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Abstract

We define and study the three-dimensional windings along Brownian paths in the
quaternionic Euclidean, projective and hyperbolic spaces. In particular, the asymp-
totic laws of these windings are shown to be Gaussian for the flat and spherical
geometries while the hyperbolic winding exhibits a different long time-behavior. The
corresponding asymptotic law seems to be new and is related to the Cauchy relativistic
distribution.
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1 Introduction

In the punctured complex plane C\ {0}, consider the one-form

xdy — ydx
Q= ——"—"
x2+y?
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For every smooth path y : [0, 4+00) — C\{0} one has the representation

V(t)=ly(t)le)<p<i/ a>, t>0.
y[0,1]

It is therefore natural to call o the winding form around O since the integral of a
smooth path y along this form quantifies the angular motion of this path. The integral
of the winding form along the paths of a two-dimensional Brownian motion (B (#));>0
which is not started from 0O can be defined using Itd’s calculus and yields the Brownian
winding functional:

¢(@) = / a.
BIO,f]

This functional and several natural variations of it have been extensively studied in the
literature. In particular, the famous Spitzer’s theorem states that in distribution, when
t — —+oo the following convergence takes place in distribution

2 C
EC(I)—> 1

where C1 is a Cauchy distribution with parameter 1. We refer the reader to [10] and [6]
and references therein for more details about the Brownian winding functional. More
recently, Brownian winding functionals were studied in the paper [1] in the complex
projective space and the complex hyperbolic space.

Our goal in this paper is to introduce a natural generalization of the winding form
in homogeneous four-dimensional spaces equipped with a quaternionic structure and
study the limiting laws of the integrals of this form along the corresponding Brownian
motion paths. Unlike the complex case studied in [1], one can not make use of the theory
of analytic functions. Actually, it turns out that the quaternionic winding form is valued
in the three-dimensional Lie algebra su(2) and quantifies in a natural way the angular
motion of a path. It may be defined by taking advantage of the fact that in a four-
dimensional homogeneous and quaternionic manifold, unit spheres are canonically
isometric to the Lie group SU(2) and thus the Lie group structure of spheres allows to
consider the logarithm of a path in the sense of Chen [3]. In this respect, the winding
form integrated along a path y is equal to the Maurer—Cartan form of SU(2) integrated
along the spherical part I)};_I of this path.

The classification of 4-dimensional homogeneous and quaternionic manifolds is
well-known, and up to equivalence there are only three such spaces: the field of quater-
nions H, the quaternionic projective line HP! and the quaternionic hyperbolic space
HAH'. Our main results are the following: Let ¢(f) be the quaternionic Brownian
winding functional, then:

e On Hi, the following convergence in distribution holds:

2
lim
t—>+o00 \/logt

¢(t) = N(0,13)
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where I3 is the 3 x 3 identity matrix.
e OnHP!, when t — oo, in distribution we have

lim & = N(0, 2I3).

t—+00
e On HH', the following convergence in distribution holds:

lim ¢(t) =

t——+00

where C is a three-dimensional random variable such that

E(eC) = tanh(r(0))V *F+1-1 (1 + VIRR+1 - 1))

2 cosh(r (O))z(

and r(0) is the initial distance from the origin in HH to the starting point of the
Brownian motion. This random variable is closely related to the three-dimensional
relativistic Cauchy distribution ([2]) and its density is expressed below through
the modified Bessel function of the second kind.

The methods used to prove those limit theorems are based on the Girsanov transform
technique introduced by M. Yor in [10] which was already used in [1]. Such transforms
are much more difficult to implement in the quaternionic case since the functionals
we are dealing with are three-dimensional.

The paper is organized as follows. The second section is concerned with the winding
number in the quaternionic field. In particular, we write two proofs of the correspond-
ing limiting result. In Sect. 3, we define and determine the limiting behavior of the
winding number in the quaternionic projective line. In the last section, we deal with
the hyperbolic winding process for which we determine the limiting distribution and
give an explicit expression of its density.

2 Winding of the Quaternionic Brownian Motion

2.1 Quaternionic Winding Form

Let H be the quaternionic field
H={g=t+xI+yJ+zK,(t,x,y,2) € R,

where I, J, K € SU(2) are given by

(6% 7= (%) x=(70)

Then, the quaternionic norm is given by |¢|*> = > + x> + y*> + z% and the set of
unit quaternions is identified with SU(2). Now, consider y : [0, +00) — H\{0} is a
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C!-path and write its polar decomposition:
(@) =ly®|6@), =0,

with ®(#) € SU(2). Then,

Definition 2.1 The winding path (0(¢));>0 € su(2) along y is defined by:

t
90):/’®@rm@@y
0

The quaternionic winding form is the su(2)-valued one-form 7 such that

mn:/ 0.
y[0.1]

Equivalently,
0(t) = / w,
0[0,7]
where w is the Maurer—Cartan form in su(2).

In order to study the stochastic winding in H, we need to compute 7 in real coordinates

(t,x,y,z). To this end, we write
01 6

+i +i

0 = nrm , b= IERRE} V3,
ly| ly]

Since O is unitary and has determinant one, then

i (T
© _<®® »

9_191 + 92@ Eéz — 92ﬁ

where

Y = (¥i)i=0-

so that
O le = | TR TR
6201 — 0162 620, + 0161
After straightforward computations, we end up with the following expression of
n=mnl+mnl+nk:
tdx — xdt 4+ zdy — ydz

g1
tdy — ydt + xdz — zdx

lq1?

nm =

@ Springer



Journal of Theoretical Probability

tdz — zdt 4 ydx — xdy
" VE '

Note that n may be more concisely written in quaternionic coordinates as:

1 (gdg —dqq [
n=s\——=—)=—3lm(gdg),
2 ( lq|* lq1?

where
g=t—xI—yJ—zK, dg=dt+dxI +dyJ +dzK

are, respectively, the quaternionic conjugate and differential.

2.2 Asymptotic Winding of the Quaternionic Brownian Motion

From the previous paragraph, we are led to the following definition:

Definition 2.2 The winding number of a quaternionic Brownian motion W = Wy +
Wil + WaJ + W3K, not started from 0, is defined by the Stratonovich stochastic line

integral:
() :=f n, t=0.
W(0,1]

The study of ¢ is based on the following lemma which is a well-known consequence
of the skew-product decomposition of Euclidean Brownian motions (see [5]).

Lemma 2.3 Let W = Wy + Wil + WaoJ + W3 K be a quaternionic Brownian motion
not started from 0. There exists a Bessel process (R(t));>0 of dimension four (or
equivalently index one) and a SU(2)-valued Brownian motion (©(t));>o independent
from the process (R(t)):>0 such that

W(t) = R(1)O(A),

A '_‘/’ ds
T Ry

As a consequence of the previous lemma, one readily has:

where

t At
g(r):/ @(AS)*‘od(a(As):/ O@s)" 0 dO(s).
0 0
Since
t
B(1) :=/ O@s) ' odO(s), >0,
0
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is a three-dimensional Euclidean Brownian motion, we deduce that the quaternionic
winding process ¢ has the same distribution as:

(B'(A)), B* (A1), B> (AD)r=0.
As a result, the characteristic function of the winding process at time 7 is given by:
E[e™4 0] = Ey[e "4/, p = W >0,

for any A € R3. But according to the Hartman—Watson law (see [10]), one has

I =s(rp/)
Eole” ™42 R(t) = ] = —;Tl(kr‘;/t)

where [, stands for the modified Bessel function. Appealing further to the semigroup
density of the Bessel process ([6]), it follows that:

—p?/@t) oo
7% ¢ rPN —r2j@n 2
E,[e*¢®0] = " /0 I TW( t )e /@02, 2.1)

Using this integral representation, we are now able to determine the limiting behavior
of £(t) ast — oo.

Theorem 2.4 The following convergence in distribution holds:

li 2 1) =N(0,1I3)

where 13 is the 3 x 3 identity matrix.

Proof We shall give two proofs of this limit theorem. The first proof relies on the
explicit representation (2.1) and the second one on Girsanov’s theorem. The second
proof is easier to generalize to the curved geometric settings studied afterward.
Proof 1 Performing the variable change r — 4/ in the integral (2.1), we get

P2/ 20) rp

o
ire()y _ —r2/2.2
Eyle ]_—p /0 ﬁl\/W(J?)e redr.

Expanding further the Bessel function:

’

rp 1 rp 2j+A/ 1422
I ) = e
VIR <ﬁ) 2 TG+ 14T+ 22! (ﬁ)

Jj=0
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we infer that the large-time behavior of {(¢) is governed by the lowest-order term.
Finally, rescaling A by +/Tog7/+/2, then

fim ef(log(t)/Z)(«/l+2|M2/log(t)fl) _ 2

t—+00

hence the result follows.

Proof 2 We can also derive the limiting behavior of ¢ by using Girsanov’s theorem
as well. To proceed, recall the stochastic differential equation satisfied by the Bessel
process R:

dR(1) = %(I)dt +d&, RO)=p>0,

where (§;);>0 is a one-dimensional standard Brownian motion. Then, letting u© =
VA2 + 1 — 1, we can consider the martingale

w t 1 MZ t 1
D™ = ——dé — — | ——ds .
voTeR (“ /o R 2 /0 R(s)? S)

By It6’s formula, we have

R\ 1 to
o= (52) e (- (3740) [ o)

hence Girsanov’s theorem shows that (R(¢));>0 is a Bessel process of dimension 443

under the probability measure P with Radon-Nikodym density D,(“ ) and

ire(t)y 7MA, _ 7R nlD)
b= () =0 )

Setting

V2 2|A2
A= , =M+ 1-1= +1-1,
t Togt Mt 2] log 1

it follows that
- ~pLa - o (1 —AR/2
lim E, (e 0™ ) = lim (o) Ef | ——— ) =e 2,
t—00 t—00 (R(t))
where the last equality follows from the scaling property of (R(?));>0.
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3 Winding of the Brownian Motion on HP'
3.1 Winding Form on HP'

As previously, H is the quaternionic field and 7, J, K € SU(2) are the Pauli matrices.
Define the quaternionic sphere S’ by:

S =g = (q1.92) € B, Jq| = 1}.
Then, SU(2) isometrically acts on S’ by left multiplication:
q - (q1,92) = (qq1.992)
and the quotient space S7/SU(2) is the quaternionic projective line HP'. The quater-
nionic Kihler metric on HP! is such that the projection map S’ — HP! is a
Riemannian submersion with totally geodesic fibers isometric to SU(2). Note that
the corresponding fibration

SUQ2) —» S’ — HP!

is called the quaternionic Hopf fibration. One can parametrize HP' using the quater-
nionic inhomogeneous coordinate:

w=q;'q1, ¢=1(q1,q) €S
with the convention that 0~!¢; = oo. This allows to identify HP' with the one-
point compactification H U {oo}. This identification will be in force in the sequel. In
inhomogeneous coordinates, the Riemannian distance from 0 is given by the formula:

r = arctan |w|.

If y : [0,400) — HPN\{0, 0o} is a C'-path, one similarly consider its polar
decomposition:

Y (@) =ly®)|6)

with ®(#) € SU(2) and define the winding path (6(¢));>0 in su(2) as
t
0(t) = / O(s) 'dO(s).
0

The quaternionic winding form on HP! is then the s1(2)-valued one-form 7 such
that:

P .
90):/ n=l/ V(s)dy (s) dZ)/(S)V(S)7 ‘0.
y[0.1] 2 Jo [y ()]
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3.2 Asymptotic Winding of the Brownian Motion on HP'

The generator of the Brownian motion (w(?));>0 on HP! is half of the Laplacian
Ay p1 which is given by (see [7], page 77):

92 9
Appr = 4(1 + p?)?R —8(1 + pHR — ),
HP! (I+p7) e(awaw) (I+ p7)Re wo—

where p := |w| = tan(r). In real coordinates, we have w =t +xI + yJ + zK and

a 1/0 d d ad
—==|\—--—-—1-—J-—K.
ow 2 \ot Ox ay 0z

Thus,
A 4 2+82+82+82 asec?r (1L gl 20
=Sec r | — —= — — —4a8ec™r — X — —_— — 1.
HP! a2 T ax2 9y T a2 o Yax V% Tz

Equivalently, the Brownian motion (w());>0 in H P! solves the stochastic differential
equation:
dw(r) = sec r()dW (1) — 2sec? r(t)w(t)ds

where tan 7 () = p(t) = |w(¢)| and W is a standard Brownian motion in H. Thus, we
can write the winding process as

LT w(s)dW(s) — dW()w(s)
(0 = 5/0 sin? r(s) '

As in the flat setting, the study of ¢ makes use of the following skew-product decom-
position.

Lemma 3.1 Let w be a Brownian motion on HLP' not started from 0 or oc. There exists
a Jacobi process (r(t));>o with the generator

L 4 6cot2rl
2\ 9r2 "or

and a Brownian motion ©(t) on SU(2) independent from the process (r(t));>o such
that

w(t) =tanr(t) O(A;),

! 4ds
At ::/ A
o sin“(2r(s))

where
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Proof This follows from [5] and the fact that the operator (1/2) Ay p1 may be decom-
posed in polar coordinates as:

L2 ootz b A 3.1)
| — cot 2r — . .
2 \ar2 ar | sin2or V@

As a consequence, we obtain the equality in distribution:

D ! 4ds
@25 (], ) o

where f is a 3-dimensional standard Brownian motion which is independent from the
process r. The analogue of Theorem 2.4 for the quaternionic projective line is:

Theorem 3.2 When t — 0o, we have

# — N(0, 213),

in distribution.

Proof Let A = (A1, A2, A3) € R3 and use (3.2) to write:

142 ds
E (eix.;(t)) —-F (e_z Jo Sinfz,m> — 2R (e—zmzfo’ cot? 2r(s)ds) .

From (3.1), the process r is the (unique) solution of the stochastic differential equation:

t

r(t) =r(0) +3/ cot2r(s)ds + k;, 1r(0) € (0,7/2),
0

where « is a standard Brownian motion. In order to apply Girsanov’s Theorem, we
introduce the following local martingale:

t t
D = exp <2u / cot 2r(s)dy (s) — 2> / cot? 2r(s)ds> , 1> 0.
0 0

From It6’s formula, we readily derive:

in2r() \* !
pi = gt (S2XONT (202 + 20 / cot? 2r(s)ds ) ,
sin 2r (0) 0

which shows in particular that D,(“ )isa martingale. Now, consider the new probability
measure P*):

PY) = DI'Pz, = (sin2r (0) e (sin2r (1))e 2040 [y o wObsp 1o
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where (F;);>0 is the natural filtration of . If we choose u = /|A|2 + 1 — 1, then we
get:

Dt — (o i, =204t () !
E(e )_(sm2r(0)) ¢ E ((sinzr(t))u>'

Moreover, Girsanov’s theorem implies that the process

'
E() :=«k(t) — ZM/ cot 2r(s)ds
0
is a Brownian motion under P*. Consequently,
dr(t) = d&@) + 2u + 3) cot 2r(¢)dz,

so that under the probability P#, r is a Jacobi diffusion with generator:

1 9? 3 3 d
(41, u+1) _
LTI —587+((M+§>Cotr—<M+§>tanr)8—r.

Writing,

s (B JEE [B 1
E(e’”%)) = (sin 2 (0)) e, 2< A l)t]E( e+ 1> ((sinzr(z))'*m>
we end up with the limit

L
lim E (e V) = lim e 2WhPre=0 _ —AP
1—00 1= 00 ’

as required.

Remark 3.3 Using the semigroup density of the Jacobi process with equal parameters
(e.g., the appendix of [1]), we can derive a series representation of the characteristic
function of ¢ in the basis of ultraspherical polynomials (see [4] for the details of
computations relative to the complex projective line).

4 Winding of the Brownian Motion on HH'

4.1 Winding Form on HH'

The quaternionic anti-de Sitter space AdS’ (H) is defined as the quaternionic pseudo-
hyperboloid:

AdS"(H) = {g = (q1, q2) € H?, ||ql} = —1},

@ Springer
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where

Igll?; == lg11* — Iq21*.

The group SU(2), viewed as the set of unit quaternions, acts isometrically on
AdS’ (H) by left multiplication and the quotient space

AdS’ (H)/SU(2)

is the quaternionic hyperbolic space HH! endowed with its canonical quaternionic
Kihler metric. One can parametrize HH ! using the quaternionic inhomogeneous coor-
dinate

w=gq;'q1, q=(qq) e AdS’(H).

This allows the identification HH ! with the unit open ball in H and will be in force in
the sequel. In inhomogeneous coordinates, the Riemannian distance r from 0 is given
by the formula

tanhr = |w|.

If y : [0, 400) — HH'\{0}is a C! path, as before, one can consider its polar
decomposition

Y (@) =ly®)|6)

with ©(¢) € SU(2) and define the winding path 0(¢) € su(2) as
t
6(1) = / O(s)"1de(s).
0

The quaternionic winding form on HH' is then the su(2)-valued one-form 7 such
that

P .
9(t)=/ n=l/ Y (s)dy (s) dz)/(S)V(S)’ L0,
y10.1] 2 Jo ly (s)]

4.2 Asymptotic Winding of the Brownian Motion on HH'

In inhomogeneous coordinates the Laplacian on HH ! is given by (see [7] page 48)

Ag = 4(1 — p*)’Re

0
8(1 — p>)Rew —.
8Ew+( p)ewaw
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In real coordinates we have:

A h 62+82+82+82 pasech?r (10 4x 1y 0 42
= SecC r{ —= — — — sec r _— X — _— — .
HH' a2 T ax2 T 9y2 T a2 ar T ax Yoy T %z

Let w(s) = (¢(s), x(s), y(s), z(s)) be the Brownian motion process generated by
%AHHI , then it solves the SDE

dw(r) = sech? r(1)dW (1) + 2 sec’ (t)w(1)ds 4.1
where tanhr(t) = p(t) = |w(t)|2 and W is again a standard quaternionic Brownian
motion.

The winding process of a Brownian motion on HH ' is then given by

! r = e
¢@) =Im[ w™ (s)dw(s) = l/ w(s)dw(s) dzw(S)w(s)’
0 2Jo lw(s)]

or equivalently,

© = 1/1 w(s)dW (s) — dW (s)w(s)
“O=3 sinh? 7 (s) '

As before, to study ¢, we shall make use of a skew-product decomposition.

Lemma4.1 Let w be a Brownian motion on HH' not started from 0. There exists a
hyperbolic Jacobi process (r(t));>o with generator

L + 6¢coth?2 0
2\ ar? "or

and a Brownian motion © (t) on SU(2) independent from the process (r(t));>0 such
that

w(t) =tanhr(r) O4,,

where . 4
At Z=/ 2—5
o sinh”(2r(s))

Proof This follows from [5] and the fact that the operator (1/2) A1 may be decom-
posed in polar coordinates as:

L | cohard 4+ — % A 42)
— ey CO! r— . .
2 \or2 ar | sinh22r U@
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As a consequence, we obtain the equality in distribution:

D ¢ 4ds
(o=r </0 sinh2(2r(s)>> ’ @3

where f is a 3-dimensional standard Brownian motion which is independent from the
process r.

Unlike the HP! case, the Brownian motion on HH lis transient and as shown below,
the corresponding winding process will have a limit in distribution when t — —+o0.
Moreover, the computations of the limiting distribution are more involved compared
to the flat and the spherical settings.

Theorem 4.2 For any A\ € R3,

. irc(t)y [A2+1-1
z—lyfoo Ele ] = tanh(r(0)) ( 2cosh( )

(VIR 1 - 1))

Proof Let ) € R3. We have

E (eik-{(t)> —F < =20 fp smh22r(r)>

The process r solves the stochastic differential equation:

t
r(t) = r(0) + 3] coth(2r(s))ds + ¥ (1),
0

where v is a standard one-dimensional Brownian motion. In order to compute the
characteristic function of ¢, we shall look for an exponential local martingale of the
form

t t
D[(U’K) 1= exp (/ [vcoth(r(s))+« tanh(r(s))]dy (s)— % / [v coth(r(s))+« tanh(r(s))]zds)
0 0
To this end, we use 1td’s formula to derive:
sinh(r(#)) \" ! ! 2
<m) = exp (V/O coth(r(s))dy(s) + v/o coth”(r(s))ds + 2vt>, r0) > 0,

(M) = exp (K/ tanh(r(s))d)/(s)+lc/ tanhz(r(s))ds+2"f)*
0 0

cosh(r(0))

so that
DK = 2tetue/2 (SIRC(D)) " (cosh(r(n)\*
! o sinh(r (0)) cosh(r(0))

2 2 t 2 2 t
exp(— Y er ”/0 coth?(r(s))ds — er "/0 tanh(r(s))zds>.
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Writing

1 _ [coth(r(s)) — tanh(r(5))]*  coth?(r(s)) + tanh?(r(s)) — 2

sinh? 2r(s) 4 4 ’

and choosing

=VI+ A2 —1=—k—2,

then

D) . (tanh(r(t))) 1221 (cosh(r(O))) e—zm fa mh22r(r)
! tanh(r (0)) cosh(r (1))

(v,K) - (vk) -

Since v > 0 then D; "’ is a bounded local martingale. So D,
we can define the probablhty measure

is a martingale and

(v,k) . (v,k)
[P’/]_- =D, PF,

under which the process (r(¢));>¢ solves the SDE

t
r(t) = r(0) +/ [(% + v) cothr(s) — (% + v) tanh(r(s))] ds +y (1)
0

for some P")-Brownian motion . This is a hyperbolic Jacobi process of parameters
(I+v,—1—v)and

E( —202 fg smhh,m) o~ H R0 —1-2) (tanh(r(t))> 1+A]2 <cosh(r(t))>
tanh(r(0)) cosh(r(0))

o (tanh(r(0))) AP E®V—v-2)
coshz(r(O))

1 —v/2 5
[(1 — m) cosh (r(t))) .

Using the generalized binomial Theorem, we get further:

E( =202 fO smh22)(s))

- (tanh(r (@) V! <v/2>kE<v,_u—Z>< : )

cosh’(r(0)) 2 k! cosh™ 2 (r(1))
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Consequently, the long-time behavior of ¢ (¢) is given by the lowest-order term k = 0
in the series above:

_ 2 oo ds
lim Efe 2 Jo sinh2 2r (s)
t—+00

1+]A12-1
_ (tanhi:)(s?;)()r(o» Jim eTVEC T P eosh* ()] (44)

To this end, we need the following lemma:

Lemma 4.3 Forany «, B, consider the hyperbolic Jacobi process solution of

dry g(t) = (acothry g(t) + Btanhry g(1))dt +dy (), rep(0) =r(0) > 0.

Then
Proof Let
f(r) = (cosh(r))*.
We have
Lf =2(1+a+p)f — (1+2B)

where

L= 1& + (acothr + ,Btanhr)i.

2dr? dr

Thus, denoting

$(1) =E ((cosh ra,ﬂ(tf))
and using It6’s formula, we obtain the following differential equation
¢'(1) =201 +a+ o) — (1+2p),

which proves the Lemma.

Specializing the lemmato o =3/2 4+ v, 8 = —1/2 — v, then

E® " "2[cosh?(r(1))] = Jim e MEY V"D [cosh?(r(1))] = cosh?(r(0)) + g
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Plugging this expression into (4.4), we are done.
We close the paper with an explicit expression of the density of {s.. To this end,
we write

tanh(r(0))

)2(\/|,\|2 1—1)>=tanh(r(0)) BREHI-T

war(m tanh(r (0))V 1M +1-1

A2+
( + ZCosh(r(O)

and recall from [2] the characteristic function of the three-dimensional relativistic
Cauchy random variable:

e—y(«/|x\2+1—1>=ﬁ/ Jirx Kol |x|2+y)

272 T

where K> is the modified Bessel function of the second kind. After straightforward
computations, we end up with:

Corollary 4.4 Let r(0) > O be the hyperbolic distance from the origin of a Brownian
motion in HH'. Then, the distribution of s is absolutely continuous with respect to
Lebesgue measure in R® and its density is given by:

— In(tanh(r (0))) Kz(\/|x|2 + lnz(tanh(r(O))))
272 tanh(r (0)) |x|2 4 In?(tanh(r (0)))
+tanh(r(0)) —In(tanh()) K2(v/|x|? + In?(tanh(x)))
2 “1 272 tanh(u) lx|2 + In2(tanh(x))

(r(0)).
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