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With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces 
and specially fractals, this paper proves Sobolev embedding theorems in the general 
framework of Dirichlet spaces. Under suitable assumptions that are verified in 
a variety of settings, we obtain the whole family of Gagliardo-Nirenberg and 
Trudinger-Moser inequalities with optimal exponents. These turn out to depend 
not only on the Hausdorff and walk dimensions of the space but also on other 
invariants. In addition, we prove Morrey type inequalities and apply them to study 
the infimum of the exponents that ensure continuity of Sobolev functions. The 
results are illustrated in the case of fractals with the Vicsek set, whereas several 
conjectures are made for general nested fractals and the Sierpinski carpet.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The theory of Sobolev spaces was first pushed forward in order to prove solvability of certain partial 
differential equations, see for example [31]. When X is a Riemannian manifold, a function f ∈ Lp(X) is 
said to be in the Sobolev space W 1,p(X) if its distributional gradient is given by a vector-valued function 

∇f ∈ Lp(X : R
n). In more general spaces, a distributional theory of derivatives relying on integration by 

parts may not be available, which makes necessary to find an alternative notion of derivative.
After the seminal paper of J. Cheeger [15], a variety of notions of a gradient were introduced in the 

general context of metric measure spaces; we refer for instance to the book by J. Heinonen [19] and the 

references therein. Those gradients naturally yield a rich theory of first order Sobolev spaces that was 
developed around stepstone works like the ones by N. Shanmugalingam [39]; see also the book [21] and the 

more recent papers by L. Ambrosio, M. Colombo and S. Di Marino [5], and G. Savaré [38].
The approach to Sobolev spaces undertaken in the above cited references crucially relies on a notion of 

a measure-theoretic gradient that requires the underlying space to admit enough “good” rectifiable curves, 
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a property that may not be present in some singular, fractal-like, metric measure spaces. With the aim of 
including these, potential-theoretic based definitions have been introduced and studied at different levels 
of generality, see e.g. [40,24,35] and references therein. The present paper is set up in the framework of 
Dirichlet spaces that are general enough to also cover this type of fractals.

Dirichlet spaces are measure spaces equipped with a closed Markovian symmetric bilinear form E , called 

Dirichlet form, whose domain is dense in L2. Dirichlet spaces provide a unified framework to study doubling 

metric measure spaces supporting a 2-Poincaré inequality [28], fractals [25], infinite-dimensional spaces [13]
and non-local operators [16]. An important tool available in any Dirichlet space is the heat semigroup. 
The latter is a priori an L2 object, meaning that it is originally defined on L2 by means of the Dirichlet 
form E itself using spectral theory of Hilbert spaces. However, the Markovian property of E and classical 
interpolation theory allow to define this semigroup as a family of operators acting on any Lp space, 1 ≤ p ≤
+∞.

Such an extension was used in [4] to develop a theory of Lp Besov type spaces that have systematically 

been studied in the context of strictly local spaces [1], strongly local spaces with sub-Gaussian heat kernel 
estimates [2] and non-local spaces [3]. While the papers [1,2] primarily dealt with the L1 theory and the 

associated theory of bounded variation (BV) functions and sets of finite perimeter, the present paper focuses 
on the Lp theory for p > 1. The Sobolev spaces considered here arise as Lp Besov spaces at the critical 
exponent, cf. Definition 2.3, and coincide with their classical counterpart in the Riemannian and other 
often studied metric measure settings, see Section 3. This heat semigroup approach digresses from existing 

generalizations of the classical ideas of Mazy’a [31] to fractals, see e.g. [22,23].
Once Sobolev spaces have been identified, it is natural to investigate analogues of the famous Gagliardo-

Nirenberg and Trudinger-Moser inequalities. Such inequalities classically play an important role in the study 

of partial differential equations and include as special cases the Sobolev embedding inequality, the Nash 

inequality and the Ladyzhenskaya’s inequality to name but a few. Besides their applications to partial dif-
ferential equations, Gagliardo-Nirenberg and Trudinger-Moser inequalities also carry geometric information 

and, in the context of Riemannian geometry, they have for instance been applied to the study of sets of 
finite perimeter, conformal geometry [14] and cohomology [34]. In the context of metric measure spaces, 
they have been closely related to the study of quasi-conformal or quasi-symmetric maps and invariants, 
see [20].

The paper is organized as follows: Section 2 introduces the Sobolev spaces W 1,p(E), p ≥ 1, associated 

with a general Dirichlet form E . These are characterized in Section 3 for various specific classes of examples. 
In strictly local Dirichlet spaces, which admit a canonical gradient structure intrinsically associated to the 

form, it is shown in Theorem 3.3 that, under suitable conditions, W 1,p(E) coincides with the Sobolev space 

defined by that gradient structure. Section 4 is devoted to the study of Gagliardo-Nirenberg and Trudinger-
Moser inequalities in general Dirichlet spaces, cf. Theorem 4.1 and Corollary 4.6. The techniques rely on the 

general methods proposed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper [7]; besides 
the ultracontractivity of the semigroup, the main assumption is an Lp pseudo-Poincaré inequality that is 
related to a weak notion of curvature (in the Bakry-Émery sense) of the underlying space. The latter is shown 

to be satisfied in large classes of examples like RCD spaces or nested fractals. Finally, Section 5 investigates 
embedding of the Sobolev spaces into spaces of Hölder functions. Of particular interest is the infimum δE of 
the exponents for which such embedding occurs. In strictly local spaces and under suitable assumptions it 
is possible to bound above this quantity by the Hausdorff dimension of the space, cf. Theorem 5.9. In the 

case of fractals, Theorem 5.10 shows that for the Vicsek set δE = 1. Moreover, it is conjectured that for the 

Sierpinski gasket also δE = 1, whereas for the Sierpinski carpet

δE = 1 +
log 2

dW log 3 − 2 log 2
,

where dW ≈ 2.097 is the so-called walk dimension of the carpet.
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Notations. If Λ1 and Λ2 are functionals defined on a class of functions f ∈ C, the notation

Λ1(f) � Λ2(f)

means that there exist constants c, C > 0 such that for every f ∈ C

cΛ1(f) ≤ Λ2(f) ≤ CΛ1(f).

Also, in proofs, c, C will generically denote positive constants whose values may change from one line to 

another.

2. Framework, basic definitions and preliminaries

Throughout the paper, X will denote a good measurable space (like a Polish or Radon space) as defined 

in [8, p. 54]. We assume that X is equipped with a σ-finite measure µ supported on X. In addition, the pair 
(E , F), where F = dom E , will denote a Dirichlet form on L2(X, µ). We refer to (X, µ, E , F) as a Dirichlet 
space. Its associated heat semigroup {Pt}t≥0 admits a heat kernel measure pt(y, dx) [8, Theorem 1.2.3] and 

we always assume the semigroup to be conservative, i.e. Pt1 = 1. Further details about this setting can be 

found in [4].

2.1. Heat semigroup-based BV, Sobolev and Besov classes

Following [4], we define the (heat semigroup-based) Besov classes associated with a Dirichlet space 

(X, µ, E , F).

Definition 2.1. For any p ≥ 1 and α ≥ 0, define

B
p,α(X) :=

⎧

⎪

⎨

⎪

⎩

f ∈ Lp(X, µ) : lim sup
t→0+

t−α

⎛

⎝

∫

X

Pt(|f − f(y)|p)(y)dµ(y)

⎞

⎠

1/p

< +∞

⎫

⎪

⎬

⎪

⎭

.

The basic properties of the space Bp,α(X) endowed with the semi-norm

‖f‖p,α = sup
t>0

t−α

⎛

⎝

∫

X

Pt(|f − f(y)|p)(y)dµ(y)

⎞

⎠

1/p

are studied in [4]. In the present paper, we shall also be interested in the localized semi-norms defined for 
R > 0 as

‖f‖p,α,R := sup
t∈(0,R)

t−α

⎛

⎝

∫

X

Pt(|f − f(y)|p)(y)dµ(y)

⎞

⎠

1/p

.

The local theory is important for instance to treat the case when the underlying space is compact. Note 

that, in view of [4, Lemma 4.1], one has for every R > 0

‖f‖p,α,R ≤ ‖f‖p,α ≤ 2
Rα

‖f‖Lp(X,µ) + ‖f‖p,α,R
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and in particular all the norms ‖f‖Lp(X,µ) + ‖f‖p,α,R are equivalent on Bp,α(X) to the norm ‖f‖Lp(X,µ) +
‖f‖p,α.

The BV and Sobolev classes arise at the corresponding critical exponents as follows.

Definition 2.2. The class of heat semigroup based bounded variation (BV) functions is defined as

BV (E) := B
1,α1(X),

where

α1 = sup{α > 0 : B
1,α(X) contains non a.e. constant functions}.

For any f ∈ BV (E), its total variation is defined as

VarE(f) := lim inf
t→0+

t−α1

∫

X

Pt(|f − f(y)|)(y)dµ(y).

As in the classical theory, the Sobolev classes are defined analogously for p > 1.

Definition 2.3. Let p > 1. The (1, p) heat semigroup-based Sobolev class is defined as

W 1,p(E) := B
p,αp(X),

where

αp := sup{α > 0 : B
p,α(X) contains non a.e. constant functions}.

For any f ∈ W 1,p(E), its total p-variation is defined as

Varp,E(f) := lim inf
t→0+

t−αp

⎛

⎝

∫

X

Pt(|f − f(y)|p)(y)dµ(y)

⎞

⎠

1/p

.

Remark 2.4. For consistency in the notation, we will write Var1,E(f) := VarE(f) for f ∈ BV (E).

Remark 2.5. From [4, Proposition 4.6], one has α2 = 1
2 , W 1,2(E) = dom E = F and Var2,E(f) = 2E(f, f).

The following lemma shows that the functionals Varp,E(f) behave nicely with respect to cut-off argu-
ments. This is a crucial property that will allow us to use the techniques developed by D. Bakry, T. Coulhon, 
M. Ledoux and L. Saloff-Coste in [7].

Lemma 2.6. For any nonnegative f ∈ W 1,p(E), if p > 1, or f ∈ BV (E) if p = 1, it holds that

(

∑

k∈Z

Varp,E(fρ,k)p

)1/p

≤ 2(p + 1)Varp,E(f),

where fρ,k := (f − ρk)+ ∧ ρk(ρ − 1), k ∈ Z and ρ > 1.
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Proof. Let pt(y, dx) denote the heat kernel measure of the semigroup Pt. We first observe that, once we 

prove

∑

k∈Z

∫

X

∫

X

|fρ,k(x) − fρ,k(y)|ppt(y, dx)dµ(y) ≤ 2(p + 1)
∫

X

∫

X

|f(x) − f(y)|ppt(y, dx)dµ(y) (1)

for any ρ > 0, then

lim inf
t→0+

⎛

⎝

∑

k∈Z

t−pαp

∫

X

∫

X

|fρ,k(x) − fρ,k(y)|ppt(y, dx)dµ(y)

⎞

⎠

≤ 2(p + 1) lim inf
t→0+

t−pαp

∫

X

∫

X

|f(x) − f(y)|ppt(y, dx)dµ(y).

Using the superadditivity of the lim inf one concludes

∑

k∈Z

lim inf
t→0+

t−pαp

∫

X

∫

X

|fρ,k(x) − fρ,k(y)|ppt(y, dx)dµ(y)

≤ 2(p + 1) lim inf
t→0+

t−pαp

∫

X

∫

X

|f(x) − f(y)|ppt(y, dx)dµ(y).

The inequality (1) can implicitly be found in the proof of [7, Lemma 7.1] with a = p. The details are left 
to the interested reader; keeping track of the constants in the aforementioned proof one sees in particular 
that the bound is independent of ρ. �

Remark 2.7. Lemma 2.6 corresponds to the condition (Hp), p ≥ 1, introduced in [7, Section 2]; it will become 

relevant to obtain Trudinger-Moser inequalities.

2.2. Lp pseudo-Poincaré inequalities

Pseudo-Poincaré inequalities are a widely applicable tool to obtain Sobolev inequalities, see e.g. [36, 
Section 3.3]. In this paragraph we introduce and discuss two assumptions that are crucial to further analyze 

Gagliardo-Nirenberg and Trudinger-Moser inequalities.

The case p > 1. The assumptions concern the validity of a Lp pseudo-Poincaré inequality, and the continuity 

of the heat semigroup in a suitable Sobolev space.

• Condition (PPIp), p ≥ 1. There exists a constant Cp > 0 such that for every t ≥ 0 and f ∈ W 1,p(E) (or 
BV (E) for p = 1),

‖Ptf − f‖Lp(X,µ) ≤ CptαpVarp,E(f).

• Condition (Gq), q > 1. There exists a constant Cq > 0 such that for every t > 0 and f ∈ Lq(X, µ),

‖Ptf‖q,αq
≤ Cq

t1−αp
‖f‖Lq(X,µ), (2)

where p is the Hölder conjugate exponent of p, i.e. 1
p + 1

q = 1.
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Remark 2.8. It follows from spectral theory that α2 = 1/2 and that the assumptions (G2) and (PPI2) always 
hold.

Proposition 2.9. Let p > 1 and let q be its Hölder conjugate. Under condition (Gq), for every f ∈ W 1,p(E)
and t ≥ 0

‖Ptf − f‖Lp(X,µ) ≤ Cq

2αp
tαpVarp,E(f),

where Cq is the same as in (2). In particular, condition (PPIp) is satisfied.

Proof. Follow the p-version of the arguments proving [2, Proposition 3.10]. �

The case p = 1. Recall that the semigroup {Pt}t≥0 admits a measurable heat kernel pt(x, y), cf. [8, Theorem 

1.2.3]. In addition, we consider the space (X, µ) to be endowed with a metric d. This metric d does not need 

to be intrinsically associated with the Dirichlet form but has to satisfy some conditions listed below.

• Condition. For any κ ≥ 0, there exist constants C, c > 0 such that for every t > 0 and a.e. x, y ∈ X

d(x, y)κpt(x, y) ≤ Ctκ/dW pct(x, y), (3)

where dW > 1 is a parameter independent from κ, C and c.
• Condition (G∞). There exists a constant C > 0 so that for every t > 0, f ∈ L∞(X, µ), and x, y ∈ X

|Ptf(x) − Ptf(y)| ≤ C
d(x, y)dW (1−α1)

t1−α1
‖f‖L∞(X,µ). (4)

We note that (3) is for instance satisfied if pt(x, y) satisfies sub-Gaussian heat kernel estimates, see [2, 
Lemma 2.3] and that the condition (G∞) was called in [2] the weak Bakry-Émery estimate.

Remark 2.10. Since (G2) always holds for every t > 0, using interpolation theory, one deduces as in the 

proof of [2, Theorem 3.9] that the assumption (G∞) implies that for every t > 0, q ≥ 2 and f ∈ Lp(X, µ),

‖Ptf‖q,βq
≤ Cq

tβq
‖f‖Lq(X,µ), (5)

where βq =
(

1 − 2
q

)

(1 −α1) + 1
q . This is not quite the same as (Gq), unless 1 −αp = βq, i.e. αp =

(

1 − 2
p

)

(1 −
α1) + 1

p . Note that for the Vicsek set (or direct products of it) one indeed has αp =
(

1 − 2
p

)

(1 − α1) + 1
p , 

see Remark 3.7.

Proposition 2.11. If the Dirichlet space (X, d, µ, E) satisfies (G∞) and (3), there exists a constant C > 0
such that for every f ∈ BV (E) and t ≥ 0,

‖Ptf − f‖L1(X,µ) ≤ Ctα1VarE(f).

In particular (PPI1) is satisfied.

Proof. See [2, Proposition 3.10]. �

To obtain the whole family of inequalities in the subsequent sections we will need the local counterparts 
of the previous conditions.
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• Condition (PPIp(R)), p ≥ 1. There exists a constant Cp(R) > 0 such that for every t ∈ (0, R) and 

f ∈ W 1,p(E) (or BV (E) for p = 1),

‖Ptf − f‖Lp(X,µ) ≤ Cp(R)tαpVarp,E(f).

• Condition Gq(R), q > 1, R > 0. There exists a constant Cq(R) > 0 such that for every t ∈ (0, R) and 

f ∈ Lq(X, µ),

‖Ptf‖q,αq
≤ Cq

t1−αp
‖f‖Lq(X,µ), (6)

where as before p is the Hölder conjugate exponent of p, i.e. 1
p + 1

q = 1.

The same proof as Proposition 2.9 yields the following result.

Proposition 2.12. Let p > 1, R > 0 and assume that Gq(R) holds, where q is the Hölder conjugate of p. 
Then, for every f ∈ W 1,p(E) and t ∈ (0, R),

‖Ptf − f‖Lp(X,µ) ≤ Cq(R)
2αp

tαpVarp,E(f)

with the same constant Cq as in (6). In particular, (PPIp(R)) is satisfied.

Similarly, to treat the case p = 1 one can introduce a localized version of (3) and of the condition G∞(R), 
R > 0 to prove the localized analogue of Proposition 2.11. We omit the details for conciseness.

2.3. Weak Bakry-Émery estimates

In this section, we investigate some self-improvement properties of the assumption G∞(R), R > 0.

Lemma 2.13. Let d be a metric on X. Let R > 0 and assume that there exist constants C, κ, dW > 0 such 

that for every t ∈ (0, R), f ∈ L∞(X, µ) and x, y ∈ X,

|Ptf(x) − Ptf(y)| ≤ C
d(x, y)κ

tκ/dW
‖f‖L∞(X,µ). (7)

Then, for any R′ ≥ R, (7) also holds for every t ∈ (0, R′) with a possibly different constant C = CR′ .

Proof. Let f ∈ L∞(X, µ) and x, y ∈ X. Applying (7) to the function Ptf instead of f yields

|P2tf(x) − P2tf(y)| ≤ CR2κ/dW
d(x, y)κ

(2t)κ/dW
‖f‖L∞(X,µ)

and therefore (7) holds for t ∈ (0, 2R) and C = CR2κ/dW . For any R′ > R we may choose n > 0 so that 
R′ < 2nR and iterating the previous argument will give (7) for t ∈ (0, R′) with C = CR2nκ/dW . �

To extend (7) to all of t > 0 requires a better (uniform) control on the constants, which is possible under 
additional conditions.

Lemma 2.14. Let d be a metric on X. Let R > 0 and assume that there exist constants C, κ, dW > 0 such 

that for every t ∈ (0, R), f ∈ L∞(X, µ) and x, y ∈ X,
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|Ptf(x) − Ptf(y)| ≤ C
d(x, y)κ

tκ/dW
‖f‖L∞(X,µ). (8)

Moreover, assume that

(i) the infinitesimal generator Δ of the Dirichlet form (E , F) has a pure point spectrum,
(ii) 1 ∈ dom Δ,
(iii) the Dirichlet space (X, µ, E , F) satisfies the Poincaré inequality

∫

X

(

f −
∫

X

fdµ
)2

dµ ≤ 1
λ1

E(f, f)

for some λ1 > 0 and all f ∈ F ,
(iv) the heat kernel pt(x, y) of Pt satisfies the estimate pt0

(x, y) ≤ M for some t0, M > 0 and µ-almost 
every x, y ∈ X.

Then, (8) holds for all t > 0, possibly with a different constant C > 0.

Proof. By virtue of assumption (ii) one has µ(X) < +∞, so that without loss of generality we can assume 

µ(X) = 1. Let {λj}j≥0 denote the eigenvalues of Δ and {φj}j≥0 the associated eigenfunctions. Assumptions 
(ii) and (iii), see e.g. [8, Proposition 3.1.6], yield for any f ∈ L2(X, µ)

Ptf(x) =
∫

X

fdµ +
+∞
∑

j=1

e−λjtφj(x)
∫

X

φj(y)f(y)dµ(y). (9)

Now, since Pt0
φj = e−λjt0φj , applying Hölder’s inequality and assumption (iv) we deduce for µ-a.e. x ∈ X

|φj(x)| = eλjt0

∣

∣

∣

∣

∣

∣

∫

X

pt0
(x, y)φj(y)dµ(y)

∣

∣

∣

∣

∣

∣

≤ eλjt0

⎛

⎝

∫

X

pt0
(x, y)2dµ(y)

⎞

⎠

1/2

≤ Meλjt0 .

Next, using Lemma 2.13 if needed, we may assume t0 ≤ R. Applying (8) to φj and the latter estimate we 

obtain

|e−λjt0φj(x) − e−λjt0φj(y)| ≤ CM
d(x, y)κ

t
κ/dW

0

eλjt0 ,

and hence

|φj(x) − φj(y)| ≤ CM
d(x, y)κ

t
κ/dW

0

e2λjt0 . (10)

Finally, for any f ∈ L∞(X, µ) and t > 2t0, (9) and (10) imply

|Ptf(x) − Ptf(y)| ≤
+∞
∑

j=1

e−λjt|φj(x) − φj(y)|
∫

X

φj(z)f(z)dµ(z)

≤ CM
d(x, y)κ

t
κ/dW

0

+∞
∑

j=1

e−λj(t−2t0)

∫

X

φj(z)f(z)dµ(z)



P. Alonso Ruiz, F. Baudoin / J. Math. Anal. Appl. 497 (2021) 124899 9

≤ CM
d(x, y)κ

t
κ/dW

0

‖f‖L∞(X,µ)

+∞
∑

j=1

e−λj(t−2t0) ≤ C ′ d(x, y)κ

tκ/dW
‖f‖L∞(X,µ),

where the constant C ′ depends on M, C, κ, dW , λj and t0. �

3. Examples of heat semigroup based BV and Sobolev classes

To illustrate the scope of our results we now present several classes of Dirichlet spaces that appear in the 

literature for which the heat semigroup based BV and Sobolev classes can be characterized. This generalizes 
previous results from [4,1,2].

3.1. Metric measure spaces with Gaussian heat kernel estimates

Further details to this particular framework can be found in [1]. We consider (X, d, µ, E , F) to be a 

strictly local Dirichlet space, where d is the intrinsic metric associated to the Dirichlet form. The measure 

µ is assumed to be doubling and the space to supports a scale invariant 2-Poincaré inequality on balls; 
according to K.T. Sturm’s results [43,44] these conditions are equivalent to the fact that there is a heat 
kernel with Gaussian estimates. In this setting, see [1, Lemma 2.11], E admits a carré du champ operator 
Γ(f, f), f ∈ F and we denote |∇f | =

√

Γ(f, f). Based on the ideas of M. Miranda [32], the following 

definitions were introduced in [1].

Definition 3.1 (BV space). We say that f ∈ L1(X, µ) is in BV (X) if there is a sequence of local Lipschitz 

functions fk ∈ L1(X, µ) such that fk → f in L1(X, µ) and

‖Df‖(X) := lim inf
k→∞

∫

X

|∇fk| dµ < ∞.

Definition 3.2 (Sobolev space). For p ≥ 1, we define the Sobolev space

W 1,p(X) := {f ∈ Lp(X, µ) ∩ Floc(X) : |∇f | ∈ Lp(X)} (11)

whose norm is given by ‖f‖W 1,p(X) = ‖f‖Lp(X,dµ) + ‖ |∇f | ‖Lp(X,µ).

Localization allows to extend the results appearing in [1, Theorem 4.4] to include compact spaces.

Theorem 3.3. For each R ∈ (0, +∞] the following holds:

(i) Assume the weak Bakry-Émery estimate

‖ |∇Ptf | ‖L∞(X,µ) ≤ C√
t
‖f‖L∞(X,µ) t ∈ (0, R) (12)

for some constant C > 0 and any f ∈ F ∩ L∞(X, µ). Then, (PPI1(R)) is satisfied, α1 = 1
2 , BV (E) =

BV (X) and

VarE(f) � ‖f‖1,1/2,R � lim inf
r→0+

∫

X

∫

B(x,r)

|f(y) − f(x)|√
rµ(B(x, r))

dµ(y) dµ(x) � ‖Df‖(X).
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(ii) Assume the quasi Bakry-Émery condition estimate, cf. [1, Definition 2.15],

|∇Ptf | ≤ CPt|∇f | t ∈ (0, R) (13)

µ-a.e. for some constant C > 0 and any f ∈ F . Then, for every p > 1, condition (PPIp(R)) is satisfied, 
αp = 1

2 , W 1,p(E) = W 1,p(X) and

Varp,E(f) � ‖f‖p,1/2,R �

⎛

⎝

∫

X

|∇f |pdµ

⎞

⎠

1/p

.

Proof. It suffices to show the statements for non-negative functions.

(i) With the same proof as in [1, Lemma 4.3], condition (12) implies that

‖Ptf − f‖L1(X,µ) ≤ C
√

t

∫

X

|∇f | dµ

for any t ∈ (0, R) and f ∈ BV (X). Analogous to the proof of [1, Theorem 4.4], the latter inequality and 

the coarea formula [1, Theorem 3.11] yield VarE(f) ≤ ‖f‖1,1/2,R ≤ 2C‖Df‖(X). For f ∈ BV (E), the 

Gaussian lower bound of the heat kernel and the second part of the proof of [30, Theorem 3.1] (which 

does not use 1-Poincaré inequality) give α1 = 1/2.
(ii) A local version of the arguments in the proof of [1, Theorem 4.11] yield

‖ |∇f | ‖Lp(X,µ) ≤ CVarp,E(f) ≤ C‖f‖p,1/2,R.

The reverse inequality follows as in the proof of [1, Theorem 4.17] with t ∈ (0, R) and the quasi Bakry-
Émery condition (13). �

As one would expect, the quasi Bakry-Émery curvature condition (13) implies the weak one (12). Exam-
ples of spaces within the framework just discussed that satisfy (13) include Riemannian manifolds with Ricci 
curvature bounded from below and RCD(K, +∞) spaces; in that case for every t ≥ 0, |∇Ptf | ≤ e−KtPt|∇f |, 
and thus |∇Ptf | ≤ CPt|∇f | for t ∈ (0, R) with C = max(1, e−KR), see [37]. On the other hand, Carnot 
groups [10] and complete sub-Riemannian manifolds with generalized Ricci curvature bounded from below 

in the sense of [11,12] are examples in this setting where the weak Bakry-Émery condition (12) is known 

but the stronger condition (13) unknown.

3.2. Fractal spaces

This paragraph summarizes and extends the results currently available that put some fractal spaces into 

our setting. In particular, Lemma 2.14 allows to treat the case of compact nested fractals by considering 

only local estimates.

Nested fractals. Nested fractals [29] are fractional metric spaces whose natural diffusion process is a fractional 
diffusion in the sense of Barlow [9, Definition 3.2]. For details about the following result we refer to Theorem 

3.7, Theorem 4.9 and Theorem 5.1 of [2]. By an “infinite” fractal we mean its blow-up as introduced by R. 
S. Strichartz in [41].

Theorem 3.4. Let (X, d, µ) be a compact or infinite nested fractal with 1 ≤ dH ≤ dW . Then, it satisfies 
(G∞). In fact, the weak Bakry-Émery condition
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Fig. 1. Approximating graphs (Vm, Em) for the Vicsek set.

|Ptf(x) − Ptf(y)| ≤ C
d(x, y)dW −dH

t(dW −dH )/dW
‖f‖L∞(X,µ) t > 0 (14)

holds for some C > 0 and any f ∈ L∞(X, µ). Moreover, α1 = dH/dW and

‖f‖1,dH /dW
� VarE(f). (15)

Remark 3.5. The condition (14) is satisfied in a more general class of fractals, cf. [2, Theorem 3.7], however 
the statement concerning α1 and the equivalence of norms (15) is so far only valid for nested fractals. It is 
conjectured in [2, Conjecture 5.4] that for fractals like the Sierpinski carpet one has α1 = (dH −dtH +1)/dW , 
where dtH denotes the topological Hausdorff dimension of the space.

Vicsek set. A specific example within this class of nested fractals is the Vicsek set in R
2 equipped with 

its standard Dirichlet form (E , F), see e.g. [9, p. 26], for which α1 = dH

dW
, cf. Theorem 3.4. In fact, it is 

possible to explicitly construct non-constant functions h ∈ F that belong to Bp,βp(X) for any p ≥ 1 and 

βp =
(

1 − 2
p

)

(1 − α1) + 1
p as in Remark 2.10. We shall see that such a function h is actually a harmonic

function.
Denote by {ψi}5

i=1 the contraction mappings that generate X and define for any w ∈ {1, . . . , 5}m the 

mapping ψw := ψw1
◦ . . . ◦ ψwm

that generates an m-level copy of X, so that X =
⋃

w∈{1,...,5}m ψw(X). 
One can approximate X by a sequence of metric graphs {(Vm, Em)}m≥0 as illustrated in Fig. 1. These are 

equipped with the Dirichlet form given by the standard graph energy that arises by treating each edge as 
an interval and adding the corresponding 1-dimensional energies in each of them. A function h : X → R is 
said to be m-harmonic if it arises as the energy minimizing extension of a given function with values on the 

approximation level m, i.e.

E(h, h) = inf{E(g, g) : g|Vm
= fm}

for some fm : Vm → R. Following the notation and the result in [9, Proposition 7.13], we write in this case 

h = Hmfm and know that Hmfm ∈ D ∩ C(X).

Theorem 3.6. On the Vicsek set, the space B
2,1/2(X) ∩ B

p,βp(X) contains non-trivial functions for any 

p ≥ 1. In particular, for 1 ≤ p ≤ 2,

αp =
(

1 − 2
p

) (

1 − dH

dW

)

+
1
p

and (PPIp) is satisfied.

Proof. Let us consider graph approximation (V0, E0) and f0 : V0 → R that takes the values a1, a2, a3, a4 on 

each vertex x1, x2, x3, x4 of V0, respectively. For simplicity, we assume that the function is only non-zero at 
two connected vertices, say x1 and x3. The harmonic extension of f0 to the Vicsek set X is defined as the 

function h := H0f0 ∈ F such that h|V0
≡ f0 and
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E(h, h) = min{E(f, f) : f ∈ F and f|V0
= f0}.

This 0-harmonic function h is obtained by linear interpolation on the diagonal that joins x1 and the upper-
right corner x3. We call this the “distinguished” diagonal. On all branches intersecting it, including the 

other diagonal crossing lower-right to upper-left, h is constant according to its value on the distinguished 

diagonal. This harmonic extension is clearly non-constant, it is unique and belongs to F = B
2,1/2(X), see 

e.g. [26, Lemma 8.2]. In order to prove that ‖h‖p,βp
< ∞ for any p ≥ 1, we first fix r ∈ (0, 1/6) and set 

n := nr ≥ 0 to be the largest such that 2r < 3−(n+1). Note that X can be covered by 5n squares of side 

length 3−n, which we denote {Q
(n)
i }5n

i=1. By construction, the function h is constant on cells B(n)
i := X ∩Q

(n)
i

for which Q
(n)
i does not intersect the distinguished diagonal of X. In addition, h is also constant on the 

r-neighborhood of any such cell, i.e.

|h(x) − h(y)| = 0 for any y ∈ B
(n)
i and x ∈ B(y, r).

In other words, only in 3n of the n-cells {B
(n)
i }5n

i=1 the latter difference is nonzero. Since h is by definition 

linear, on any of these 3n cells it holds that

|h(x) − h(y)| ≤ d(x, y) for all y ∈ B
(n)
i and x ∈ B(y, r).

Combining these two facts and using the Ahlfors regularity of the space we have for any p ≥ 1

1
rpβpdW +dH

∫

X

∫

B(y,r)

|h(x) − h(y)|pdµ(x) dµ(y) (16)

≤ 1
rpβpdW +dH

3n
∑

i=1

∫

Bi

∫

B(y,r)

rp dµ(x) dµ(y) ≤ C

rpβpdW +dH

3n
∑

i=1

rp+dH µ(Bi)

≤ C

rpβpdW +dH
r−1+p+2dH = Crp+dH −(1+pβpdW ).

From Theorem 3.4 we know that β1 = dH

dW
, which substituting above yields the exponent p + dH − (1 +

pβpdW ) = (p − 1)(1 + dH − dW ) which equals zero because the Vicsek set satisfies dW = 1 + dH , cf. [9, 
Theorem 8.18]. Therefore, (16) is bounded independent of r and

sup
r∈(0,1/6)

1
rpβpdW +dH

∫

X

∫

B(y,r)

|h(x) − h(y)|pdµ(x) dµ(y) ≤ C

which in view of [2, Theorem 2.4] yields ‖h‖p,βp
≤ Cp,βp

(C + 6βpdW ‖h‖Lp(X,µ)). The space Bp,βp(X) is thus 
non trivial and by definition of the critical exponent αp we have αp ≥ βp. Finally, [2, Theorem 3.11] yields 
αp = βp and [2, Theorem 3.10] the property (PPIp). �

Remark 3.7. It is actually possible to prove that any m-harmonic function on the Vicsek set belongs to 

B
p,βp(X) for any p ≥ 1. As a consequence, one can deduce that αp = βp for every p ≥ 2.

Products of nested fractals. Higher dimensional examples of fractal spaces can be constructed by taking 

products [42]. In particular, as noticed in [2, Section 3.3], given a nested fractal X that satisfies sub-
Gaussian estimates, its n-fold product Xn has Hausdorff dimension ndH , while its walk dimension dW

remains unchanged. The next theorem puts these spaces into our setting.



P. Alonso Ruiz, F. Baudoin / J. Math. Anal. Appl. 497 (2021) 124899 13

Theorem 3.8 (Proposition 3.8, Theorem 5.6 [2]). Let (X, d, µ) be a nested fractal with 1 ≤ dH ≤ dW . Then, 
Theorem 3.4 holds with the same exponents for any n-fold product (Xn, dXn , µ⊗n), n ≥ 1.

In the case of the Vicsek set, and in view of Theorem 3.6 and Remark 3.7 one has the following result.

Theorem 3.9. Let (X, d, µ) denote the Vicsek set. For the n-fold product (Xn, dXn , µ⊗n), n ≥ 1, for any 

p ≥ 1 it holds that

αp =
(

1 − 2
p

) (

1 − dH

dW

)

+
1
p

and (PPIp) is satisfied for any 1 ≤ p ≤ 2, where dH is the Hausdorff dimension of X and dW the walk 

dimension of X.

We expect a similar result to hold in a more general framework within spaces with sub-Gaussian heat 
kernel estimates [2]; this will be the subject of future investigations.

4. Gagliardo-Nirenberg and Trudinger-Moser inequalities

We now turn to the core of the paper and show how the pseudo-Poincaré inequalities introduced in 

Section 2.2 can be applied to obtain the whole range of Gagliardo-Nirenberg and Trudinger-Moser inequal-
ities for the Sobolev spaces W 1,p(E). The techniques used rely on Lemma 2.6 in conjunction with general 
methods developed in [7].

4.1. Global versions

We start by recalling once again that, since (X, µ) is assumed to be a Radon space, the semigroup {Pt}t≥0

associated with the Dirichlet form (E , F) admits a measurable heat kernel pt(x, y), cf. [8, Theorem 1.2.3]. 
Throughout this section we will assume that the heat kernel satisfies

pt(x, y) ≤ Cht−β (17)

for some Ch > 0 and β > 0, µ × µ-a.e. (x, y) ∈ X × X and any t > 0. In addition, we will consider for each 

p ≥ 1 the Lp pseudo-Poincaré inequality (PPIp) from Section 2.2: There exists a constant Cp > 0 such that 
for every t ≥ 0 and f ∈ W 1,p(E) (or BV (E) for p = 1),

‖Ptf − f‖Lp(X,µ) ≤ CptαpVarp,E(f).

The following result extends to the abstract Dirichlet space framework the classical Gagliardo-Nirenberg 

inequalities, see e.g. [6].

Theorem 4.1. Assume that (PPIp) is satisfied for some p ≥ 1. Then, there exists a constant cp > 0 such 

that for every f ∈ W 1,p(E) (or BV (E) for p = 1),

‖f‖Lq(X,µ) ≤ cpC
β

β+αp
p C

αp
β+αp

h Varp,E(f)
β

β+αp ‖f‖
αp

β+αp

L1(X,µ), (18)

where q = p
(

1 + αp

β

)

.
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Proof. For p ≥ 1, we set θ := p/q and consider the semi-norm

‖f‖
B

αpθ/(θ−1)
∞,∞

= sup
t>0

t−αpθ/(θ−1)‖Ptf‖L∞(X,µ). (19)

Let f ∈ W 1,p(E) (or BV (E) if p = 1) and assume first that f ≥ 0 and also that, by homogeneity, 

‖f‖
B

αpθ/(θ−1)
∞,∞

≤ 1. For any s > 0, set ts = s
θ−1
αpθ so that |Pts

f | ≤ s. Then,

sqµ
(

{x ∈ X : |f(x)| ≥ 2s}
)

≤ sqµ
(

{x ∈ X : |f − Pts
f | ≥ s}

)

≤ sq−p‖f − Pts
f‖p

Lp(X,µ) ≤ sq−ptpαp
s Cp

p Varp,E(f)p = Cp
p Varp,E(f)p, (20)

where the last inequality follows from (PPIp) and the last equality from q − p + p(θ − 1)/θ = 0. Let us now 

define fk := min{(f − 2k)+, 2k}, k ∈ Z. We note that 0 ≤ fk ≤ f , so that

‖fk‖
B

αpθ/(θ−1)
∞,∞

≤ ‖f‖
B

αpθ/(θ−1)
∞,∞

≤ 1.

Applying (20) to fk with s = 2k yields

2kqµ
(

{x ∈ X : |fk(x)| ≥ 2k+1}
)

≤ Cp
p Varp,E(fk)p

so that from Lemma 2.6 we deduce

∑

k∈Z

2kqµ
(

{x ∈ X : |fk(x)| ≥ 2k+1}
)

≤ Cp
p

∑

k∈Z

Varp,E(fk)p ≤ 2p(p + 1)pCp
p Varp,E(f)p.

Further,

‖f‖q
Lq(X,µ) =

∑

k∈Z

2k+2
∫

2k+1

qsq−1µ
(

{x ∈ X : |f(x)| ≥ s}
)

ds

≤
∑

k∈Z

2k+2
∫

2k+1

qsq−1µ
(

{x ∈ X : |f(x)| ≥ 2k+1}
)

ds

≤ (22q − 2q)
∑

k∈Z

2kqµ
(

{x ∈ X : |fk(x)| ≥ 2k}
)

≤ 23q2p(p + 1)pCp
p Varp,E(f)p.

One concludes that for every f ∈ W 1,p(E) (or BV (E) if p = 1) such that f ≥ 0

‖f‖Lq(X,µ) ≤ 232θ(p + 1)θCθ
pVarp,E(f)θ‖f‖1−θ

B
αpθ/(θ−1)
∞,∞

, (21)

where θ = p
q . On the other hand, the heat kernel upper bound (17) implies

‖Ptf‖L∞(X,µ) ≤ Ch

tβ
‖f‖L1(X,µ)

and by definition, see (19), it follows from (21) that

‖f‖Lq(X,µ) ≤ 232θ(p + 1)θCθ
pC1−θ

h Varp,E(f)θ‖f‖1−θ
L1(X,µ)

for β = αpθ
1−θ = αpp

q−p , equivalently 1
q = 1

p − αp

qβ . If one does not assume f ≥ 0, the previous inequality applied 

to |f | yields the expected result, since it is clear from the definition that Varp,E(|f |) ≤ Varp,E(f). �
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4.1.1. Gagliardo-Nirenberg
Thanks to general results proved in [7], Theorem 4.1 actually implies the full scale of Gagliardo-Nirenberg 

inequalities. We discuss them according to the value of pαp.

Corollary 4.2. Assume that (PPIp) is satisfied for some p ≥ 1 such that pαp < β. Then, there exists a 

constant Cp,r,s > 0 such that for every f ∈ W 1,p(E) (or BV (E) for p = 1),

‖f‖Lr(X,µ) ≤ Cp,r,sVarp,E(f)θ‖f‖1−θ
Ls(X,µ), (22)

where r, s ∈ [1, +∞] and θ ∈ (0, 1] are related by the identity

1
r

= θ
(1

p
− αp

β

)

+
1 − θ

s
.

Proof. This follows from Theorem 4.1 and [7, Theorem 3.1]. �

Several special cases worth pointing out explicitly are described in Remark 4.9.
We now turn to the case pαp > β.

Corollary 4.3. Assume that (PPIp) is satisfied for some p ≥ 1 such that pαp > β. Then, there exists a 

constant Cp > 0 such that for every f ∈ W 1,p(E) (or BV (E) for p = 1), and s ≥ 1,

‖f‖L∞(X,µ) ≤ CpVarp,E(f)θ‖f‖1−θ
Ls(X,µ), (23)

where θ ∈ (0, 1) is given by θ = pβ
pβ+s(pαp−β) .

Proof. This follows from Theorem 4.1 and [7, Theorem 3.2]. �

Remark 4.4. For s = 1, we have that

‖f‖Ls(X,µ) = ‖f‖L1(X,µ) ≤ ‖f‖L∞(X,µ)µ(Supp(f)),

where Supp(f) denotes the support of f . Thus, (23) yields for any f ∈ W 1,p(E) (or BV (E))

‖f‖L∞(X,µ) ≤ CpVarp,E(f)µ(Supp(f))
αp
β − 1

p .

4.1.2. Trudinger-Moser
The case pαp = β corresponds to Trudinger-Moser inequalities. We start with the case p = 1 that is 

particularly well-suited for applications to fractal spaces.

Corollary 4.5. Assume that (PPI1) is satisfied and that α1 = β. Then, there exists a constant C > 0 such 

that for every f ∈ BV (E):

‖f‖L∞(X,µ) ≤ CVarE(f).

Proof. By virtue of Lemma 2.6, the condition (H1) from [7, Section 2] is satisfied, hence Theorem 4.1 and [7, 
Theorem 3.2] yield the result. �

We finally conclude with the Trudinger-Moser inequalities corresponding to p > 1.
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Corollary 4.6. Assume further that (PPIp) is satisfied and that pαp = β with p > 1. Then, there exist 
constants c, C > 0 such that

∫

X

(

ec|f |
p

p−1 − 1
)

dµ ≤ C‖f‖L1(X,µ)

holds for every f ∈ W 1,p(E) with Varp,E(f) = 1.

Proof. Once again, Lemma 2.6 implies condition (Hp) from [7, Section 2] for p > 1, and the result follows 
from Theorem 4.1 and [7, Theorem 3.4]. �

4.2. Localized versions

In order to be able to treat spaces that lack global estimates, as for instance hyperbolic spaces, 
RCD(K, +∞) spaces with K < 0, or compact spaces where only the local time behavior is meaning-
ful, in this section we adapt the previous ideas to obtain a local version of Theorem 4.1. In the spirit of [36, 
Section 3.3.2], Theorem 4.7 in fact provides a local inequality depending on a parameter R, which in the 

limit R → ∞ recovers its global counterpart (18). The local version of the property (PPIp) was introduced 

in Section 2.2 with the notation (PPIp(R)) for p ≥ 1 and R > 0.

Theorem 4.7. Fix R > 0, p ≥ 1 and αp > 0. Assume that the space (X, d, µ, E , F) satisfies:

(i) The heat semigroup Pt admits a measurable heat kernel pt(x, y) such that for some Ch > 0 and β > 0, 
for µ × µ-a.e. (x, y) ∈ X × X and 0 < t ≤ R

pt(x, y) ≤ Cht−β ; (24)

(ii) The property (PPIp(R)), with constant Cp(R) > 0.

Then, there exist Cp > 0 such that for every f ∈ Lp(X, µ),

‖f‖Lq(X,µ) ≤ 4p(2p + 2)
β

β+αp C
αp

β+αp

h

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)

β
β+αp ‖f‖

αp
β+αp

L1(X,µ),

where 1
q = 1

p − αp

qβ .

Proof. Modifying the arguments in Theorem 4.1 with the localized semi-norm

‖f‖
B

αpθ/(θ−1)

R,∞,∞

= sup
t∈(0,R)

t−αpθ/(θ−1)‖Ptf‖L∞(X,µ), θ :=
p

q
∈ (0, 1), (25)

we obtain for f ∈ Lp(X, µ) non-negative and s > R
αpθ

θ−1 = (1/R)
αpθ

1−θ

∞
∑

k=k0

2kqµ
(

{x ∈ X : |fk(x)| ≥ 2k+1}
)

≤ Cp(R)p
∑

k∈Z

Varp,E(fk)p ≤ Cp(R)p2p(p + 1)p
Varp,E(f)p.

If s < 2k0 , we write sqµ
(

{x ∈ X : |f(x)| > s}
)

≤ sq−p‖f‖p
Lp(X,µ). Using the previous two estimates, and 

setting k0 > 0 so that 2k0−1 < R
αpθ

θ−1 ≤ 2k0 ,
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‖f‖q
Lq(X u) =

2k0+1
∫

0

qsq−1µ
(

{x ∈ X : |f(x)| > s}
)

ds +

∞
∫

2k0+1

qsq−1µ
(

{x ∈ X : |f(x)| > s}
)

ds

≤ ‖f‖p
Lp(X,µ)

q2(k0+1)(q−p)

q − p
+

∞
∑

k=k0

2k+2
∫

2k+1

qsq−1µ
(

{x ∈ X : |f(x)| > 2k+1}
)

ds

≤ ‖f‖p
Lp(X,µ)

q4q−p

q − p
R

αpθ(q−p)

θ−1 + 2q(2q − 1)
∞

∑

k=k0

2qkµ
(

{x ∈ X : |f(x)| > 2k+1}
)

≤ 22q+p(p + 1)p
(

‖f‖p
Lp(X,µ)R

αpθ(q−p)

θ−1 + Cp(R)p
Varp,E(f)p

)

.

Since 
αpθ(q−p)

θ−1 = αpp(q−p)
q(p/q−1) = −αpp, the latter inequality implies

‖f‖q
Lq(X u) ≤ 22q+p(p + 1)pp

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)p

.

Finally, we conclude by applying (24) to the norm (25). �

4.2.1. Gagliardo-Nirenberg
In the same lines as [36, Section 3.2.7], Theorem 4.7 extends to the full scale of Gagliardo-Nirenberg 

inequalities by noticing that for any t, s > 0 the mapping f �→ (f − t)+ ∧ s := fs
t is a contraction and hence

R−αp‖fs
t ‖Lp(X,µ) + Cp(R)Varp,E(fs

t ) ≤ C
(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)

(26)

for some constant C > 0. As in the global case, we discuss in the following all these inequalities according 

to the value of pαp.

Corollary 4.8. Assume that (PPIp(R)) is satisfied for some p ≥ 1 such that pαp < β. Then, there exists a 

constant Cp,r,s > 0 such that for every f ∈ W 1,p(E) (or BV (E) for p = 1),

‖f‖Lr(X,µ) ≤ Cp,r,s

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)θ

‖f‖1−θ
Ls(X,µ), (27)

where r, s ∈ [1, +∞] and θ ∈ (0, 1] are related by the identity

1
r

= θ
(1

p
− αp

β

)

+
1 − θ

s
.

Proof. The proof is the same as in Corollary 4.2 since (26) corresponds to the property (H+
∞) from [7, 

Theorem 3.1]. �

We point out explicitly some particular cases whose global version corresponds to R = ∞.

Remark 4.9.

(i) If r = s, then r = pβ
β−pαp

and (27) yields the global Sobolev inequality

‖f‖Lr(X,µ) ≤ Cp

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)

.
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(ii) If r = p > 1 and s = 1, then (27) yields with θ = (p−1)β
p(αp+β)−β the global Nash inequality

‖f‖Lp(X,µ) ≤ Cp

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)θ

‖f‖1−θ
L1(X,µ).

(iii) If s = +∞, then (27) yields with θ = pβ
r(β−pαp)

‖f‖Lr(X,µ) ≤ Cp,r

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)θ

‖f‖1−θ
L∞(X,µ).

We now turn to the case pαp > β.

Corollary 4.10. Assume that (PPIp(R)) is satisfied for some p ≥ 1 such that pαp > β. Then, there exists a 

constant Cp > 0 such that for every f ∈ W 1,p(E) (or BV (E) for p = 1), and s ≥ 1,

‖f‖L∞(X,µ) ≤ Cp

(

R−αp‖f‖Lp(X,µ) + Cp(R)Varp,E(f)
)θ

‖f‖1−θ
Ls(X,µ),

where θ ∈ (0, 1) is given by θ = pβ
pβ+s(pαp−β) .

Proof. Analogously as Corollary 4.3, this follows by applying [7, Theorem 3.2] with (26) and Theo-
rem 4.7. �

4.2.2. Trudinger-Moser
Trudinger-Moser inequalities correspond to the case pαp = β. To treat them, we observe first that 

Minkowski’s inequality together with Lemma 2.6 implies

(

∑

k∈Z

(

R−αp‖fρ,k‖Lp(X,µ) + Cp(R)Varp,E(fρ,k)
)p

)1/p

≤ R−αp‖f‖Lp(X,µ) + 2(p + 1)Cp(R)Varp,E(f)

(28)

for any p ≥ 1, ρ > 1 and fρ,k := (f − ρk)+ ∧ ρk(ρ − 1).

Corollary 4.11. Assume that (PPI1(R)) is satisfied and that α1 = β. Then, there exists a constant C > 0
such that for every f ∈ BV (E)

‖f‖L∞(X,µ) ≤ C
(

R−α1‖f‖L1(X,µ) + C1(R)Var1,E(f)
)

.

Proof. By virtue of (28), the condition (H1) from [7, Section 2] is satisfied, hence Theorem 4.7 and [7, 
Theorem 3.2] yield the result. �

We finish this section with the Trudinger-Moser inequalities that one obtains for p > 1.

Corollary 4.12. Assume further that (PPIp(R)) is satisfied and that pαp = β with p > 1. Then, there exist 
constants c, C > 0 such that

∫

X

(

ec|f |
p

p−1 − 1
)

dµ ≤ C‖f‖L1(X,µ)

for every f ∈ W 1,p(E) with ‖f‖Lp(X,µ) = Rαp
(

1 − Cp(R)Varp,E(f)
)

.
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Proof. In this case, (28) implies condition (Hp) from [7, Section 2] for p > 1, and the result follows from 

Theorem 4.7 and [7, Theorem 3.4]. �

4.3. Examples

The Gagliardo-Nirenberg and Trudinger-Moser inequalities proved in this section can be applied in large 

classes of examples. In particular, we mention the following:

• Metric measure spaces with Gaussian heat kernel estimates: Theorem 3.3 provides the class of strictly 

local spaces to which one can apply the results obtained in this paper, and in particular Gagliardo-
Nirenberg and Trudinger-Moser inequalities. Note that a sufficient condition for condition (17) to hold 

is the volume growth condition µ(B(x, r)) ≥ CrdH , in which case one has β = dH

2 .
• Metric measure spaces with sub-Gaussian heat kernel estimates: Theorem 3.4 yields another large set 

of examples, including unbounded nested fractals. These satisfy (PPIp) for 1 ≤ p ≤ 2 and condition (17)
with β = dH

dW
. In the case of the unbounded Vicsek fractal, its n-fold product satisfies (PPIp) for 

1 ≤ p ≤ 2, cf. Theorem 3.8 and condition (17) with β = dH

dW
. Compact nested fractals satisfy the 

corresponding localized versions.

5. Morrey’s type inequalities

The classical Morrey’s inequality implies that functions in the Sobolev space W 1,p(Rd) are Hölder con-
tinuous (after a possible modification on a set of measure zero) for all p > d. Besides of being an important 
inequality on its own, we are interested in the associated critical value

δE := inf{p ≥ 1, W 1,p(E) ⊂ C0(X)},

where C0(X) denotes the space of a.e. bounded functions which admit a continuous representative, and 

the connection of δE to other dimensions studied in the metric measure setting [27]. The inequality that we 

prove in this section provides a general embedding of Bp,α(X) into the space Cλ(X), λ > 0, of bounded 

Hölder functions equipped with the norm

‖f‖Cλ(X) := ‖f‖L∞(X,µ) + µ-ess sup
x�=y

|f(x) − f(y)|
d(x, y)λ

.

Those types of embedding, however with weaker regularity, were already observed by Coulhon in [17]
under volume doubling and (sub-)Gaussian heat kernel estimates. Here and throughout this section, we will 
work under the following additional assumptions:

• Condition 1. The underlying space is dH -Ahlfors regular;
• Condition 2. The heat semigroup admits a heat kernel with Gaussian or sub-Gaussian estimates.

5.1. Metric approach

The proof of the following result is based on a generalization of the ideas in [18, Theorem 8.1]. Notice 

that Theorem 5.1 holds for any pair of exponents (p, α); Morrey’s inequality will correspond to the specific 

pairs (p, αp).
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Theorem 5.1. For any p > dH

dW α and R > 0, there exists Cp > 0 (independent from R) such that

µ-ess sup
0<d(x,y)<R/3

|f(x) − f(y)|
d(x, y)λ

≤ C‖f‖p,α,R (29)

for any f ∈ B
p,α(X), where λ = dW α − dH

p . In particular, if αp > dH

dW
, then B

p,α(X) ⊂ Cλ(X), where 

λ = dW α − dH

p .

Remark 5.2. When applied to the critical exponent α = αp, the condition αpp = dH

dW
coincides with the 

critical exponent for Trudinger-Moser inequalities in the previous section.

Proof. Let first 0 < r < R/3 and consider x, y ∈ X with d(x, y) ≤ r. Define

fr(x) :=
1

µ
(

B(x, r)
)

∫

B(x,r)

u(z) dµ(z)

and analogously one defines fr(y). Hölder’s inequality yields

|fr(x) − fr(y)| =
1

µ
(

B(x, r)
)

µ
(

B(y, r)
)

∣

∣

∣

∫

B(x,r)

∫

B(y,r)

(u(z) − u(z′)) dµ(z′) dµ(z)
∣

∣

∣

≤
(

1
µ

(

B(x, r)
)

µ
(

B(y, r)
)

∫

B(x,r)

∫

B(y,r)

|u(z) − u(z′)|p dµ(z′) dµ(z)
∣

∣

∣

)1/p

and applying the dH -Ahlfors regularity of the space we get

|fr(x) − fr(y)|p ≤ C

r2dH

∫

X

∫

B(z,3r)

|u(z) − u(z′)|p dµ(z′) dµ(z)

≤ CrpαdW −dH sup
r∈(0,R/3)

1
rdH +pαdW

∫

X

∫

B(z,3r)

|u(z) − u(z′)|p dµ(z′) dµ(z)

≤ CrpαdW −dH ‖f‖p
p,α,R.

The last inequality follows from the characterization of Bp,α(X) as a Korevaar-Schoen class space, see e.g. [2, 
Theorem 2.4] for the sub-Gaussian case. Thus,

|fr(x) − fr(y)| ≤ C1/prαdW −
dH

p ‖f‖p,α,R

and an analogous bound for |f2r(x) − fr(x)|. As in the proof of [18, Theorem 8.1], for any pair of Lebesgue 

points of f we deduce

|f(x) − f(y)| ≤ Cpd(x, y)αdW −
dH

p ‖f‖p,α,R. (30)

By virtue of [21, Theorem 3.4.3], the set of Lebesgue points of f is dense in X and so (30) implies (29). 

Finally, for any fixed r > 0 (e.g. r = R/4), Hölder’s inequality yields |fr(x)| ≤ r−
dH

p ‖f‖Lp(X,µ), which 

implies

|f(x)| ≤ Cr(‖f‖Lp(X,µ) + ‖f‖p,α,R)
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µ-a.e. x ∈ X. Thus, L∞(X, µ) ⊆ B
p,α(X). �

Since the constant Cp in the previous theorem is independent of R, by letting R → +∞ one deduces the 

corresponding global inequality.

Corollary 5.3. For any p > dH

dW α , there exists Cp > 0 such that

µ-ess sup
d(x,y)>0

|f(x) − f(y)|
d(x, y)λ

≤ Cp‖f‖p,α

for any f ∈ B
p,α(X), where λ = dW α − dH

p .

5.2. Heat semigroup approach

A drawback of Theorem 5.1 is that when applied to the pair (p, αp), it would be sharper and more natural 
to get on the right hand side of (29) the p-variation Varp,E(f) instead of the Besov semi-norm ‖ ·‖p,αp,R. This 
certainly requires more assumptions than just sub-Gaussian heat kernel estimates and Ahlfors regularity. 
So, in addition to the latter, we will also assume in this section the weak Bakry-Émery type estimate (G∞)
from (4).

• Condition 3. There exists a constant C > 0 so that for any f ∈ L∞(X, µ), x, y ∈ X and all t > 0,

|Ptf(x) − Ptf(y)| ≤ C
d(x, y)dW (1−α1)

t1−α1
‖f‖L∞(X,µ).

We start by presenting the key estimate to obtain an almost optimal Morrey’s type inequality. Its proof 
relies on ideas first developed by T. Coulhon [17] and E.M. Ouhabaz [33]. In the sequel, Δ will denote the 

infinitesimal generator of the Dirichlet form (E , F).

Theorem 5.4. Let p > 1 and dH

pdW
< α < dH

pdW
+

(

1 − 1
p

)

(1 − α1). Then,

|f(x) − f(y)| ≤ Cd(x, y)αdW −
dH

p ‖(−Δ)αf‖Lp(X,µ)

for f ∈ dom (−Δ)α, and µ-a.e. x, y ∈ X.

We decompose the proof into several lemmas; the first is a direct consequence of the heat kernel upper 
bound, and the second uses the fact that (G∞) is equivalent to

|pt(x, z) − pt(y, z)| ≤ C
d(x, y)dW (1−α1)

t
1−α1+

dH
dW

for some C > 0 and every t > 0, x, y, z ∈ X, see [2, Lemma 3.4].

Lemma 5.5. Let p ≥ 1. There exists a constant C > 0 such that for every f ∈ Lp(X, µ), t > 0 and µ a.e. 
x ∈ X,

|Ptf(x)| ≤ C

t
dH

pdW

‖f‖Lp(X,µ).
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Lemma 5.6. Let p ≥ 1. There exists a constant C > 0 such that for every f ∈ Lp(X, µ), t > 0 and µ a.e. 
x, y ∈ X,

|Ptf(x) − Ptf(y)| ≤ C
d(x, y)dW (1−α1)

(

1− 1
p

)

t
dH

pdW
+(1−α1)

(

1− 1
p

)
‖f‖Lp(X,µ).

The third lemma is more involved and we provide its proof.

Lemma 5.7. Let dH

pdW
< α < dH

pdW
+

(

1 − 1
p

)

(1 − α1). There exists a constant C > 0 such that for every 

f ∈ L2(X, µ) and µ-a.e. x, y ∈ X,

+∞
∫

0

tα−1|Ptf(x) − Ptf(y)|dt ≤ Cd(x, y)αdW −
dH

p ‖f‖Lp(X,µ).

Proof. The idea is to split the integral into two parts,

+∞
∫

0

tα−1|Ptf(x) − Ptf(y)|dt =

δ
∫

0

tα−1|Ptf(x) − Ptf(y)|dt +

+∞
∫

δ

tα−1|Ptf(x) − Ptf(y)|dt,

where δ > 0 will be chosen later. First, by Lemma 5.5 we have

δ
∫

0

tα−1|Ptf(x) − Ptf(y)|dt ≤
δ

∫

0

tα−1(|Ptf(x)| + |Ptf(y)|)dt

≤
δ

∫

0

tα−1 C

t
dH

pdW

dt‖f‖Lp(X,µ) ≤ Cδ
α−

dH
pdW ‖f‖Lp(X,µ).

As usual, the constant C in the previous inequalities may change from line to line. Secondly, applying 

Lemma 5.6 we get

+∞
∫

δ

tα−1|Ptf(x) − Ptf(y)|dt ≤ C

+∞
∫

δ

tα−1 d(x, y)dW (1−α1)
(

1− 1
p

)

t
dH

pdW
+(1−α1)

(

1− 1
p

)
‖f‖Lp(X,µ)dt

≤ Cd(x, y)dW (1−α1)
(

1− 1
p

)

+∞
∫

δ

t
α−1−

dH
pdW

−(1−α1)
(

1− 1
p

)

dt‖f‖Lp(X,µ)

≤ Cd(x, y)dW (1−α1)
(

1− 1
p

)

δ
α−

dH
pdW

−(1−α1)
(

1− 1
p

)

‖f‖Lp(X,µ).

Thus, one concludes

+∞
∫

0

tα−1|Ptf(x) − Ptf(y)|dt ≤ C
(

δ
α−

dH
pdW + d(x, y)dW (1−α1)

(

1− 1
p

)

δ
α−

dH
pdW

−(1−α1)
(

1− 1
p

))

‖f‖Lp(X,µ)

and choosing δ = d(x, y)dW yields the result. �

We are finally ready to prove Theorem 5.4.
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Proof of Theorem 5.4. Let f ∈ dom (−Δ)−α. By virtue of Lemma 5.7,

|(−Δ)−αf(x) − (−Δ)−αf(y)| = C

∣

∣

∣

∣

∣

∣

+∞
∫

0

tα−1(Ptf(x) − Ptf(y))dt

∣

∣

∣

∣

∣

∣

≤ C

+∞
∫

0

tα−1|Ptf(x) − Ptf(y)| dt ≤ Cd(x, y)αdW −
dH

p ‖f‖Lp(X,µ).

Applying the inequality to (−Δ)αf instead of f yields the result. �

As a consequence, we deduce a version of a Morrey’s type inequality which is almost optimal. In addition 

to Ahlfors regularity, sub-Gaussian heat kernel estimates and condition (G∞), it will be necessary to assume 

the property (PPIp).

Theorem 5.8. Let p > 1 and dH

pdW
< αp < dH

pdW
+

(

1 − 1
p

)

(1 − α1). Assuming (G∞) and (PPIp), for every 

0 < α < αp there exists a constant C > 0 such that

|f(x) − f(y)| ≤ Cd(x, y)αdW −
dH

p ‖f‖
1− α

αp

Lp(X,µ)Varp,E(f)
α

αp

for every f ∈ W 1,p(E) and µ-a.e. x, y ∈ X.

Proof. Let f ∈ W 1,p(E). For δ > 0, applying (PPIp) one has

∥

∥

∥

∥

∥

∥

∞
∫

0

t−s−1(Ptf − f) dt

∥

∥

∥

∥

∥

∥

Lp(X,µ)

≤
∞

∫

0

t−s−1‖Ptf − f‖Lp(X,µ)dt

≤ Varp,E(f)

δ
∫

0

t−s−1+αpdt + 2‖f‖Lp(X,µ)

∞
∫

δ

t−s−1dt

≤ Varp,E(f)
δα−s

αp − s
+ 2‖f‖Lp(X,µ)

δ−s

s
.

Finally, since

‖(−Δ)αf‖Lp(X,µ) = C

∥

∥

∥

∥

∥

∥

∞
∫

0

t−α−1(Ptf − f) dt

∥

∥

∥

∥

∥

∥

Lp(X,µ)

,

the result follows from Theorem 5.4 by optimizing in δ. �

5.3. Examples

As an illustration of the more concrete regularity results that can be obtained from the Morrey’s inequality 

in Theorem 5.1, in this paragraph we apply that result to several settings covered by the general theory. 
In addition, we propose new conjectures for fractals in the case p > 1. Recall that we define the Sobolev 

continuity exponent of a Dirichlet form as

δE = inf{p ≥ 1, W 1,p(E) ⊂ C0(X)}.
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Strictly local Dirichlet spaces. In the framework described in Section 3.1, we know from Theorem 3.3(ii) 
that under the quasi Bakry-Émery condition (13), the local Besov semi-norm ‖f‖αp,p,R is equivalent to the 

Lp-norm of the gradient and αp = 1/2 for any p ≥ 2. Hence, Theorem 5.1 recovers the classical Morrey 

inequality.

Theorem 5.9. Let (X, d, µ) be a metric measure space that satisfies the volume doubling property and supports 
a 2-Poincaré inequality. Moreover, assume that it satisfies the quasi Bakry-Émery condition (13). Then, for 

any p > dH , there exists C > 0 such that

sup
0<d(x,y)≤R

|f(x) − f(y)|
d(x, y)1−

dH
p

≤ C‖|∇f |‖Lp(X,µ).

In particular δE ≤ dH .

Nested fractals. Dealing with strongly local Dirichlet spaces with sub-Gaussian heat kernel estimates is more 

delicate due to the lack of an analogue to the quasi Bakry-Émery condition (13). Nevertheless, we would 

like to discuss several conjectures for nested fractals and the Sierpinski carpet that arise in the light of those 

presented in [2]. In view of recent developments, specially in the fractal setting [27, Section 19], it seems 
that the exponent δE may be related to the so-called Ahlfors regular conformal dimension of the space. We 

leave this question open for possible future research.

Theorem 5.10. For the Vicsek set, δE = 1. Moreover, W 1,p(E) ⊂ C1−1/p(X) for any p > 1.

Proof. The condition for the possible ranges of p is obtained as follows. Recall from Theorem 5.1 that we 

look for the infimum of the p’s such that dH

p < dW αp. For Vicsek set, we know from Theorem 3.6 and [2, 
Theorem 3.11] that we always have

dW αp ≥ dW

(

1 − dH

dW

)(

1 − 2
p

)

+
dW

p
=

(dW − dH)(p − 2) + dW

p
.

Thus, the condition for p becomes dH < (dW − dH)(p − 2) + dW which is equivalent to p > 1. Theorem 5.1
also yields W 1,p(E) ⊂ Cλ(X) with λ = dW αp − dH

p ≥ (dW − dH)
(

1 − 1
p

)

= 1 − 1
p , where the last equality 

follows from the fact that on the Vicsek set dW − dH = 1. �

For a generic nested fractal X we can provide bounds for the critical exponent δE .

Theorem 5.11. On nested fractals, 1 ≤ δE ≤ 2dH

dW
. Moreover, W 1,p(E) ⊂ Cλ(X) for any p ≥ 2 with

λ = (dW − dH)
(

1 − 1
p

)

.

Proof. From [2, Theorem 3.11], we know that αp ≥ 1
2 for 1 ≤ p ≤ 2 and αp ≥

(

1 − dH

dW

)(

1 − 2
p

)

+ dW

p for 
p ≥ 2. The result now follows as in the proof of Theorem 5.10. �

Since it is conjectured in [2, Section 5] that on all nested fractals one has αp =
(

1 − dH

dW

)(

1 − 2
p

)

+ 1
p for 

every p ≥ 1, we can actually state the following more precise conjecture.

Conjecture 5.12. On nested fractals, δE = 1 and for any p > 1, there exists C > 0 such that

µ-ess sup
x�=y

|f(x) − f(y)|
d(x, y)λ

≤ CVarp,E(f)



P. Alonso Ruiz, F. Baudoin / J. Math. Anal. Appl. 497 (2021) 124899 25

for every f ∈ W 1,p(E) with λ = (dW − dH)
(

1 − 1
p

)

.

In particular for the Sierpinski gasket, λ = log(5/3)
log 2

(

1 − 1
p

)

and for the Vicsek set, λ = 1 − 1
p . The Sierpinski 

carpet is of different nature and it has been conjectured in [2, Conjecture 5.4] that α1 = (dH − dtH + 1)/dW

and αp =
(

1 − 2
p

)

(1 − α1) + 1
p for p > 1, where dtH is the topological Hausdorff dimension of the carpet. 

After some elementary computations, this yields the following conjecture.

Conjecture 5.13. For the Sierpinski carpet, δE = 2 − dW −dH

dW −dH +dtH −1 and for any p > δE , there exists C > 0
such that

µ-ess sup
x �=y

|f(x) − f(y)|
d(x, y)λ

≤ CVarp,E(f)

for every f ∈ W 1,p(E) with λ = 1
p

(

(dW − dH + dtH − 1)(p − 2) + dW

)

− dH

p .

Since for the Sierpinski carpet it is known that dH = log 8
log 3 = 3 log 2

log 3 and dtH = 1 + log 2
log 3 , dW ≈ 2.097, this 

gives dW − dH + dtH − 1 = dW − 2 log 2
log 3 . The critical exponents thus read

δE = 1 +
log 2

dW log 3 − 2 log 2
and λ = dW

(

1 − 1
p

)

− log 2
log 3

(

2 − 1
p

)

.
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