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We study the radial part of sub-Riemannian Brownian motion in the context of totally
geodesic foliations. It6’s formula is proved for the radial processes associated to
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and taking advantage of the recently proved sub-Laplacian comparison theorems one
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Radial processes for sub-Riemannian Brownian motions

1 Introduction

In the context of Riemannian manifolds the study of the radial part of Brownian
motion yields new proofs and sheds new light on several well-known theorems of Rieman-
nian geometry; see for instance the paper [20] and the book [19] for an overview. Our
goal in the present paper is to extend those techniques to the context of sub-Riemannian
manifolds. In the last few years, the study of Brownian motion on sub-Riemannian mani-
folds has attracted a lot of interest, see [6], [7], [14] and [26], and several applications to
the study of heat semigroup gradient bounds and functional inequalities on pathspaces
have been obtained. Despite those numerous works the probabilistic study of the radial
part of the sub-Riemannian Brownian motion is not yet developed. Taking advantage
of the sub-Laplacian comparison theorems recently proved in [9], it is now possible to
pursue such a study.

In this paper we focus on two classes of sub-Riemannian manifolds. The first one is
the class of sub-Riemannian manifolds whose horizontal distribution is the horizontal dis-
tribution of some Riemannian foliation with totally geodesic leaves. The sub-Riemannian
geometry of such structures is by now well understood, thanks to the works [8], [16]
and [17]. A key insight is to approximate the sub-Riemannian distance dy by a family
of Riemannian distances d., € > 0 which converges to dy as € — 0. The sub-Laplacian
comparison theorems associated to d. obtained in that context are very general but with
the drawback that there is no limit when ¢ — 0, meaning that we can not deduce a result
for the sub-Laplacian of the sub-Riemannian distance itself. One of the main results we
obtain for the radial processes is Theorem 3.1, giving its It6 formula. Let (£;);>¢ be the
sub-Riemannian Brownian motion on a Riemannian manifold equipped with a totally
geodesic foliation, and let Ay be the sub-Laplacian (see the next section for the precise
definitions). Denote by r. the d.-distance from a fixed point zy and by ( the lifetime of
the process. Then

tAC
re(Eing) = r2(€0) + Binc + / Anra(€)ds — 5,

where [ is a non-decreasing continuous process which increases only when ¢, is in the
d. cut-locus of zy and where /{ is a martingale on R, starting from 0, with d (8°) < 2dt.
This decomposition is the sub-Riemannian analogue of Kendall’s well-known result [22].
However, note that §f in this result is not a Brownian motion, unlike in the Riemannian
case. Even if 3f is not a Brownian motion, we are still able in Section 4 to prove very
general stochastic completeness criteria, see Theorem 4.3.

The second class of sub-Riemannian manifolds we will focus on is the class of Sasakian
foliations. Sasakian foliations are a special class of totally geodesic foliations for which
the leaves have dimension one. In that particular class of examples, it was proved in
[9, 23] that it is possible to prove sharp sub-Laplacian comparison theorems for Ay,
which actually have a limit when ¢ — 0. As a consequence, we are able to study the
radial process with respect to the sub-Riemannian distance itself. Let n be the dimension
of the horizontal distribution. Our main result is the comparison Theorem 5.2. It states
that under natural curvature lower bounds (expressed in terms of constants k; and k),
one has in a weak sense,

ro(&) < &
where §~ is a one-dimensional diffusion with generator
0 0?
Ligy ey = (Fas(r, k1) + (n — 2) Frie(r, k2))5 + 92
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Radial processes for sub-Riemannian Brownian motions

and Fs.s, FRrie are the explicit functions defined by

Vk cot VEr if k>0,
Frie(r k) =S 1/r ifk=0, (1.1)
v/ |k| coth y/|k|r if k <0,

and VE(sin VEr — VEr cos VEr)
2 — 2cos Vkr — VkrsinvVkr
Fsas(r, k) = < 4/r ifk=0, (1.2)
VI (\/k[r cosh \/|k[r — sinh /]k[r) ik <0
2 — 2 cosh \/[k[r + /|k[r sinh \/]k[r .
For instance, in the case of the 3-dimensional Heisenberg group, which is a Sasakian
manifold for which n = 2 and k; = 0, k3 = 0 one can see that

40 0?

0= o T
As a consequence, the sub-Riemannian radial part of the sub-Riemannian Brownian
motion in the Heisenberg group can be controlled by a 5-dimensional Bessel processes.
Note that the dimension 5 here is not too surprising since 5 is the MCP dimension of the
Heisenberg group (see [9, Section 3.6] for further comments about the MCP dimension
in that context). As a corollary of our comparison theorem, we obtain a Cheng’s type
estimate for the Dirichlet eigenvalues of sub-Riemannian metric balls, see Section 5.2.
In the case k1 = ko = 0, which thus includes the Heisenberg group, our result becomes
the following.

if k>0,

Theorem 1.1. Let M be a sub-Riemannian manifold associated to a Sasakian foliation,
with horizontal distribution of dimension n, and which satisfies the above comparison
result with k1 = ko = 0. Forzo € M and R > 0, let \; (By(xo, R)) denote the first Dirichlet
eigenvalue of the sub-Riemannian ball By(zo, R) and let A, (d, R) denote the first Dirichlet
eigenvalue of the Euclidean ball with radius R in R¢.

Then, for every xp € M and R > 0

0 < A (Bo(zo, R)) < M (n+3,R).

The structure of the paper is as follows. In Sections 2, 3 and 4 we consider the
general case of totally geodesic Riemannian foliations. After introducing the necessary
background on such manifolds in Section 2, we describe the diffusion and drift part of
the sub-Riemannian radial process in Section 3. Such a representation allows us to give
a criterion for non-explosion of the sub-Riemannian Brownian motion in Section 4, which
is more general than previous criteria for stochastic completeness found in [8] and [18].
Finally, we use the sharp comparison theorem available to us for the case of Sasakian
manifolds and H-type groups to prove results on the first Dirichlet eigenvalues and on
exit times of sub-Riemannian balls in Section 5.

2 Preliminaries and assumptions
In this preliminary section we introduce the geometric framework and recall some of

the general sub-Laplacian comparison theorems obtained in [9].

2.1 Totally geodesic Riemannian foliations and canonical variation

Let (M, g) be a complete Riemannian manifold of dimension n + m equipped with
a foliation F with m-dimensional leaves. We only consider such manifolds with n > 2
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and m > 1. Let V be the integrable subbundle tangent to the leaves of F and write
its orthogonal complement with respect to g as H. We will assume that the foliation is
Riemannian and with totally geodesic leaves, which is equivalent to the assumptions
that

(ng)(Z,Z):O, ('CZQ)(XaX):()? XGFOO(H)v ZGFOO<V)a

where L stands for the Lie derivative. For further details about totally geodesic foliations
we refer to [5]. We will also consider the canonical variation g. of the Riemannian
metric g defined by

1
9e =gn D _gv; gn = glH, gv =g|V, €>0.

We let d. be the Riemannian distance associated to g.. The limit € — 0 is called the sub-
Riemannian limit. Throughout this paper, we will assume that # is bracket-generating,
i.e. we assume that elements in I'™°(%) together with all possible iterated brackets of
such vector fields span the entire tangent bundle TIM. If this is the case, the limiting
distance dy(z,y) = lim. o d.(x,y) will always be finite, is called the sub-Riemannian
distance and has the following alternative realization. An absolutely continuous curve
7v: [0,t1] — M is called horizontal if ¥(t) € H. ) for almost every ¢ € [0,,]. It is clear that
the length on horizontal curves only depends on g4 . The bracket-generating condition
ensures that any pair of points can be connected by a horizontal curve and the distance
do(z,y) can be realized as the infimum of the lengths of all horizontal curves connecting
the pair of points.

For any fixed « € M, define r.(y) = d.(x,y) for any ¢ > 0. We further assume that
there are no non-trivial abnormal minimizers for the sub-Riemannian limit; note that
this is known to always hold in the Sasakian case [2, Chapt. 8]. The cut locus Cut.(z)
is defined such that y € IM \ Cut.(z) if there exists a unique, non-conjugate, length-
minimizing geodesic from x to y relative to g.. The global cut locus of M is defined
by

Cut:(M) = {(z,y) e M x M, y € Cute(z)}.
So far, the geometry and topology of Cutq(IM) is only poorly understood. However,
the following is known:

Lemma 2.1 ([1], [24]). Let ¢ > 0. The following statements hold:

(a) The distance function © — d.(xg, z) is locally semi-concave in M \ {x¢}. In particular,
it is twice differentiable almost everywhere.

(b) The set M \ Cut.(z¢) is open and dense in M.
(c) The function (z,y) — d.(x,y)? is smooth on M x M \ Cut.(IM).

The following theorem can be found in [10].

Theorem 2.2 ([10]). Let z,y € M with y ¢ Cuto(x). Then there exists an open neigh-
bourhood V of y and €’ > 0 such that V N Cut.(z) = () for all 0 < ¢ < ¢’. Furthermore,
the map

(€,2) = 1re(2) = do(x, 2) (2.1)

is smooth for (g,z) € [0,¢’) x V. In particular, we have uniform convergence r. — r
together with their derivatives of arbitrary order on compact subsets of M \ Cutg(z).

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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2.2 Sub-Laplacian comparison theorems for the Riemannian approximations

The Riemannian gradient will be denoted by V and the Riemannian volume by u (that
is, for ¢ = 1) and we write the horizontal gradient as V4, which is the projection of
V onto H. The horizontal (or sometimes called sub-Riemannian) Laplacian A is the
generator of the symmetric closable bilinear form:

Enlfog) = /}M (Vo Vighudu,  fog € C(M).

Note that using the volume of any of the Riemannian structures for € > 0 would give the
same form and thus the same generator. The hypothesis that H is bracket generating
implies that the horizontal Laplacian Ay is locally subelliptic and the completeness
assumption on g implies that Ay is essentially self-adjoint on the space of smooth and
compactly supported functions (see for instance [5]). Estimates on Ayr. outside of the
cut-locus have been obtained in [9] and rely on the control of some tensors associated to
a canonical connection (the Bott connection). The exact definition of those tensors is
not relevant in the present paper, so for conciseness we omit the details, but refer to [9].
Such tensors were denoted Ricy,, J?, and Tr(J2). Throughout the Sections 2, 3 and 4
we assume that globally on M, for every X € I'™°(H) and Z € I'*°(V),

Ricy (X, X) > p1(ro) | X |13,

—(I2X, X))y < X2, imezy > AL (2:2)
(X X < w(r) | Xy, =7 Tr(Z) 2 p2(ro)ll 21,

for some continuous functions pi, p2, x with x > 0 and p2 > 0. We moreover always
assume that the foliation is of Yang-Mills type (see [9]). The main results obtained in [9]
under those assumptions are the following:

Theorem 2.3 ([9]). Let zp € M be fixed and fore > 0 let r.(z) = d.(x0,z). Letz € M,
x # x¢ and z not in the d. cut-locus of zy. Let G: [0,7.(x)] — R>¢ be a differentiable
function which is positive on (0,r.(z)] and such that G(0) = 0. We have

Bre(o) < g | " (ner (e = | (m266) = 26t) P10
+ (V)0 | Glo? s

Corollary 2.4 ([9]). Assume that the functions p1, Kk, p2 are constant. Denote

. K p2
Re = INinN (pl _g7?) .

For x # x¢o € M, not in the d. cut-locus of x,

Ve cot (4 / %7‘5(53)), if ke >0,
n

Ayre(x) < ) if ke =0, (2.3)

= re(a)

V/n|ke| coth ( |I;€‘r5(x)), if ke <O0.

3 1Ito’s formula for radial processes

Let ((&)¢>0, (Pz)zem) be the subelliptic diffusion process generated by Ay and let
¢ denote its lifetime. We will refer to £ as the horizontal Brownian motion of the
foliation or as the sub-Riemannian Brownian motion (in particular, here our Brownian

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
Page 5/17



Radial processes for sub-Riemannian Brownian motions

motion is normalized to have Ay as its generator, rather than %AH). Note that &
admits a smooth heat kernel p;(x, y) by the hypoellipticity of Ay,. Take o € M and set
re(z) := d-(zo,x). We denote the open g.-metric ball of radius r centered at = by B(x),
where ¢ € [0,00). The goal of this subsection is to show the following It6 formula for the
radial processes 7. (&;):

Theorem 3.1. Let ¢ > 0 be fixed. For each x1 € M, if £, = x1, then there exists a
non-decreasing continuous process [§ which increases only when &, € Cut.(z¢) and a
martingale 3 on R with quadratic variation satisfying d (5°) < 2dt (so in particular
(%), < 2t) such that

tAC
re(Einc) = re(a) + Bone + / Anra(€)ds — e 3.1)
0

holds P, -almost surely.

We begin the proof with some preparatory lemmas. For the remainder of this section
€ > 0 will be fixed. The following is the usual It6 formula for a smooth function in a local
chart. Let U be an open local chart of M in which we have Ay = > | X2 + X, with a
family of vector fields X, X1,...,X, on U, and let &, satisfy the stochastic differential
equation

& =Y V2Xi(&) o dW + Xo(&)dt, (3.2)
i=1
where (W/},..., W) is a Brownian motion on R". Here (W},..., W) is a standard

Euclidean Brownian motion, generated by % the Laplacian, which explains the factors of
/2 in the SDE. Let 7 be the first exit time from U of &, i.e. 7 :=inf{t > 0| & ¢ U}.

Lemma 3.2. For any U-valued random variable S independent of W and smooth function
f: U — R, we have

ar) = f(S 2 TXi $)dW! WA s)ds,
F(Eonr) f()+;f/0 f(&) +/0 (€ ds

Ps-almost surely.

Next we show the following two auxiliary lemmas which concern the occupation time
of & at singular points of r.. The proof is almost the same as the one for Riemannian
manifolds, but we give it for completeness.

Lemma 3.3. Fore > 0, the set {t € [0,00) |§; € Cut.(z¢)} has Lebesgue measure zero
PP, -almost surely.

Proof. Since there is a heat kernel p;, the law of ¢, under P,, is absolutely continuous
with respect to p. In addition, we have u(Cutc(x¢)) = 0 (see [11], for instance). By
combining these facts with Fubini’s theorem, we obtain

]Ea’,'1 |:/0 ]1{556011t5(£0)}d8:| = / ]Pﬂfl {gs S Cute(ﬂ'}())} ds — O

0

Hence /0 ]l{ESECutE(mg)}dS = 0 P,,-almost surely, and this is nothing but the conclu-

sion. O

Lemma 3.4. P, {& = 2 at some t € (0,00)} = 0.

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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Proof. We begin with noting that by definition the horizontal Laplacian Ay is the gener-
ator of the Dirichlet form:

Enlfog) = /m (Vuf.Vughudu, f.9€D(Ew)

Observe also that u(B2(zg)) < p(BE(xg)) < Cer™ for small 7 > 0. This yields that {z¢}
is exceptional by applying [25, Theorem 3]. The assumption of the theorem in [25] is
satisfied since the Brownian motion ¢ is associated with the Dirichlet form (€4, D(Ex))
and the distance dj coincides with the intrinsic distance associated with £4. Then, by
[13, Theorem 4.1.2] and [13, Lemma 4.2.4], {z(} is polar. Thus the claim holds. O

For R = (Ry, Ry) with R; > R;' > 0, we define stopping times TI%-) (1=1,2) and Tg
by
Ty :=inf {t > 0| r(&) > R},
Ty = inf{t >0 | r.(&) < 1/Ra },
. () (2)
Tr =Ty A T3,
where a A b = min{a, b} for a,b € R U {£oo}. We take R, sufficiently large so that

d.(xo, Cute(z9)) > Ry ! holds, and from now on, we fix R; and R, until the final part of
the proof of Theorem 3.1. Let us define a set A by

de(anm) € [R2_1,R1]7 ds(-r()vy) = (3R2)_1 }

A {u,y) € M x DM ’ and i (2. 5) — do(ae.2) — dolzo.0)

Note that A is compact since d.(z, y) is continuous as a function of x and y. For (z,y) € A,
y is on a minimal geodesic joining zy and . In addition, A N Cut.(IM) = () holds since we
can extend the minimal geodesic from x to y with keeping its minimality. By combining
these facts, we conclude

1
61 :=inf {d.(z,2") +d-(y, ') | (z,y) € A, (z',y) € Cutc(M)} A ——- > 0.

3Ry
Since we can take p1, p2, kK to be constants on B§1+(3R2),1 (x9), Corollary 2.4 yields that
there is a continuous function V : (0, Ry + (3R3)™!) — [0, 00) such that
And:(z,-)(y) < V(d:(2,9)) 3.3)

holds for = € Bi;p, - (z0) and y € B, (0) \ Cut.(z). Set V := SUP(3R,)-1<r<r, V()
Lemma 3.5. Let z € Cut.(29) N B%, (7o) and ¢ € (0,61). Set

T :=inf{t > 0|d.(z,&) > 0}.

Then }
E, dg(l'o,ft/\,f/\TR) — dE(ZL‘(),(E) — (t AT N TR)V <0.

Proof. We choose a point o € M as follows: Take a minimal geodesic 7: [0, r.(z)] - M
from zo to = and define %o := 7((3R2)~!). Then (z0,7¢) € A holds by construction.
Moreover, by the choice of § > 0, & ¢ Cut. (i) forall ¢t € [0,7 ATg) under P,. Fory € M,
let

7 (y) := d=(z0, %0) + d-(Z0, )
By the choice of 7y, we have 71 (z) = d.(zo,z). Moreover, by the triangle inequality,
7+ (y) > d.(zo,y) for all y € M. By the definition of V' we have

Ayt (y) < V(de(Zo,v))

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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holds for y € B, (o) \ Cut.(Zo). Note that V (d.(Zo,&;)) < V holds for all t € [0,7 A TR)
since we have

% < d:(x0,&) — de(x0, Z0) < do(Z0,&) < de(Zo,x) + de(x,&) < Ry

by the choice of R, and §;. Therefore
de (20, §pipry) — de(T0, ) — (EA TATR)V

tIANTANTR
< d5($0a€t/\f’/\TR) - ’F+(£0) - /O V(ds(*%ngs))ds

tANTANTR
< (Epag) — 7 (E0) — /0 At (€,)ds.

Since 7" is smooth on B$(z), the last term is a martingale and thus its expectation is
zero. Hence the claim follows. O

For § € (0,4;), we define a sequence of stopping times (S?)en and (T9)men, by
Tg =0,
S = Tr Ainf{t > T | | & € Cute(z0)},
Ty := Tr Ainf{t > S} | do(Ess,&) > 6} A (S +6).
Proposition 3.6. The process r.(éia7y ) — 7=(&0) — (t ATR)V is a supermartingale.
Proof. By virtue of the strong Markov property of &, it suffices to show
By [re(§nte) — re(€0) — (t A TR)V] <0

for each 0 < s < t. By Lemma 3.5, foralln € IN
E, [rs(ﬁng) —re(Eass) = (EATR =t NSV ‘ fs;g} <0.
We apply the Itd formula to 7.(¢;) on t € [T?_,, S?]. By (3.3), we have
AvcreEunsg) <V

fort > T} _,. These observations yield
E, T6<§msg) - Ts(gt/\Tlfil) - (t A S,‘g —tA Tlgfl) 14 ‘ ]:T,ffl} <0.

It remains to show T5 — Tgr as k — oo in order to conclude the claim by the dominated
convergence theorem. If hm T,f =: Ty, < Tr occurs, then 7} — S? > 0 converges to 0 as

k — oo. In addition, d(¢ Ss §Ta) = § must hold for infinitely many k& € IN. However, the

combination of these contrad1cts the fact that the sample path &; is uniformly continuous

on [0,7,]. Hence klim T) = Tr as k — oo. O
— 00

Corollary 3.7. r.({a1y ) is @ semimartingale.

Remark 3.8. Repeating the last argument in the proof of Proposition 3.6 implies that,
for each fixed ¢t > 0, t A T,‘f = t A Tr holds for sufficiently large k£ almost surely.

(o)
Lemma 3.9. li TP — 89| = 0 almost ly.
513%)2,:' o — Spl almost surely.

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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Proof. For ¢ > 0, let us define random subsets Hs and H of [0,Tr) by
Hs :={t € [0,Tr) | there exists ¢’ € [0, Tr) satisfying |t — ¢'| < § and & € Cut.(xo)},
H := {t S [O,TR) ‘ft c Cuta(io)} .

Since the sample path of £ is continuous and Cut.(zo) is closed, H is closed and H =
Ns>oHs holds. By the definition of S9 and 7}, we have

Hc | JIS,T{) C H;.

m=1

Hence the monotone convergence theorem yields that, for any 7" > 0,

o0 T T
limsup » |T{ AT — S} AT| < lim ]lH‘(t)dt:/ 1, (t)dt =0
-0 = 5§—0 Jo ° 0
almost surely, where the last equality follows from Lemma 3.3. O

Lemma 3.10. Let U be a local chart of M on which Ay, = Y| X?+ X, holds with a fam-
ily of vector fields {X;}I_, on U and &, satisfies the stochastic differential equation (3.2)
with a Brownian motion (W}, ... , W*). Let 7, and 7, be stopping times with 11 < 73 so
that & is in U whenevert € [y, 73]. Then the martingale part of ro (§satanrs) — Te(ETanr )

coincides with
T tATRAT2

vV2y© Xire(&5)dW?. (3.4)
i=1 TrAT1
Moreover, the quadratic variation of the martingale part of r-(ia1s ) — r=(&0) is bounded

from above by 2t.

Proof. We first remark that the integrand X;r.({s) of the Itd stochastic integral (3.4)
is well-defined by virtue of Lemma 3.3. Moreover, >\, |X;r.(¢;)[* < 1 holds for a.e. s
P, -almost surely. By the martingale representation theorem, there exists an R"-valued
adapted process 71 such that the martingale part of r.(§sarpam ) — Te (ETrar ) €QUals

tATRNAT2 ) )
7 K3
/ nsdWy.
.

1ANTR

n

i=1
Let us define a (local) martingale N; by

n INTRAT2 ) n tATRAT2 )
Ne=> / AW — V2 Xire (&) dW.

i=1 TrAT1 i=1 TrAT1

Using the stopping times S,‘z and T,f , the quadratic variation (N); of N is expressed as
follows:

S;z NTR AT )
/‘ 0 (1) — VX iro()2dt

Tg,IATRATl

TeATRATY
+/ |y — \/iXirs(ft)th). (3.5)

Sg/\TR/\Tl

™ Zi(

1=1 k=1

Since & ¢ Cut.(zo) ift € (I?_,,5?), Lemma 3.2 yields

Si/\TR/\TQ )
/ i — VX e (E)Pdt = 0

T;g,l/\TR/\Tl

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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for ke Nand:=1,...,n. For the second term in the right-hand side of (3.5) we have

©  (TIATRAT:
Z/ ni — V2Xiro(&)]2dt < 2/ ; (Ine? +2) dt.  (3.6)
=17 SpATRATL U, [SEATRATL, T ATRATS]
Since 7 is locally square-integrable on [0, o) almost surely, Lemma 3.9 yields that the
right hand side of (3.6) tends to 0 as ¢ | 0. Hence (N),, = 0 and the first assertion
follows. The second assertion can be obtained by decomposing &; through a sequence of
stopping times into sample paths each of which is contained in a local chart and using
the strong Markov property. O

We are final ready to prove our It6 formula for the radial process.

Proof of Theorem 3.1. On the basis of Corollary 3.7, we denote the martingale part of

re(Eentn ) DY 5f’R. By virtue of (3.3) and Lemma 3.3, the integral of s — Ay7r.(&s) on a

subset of [0, A Tr] is well-defined. Set I5 := [J;>,[S?, T7] and let us define I by
l?&R = —7e(§earn) +7:(60) + 5:;1(“11

+/ Aqyre(&)ds + [0, A Tr] N 15|V,
[O,t/\TR]\I,g

where the modulus indicates the Lebesgue measure of the set. By Lemmas 3.2 and 3.10,
159R is constant on [0,7wr] \ Is. Moreover, Proposition 3.6 yields that lf"s’R is non-
decreasing in ¢, and in particular lf";’R > 0. By Lemma 3.3, Ay7e(§s)11:(5) converges to
Ayr.(&)as 6] 0fora.e. se[0,tATr] Py, -a.s. Thus, Fatou’s lemma together with (3.3)
and Lemma 3.9 yields

tATR
0< liH{slf;)Up l?&R < 7T€(€t/\TR> + 7"5(50) + /BfAr;“R + / AHTE(fs)dS.
0

This inequality and (3.3) ensure that s — A7 (&) belongs to L'([0,t A TR]) Py, -a.s.
Thus, Lemma 3.9 implies that [5% := EE)I 15°R exists and

R tATR R
Te(§inta) = 7(&0) + Binty + / Ayre(Es)ds — I
0

holds for all ¢ > 0 P,,-a.s. By Lemma 3.4, we can take the limit Ry — oo in the last
identity in a compatible way. Then the conclusion follows by taking the limit R; — oo.
Indeed, it is not difficult to see that I{ can increase only when & € Cut.(zg) from the
corresponding property for I; R Moreover, by Lemma 3.10 and the Markov property,
we have that (%), — (), < 2t — 2s for s < t, so that d (5°) < 2dt. O

4 Comparison of radial processes and stochastic completeness
on general foliations

4.1 Comparison of radial processes

We first recall the definition of a model Riemannian manifold that was introduced by
E. Greene and H. Wu, see [15].

Definition 4.1. Let h: [0,+00) — (0,+00) be a smooth function which is positive on
(0, +00) and such that h(0) =0, h’'(0) = 1. Denote K(r) = —h"”(r)/h(r). The Riemannian
manifold Mg = [0, +00) x $" with Riemannian metric

g =dr? +h(r)’gs.

is called the Riemannian model space with radial curvature K (r), where gg» denotes the
standard metric on 3".

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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As before, we fix a point zo € M. For z; € M, we consider the solution of the
stochastic differential equation

& =d(xo,11) + n/o };l/((gf)) ds + Bf (4.1)

where (¢ is the martingale defined in Theorem 3.1.
Theorem 4.2. Define £¢ as in (4.1) and write K (r) = —h"(r)/h(r). Assume that

min {pl(r) _ ) ”2(7")} > nK(r).

9 &

Let ((&:)t>0, (Py)zem) be the horizontal Brownian motion on M generated by Ay,.
Then, for any R > d.(x,z1) and any non decreasing function ¢ on [0, R),

Eq, [¢(de(w0,65)), t < 7q] < Euy [6(6), t < TR,
where 7% is the hitting time of R by §~€.

Proof. It follows from Theorem 3.1 and the Tkeda-Watanabe comparison theorem [21]
that for ¢ < 7%, one has P, a.s.

de(z0,6) < &
The result follows then immediately. O

4.2 Stochastic completeness criterion

In this section we prove a general non-explosion criterion for the horizontal Brownian
(&)1>0 as a consequence of the sub-Laplacian comparison Theorem 2.3. Recall that
the functions py, p2, k are defined through the assumptions (2.2) and in particular that
p2 > 0.

Theorem 4.3. Suppose that for some ¢ > 0 there exists a non-decreasing function
K: [0,4+00) — (0,+00) satisfying f0+°° K (s5)~'/?ds = 400 and such that for every s > 0
K(s)

prls) = 22 = K (s).

Then (&)¢>0 does not explode.

Proof. Without loss of generality, we can assume that £y = z; for some x; # g, so that
TE(&)) > 0. Let

)= [ " K ()2,

and note that f is continuous, strictly increasing, and proper. Then f(r.(&:)) is semi-
martingale on (0, ), and non-explosion of f(r.(£;)) implies non-explosion of &;. Note

that f/(z) = 1/y/K(z), which is bounded from above by a positive constant (namely
1/4/K(0)), and f"(z) = — 2153/(2%) , where K’ is understood as a positive measure, so that
f"” < 01in the sense of distributions.

From Corollary 2.4, we know that

Agre(z) < /nK (ro(2)) coth ( K(rg(a:))rg(x))

in the sense of distributions. Let F; be the semi-martingale on (0,00) given by the
solution to the SDE

1

AP = s 45 o Vicoth (VEUTTEDS T (F)) dts - Fo = f(re(60))
EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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where /¢ is the martingale part of r.(&;) and f~! is the inverse of f(z). Then since —f is
convex, we can apply the (extended) It6 rule, starting with the decomposition of r.(&;)
from Theorem 3.1, (and standard SDE comparison) to see that f(r.(&)) is bounded from
above by F;. Now the diffusivity of the above SDE satisfied by F; is bounded, and the
drift is bounded when F; > 1, so F; cannot explode. It follows that f(r.(&)) and hence &
also cannot explode, completing the proof. O

In particular, this implies that a natural type of quadratic curvature decay condition
implies stochastic completeness, analogously to the well-known Riemannian situation.
More precisely, we have the following.

Corollary 4.4. Suppose that for some ¢ > 0, there exists c¢; > 0 such that
pr(s) = == = —(cis* + c1)
holds for all s > 0. Then (&;):>0 does not explode.

5 Comparison theorems for the radial processes on Sasakian
manifolds

In this section we study in more detail specific foliations on which the theory can
be pushed further. The foliations we consider are called Sasakian foliations. Those
are well-studied co-dimension one totally geodesic foliations with additional structure
described in [9, Section 3] (we also for instance refer to [4] and the references inside for
further details).

5.1 Comparison of radial processes

In this section, we use the sub-Laplacian comparison theorem on Sasakian manifolds
foliations in [9] to get estimates for radial parts of the horizontal Brownian motion. In
the Riemannian case the method we use is due to K. Ichihara [20]. In the case where
the Ricci curvature is bounded from below by a constant, the method yields the sharp
Cheeger-Yau lower bound [12] for the heat kernel.

We first briefly recall the sub-Laplacian comparison theorem proved in [9] to which
we refer for further details. Recall the comparison functions Fr;. and Fg,s given as in
respectively (1.1) and (1.2).

Theorem 5.1 ([9]). Let (M, F, g) be a Sasakian foliation with sub-Riemannian distance
dy. Let o € M and define ro(z) = d(xo,x). Assume that for some ki,ks € R

Ky 7(v,v) > ki, Ricy ji(v,v) > (n—2)ks, veEH, [[v|g=1.
Then outside of the d, cut-locus of xy and globally on M in the sense of distributions,
Anro < Fsas(r, k1) + (0 — 2) Frie(7, k2).

The tensors Ky ; and Ricy ;. are defined in [9]. We omit here their definition for
conciseness since they will not be relevant in our analysis except as criteria to get the
sub-Laplacian comparison theorem.

As before, we fix a point g € M. For z; € MM, we consider the solution of the
stochastic differential equation

& = do(zg, 1) + /0 (Fs%(é;, k1) + (n — 2)Frie(&s, /fz)) ds + V25,

where § is a standard Brownian motion under P,, .

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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Theorem 5.2. Let (M, F, g) be a Sasakian foliation with sub-Riemannian distance dy.
Assume that for some ki, ks € R,

Ky, s(v,v) > ki, Ricy ji(v,v) > (n—2)ke, veEH, |v], =1

Let ((&t)t>0, (IP3)zen) be the horizontal Brownian motion on M generated by Ay,. Then,
forx1 € M, R >0,and s < R

IPan{dO(:COagt) <s, t S TR} Z Pml{gt < s, t S 7~—R}7

where TR is the hitting time of the dy -geodesic ball in M with center xy and radius R and
Tr the hitting time of the level R by £.

Proof. Let ¢ be a non-increasing function on [0, R] which is compactly supported on [0, s].
We set

U,(t,ﬂf) = EL [¢(d0(x07£t))a t < TR]
and

We then have

ou
E = A’HU
u(0,2) = ¢(do(x0,)), u(t,x)=0ifx € dBy(xo, R)
and
ug € C*°((0,+00) x [0, R))
ou
i = Luo
uo(0,7) = ¢(r), wuo(t,r) =0ifr =R,
where

0 0?
L = (Fyas(r, k1) + (n — 2) Frie(r, k2))5 +55

Similarly to Lemma 2.1 in [20], uo(¢,7) is non-increasing in r.
For ¢ > 0,z € By(zg, R) denote v(t,x) = uo(t, do(zo,)). For x € By(zo, R) \ Cut,,(IM),
one has then from Theorem 5.1,

A2, ou
Ayt z) = W?O(t’ do (w0, 2)) + AHTO(I)TS(t,dO(IO,x))
82uO 3u0
Z W(t’ do(fﬂo, SC)) + (FSas(dO(mO, l‘), kl) + (n — 2)FRie(dO($O; z), kg)) W(t’ do(l’o, 1’))
) )
> Lug(t,do(wo, 2)) = 5 (¢ do(wo, 2)) = 5 (t.2).

Therefore, by using the semi-concavity of the sub-Riemannian distance and arguing as in
the proof of Theorem 10.1 in [3], one deduces that in the sense of distributions one has

fort >0,x € Bo(l‘mR),

% 1,2) < Ava(t.)

Since
v(0,2) = ¢(do(xo,)), v(t,x) =0 if x € dBy(xo, R),
a standard parabolic comparison theorem yields
v(t, z) < u(t, ).
Taking ¢ = 1 on [0, s) yields the conclusion. O
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As a first corollary we deduce exit time estimates:

Corollary 5.3. Under the same assumptions as in Theorem 5.2 one has
E931 [TR] > Eﬂh [%R}

As a second corollary we deduce estimates for the integrals of the Dirichlet heat
kernel on sub-Riemannian balls:

Corollary 5.4. Let (M, F, g) be a Sasakian foliation. Assume that for some ki,ks € R
Ky, 7(v,v) > ki, Ricy ji(v,v) > (n—2)ks, veEH, |[v|g=1.

Fix R > 0 and let ((¢/*)i>0, (P2)ze By (xo,r)) b€ the horizontal Brownian motion on By(z¢, R)
generated by Ay and with Dirichlet boundary condition. Write its heat kernel with
respect to the Riemannian volume measure j as p'(t, x,y). Let ¢®(t,r1,r2) be the heat
kernel with respect to the Lebesgue measure on [0, R] of the diffusion with generator

0 0?
Ly, gy, = (FSas(T, k1) 4+ (n — 2) Frie(r, k2))a + 92 (5.1)

with Dirichlet boundary condition at R. Then, for every s < R, t > 0 and x1 € By(xo, s)

/ PPt 2, y)duly) > / ¢ (t, d(xo, 1), 7)dr-
Bo(x0,s) 0

It is interesting to note that Corollary 5.4 does not yield a lower bound for the heat
kernel p’ as one could at first expect. Indeed, when s is small the volume of By(zg, s) has
order s" 12, because n + 2 is the Hausdorff dimension of M for the metric dy. On the other
hand, one can directly check that fos q"(t,d(xo, 1), r)dr has order s"*3. This discrepancy
is due to the fact that on sub-Riemannian manifolds, the measure contraction dimension
is larger than the Hausdorff dimension.

5.2 Application to Dirichlet eigenvalue estimates

We now use the comparison theorem of the previous subsection to deduce estimates
on the first Dirichlet eigenvalue of the sub-Riemannian balls. This is the sub-Riemannian
version of the well-known Cheng’s comparison theorem in Riemannian geometry.

For simplicity, we start with the non-negative curvature case k; = ks = 0.

Let (M, F, g) be a Sasakian foliation with sub-Riemannian distance dy. Assume that:

Ky s(v,v) >0, Ricy ji(v,v) >0, veH, |v|,=1

In that case, the one-dimensional diffusion with respect to which we do the compari-
son is very simple since

which is a Bessel diffusion of dimension n + 3. We recall that n is the dimension of the
horizontal distribution.

Theorem 5.5. Assume k| = ky = 0. Forzg € M and R > 0, let /\1(Bo(xo,~R)) denote the
first Dirichlet eigenvalue of the sub-Riemannian ball By(zo, R) and let \;(d, R) denote
the first Dirichlet eigenvalue of Euclidean ball with radius R in R?. Then, for every

zo€Mand R >0
A1 (Bo(wo, R)) < A (n+3,R).

EJP 25 (2020), paper 97. http://www.imstat.org/ejp/
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Proof. From spectral theory, one has

“+o0
Pt ar,y) =D e M (1) di(y)

k=1
where the \;’s are the Dirichlet eigenvalues of By(zg, R) and the ¢;’s the eigenfunctions.
One has similarly

+oo - 5
g™ (t,ro,r) = "2 e M (ro)di(r)
k=1
Thus, from Corollary 5.4, when t — 400 one must have A\; < 5\1. O

For general k1, ko one can similarly prove the following theorem:

Theorem 5.6. For zo € M and R > 0, let A1 (By(wo, R)) denote the first Dirichlet eigen-
value of the sub-Riemannian ball By(zo, R) and let A\i(n, k1, k2, R) denote the first Dirich-
let eigenvalue of the operator

0 02
Lkhkz = (FSas(r> kl) + (n — 2)FRie(r> ]{72))@ + w

on the interval [0, R] with Dirichlet boundary condition at R. Then, for every xz, € M and
R>0 3
)\1(80(.%0, R)) S /\1(71, kl, kg, R)

5.3 Large time behavior and law of iterated logarithm for the radial processes

In this section we study large time behaviour of the radial process in negative
curvature.

Proposition 5.7. Let (M, F, g) be a Sasakian foliation. Assume that for some ki, ks <0
Ky, 7(v,v) > ki, Ricy ji(v,v) > (n—2)ks, veH, |[v|g=1.

Let ((&)1>0, (Py)zem) be the sub-Riemannian Brownian motion generated by Ay. Then
for every xg,x1 € M,
d
P, (limsupo(xo’gt) < (n—2)/|k2| + |k‘1|) =1
t—4o0o t
Proof. We note that when kq, ks < 0, the diffusion with generator
0 02

Lk‘l,]@ = (FSas(T'a kl) + (TL — Q)FRic(T', kQ))a + ﬁ

is transient and that

lim  Fsas(r, k1) = k1],  lim Frie(r, ko)) = /]kal.
r—-+4oo

r——4o00
The result follows then from similar arguments as in Example 2.1 in [20]. O
When k1, ko = 0, the above estimate can be refined and we obtain a law of iterated
logarithm.
Proposition 5.8. Let (M, F, g) be a Sasakian foliation. Assume that
Ky, s(v,v) >0, Ricy ji(v,v) >0, veH, |v,=1

Let ((&:)t>0, (Py)zem) be the sub-Riemannian Brownian motion generated by Ay,. Then

for every xg,x1 € M,
. do (o, &) )
P, (limsup ———=——=<1) =1
! <t—>+oop v2tinlnt

Proof. The proof is similar to the one of Theorem 3.1 in [20], so we omit the details for
conciseness. O
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5.4 Some extensions: H-type groups

In the recent work [10] sub-Laplacian comparison theorems have been obtained in a
more general setting than Sasakian, the setting of H-type sub-Riemannian spaces. In
particular, this was proved that if (IM, F) is the totally geodesic foliation on a H-type
group, then one has
n+3m-—1

To

Ayrg <

classically outside of the cut-locus and globally in the sense of distributions, where as
usual n denotes the dimension of the horizontal bundle and m denotes the codimension
of this horizontal bundle. In that setting, all the results obtained in this section may be
generalized with identical proofs. In particular, one obtains the following Cheng’s type
theorem for the Dirichlet eigenvalues of sub-Riemannian balls in H-type groups.

Theorem 5.9. Assume that M is an H-type group. For xo € M and R > 0, let
A1(By(zg, R)) denote the first Dirichlet eigenvalue of the sub-Riemannian ball By(zg, R)
and let Xl(d, R) denote the first Dirichlet eigenvalue of Euclidean ball with radius R
in R?. Then, for every o € M and R > 0,

Al(BQ(l‘(),R)) S 5\1(71 + 3m, R)

Note that in contrast to the Riemannian case, here the comparison diffusion is not
realized as the radial process of a sub-Riemannian manifold (and in particular, it is not
the radial process of the Heisenberg group, which fails to be a diffusion), and thus there
is no reason to suspect that the bound is sharp.
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