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1. Introduction

The theory of Sobolev spaces was first pushed forward in order to prove solvability of certain partial
differential equations, see for example [31]. When X is a Riemannian manifold, a function f € LP(X) is
said to be in the Sobolev space W1P(X) if its distributional gradient is given by a vector-valued function
Vf e LP(X : R™). In more general spaces, a distributional theory of derivatives relying on integration by
parts may not be available, which makes necessary to find an alternative notion of derivative.

After the seminal paper of J. Cheeger [15], a variety of notions of a gradient were introduced in the
general context of metric measure spaces; we refer for instance to the book by J. Heinonen [19] and the
references therein. Those gradients naturally yield a rich theory of first order Sobolev spaces that was
developed around stepstone works like the ones by N. Shanmugalingam [39]; see also the book [21] and the
more recent papers by L. Ambrosio, M. Colombo and S. Di Marino [5], and G. Savaré [38].

The approach to Sobolev spaces undertaken in the above cited references crucially relies on a notion of
a measure-theoretic gradient that requires the underlying space to admit enough “good” rectifiable curves,
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a property that may not be present in some singular, fractal-like, metric measure spaces. With the aim of
including these, potential-theoretic based definitions have been introduced and studied at different levels
of generality, see e.g. [40,24,35] and references therein. The present paper is set up in the framework of
Dirichlet spaces that are general enough to also cover this type of fractals.

Dirichlet spaces are measure spaces equipped with a closed Markovian symmetric bilinear form &, called
Dirichlet form, whose domain is dense in L?. Dirichlet spaces provide a unified framework to study doubling
metric measure spaces supporting a 2-Poincaré inequality [28], fractals [25], infinite-dimensional spaces [13]
and non-local operators [16]. An important tool available in any Dirichlet space is the heat semigroup.
The latter is a priori an L? object, meaning that it is originally defined on L? by means of the Dirichlet
form & itself using spectral theory of Hilbert spaces. However, the Markovian property of £ and classical
interpolation theory allow to define this semigroup as a family of operators acting on any LP space, 1 < p <
+00.

Such an extension was used in [4] to develop a theory of LP Besov type spaces that have systematically
been studied in the context of strictly local spaces [1], strongly local spaces with sub-Gaussian heat kernel
estimates [2] and non-local spaces [3]. While the papers [1,2] primarily dealt with the L' theory and the
associated theory of bounded variation (BV) functions and sets of finite perimeter, the present paper focuses
on the LP theory for p > 1. The Sobolev spaces considered here arise as LP Besov spaces at the critical
exponent, cf. Definition 2.3, and coincide with their classical counterpart in the Riemannian and other
often studied metric measure settings, see Section 3. This heat semigroup approach digresses from existing
generalizations of the classical ideas of Mazy’a [31] to fractals, see e.g. [22,23].

Once Sobolev spaces have been identified, it is natural to investigate analogues of the famous Gagliardo-
Nirenberg and Trudinger-Moser inequalities. Such inequalities classically play an important role in the study
of partial differential equations and include as special cases the Sobolev embedding inequality, the Nash
inequality and the Ladyzhenskaya’s inequality to name but a few. Besides their applications to partial dif-
ferential equations, Gagliardo-Nirenberg and Trudinger-Moser inequalities also carry geometric information
and, in the context of Riemannian geometry, they have for instance been applied to the study of sets of
finite perimeter, conformal geometry [14] and cohomology [34]. In the context of metric measure spaces,
they have been closely related to the study of quasi-conformal or quasi-symmetric maps and invariants,
see [20].

The paper is organized as follows: Section 2 introduces the Sobolev spaces W1P(£), p > 1, associated
with a general Dirichlet form £. These are characterized in Section 3 for various specific classes of examples.
In strictly local Dirichlet spaces, which admit a canonical gradient structure intrinsically associated to the
form, it is shown in Theorem 3.3 that, under suitable conditions, W1?(€) coincides with the Sobolev space
defined by that gradient structure. Section 4 is devoted to the study of Gagliardo-Nirenberg and Trudinger-
Moser inequalities in general Dirichlet spaces, cf. Theorem 4.1 and Corollary 4.6. The techniques rely on the
general methods proposed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper [7]; besides
the ultracontractivity of the semigroup, the main assumption is an LP pseudo-Poincaré inequality that is
related to a weak notion of curvature (in the Bakry-Emery sense) of the underlying space. The latter is shown
to be satisfied in large classes of examples like RCD spaces or nested fractals. Finally, Section 5 investigates
embedding of the Sobolev spaces into spaces of Holder functions. Of particular interest is the infimum dg of
the exponents for which such embedding occurs. In strictly local spaces and under suitable assumptions it
is possible to bound above this quantity by the Hausdorff dimension of the space, cf. Theorem 5.9. In the
case of fractals, Theorem 5.10 shows that for the Vicsek set d¢ = 1. Moreover, it is conjectured that for the
Sierpinski gasket also d¢ = 1, whereas for the Sierpinski carpet

log 2
de=1
£ +dW10g3—210g27

where dy = 2.097 is the so-called walk dimension of the carpet.
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Notations. If A; and Ay are functionals defined on a class of functions f € C, the notation

A (f) = Aa(f)

means that there exist constants ¢, C' > 0 such that for every f € C

cAi(f) < Ao(f) < CA(S).

Also, in proofs, ¢, C will generically denote positive constants whose values may change from one line to
another.

2. Framework, basic definitions and preliminaries

Throughout the paper, X will denote a good measurable space (like a Polish or Radon space) as defined
in [8, p. 54]. We assume that X is equipped with a o-finite measure p supported on X. In addition, the pair
(€, F), where F = dom &, will denote a Dirichlet form on L?(X, ). We refer to (X, u, &, F) as a Dirichlet
space. Its associated heat semigroup {P;};>o admits a heat kernel measure p;(y, dz) [8, Theorem 1.2.3] and
we always assume the semigroup to be conservative, i.e. P;1 = 1. Further details about this setting can be
found in [4].

2.1. Heat semigroup-based BV, Sobolev and Besov classes

Following [4], we define the (heat semigroup-based) Besov classes associated with a Dirichlet space
(Xvﬂagv]:)‘

Definition 2.1. For any p > 1 and a > 0, define

1/p
BP(X) = { f € LP(X, ) : limsupt / PIf - F)P)@)du(y) | < +oc

t—0t
X

The basic properties of the space BP*(X) endowed with the semi-norm

1/p
1o = sUDE / PAf — F)P)(w)du(y)
t>0

X

are studied in [4]. In the present paper, we shall also be interested in the localized semi-norms defined for
R >0 as

1/p

I fllpa,r = sup ¢ Pi(|f = f)IP)(v)du(y)
tE(O,R) e

The local theory is important for instance to treat the case when the underlying space is compact. Note
that, in view of [4, Lemma 4.1], one has for every R > 0

2
1 £llp,nr < [1fllp,a < @HfHLP(X,u) + 1 fllp,e.r
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and in particular all the norms || f||zr(x, ) + || fllp,a,r are equivalent on BP»*(X') to the norm || f||z»(x ) +
£ llp.a
The BV and Sobolev classes arise at the corresponding critical exponents as follows.
Definition 2.2. The class of heat semigroup based bounded variation (BV) functions is defined as
BV (&) .= BV (X)),
where

a1 = sup{a > 0: BY*(X) contains non a.e. constant functions}.

For any f € BV(£), its total variation is defined as

Vare(f) i= limint e [ RIS - 1)) @)du(w)

X

As in the classical theory, the Sobolev classes are defined analogously for p > 1.
Definition 2.3. Let p > 1. The (1, p) heat semigroup-based Sobolev class is defined as
Who(€) = Br (X),
where
a, = sup{a > 0: B”%(X) contains non a.e. constant functions}.

For any f € W1P(€), its total p-variation is defined as

1/p

Var, ¢ (f) = liminf ¢~ / PAIf — F@)IP)(w)duly)

t—0+
X

Remark 2.4. For consistency in the notation, we will write Vary ¢(f) := Varg(f) for f € BV (E).

Remark 2.5. From [4, Proposition 4.6], one has ap = 3, Wh2(£) = dom € = F and Vars g(f) = 2E(f, f).
The following lemma shows that the functionals Var, ¢(f) behave nicely with respect to cut-off argu-

ments. This is a crucial property that will allow us to use the techniques developed by D. Bakry, T. Coulhon,

M. Ledoux and L. Saloff-Coste in [7].

Lemma 2.6. For any nonnegative f € WHP(E), if p > 1, or f € BV(E) if p =1, it holds that

1/p
( Z Varp,s(fp,k)p> <2(p+1)Var,e(f),

keZ

where f,p = (f—pF)s Ap*(p—1), k €Z and p > 1.



P. Alonso Ruiz, F. Baudoin / J. Math. Anal. Appl. 497 (2021) 124899 5

Proof. Let p:(y,dx) denote the heat kernel measure of the semigroup P;. We first observe that, once we
prove

Z//\fp, = fo(@)Ppe(y, dz)dp(y) < 2(p + 1)//|f($) — fW)Ppe(y, dx)dp(y) (1)

keZx x X X

for any p > 0, then

t—0+

timint (307 [ 150(0) = foa) Pouty, d)dly)
keZ % X

< 2(p+1)lim fnf =7 /|f Y pe(y, dz)dp(y).
X

Using the superadditivity of the lim inf one concludes
S timint 7 [ [ 1£,0(0) = Lo )il do)dn(o)
keZ ¥ X
<2(p+1) hmlnft bap //|f )P pe(y, dr)du(y).

The inequality (1) can implicitly be found in the proof of [7, Lemma 7.1] with a = p. The details are left
to the interested reader; keeping track of the constants in the aforementioned proof one sees in particular
that the bound is independent of p. O

Remark 2.7. Lemma 2.6 corresponds to the condition (H,), p > 1, introduced in [7, Section 2]; it will become
relevant to obtain Trudinger-Moser inequalities.

2.2. LP pseudo-Poincaré inequalities

Pseudo-Poincaré inequalities are a widely applicable tool to obtain Sobolev inequalities, see e.g. [36,
Section 3.3]. In this paragraph we introduce and discuss two assumptions that are crucial to further analyze
Gagliardo-Nirenberg and Trudinger-Moser inequalities.

The case p > 1. The assumptions concern the validity of a LP pseudo-Poincaré inequality, and the continuity
of the heat semigroup in a suitable Sobolev space.

o Condition (PPL,), p > 1. There exists a constant C), > 0 such that for every ¢t > 0 and f € W?(€) (or
BV (€) for p=1),

[Pef — flloe(x .y < Cpt® Var, g(f).
o Condition (G,), ¢ > 1. There exists a constant C; > 0 such that for every ¢t > 0 and f € LI(X, u),

C,

HPtf q,0q < tl,—ipnf”Lq(X,p,% (2)

where p is the Holder conjugate exponent of p, i.e. % + % =1
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Remark 2.8. It follows from spectral theory that as = 1/2 and that the assumptions (Gs) and (PPIz) always
hold.

Proposition 2.9. Let p > 1 and let q be its Holder conjugate. Under condition (G,), for every f € W1P(E)
andt >0

Cq 0
IPef — flloexn) < % . t »Vary, ¢(f),

where Cy is the same as in (2). In particular, condition (PPL,) is satisfied.

Proof. Follow the p-version of the arguments proving [2, Proposition 3.10]. O

The case p = 1. Recall that the semigroup {P, };>¢ admits a measurable heat kernel p;(z, y), cf. [8, Theorem
1.2.3]. In addition, we consider the space (X, ) to be endowed with a metric d. This metric d does not need
to be intrinsically associated with the Dirichlet form but has to satisfy some conditions listed below.

¢ Condition. For any x > 0, there exist constants C,c > 0 such that for every t > 0 and a.e. z,y € X

d(xay)ﬁpt(l‘ay) < Ctﬁ/dwp(ﬁt(mﬂq)a (3)

where dy > 1 is a parameter independent from «,C and c.
o Condition (G). There exists a constant C' > 0 so that for every ¢t > 0, f € L>®(X, ), and z,y € X

d , dw (1—az1)
|Pf(@) = Pif(y)] < C%Ilf 2 xpn- 4)

We note that (3) is for instance satisfied if p;(z,y) satisfies sub-Gaussian heat kernel estimates, see [2,
Lemma 2.3] and that the condition (Gu) was called in [2] the weak Bakry-Emery estimate.

Remark 2.10. Since (G2) always holds for every ¢ > 0, using interpolation theory, one deduces as in the
proof of [2, Theorem 3.9] that the assumption (Go,) implies that for every ¢t > 0, ¢ > 2 and f € LP(X, pu),

1P fllq,8, < tﬁ L1 f 1l 2o (x,p0) (5)
where ﬁq = (1 - —)(1 Q1) + . This is not quite the same as (Gy), unless 1 —a, = §,, i.e. ap = (1 - —)(1 —
1) + . Note that for the Vlcsek set (or direct products of it) one indeed has o, = (1 — 7) (1-a ) + 5

see Remark 3.7.

Proposition 2.11. If the Dirichlet space (X, d, u,E) satisfies (Goo) and (3), there exists a constant C' > 0
such that for every f € BV(E) and t > 0,

IPef = fllorx,p < Ct* Varg(f).
In particular (PP1y) is satisfied.
Proof. See [2, Proposition 3.10]. O

To obtain the whole family of inequalities in the subsequent sections we will need the local counterparts
of the previous conditions.
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o Condition (PPI,(R)), p > 1. There exists a constant C,(R) > 0 such that for every ¢ € (0, R) and
fewWhr(€) (or BV(E) for p=1),

I1Pef — fllze(x.u) < Cp(R)t“»Vary, g(f).

o Condition G,4(R), ¢ > 1, R > 0. There exists a constant C,(R) > 0 such that for every ¢ € (0, R) and
feLl(X,p),

C
1Pef gy < =y 1 lle (6)

where as before p is the Holder conjugate exponent of p, i.e. % + % =1.
The same proof as Proposition 2.9 yields the following result.

Proposition 2.12. Let p > 1, R > 0 and assume that G4(R) holds, where q is the Holder conjugate of p.
Then, for every f € WhP(E) and t € (0, R),

Cy(R
I1Pf v < S v, o (1
P

with the same constant Cy as in (6). In particular, (PPL,(R)) is satisfied.

Similarly, to treat the case p = 1 one can introduce a localized version of (3) and of the condition G (R),
R > 0 to prove the localized analogue of Proposition 2.11. We omit the details for conciseness.

2.3. Weak Bakry-Emery estimates
In this section, we investigate some self-improvement properties of the assumption G (R), R > 0.

Lemma 2.13. Let d be a metric on X. Let R > 0 and assume that there exist constants C, k,dw > 0 such
that for every t € (0,R), f € L*(X,p) and z,y € X,

d(z,y)"

|Ptf(l') - Ptf<y)| <C tr/dw

£l oo (3,09 (7)
Then, for any R’ > R, (7) also holds for every t € (0, R") with a possibly different constant C' = Crr.
Proof. Let f € L (X, ) and z,y € X. Applying (7) to the function P, f instead of f yields

d(z,y)"
_ w/dw !

|Porf(x) — Por f(y)| < Cr2 1)/ 1l oo ()

and therefore (7) holds for t € (0,2R) and C' = Cr2%/% . For any R’ > R we may choose n > 0 so that
R’ < 2"R and iterating the previous argument will give (7) for t € (0, R') with C' = C2™/w. o

To extend (7) to all of ¢ > 0 requires a better (uniform) control on the constants, which is possible under
additional conditions.

Lemma 2.14. Let d be a metric on X. Let R > 0 and assume that there exist constants C, k,dw > 0 such
that for everyt € (0, R), f € L®(X,u) and z,y € X,
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d(z,y)"

[ £1l 2o (X0 (8)
Moreover, assume that

(i) the infinitesimal generator A of the Dirichlet form (€, F) has a pure point spectrum,
(ii) 1 € domA,
(iii) the Dirichlet space (X, u,E,F) satisfies the Poincaré inequality

X/ / i) ds < S-ECL.T)

for some Ay >0 and all f € F,
(iv) the heat kernel pi(x,y) of P satisfies the estimate py,(z,y) < M for some to, M > 0 and p-almost
every x,y € X.

Then, (8) holds for allt > 0, possibly with a different constant C > 0.

Proof. By virtue of assumption (ii) one has u(X) < 400, so that without loss of generality we can assume
u(X) = 1. Let {\;};>0 denote the eigenvalues of A and {¢;};>0 the associated eigenfunctions. Assumptions
(ii) and (iii), see e.g. [8, Proposition 3.1.6], yield for any f € L?(X, i)

e /fdu+Ze“¢] /@ (v). 9)

Now, since P, ¢; = e~ ' ¢;, applying Hélder’s inequality and assumption (iv) we deduce for p-a.e. x € X

1/2

[65()] = e* /) (2, )0, (y)du(y)| < ' /m&aw%mw> < Mehito,

X X

Next, using Lemma 2.13 if needed, we may assume ¢y < R. Applying (8) to ¢; and the latter estimate we

obtain
e "0, (x) — e, (y)| < CMdff/,dziV)KeAm’
0
and hence
165(2) — 65()] < e AL /dw) 2o, (10)

Finally, for any f € L*°(X,u) and ¢t > 2tp, (9) and (10) imply

\Pof () — Pif(y \<Ze*“|¢] 63 ()| / 63(2)F (2)du(z)
X
<CMd( ) —)\ j(t— 2t0)/¢ )

g/ dw
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d(z,y)" X s d(z, )"
<CM 17w ||fHL°°(X,,u)Zle (¢ tO)SC/WHfHLW(X,H)?
i

where the constant C’ depends on M, C, k,dw, \; and tg. O
3. Examples of heat semigroup based BV and Sobolev classes

To illustrate the scope of our results we now present several classes of Dirichlet spaces that appear in the
literature for which the heat semigroup based BV and Sobolev classes can be characterized. This generalizes
previous results from [4,1,2].

3.1. Metric measure spaces with Gaussian heat kernel estimates

Further details to this particular framework can be found in [1]. We consider (X,d,u,&,F) to be a
strictly local Dirichlet space, where d is the intrinsic metric associated to the Dirichlet form. The measure
1 is assumed to be doubling and the space to supports a scale invariant 2-Poincaré inequality on balls;
according to K.T. Sturm’s results [43,44] these conditions are equivalent to the fact that there is a heat
kernel with Gaussian estimates. In this setting, see [1, Lemma 2.11], £ admits a carré du champ operator
I(f,f), f € F and we denote |Vf| = /T(f, f). Based on the ideas of M. Miranda [32], the following
definitions were introduced in [1].

Definition 3.1 (BV space). We say that f € L'(X, u) is in BV(X) if there is a sequence of local Lipschitz
functions fi, € L'(X, p) such that f — f in L*(X, u) and

IDfI(X) := likminf/ |V fi| dp < oo.
—00
X

Definition 3.2 (Sobolev space). For p > 1, we define the Sobolev space
WHP(X) = {f € LP(X, u) N Fioce(X) : [V f| € LP(X)} (11)
whose norm s given by [|fllwss(x) = I1F 1o + VA1 oo
Localization allows to extend the results appearing in [1, Theorem 4.4] to include compact spaces.
Theorem 3.3. For each R € (0,+cc] the following holds:

(i) Assume the weak Bakry-Emery estimate

C
IV Pef e (xw < %HfHLoc(x,ﬂ) t € (0, R) (12)

for some constant C > 0 and any f € F N L>(X, p). Then, (PPI;(R)) is satisfied, oy = 5, BV(E) =
BV (X) and

[f(y) — f(=z)

o |

~1 f (Bl

[1,1/2,r = lim in / Vrp(B(z,r))
X B(z,r)

Vare (f) ~ || f

dp(y) du(z) ~ [ Df[[(X).
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(ii) Assume the quasi Bakry-Emery condition estimate, cf. [1, Definition 2.15],
VPl <CPIVSl  te(0,R) (13)

p-a.e. for some constant C > 0 and any f € F. Then, for every p > 1, condition (PPL,(R)) is satisfied,
oap =5, WHP(E) = WhHP(X) and

1/p

Var, ¢(f) ~ ||

ot /2.R = / IV Pdu
X

Proof. It suffices to show the statements for non-negative functions.

(i) With the same proof as in [1, Lemma 4.3], condition (12) implies that
P2t = Pl < OV [ V1]
X

for any ¢t € (0, R) and f € BV(X). Analogous to the proof of [1, Theorem 4.4], the latter inequality and
the coarea formula [1, Theorem 3.11] yield Varg(f) < ||fll1,1/2,r < 2C||Df[|(X). For f € BV (), the
Gaussian lower bound of the heat kernel and the second part of the proof of [30, Theorem 3.1] (which
does not use 1-Poincaré inequality) give ay = 1/2.

(ii) A local version of the arguments in the proof of [1, Theorem 4.11] yield

IV flllLex,u) < CVarye(f) < C| f

|p71/27R'

The reverse inequality follows as in the proof of [1, Theorem 4.17] with ¢ € (0, R) and the quasi Bakry-
Emery condition (13). O

As one would expect, the quasi Bakry-Emery curvature condition (13) implies the weak one (12). Exam-
ples of spaces within the framework just discussed that satisfy (13) include Riemannian manifolds with Ricci
curvature bounded from below and RC'D(K, +00) spaces; in that case for every t > 0, |VP.f| < e Kt P,|V f],
and thus |VP,f| < CPR|Vf]| for t € (0, R) with C = max(1,e 5%) see [37]. On the other hand, Carnot
groups [10] and complete sub-Riemannian manifolds with generalized Ricci curvature bounded from below
in the sense of [11,12] are examples in this setting where the weak Bakry-Emery condition (12) is known
but the stronger condition (13) unknown.

8.2. Fractal spaces

This paragraph summarizes and extends the results currently available that put some fractal spaces into
our setting. In particular, Lemma 2.14 allows to treat the case of compact nested fractals by considering
only local estimates.

Nested fractals. Nested fractals [29] are fractional metric spaces whose natural diffusion process is a fractional
diffusion in the sense of Barlow [9, Definition 3.2]. For details about the following result we refer to Theorem
3.7, Theorem 4.9 and Theorem 5.1 of [2]. By an “infinite” fractal we mean its blow-up as introduced by R.
S. Strichartz in [41].

Theorem 3.4. Let (X,d, 1) be a compact or infinite nested fractal with 1 < dyg < dw. Then, it satisfies
(Gso). In fact, the weak Bakry-Emery condition
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Fig. 1. Approximating graphs (V,,, E,,) for the Vicsek set.

d(w, y) W —n
\Pef (@) = Pf W)l < O —aya Wl £>0 (14)

holds for some C > 0 and any f € L (X, u). Moreover, aq = dp/dw and

1111z s = Vare(f). (15)

Remark 3.5. The condition (14) is satisfied in a more general class of fractals, cf. [2, Theorem 3.7], however
the statement concerning o and the equivalence of norms (15) is so far only valid for nested fractals. It is
conjectured in [2, Conjecture 5.4] that for fractals like the Sierpinski carpet one has ay = (dg —dig +1)/dw,
where d;y denotes the topological Hausdorfl dimension of the space.

Vicsek set. A specific example within this class of nested fractals is the Vicsek set in R? equipped with
its standard Dirichlet form (&, F), see e.g. [9, p. 26], for which a; = j—‘f], cf. Theorem 3.4. In fact, it is
possible to explicitly construct non-constant functions h € F that belong to BP#»(X) for any p > 1 and
Bp=(1—2)(1 —a1) + 5 as in Remark 2.10. We shall see that such a function h is actually a harmonic
function.

Denote by {t;}?_, the contraction mappings that generate X and define for any w € {1,...,5}™ the
mapping vy = ¥y, 0... 0 Py, that generates an m-level copy of X, so that X = U,cq1,  5pm Yuw(X).
One can approximate X by a sequence of metric graphs {(Vin, Em) }m>o0 as illustrated in Fig. 1. These are
equipped with the Dirichlet form given by the standard graph energy that arises by treating each edge as
an interval and adding the corresponding 1-dimensional energies in each of them. A function h: X — R is
said to be m-harmonic if it arises as the energy minimizing extension of a given function with values on the

approximation level m, i.e.

E(h,h) = inf{&(g,9) : glv,, = fm}

for some f,,: V;, = R. Following the notation and the result in [9, Proposition 7.13], we write in this case
h = Hp, f and know that H,, f,, € DNC(X).

Theorem 3.6. On the Vicsek set, the space B>'/2(X) N BPP»(X) contains non-trivial functions for any
p > 1. In particular, for 1 <p < 2,

and (PPL,) is satisfied.

Proof. Let us consider graph approximation (Vp, Eg) and fo: Vo — R that takes the values a1, as,as,as on
each vertex x1,xo,x3, x4 of Vp, respectively. For simplicity, we assume that the function is only non-zero at
two connected vertices, say x1 and x3. The harmonic extension of fy to the Vicsek set X is defined as the
function h := Hy fy € F such that h|y, = fo and
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E(h,h) =min{&E(f, f): f € F and f,, = fo}-

This O0-harmonic function A is obtained by linear interpolation on the diagonal that joins z; and the upper-
right corner z3. We call this the “distinguished” diagonal. On all branches intersecting it, including the
other diagonal crossing lower-right to upper-left, h is constant according to its value on the distinguished
diagonal. This harmonic extension is clearly non-constant, it is unique and belongs to F = B>'/2(X), see
e.g. [26, Lemma 8.2]. In order to prove that [|h[, 5, < oo for any p > 1, we first fix r € (0,1/6) and set
n :=n, > 0 to be the largest such that 2r < 3=(»+1)_ Note that X can be covered by 5" squares of side
length 37", which we denote {Q; n)}5 1- By construction, the function h is constant on cells B; .= X NQ; (n)
for which Qg ) does not intersect the distinguished diagonal of X. In addition, h is also constant on the
r-neighborhood of any such cell, i.e.

|h(z) — h(y)| =0 for any y € Bi(") and z € B(y,r).

In other words, only in 3" of the n-cells {B(" ", the latter difference is nonzero. Since h is by definition
linear, on any of these 3™ cells it holds that

\h(z) — h(y)| < d(z,y) for ally € BI™ and x € B(y,r).

Combining these two facts and using the Ahlfors regularity of the space we have for any p > 1

v | / DIPdu(z) duty) (16)

X B(y,r)
1 3" c 3n
B derdn P - p+d ,
< 7 PBpdw +dir Z/ / P du(x) du(y) < PPy dw Tdn Zr H1(By)
=B By i=1
LT—H}H—MH — Opptdu—(+pBpdw)
- rpﬁde‘i’dH .

From Theorem 3.4 we know that §; = g—vfj/, which substituting above yields the exponent p + dg — (1 +
pBpdw) = (p — 1)(1 + dg — dw) which equals zero because the Vicsek set satisfies dy = 1 + dg, cf. [9,
Theorem 8.18]. Therefore, (16) is bounded independent of r and

w | [ ) - M) ) < ©

r r
€(0,1/6) X Bl

which in view of [2, Theorem 2.4] yields ||hl|p,5, < Cpg, (C + 6% ||h||10(x ). The space BP#»(X) is thus
non trivial and by definition of the critical exponent «,, we have o, > . Finally, [2, Theorem 3.11] yields
ap = fp and [2, Theorem 3.10] the property (PPL,). O

Remark 3.7. It is actually possible to prove that any m-harmonic function on the Vicsek set belongs to
BP% (X) for any p > 1. As a consequence, one can deduce that «, = f3, for every p > 2.

Products of nested fractals. Higher dimensional examples of fractal spaces can be constructed by taking
products [42]. In particular, as noticed in [2, Section 3.3], given a nested fractal X that satisfies sub-
Gaussian estimates, its n-fold product X" has Hausdorff dimension ndy, while its walk dimension dy
remains unchanged. The next theorem puts these spaces into our setting.
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Theorem 3.8 (Proposition 3.8, Theorem 5.6 [2]). Let (X,d, ) be a nested fractal with 1 < dgy < dw . Then,
Theorem 3./ holds with the same exponents for any n-fold product (X™, dxn, u®m), n > 1.

In the case of the Vicsek set, and in view of Theorem 3.6 and Remark 3.7 one has the following result.

Theorem 3.9. Let (X,d,u) denote the Vicsek set. For the n-fold product (X", dxn,u®™), n > 1, for any

p > 1 it holds that
2 dH> 1
a,=(1-2)(1--2L)+-
P ( p>( dw/) p

and (PPL,) is satisfied for any 1 < p < 2, where dg is the Hausdorff dimension of X and dw the walk
dimension of X.

We expect a similar result to hold in a more general framework within spaces with sub-Gaussian heat
kernel estimates [2]; this will be the subject of future investigations.

4. Gagliardo-Nirenberg and Trudinger-Moser inequalities

We now turn to the core of the paper and show how the pseudo-Poincaré inequalities introduced in
Section 2.2 can be applied to obtain the whole range of Gagliardo-Nirenberg and Trudinger-Moser inequal-
ities for the Sobolev spaces W1P(€). The techniques used rely on Lemma 2.6 in conjunction with general
methods developed in [7].

4.1. Global versions
We start by recalling once again that, since (X, 41) is assumed to be a Radon space, the semigroup {P;}:>0
associated with the Dirichlet form (€, F) admits a measurable heat kernel p;(z,y), cf. [8, Theorem 1.2.3].
Throughout this section we will assume that the heat kernel satisfies
pi(w,y) < Cpt™? (17)
for some Cj, > 0 and 8 > 0, u X p-a.e. (x,y) € X x X and any ¢ > 0. In addition, we will consider for each

p > 1 the L? pseudo-Poincaré inequality (PPI,) from Section 2.2: There exists a constant C,, > 0 such that
for every t > 0 and f € WHP(&) (or BV () for p = 1),

| P f — f”LP(X,u) < Cpt®Vary ¢(f).

The following result extends to the abstract Dirichlet space framework the classical Gagliardo-Nirenberg
inequalities, see e.g. [6].

Theorem 4.1. Assume that (PPIL,) is satisfied for some p > 1. Then, there exists a constant ¢, > 0 such
that for every f € WHP(E) (or BV (E) forp=1),

ﬁ (!p ﬁ O(i
1£llzs(x00 < €pCp " Gy Varp, e (f) 7o || £I| 11 (% (18)

where ¢ = p(1 + %”)
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Proof. For p > 1, we set 6 := p/q and consider the semi-norm
||f||B§2’,Z£‘9’” = iggt—aw/(a—ﬂ 1Pl oo (10 (19)

Let f € WYP(E) (or BV(E) if p = 1) and assume first that f > 0 and also that, by homogeneity,
6—1
[fIl gapes@-1 < 1. For any s >0, set t, = s°»7 so that [P, f| < s. Then,

stu({fee X« |f(@) =2 2s}) <s'u({x e X : |f— P f| = s})
< ST = P flliw(x 0 < s PP CPVary e (f)P = Cp Varp (), (20)

where the last inequality follows from (PPI,) and the last equality from ¢ —p+ p(6 —1)/6 = 0. Let us now
define f;, := min{(f — 2¥),, 2%}, k € Z. We note that 0 < f; < f, so that

1fill gepose-n < fll gaposo-n < 1.
Applying (20) to fi, with s = 2" yields
2" p({z e X ¢ |fr(z)] = 2"F1}) < CPVar, (fi)?
so that from Lemma 2.6 we deduce

Y 2Mu({z e X ¢ |ful2) 2 2"1)) < CF Y Var,e(fi)” < 2°(p + 1)PCp Var, g (f)P.

kEZ keZ
Further,
2k+2
||f||%q(x’#) = Z / qsq_lﬂ({x €X: |f(x)] > S}) ds
lcEZQk+1
2k+2
> / g u({z € X ¢ ()] > 21)) ds
chZQk+1
< (2229 2Mu({z e X ¢ |filw)] = 2°}) < 2%92°(p + 1)PCEVar, £ (f)".
keZ

One concludes that for every f € WP(E) (or BV () if p = 1) such that f >0
||fHL‘1(X,u) < 2320(17"' 1)005\/31'17,8( ) ||f|| upe/w 1) (21)

where 0 = g. On the other hand, the heat kernel upper bound (17) implies

Ch
1Pefllpee ) < 25 I lEr
and by definition, see (19), it follows from (21) that

1 pacxm < 2°2° (0 +1)°Cp Oy Vary e ()| Il ix )

1

for g = ffg = ;lff) , 111 =5 Z—E. If one does not assume f > 0, the previous inequality applied

to | f| yields the expected result, since it is clear from the definition that Var, ¢(|f|) < Var, ¢(f). O
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4.1.1. Gagliardo-Nirenberg
Thanks to general results proved in [7], Theorem 4.1 actually implies the full scale of Gagliardo-Nirenberg
inequalities. We discuss them according to the value of pay,.

Corollary 4.2. Assume that (PPL,) is satisfied for some p > 1 such that pay, < . Then, there exists a
constant Cp, s > 0 such that for every f € WYP(E) (or BV(E) forp=1),

1-6 (22)

||fHLT(X,,u) < Cp7T7SVarp7g(f)9||f| Ls(X,pu)?

where r,s € [1,400] and 0 € (0,1] are related by the identity

GRS

Proof. This follows from Theorem 4.1 and [7, Theorem 3.1]. O

Several special cases worth pointing out explicitly are described in Remark 4.9.
We now turn to the case pay, > 5.

Corollary 4.3. Assume that (PPL,) is satisfied for some p > 1 such that pay, > . Then, there exists a
constant Cp, > 0 such that for every f € WYP(E) (or BV(E) forp=1), and s > 1,

£l (x.0) < CpVary e (f)°]| f]

1-6
L#(X.p)" (23)

where 6 € (0,1) is given by 6 = WZ_B).
Proof. This follows from Theorem 4.1 and [7, Theorem 3.2]. O

Remark 4.4. For s = 1, we have that

11

ox) = Ifllovxw < Ifllze(x,w 1 (Supp(f)),

where Supp(f) denotes the support of f. Thus, (23) yields for any f € WYP(&) (or BV (£))

B =

£ 1| e () < CpVary e (f)u(Supp(f)) # ~.

4.1.2. Trudinger-Moser
The case pay, = [ corresponds to Trudinger-Moser inequalities. We start with the case p = 1 that is
particularly well-suited for applications to fractal spaces.

Corollary 4.5. Assume that (PPly) is satisfied and that oy = 3. Then, there exists a constant C > 0 such
that for every f € BV (E):

£l (x,0) < CVare(f).

Proof. By virtue of Lemma 2.6, the condition (H;) from [7, Section 2] is satisfied, hence Theorem 4.1 and [7,
Theorem 3.2] yield the result. 0O

We finally conclude with the Trudinger-Moser inequalities corresponding to p > 1.
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Corollary 4.6. Assume further that (PPL,) is satisfied and that poy, = B with p > 1. Then, there exist
constants ¢, C > 0 such that

/ (ecml - 1> i < CII 1l (x .0
X

holds for every f € WYP(E) with Var, ¢(f) = 1.

Proof. Once again, Lemma 2.6 implies condition (H,) from [7, Section 2] for p > 1, and the result follows
from Theorem 4.1 and [7, Theorem 3.4]. O

4.2. Localized versions

In order to be able to treat spaces that lack global estimates, as for instance hyperbolic spaces,
RCD(K,+00) spaces with K < 0, or compact spaces where only the local time behavior is meaning-
ful, in this section we adapt the previous ideas to obtain a local version of Theorem 4.1. In the spirit of [36,
Section 3.3.2], Theorem 4.7 in fact provides a local inequality depending on a parameter R, which in the
limit R — oo recovers its global counterpart (18). The local version of the property (PPI,) was introduced
in Section 2.2 with the notation (PPI,(R)) for p > 1 and R > 0.
Theorem 4.7. Fix R > 0, p > 1 and o, > 0. Assume that the space (X, d, u,E, F) satisfies:

(i) The heat semigroup P; admits a measurable heat kernel pi(x,y) such that for some Cp >0 and 8 > 0,
for wx p-a.e. (z,y) € X x X and 0 <t <R

pi(x,y) < Cpt™7; (24)
(ii) The property (PPL,(R)), with constant Cp(R) > 0.
Then, there exist Cp, > 0 such that for every f € LP(X, n),

8

ap B ap
a —a B+ap a,
11l zae ) < 4920+ 2)755 CFF 7 (R || fllax ) + Co(R) Varye (1) ™7 IS 1% .

[0}

S

1
P q

where % =

Y

Proof. Modifying the arguments in Theorem 4.1 with the localized semi-norm

£l gporo-n = sup = O VNP fl e, 0:= = € (0,1), (25)

te(0,R)

ESH k]

apb

aph
we obtain for f € LP(X, u) non-negative and s > Ro-1 = (1/R)7-?

Z Mpu({z e X+ [fu(x) = 281}) < Cp(R)P Z Var, ¢ (fi)? < C,(R)P2P(p + 1)PVar, ¢(f)P.
k=ko keZ

If s < 2k, we write siu({z € X : |f(z)| > s}) < sq*p||f\|’£p(

< X0 Using the previous two estimates, and

apb
setting ko > 0 so that 2k0—1 < R#°T < 2o,
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2ko+1 00
110 ) = / gs" p({r € X o |f(x)] > s}) ds + / gs" p({z € X 1 |f(x)] > s}) ds
0 2k0+1
2k+2
q2ko+1)(a=p) s
<Ay ————+ D [ s 'u({z e X: |f(x)] >2""})ds
k= k02k+1
q497P _ apé(a—p)
<Ay T RETTE 4 20(20 1) )3 (e X ¢ (1) > 251))
g =P Py
0
ap9(q7p)

<P D (LB + Co(B) Vary,e()7).

Since %z(fl_p) = ‘;Z’;)/(Z:f)) = —ayp, the latter inequality implies

P
110wy < 22770+ 1Pp(R= | fr 0 + ColR)Var, ()
Finally, we conclude by applying (24) to the norm (25). O

4.2.1. Gagliardo-Nirenberg
In the same lines as [36, Section 3.2.7], Theorem 4.7 extends to the full scale of Gagliardo-Nirenberg
inequalities by noticing that for any ¢, s > 0 the mapping f — (f —¢)+ As:= f; is a contraction and hence

R £ e ) + Cp(R) Varp e (fi) < C(R™7||fllLo(x.0) + Cp(R) Vary e(f)) (26)

for some constant C' > 0. As in the global case, we discuss in the following all these inequalities according
to the value of pa,.

Corollary 4.8. Assume that (PPI,(R)) is satisfied for some p > 1 such that poy, < B. Then, there exists a
constant Cy, s > 0 such that for every f € WLP(E) (or BV(E) forp=1),

£y < G (B 1 n ey + ColBVar, () 110 (27)

where r,s € [1,400] and 0 € (0,1] are related by the identity

T=o(o -y

Proof. The proof is the same as in Corollary 4.2 since (26) corresponds to the property (HZL) from [7,
Theorem 3.1]. O

We point out explicitly some particular cases whose global version corresponds to R = co.

Remark 4.9.

(i) fr=s, thenr = and (27) yields the global Sobolev inequality

B
ﬁ_pap

11z < Co( B 1 fllzogx + Co(R)Vary e (f) )
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(ii) If r =p > 1 and s = 1, then (27) yields with 6 = p(c(f;% the global Nash inequality

6
1fllzrces < ColR™ 1 f o + ColR)Varye() 115l

(iii) If s = 400, then (27) yields with § = r(ﬁf[;%)

6
11l < Cor (B llzox sy + ColBIVarp e (1)) 17155
We now turn to the case pa, > 3.

Corollary 4.10. Assume that (PPL,(R)) is satisfied for some p > 1 such that pay, > B. Then, there exists a
constant Cp, > 0 such that for every f € WYP(E) (or BV(E) forp=1), and s > 1,

1-6
Lo (X,p)’

(4
Iz (x.0) < Co (BT f Lo + Cp(R)Varp,S(f)) /1

where 6 € (0,1) is given by 0 = Wﬁ@—ﬂ)

Proof. Analogously as Corollary 4.3, this follows by applying [7, Theorem 3.2] with (26) and Theo-
rem 4.7. O

4.2.2. Trudinger-Moser
Trudinger-Moser inequalities correspond to the case pa, = (. To treat them, we observe first that
Minkowski’s inequality together with Lemma 2.6 implies

p\ /P
(3 (B Mol + ColmVar,e (o)) < B luncr s + 20 + DO Ve, )
keZ
(28)

for any p > 1, p> L and fyu == (f — ")+ A p(p — 1),

Corollary 4.11. Assume that (PPI;(R)) is satisfied and that aq = . Then, there exists a constant C > 0
such that for every f € BV (E)

11z < CR™ N f s + Cr(R) Varye(f)).

Proof. By virtue of (28), the condition (H;) from [7, Section 2] is satisfied, hence Theorem 4.7 and [7,
Theorem 3.2] yield the result. O

We finish this section with the Trudinger-Moser inequalities that one obtains for p > 1.

Corollary 4.12. Assume further that (PPI,(R)) is satisfied and that pa, = B with p > 1. Then, there exist
constants ¢, C' > 0 such that

/ (ecflpl - 1) dp < Cl|fllLrx
X

for every f € WHP(E) with I lloex,m) = RO‘P(I — C’,,(R)Varng(f)).
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Proof. In this case, (28) implies condition (H,) from [7, Section 2] for p > 1, and the result follows from
Theorem 4.7 and [7, Theorem 3.4]. O

4.3. Examples

The Gagliardo-Nirenberg and Trudinger-Moser inequalities proved in this section can be applied in large
classes of examples. In particular, we mention the following:

e Metric measure spaces with Gaussian heat kernel estimates: Theorem 3.3 provides the class of strictly

local spaces to which one can apply the results obtained in this paper, and in particular Gagliardo-
Nirenberg and Trudinger-Moser inequalities. Note that a sufficient condition for condition (17) to hold
is the volume growth condition p(B(z,7)) > Cré#, in which case one has 3 = 4.

¢ Metric measure spaces with sub-Gaussian heat kernel estimates: Theorem 3.4 yields another large set

of examples, including unbounded nested fractals. These satisfy (PPI,) for 1 < p < 2 and condition (17)
with 8 = j—g/. In the case of the unbounded Vicsek fractal, its n-fold product satisfies (PPI,) for

1 < p < 2, cf. Theorem 3.8 and condition (17) with 8 = j—;. Compact nested fractals satisfy the
corresponding localized versions.

5. Morrey’s type inequalities

The classical Morrey’s inequality implies that functions in the Sobolev space W!?(R9) are Hélder con-
tinuous (after a possible modification on a set of measure zero) for all p > d. Besides of being an important
inequality on its own, we are interested in the associated critical value

0g = inf{p > 1, WHP(£) € CO(X)},

where C°(X) denotes the space of a.e. bounded functions which admit a continuous representative, and
the connection of dg to other dimensions studied in the metric measure setting [27]. The inequality that we
prove in this section provides a general embedding of B?*(X) into the space C*(X), A > 0, of bounded
Holder functions equipped with the norm

X
[fllerx) 3= I1f oo (x,) + p-ess Ay

Those types of embedding, however with weaker regularity, were already observed by Coulhon in [17]
under volume doubling and (sub-)Gaussian heat kernel estimates. Here and throughout this section, we will
work under the following additional assumptions:

e Condition 1. The underlying space is dg-Ahlfors regular;
¢ Condition 2. The heat semigroup admits a heat kernel with Gaussian or sub-Gaussian estimates.

5.1. Metric approach

The proof of the following result is based on a generalization of the ideas in [18, Theorem 8.1]. Notice
that Theorem 5.1 holds for any pair of exponents (p, a); Morrey’s inequality will correspond to the specific

pairs (p, ap).
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Theorem 5.1. For any p > dH and R > 0, there exists C, > 0 (independent from R) such that

wa

/(@) = f)l

HU-€SS sup

—f
= Ol e 29
0<d(z,y)<R/3 d(aj,y))\ ” Hp, R (29)

for any f € Bp’a(X), where A = dwa — dTH. In particular, if ap > d—H then BP®(X) C CMX), where
A= dwa — 27

Remark 5.2. When applied to the critical exponent o = «,, the condition a,p = j—; coincides with the
critical exponent for Trudinger-Moser inequalities in the previous section.

Proof. Let first 0 < r < R/3 and consider z,y € X with d(z,y) < r. Define

1
B0 = [ urdutz)
B(z,r)

and analogously one defines f,.(y). Holder’s inequality yields

1 !/ !
@) = 0= BT \B( / . / ()=t ) i)

< (memam | [ wo-weraeue])”

B(z,r) B(y,r)

and applying the dg-Ahlfors regularity of the space we get

5@ = )P < e [ ) — wlP du) )
X B(z,3r)
< Cpredvm TE(O R/3 rdHﬂ’adW / / (O du(=") du()
X B(z,3r)

< Crpedw=di | fIb | g

The last inequality follows from the characterization of BP*(X) as a Korevaar-Schoen class space, see e.g. [2,
Theorem 2.4] for the sub-Gaussian case. Thus,

r(@) = fo()] < CYProt = £l 0 g

and an analogous bound for |fa,(x) — f-(z)|. As in the proof of [18, Theorem 8.1}, for any pair of Lebesgue
points of f we deduce

1£(2) = F(y)] < Cp(ar, )™ =5 | f]

p,o,R- (30)

By virtue of [21, Theorem 3.4.3], the set of Lebesgue points of f is dense in X and so (30) implies (29).

Finally, for any fixed r > 0 (e.g. r = R/4), Holder’s inequality yields |f,(z)| < r_dTHHfHLp which
implies

(X,u)>

[f(@)] < Crllflle ) + 1 llp.or)
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p-a.e. ¢ € X. Thus, L>(X,u) C BP*(X). O

Since the constant C), in the previous theorem is independent of R, by letting R — +o0 one deduces the
corresponding global inequality.

Corollary 5.3. For any p > dCéV—Ha, there exists Cp, > 0 such that
[f(z) — f(¥)]

[i-€ss  sup < Gl £y,
d(z,y)>0 d(!l?7 y))\ b P

for any f € BP(X), where A = dwa — dTH'

5.2. Heat semigroup approach

A drawback of Theorem 5.1 is that when applied to the pair (p, o), it would be sharper and more natural
to get on the right hand side of (29) the p-variation Var, ¢(f) instead of the Besov semi-norm |- ||,«,,,z- This
certainly requires more assumptions than just sub-Gaussian heat kernel estimates and Ahlfors regularity.
So, in addition to the latter, we will also assume in this section the weak Bakry-Emery type estimate (Geo)
from (4).

o Condition 3. There exists a constant C' > 0 so that for any f € L>®(X, ), z,y € X and all t > 0,

d(z, y) ey
tl*O&l

|Pif(z) — Pif(y) <C £l oo (x)-

We start by presenting the key estimate to obtain an almost optimal Morrey’s type inequality. Its proof
relies on ideas first developed by T. Coulhon [17] and E.M. Ouhabaz [33]. In the sequel, A will denote the
infinitesimal generator of the Dirichlet form (&, F).

d d 1
Theorem 5.4. Let p > 1 and J7- < a < G-+ (1- 5)(1 —ay). Then,

1F(@) = F)] < Cala, 1) = F [ (=A)° Fl o)
for f € dom (—=A)*, and p-a.e. x,y € X.

We decompose the proof into several lemmas; the first is a direct consequence of the heat kernel upper
bound, and the second uses the fact that (G) is equivalent to

d z, dw (1—a)
e, 2) — iy ) < C LD
tl_al"rm

for some C' > 0 and every ¢t > 0, z,y,z € X, see [2, Lemma 3.4].

Lemma 5.5. Let p > 1. There exists a constant C > 0 such that for every f € LP(X,pu), t > 0 and p a.e.
reX,

C
1Pef (@) < —= 1l oo o -

trdw
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Lemma 5.6. Let p > 1. There exists a constant C > 0 such that for every f € LP(X,pu), t > 0 and p a.e.
r,y X,

d(a,y) D)

[P f(z) — P f(y)| < C t;ji_HWJ"(l_al)(l_%)

1l (x)-

The third lemma is more involved and we provide its proof.

Lemma 5.7. Let ;il—HW <a< pcfl—HW + (1 - %)(1 — aq). There exists a constant C > 0 such that for every
feL?(X,u) and p-a.e. v,y € X,

—+o0o

/ 1Y Pof () — Pif(y)|dt < Cd(z, y) "™ =5 || fll oo (x -
0

Proof. The idea is to split the integral into two parts,

/ P f () — Puf(y)ldt = / U Pf () — Puf(y)ldt + / VP, f(x) — Puf(y)dt,
0 0 )

where 6 > 0 will be chosen later. First, by Lemma 5.5 we have

)
/ 1V Pf(x) — Pof(y)ldt < [ 1" (Pof ()] + |Puf ()it
0

a— c a—-SH
e Ay ]| fll e ) < OO P [ Fll e (x -

triw

<

S O—_

As usual, the constant C' in the previous inequalities may change from line to line. Secondly, applying
Lemma 5.6 we get

+00 +oo d(x y)dw(lfal)(lfi)
[ e ips@ - s < [ e ot
tpdw+(1_o‘1)(1_5)

é 0

+oo

d
< Cd(x,y)dW“““)(l‘%)/ 27 5 DD g
[

< Cd(x’y)dw(1—a1)(1_%)5a—,§—;’v—(1—a1)(1—%)HfHLp(Xw_

Thus, one concludes

+o0

a— it —a1)(1-2) sa— 2 —(1—a1)(1-2
[ P @) ~ Pt < €575 4 da, 000350 R g
0

and choosing § = d(x,y)" yields the result. O

We are finally ready to prove Theorem 5.4.
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Proof of Theorem 5.4. Let f € dom (—A)~%. By virtue of Lemma 5.7,

“+o0
(8)f(@) ~ (~8) 1w = C| [ 7 (Pif(e) = P (w))de
0

“+o0

d
<C / 7P f(z) — Pof(y)l dt < Cd(@,y)*™ =7 | Fllooxp-
0

Applying the inequality to (—A)®f instead of f yields the result. O

As a consequence, we deduce a version of a Morrey’s type inequality which is almost optimal. In addition
to Ahlfors regularity, sub-Gaussian heat kernel estimates and condition (G, ), it will be necessary to assume
the property (PPL,).

Theorem 5.8. Let p > 1 and p‘fi—Hw < ap < ;él—HW + (1= 3)(1 = a1). Assuming (Gso) and (PPL,), for every

p
0 < o < oy there exists a constant C' > 0 such that

d

—ZH 1—% -
£(2) = F)] < Cale, )™ = F | 11,58 Vary (/)
for every f € WHP(E) and p-a.e. x,y € X.

Proof. Let f € W1P(€). For § > 0, applying (PPI,) one has

[t -y < [ RS = e
0 Lr(X,u) O
5 %)
< Varye(f) [ 4ot 20 o [
0 )

a—Ss —S

)
+2||f||LF(X,u)T~

5
< Varp,f(f)a s
P

Finally, since

I(=A)* fllnx = C / N (Bf - ) di 7
0

LP(X,p)

the result follows from Theorem 5.4 by optimizing in §. O
5.8. Examples

As an illustration of the more concrete regularity results that can be obtained from the Morrey’s inequality
in Theorem 5.1, in this paragraph we apply that result to several settings covered by the general theory.
In addition, we propose new conjectures for fractals in the case p > 1. Recall that we define the Sobolev
continuity exponent of a Dirichlet form as

b =inf{p > 1, W P(&) c C°(X)}.
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Strictly local Dirichlet spaces. In the framework described in Section 3.1, we know from Theorem 3.3(ii)
that under the quasi Bakry-Emery condition (13), the local Besov semi-norm || f|a, p,r is equivalent to the
LP-norm of the gradient and «y, = 1/2 for any p > 2. Hence, Theorem 5.1 recovers the classical Morrey
inequality.

Theorem 5.9. Let (X, d, u) be a metric measure space that satisfies the volume doubling property and supports
a 2-Poincaré inequality. Moreover, assume that it satisfies the quasi Bakry-Emery condition (13). Then, for
any p > dy, there exists C' > 0 such that

[f(z) = fy)]

sup g = < Ol[V e -
0<d(z,y)<R d(x,y)

In particular g < dg.

Nested fractals. Dealing with strongly local Dirichlet spaces with sub-Gaussian heat kernel estimates is more
delicate due to the lack of an analogue to the quasi Bakry-Emery condition (13). Nevertheless, we would
like to discuss several conjectures for nested fractals and the Sierpinski carpet that arise in the light of those
presented in [2]. In view of recent developments, specially in the fractal setting [27, Section 19], it seems
that the exponent d¢ may be related to the so-called Ahlfors regular conformal dimension of the space. We
leave this question open for possible future research.

Theorem 5.10. For the Vicsek set, ¢ = 1. Moreover, WhP(E) ¢ C*=Y?(X) for any p > 1.

Proof. The condition for the possible ranges of p is obtained as follows. Recall from Theorem 5.1 that we
look for the infimum of the p’s such that dTH < dw . For Vicsek set, we know from Theorem 3.6 and [2,
Theorem 3.11] that we always have

dH)<17]%)+d?W (dW_dH)(Z];_m"‘dW.

Thus, the condition for p becomes dy < (dw — dm)(p — 2) + dw which is equivalent to p > 1. Theorem 5.1
also yields WP(£) ¢ CNX) with A = dway, — 4 > (dw — dp) (1 — %) =1- %, where the last equality

p
follows from the fact that on the Vicsek set dw —dyg =1. O

For a generic nested fractal X we can provide bounds for the critical exponent J¢.

Theorem 5.11. On nested fractals, 1 < dg < Qdd—H. Moreover, WP (E) ¢ CMNX) for any p > 2 with

A= (dW—dH)(l—%).

Proof. From [2, Theorem 3.11], we know that o, > % for 1 <p<2anda, > (1 — j—H)(l — Z) + dTW for

w P
p > 2. The result now follows as in the proof of Theorem 5.10. O

Since it is conjectured in [2, Section 5] that on all nested fractals one has oy, = (1 - j—g) (1 - %) + % for

every p > 1, we can actually state the following more precise conjecture.
Conjecture 5.12. On nested fractals, ¢ = 1 and for any p > 1, there exists C > 0 such that

essoup @) =S

£ d(ac y))\ < C’Varp,g(f)
x#y )
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1, : _ _ _1
for every f € WHP(E) with A = (dw — dg)(1 p).

In particular for the Sierpinski gasket, A = % (1- ]1—)) and for the Vicsek set, A = 1— %. The Sierpinski
carpet is of different nature and it has been conjectured in [2, Conjecture 5.4] that a1 = (dg — dig + 1) /dw
and o) = (1 - %)(1 —aq) + % for p > 1, where dyg is the topological Hausdorff dimension of the carpet.

After some elementary computations, this yields the following conjecture.

Conjecture 5.13. For the Sierpinski carpet, ég = 2 — % and for any p > g, there exists C' > 0
such that

ﬂ—essgs;}; W < CVar,e(f)

for every f € WHP(E) with A = %((dW —dpg +dig —1)(p—2) +dw) — dTH.

Since for the Sierpinski carpet it is known that dy = 188 — 31982 anq g,y = 1+ 182 4. ~ 2.097, this

log3 = log3 log 3?
gives dyw —dg +dig — 1 = dw — %?ngz. The critical exponents thus read
log 2 1 log 2 1
Je =1 d A=d (1——)— (2——).
£ + dw log3 — 2log?2 an W P log 3 P

Acknowledgments

The authors are grateful to the unknown referee for the comments that improved the final version of the
paper. P.A.R. was partly supported by the NSF grant DMS 1951577. F.B. was partly supported by the
NSF grant DMS 1901315. The first author thanks A. Teplyaev for his valuable input in the discussion of
the Vicsek set.

References

[1] P. Alonso Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, A. Teplyaev, Besov class via heat semigroup on
Dirichlet spaces II: BV functions and Gaussian heat kernel estimates, arXiv:1903.10078, 2019.

[2] P. Alonso Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, A. Teplyaev, Besov class via heat semigroup on
Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, arXiv:1903.10078, 2019.

[3] P. Alonso Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, A. Teplyaev, BV functions and fractional Laplacians
on Dirichlet spaces, arXiv:1910.13330, 2019.

[4] P. Alonso Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, A. Teplyaev, Besov class via heat semigroup on
Dirichlet spaces I: Sobolev type inequalities, J. Funct. Anal. 278 (11) (2020) 108459, https://doi.org/10.1016/j.jfa.2020.
108459, arXiv:1811.04267.

[5] L. Ambrosio, M. Colombo, S. Di Marino, Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of
slope, in: Variational Methods for Evolving Objects, in: Adv. Stud. Pure Math., vol. 67, Math. Soc. Japan, Tokyo, 2015,
pp. 1-58.

[6] N. Badr, Gagliardo-Nirenberg inequalities on manifolds, J. Math. Anal. Appl. 349 (2) (2009) 493-502.

[7] D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (4) (1995)
1033-1074.

[8] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen
Wissenschaften, vol. 348, Springer, Cham, 2014.

[9] M.T. Barlow, Diffusions on fractals, in: Lectures on Probability Theory and Statistics, Saint-Flour, 1995, in: Lecture Notes
in Math., vol. 1690, Springer, Berlin, 1998, pp. 1-121.

[10] F. Baudoin, M. Bonnefont, Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups, Nonlinear
Anal. 131 (2016) 48-59.

[11] F. Baudoin, N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with
transverse symmetries, J. Eur. Math. Soc. (JEMS) 19 (1) (2017) 151-219.

[12] F. Baudoin, M. Bonnefont, N. Garofalo, A sub-Riemannian curvature-dimension inequality, volume doubling property and
the Poincaré inequality, Math. Ann. 358 (3-4) (2014) 833-860.

[13] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Mathematics, vol. 14, Walter
de Gruyter & Co., Berlin, 1991.



26 P. Alonso Ruiz, F. Baudoin / J. Math. Anal. Appl. 497 (2021) 124899

[14] S.-Y.A. Chang, P.C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry 56 (2003)
1135-1150, dedicated to the memory of Jirgen K. Moser.

[15] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428-517.

[16] Z.-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, London Mathematical
Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012.

[17] T. Coulhon, Off-diagonal heat kernel lower bounds without Poincaré, J. Lond. Math. Soc. (2) 68 (3) (2003) 795-816.

[18] A. Grigor’yan, Heat kernels and function theory on metric measure spaces, in: Heat Kernels and Analysis on Manifolds,
Graphs, and Metric Spaces, Paris, 2002, in: Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 143-172.

[19] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001.

[20] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1) (1998) 1-61.

[21] J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson, Sobolev Spaces on Metric Measure Spaces, New Mathematical
Monographs, vol. 27, Cambridge University Press, Cambridge, 2015, an approach based on upper gradients.

[22] M. Hinz, M. Rockner, A. Teplyaev, Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure
spaces, Stoch. Process. Appl. 123 (12) (2013) 4373-4406.

[23] M. Hinz, D. Koch, M. Meinert, Sobolev spaces and calculus of variations on fractals, arXiv:1805.04456, 2018.

[24] J. Hu, M. Zéahle, Potential spaces on fractals, Stud. Math. 170 (3) (2005) 259-281.

[25] J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge,
2001.

[26] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Am. Math. Soc. 216 (1015) (2012),
vi4132.

[27] J. Kigami, Weighted partition of a compact metrizable space, its hyperbolicity and Ahlfors regular conformal dimension,
arXiv:1806.06558, 2018.

[28] P. Koskela, N. Shanmugalingam, J.T. Tyson, Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar
and Schoen, Potential Anal. 21 (3) (2004) 241-262.

[29] T. Lindstrgm, Brownian motion on nested fractals, Mem. Am. Math. Soc. 83 (420) (1990), iv+128.

[30] N. Marola, M. Miranda Jr., N. Shanmugalingam, Characterizations of sets of finite perimeter using heat kernels in metric
spaces, Potential Anal. 45 (4) (2016) 609-633.

[31] V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, augmented edition, Grundlehren
der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 342, Springer, Heidelberg,
2011.

[32] M. Miranda Jr., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (8) (2003) 975-1004.

[33] E.M. Ouhabaz, Heat kernels of multiplicative perturbations: Holder estimates and Gaussian lower bounds, Indiana Univ.
Math. J. 47 (4) (1998) 1481-1495.

[34] P. Pansu, Cohomologie L? et pincement, Comment. Math. Helv. 83 (2) (2008) 327-357.

[35] K. Pietruska-Paluba, Heat kernel characterisation of Besov-Lipschitz spaces on metric measure spaces, Manuscr. Math.
131 (1-2) (2010) 199-214.

[36] L. Saloff-Coste, Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Note Series, vol. 289, Cam-
bridge University Press, Cambridge, 2002.

[37] G. Savaré, Self-improvement of the Bakry-Emery condition and Wasserstein contraction of the heat flow in RCD(K, o)
metric measure spaces, Discrete Contin. Dyn. Syst. 34 (4) (2014) 1641-1661.

[38] G. Savaré, Sobolev spaces in extended metric-measure spaces, arXiv:1911.04321, 2019.

[39] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam.

16 (2) (2000) 243-279.

] R. Strichartz, Function spaces on fractals, J. Funct. Anal. 198 (1) (2003) 43-83.

] R.S. Strichartz, Fractals in the large, Can. J. Math. 50 (3) (1998) 638-657.

] R.S. Strichartz, Analysis on products of fractals, Trans. Am. Math. Soc. 357 (2) (2005) 571-615.

43] K.-T. Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic
equations, Osaka J. Math. 32 (2) (1995) 275-312.

[44] K.-T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (3)
(1996) 273-297.

4
4
4



	Gagliardo-Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces
	1 Introduction
	2 Framework, basic definitions and preliminaries
	2.1 Heat semigroup-based BV, Sobolev and Besov classes
	2.2 Lp pseudo-Poincaré inequalities
	2.3 Weak Bakry-Émery estimates

	3 Examples of heat semigroup based BV and Sobolev classes
	3.1 Metric measure spaces with Gaussian heat kernel estimates
	3.2 Fractal spaces

	4 Gagliardo-Nirenberg and Trudinger-Moser inequalities
	4.1 Global versions
	4.1.1 Gagliardo-Nirenberg
	4.1.2 Trudinger-Moser

	4.2 Localized versions
	4.2.1 Gagliardo-Nirenberg
	4.2.2 Trudinger-Moser

	4.3 Examples

	5 Morrey’s type inequalities
	5.1 Metric approach
	5.2 Heat semigroup approach
	5.3 Examples

	Acknowledgments
	References


