for the heat

kernel pR as one could at first expect. Indeed, when s is small the volume of B0(x0, s) has

order sn+2, because n+2 is the Hausdorff dimension ofM for the metric d0. On the other

hand, one can directly check that
∫ s

0
qR(t, d(x0, x1), r)dr has order s

n+3. This discrepancy

is due to the fact that on sub-Riemannian manifolds, the measure contraction dimension

is larger than the Hausdorff dimension.

5.2 Application to Dirichlet eigenvalue estimates

We now use the comparison theorem of the previous subsection to deduce estimates

on the first Dirichlet eigenvalue of the sub-Riemannian balls. This is the sub-Riemannian

version of the well-known Cheng’s comparison theorem in Riemannian geometry.

For simplicity, we start with the non-negative curvature case k1 = k2 = 0.

Let (M,F , g) be a Sasakian foliation with sub-Riemannian distance d0. Assume that:

KH,J(v, v) ≥ 0, RicH,J⊥(v, v) ≥ 0, v ∈ H, ‖v‖g = 1.

In that case, the one-dimensional diffusion with respect to which we do the compari-

son is very simple since

L0,0 =
n+ 2

r

∂

∂r
+

∂2

∂r2

which is a Bessel diffusion of dimension n+ 3. We recall that n is the dimension of the

horizontal distribution.

Theorem 5.5. Assume k1 = k2 = 0. For x0 ∈ M and R > 0, let λ1(B0(x0, R)) denote the

first Dirichlet eigenvalue of the sub-Riemannian ball B0(x0, R) and let λ̃1(d,R) denote

the first Dirichlet eigenvalue of Euclidean ball with radius R in Rd. Then, for every

x0 ∈ M and R > 0

λ1(B0(x0, R)) ≤ λ̃1(n+ 3, R).

EJP 25 (2020), paper 97.
Page 14/17

http://www.imstat.org/ejp/



Radial processes for sub-Riemannian Brownian motions

Proof. From spectral theory, one has

pR(t, x1, y) =

+∞
∑

k=1

e−λktφk(x1)φk(y)

where the λk’s are the Dirichlet eigenvalues of B0(x0, R) and the φk’s the eigenfunctions.

One has similarly

qR(t, r0, r) = rn+2
+∞
∑

k=1

e−λ̃ktφ̃k(r0)φ̃k(r)

Thus, from Corollary 5.4, when t → +∞ one must have λ1 ≤ λ̃1.

For general k1, k2 one can similarly prove the following theorem:

Theorem 5.6. For x0 ∈ M and R > 0, let λ1(B0(x0, R)) denote the first Dirichlet eigen-

value of the sub-Riemannian ball B0(x0, R) and let λ̃1(n, k1, k2, R) denote the first Dirich-

let eigenvalue of the operator

Lk1,k2
=
(

FSas(r, k1) + (n− 2)FRie(r, k2)
) ∂

∂r
+

∂2

∂r2

on the interval [0, R] with Dirichlet boundary condition at R. Then, for every x0 ∈ M and

R > 0

λ1(B0(x0, R)) ≤ λ̃1(n, k1, k2, R).

5.3 Large time behavior and law of iterated logarithm for the radial processes

In this section we study large time behaviour of the radial process in negative

curvature.

Proposition 5.7. Let (M,F , g) be a Sasakian foliation. Assume that for some k1, k2 ≤ 0

KH,J(v, v) ≥ k1, RicH,J⊥(v, v) ≥ (n− 2)k2, v ∈ H, ‖v‖g = 1.

Let ((ξt)t≥0, (Px)x∈M) be the sub-Riemannian Brownian motion generated by ∆H. Then

for every x0, x1 ∈ M,

Px1

(

lim sup
t→+∞

d0(x0, ξt)

t
≤ (n− 2)

√

|k2|+
√

|k1|
)

= 1

Proof. We note that when k1, k2 ≤ 0, the diffusion with generator

Lk1,k2
=
(

FSas(r, k1) + (n− 2)FRie(r, k2)
) ∂

∂r
+

∂2

∂r2

is transient and that

lim
r→+∞

FSas(r, k1) =
√

|k1|, lim
r→+∞

FRie(r, k2)) =
√

|k2|.

The result follows then from similar arguments as in Example 2.1 in [20].

When k1, k2 = 0, the above estimate can be refined and we obtain a law of iterated

logarithm.

Proposition 5.8. Let (M,F , g) be a Sasakian foliation. Assume that

KH,J(v, v) ≥ 0, RicH,J⊥(v, v) ≥ 0, v ∈ H, ‖v‖g = 1.

Let ((ξt)t≥0, (Px)x∈M) be the sub-Riemannian Brownian motion generated by ∆H. Then

for every x0, x1 ∈ M,

Px1

(

lim sup
t→+∞

d0(x0, ξt)√
2t ln ln t

≤ 1

)

= 1

Proof. The proof is similar to the one of Theorem 3.1 in [20], so we omit the details for

conciseness.
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5.4 Some extensions: H-type groups

In the recent work [10] sub-Laplacian comparison theorems have been obtained in a

more general setting than Sasakian, the setting of H-type sub-Riemannian spaces. In

particular, this was proved that if (M,F) is the totally geodesic foliation on a H-type

group, then one has

∆Hr0 ≤ n+ 3m− 1

r0

classically outside of the cut-locus and globally in the sense of distributions, where as

usual n denotes the dimension of the horizontal bundle and m denotes the codimension

of this horizontal bundle. In that setting, all the results obtained in this section may be

generalized with identical proofs. In particular, one obtains the following Cheng’s type

theorem for the Dirichlet eigenvalues of sub-Riemannian balls in H-type groups.

Theorem 5.9. Assume that M is an H-type group. For x0 ∈ M and R > 0, let

λ1(B0(x0, R)) denote the first Dirichlet eigenvalue of the sub-Riemannian ball B0(x0, R)

and let λ̃1(d,R) denote the first Dirichlet eigenvalue of Euclidean ball with radius R

in Rd. Then, for every x0 ∈ M and R > 0,

λ1(B0(x0, R)) ≤ λ̃1(n+ 3m,R).

Note that in contrast to the Riemannian case, here the comparison diffusion is not

realized as the radial process of a sub-Riemannian manifold (and in particular, it is not

the radial process of the Heisenberg group, which fails to be a diffusion), and thus there

is no reason to suspect that the bound is sharp.
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