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Abstract

We define and study the three-dimensional windings along Brownian paths in the

quaternionic Euclidean, projective and hyperbolic spaces. In particular, the asymp-

totic laws of these windings are shown to be Gaussian for the flat and spherical

geometries while the hyperbolic winding exhibits a different long time-behavior. The

corresponding asymptotic law seems to be new and is related to the Cauchy relativistic

distribution.

Keywords Stochastic winding · Large time asymptotic · Quaternionic projective

space · Quaternionic hyperbolic space · Cauchy relativistic distribution
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1 Introduction

In the punctured complex plane C\{0}, consider the one-form

α =
xdy − ydx

x2 + y2
.
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For every smooth path γ : [0,+∞) → C\{0} one has the representation

γ (t) = |γ (t)| exp

(

i

∫

γ [0,t]
α

)

, t ≥ 0.

It is therefore natural to call α the winding form around 0 since the integral of a

smooth path γ along this form quantifies the angular motion of this path. The integral

of the winding form along the paths of a two-dimensional Brownian motion (B(t))t≥0

which is not started from 0 can be defined using Itô’s calculus and yields the Brownian

winding functional:

ζ(t) =
∫

B[0,t]
α.

This functional and several natural variations of it have been extensively studied in the

literature. In particular, the famous Spitzer’s theorem states that in distribution, when

t → +∞ the following convergence takes place in distribution

2

ln t
ζ(t) → C1

where C1 is a Cauchy distribution with parameter 1. We refer the reader to [10] and [6]

and references therein for more details about the Brownian winding functional. More

recently, Brownian winding functionals were studied in the paper [1] in the complex

projective space and the complex hyperbolic space.

Our goal in this paper is to introduce a natural generalization of the winding form

in homogeneous four-dimensional spaces equipped with a quaternionic structure and

study the limiting laws of the integrals of this form along the corresponding Brownian

motion paths. Unlike the complex case studied in [1], one can not make use of the theory

of analytic functions. Actually, it turns out that the quaternionic winding form is valued

in the three-dimensional Lie algebra su(2) and quantifies in a natural way the angular

motion of a path. It may be defined by taking advantage of the fact that in a four-

dimensional homogeneous and quaternionic manifold, unit spheres are canonically

isometric to the Lie group SU(2) and thus the Lie group structure of spheres allows to

consider the logarithm of a path in the sense of Chen [3]. In this respect, the winding

form integrated along a path γ is equal to the Maurer–Cartan form of SU(2) integrated

along the spherical part
γ
|γ | of this path.

The classification of 4-dimensional homogeneous and quaternionic manifolds is

well-known, and up to equivalence there are only three such spaces: the field of quater-

nions H, the quaternionic projective line HP1 and the quaternionic hyperbolic space

HH1. Our main results are the following: Let ζ(t) be the quaternionic Brownian

winding functional, then:

• On H, the following convergence in distribution holds:

lim
t→+∞

2
√

log t
ζ(t) = N (0, I3)
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where I3 is the 3 × 3 identity matrix.

• On HP1, when t → ∞, in distribution we have

lim
t→+∞

ζ(t)

t
= N (0, 2I3).

• On HH1, the following convergence in distribution holds:

lim
t→+∞

ζ(t) = C

where C is a three-dimensional random variable such that

E(eiλ·C ) = tanh(r(0))

√
|λ|2+1−1

(

1 +
1

2 cosh(r(0))2
(
√

|λ|2 + 1 − 1)

)

and r(0) is the initial distance from the origin in HH1 to the starting point of the

Brownian motion. This random variable is closely related to the three-dimensional

relativistic Cauchy distribution ([2]) and its density is expressed below through

the modified Bessel function of the second kind.

The methods used to prove those limit theorems are based on the Girsanov transform

technique introduced by M. Yor in [10] which was already used in [1]. Such transforms

are much more difficult to implement in the quaternionic case since the functionals

we are dealing with are three-dimensional.

The paper is organized as follows. The second section is concerned with the winding

number in the quaternionic field. In particular, we write two proofs of the correspond-

ing limiting result. In Sect. 3, we define and determine the limiting behavior of the

winding number in the quaternionic projective line. In the last section, we deal with

the hyperbolic winding process for which we determine the limiting distribution and

give an explicit expression of its density.

2 Winding of the Quaternionic BrownianMotion

2.1 QuaternionicWinding Form

Let H be the quaternionic field

H = {q = t + x I + y J + zK , (t, x, y, z) ∈ R
4},

where I , J , K ∈ SU(2) are given by

I =
(

i 0

0 −i

)

, J =
(

0 1

−1 0

)

, K =
(

0 i

i 0

)

.

Then, the quaternionic norm is given by |q|2 = t2 + x2 + y2 + z2 and the set of

unit quaternions is identified with SU(2). Now, consider γ : [0,+∞) → H\{0} is a
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C1-path and write its polar decomposition:

γ (t) = |γ (t)|�(t), t ≥ 0,

with �(t) ∈ SU(2). Then,

Definition 2.1 The winding path (θ(t))t≥0 ∈ su(2) along γ is defined by:

θ(t) =
∫ t

0

�(s)−1d�(s).

The quaternionic winding form is the su(2)-valued one-form η such that

θ(t) =
∫

γ [0,t]
η.

Equivalently,

θ(t) =
∫

�[0,t]
ω,

where ω is the Maurer–Cartan form in su(2).

In order to study the stochastic winding in H, we need to compute η in real coordinates

(t, x, y, z). To this end, we write

� =
(

θ1 θ2

−θ2 θ1

)

,

where

θ1 =
γ0 + iγ1

|γ |
, θ2 =

γ2 + iγ3

|γ |
, γ = (γi )i=0.

Since � is unitary and has determinant one, then

�−1 =
(

θ1 −θ2

θ2 θ1

)

,

so that

�−1
·
� =

⎛

⎝

θ1

·
θ1 + θ2

·
θ2 θ1

·
θ2 − θ2

·
θ1

θ2

·
θ1 − θ1

·
θ2 θ2

·
θ2 + θ1

·
θ1

⎞

⎠ .

After straightforward computations, we end up with the following expression of

η = η1 I + η2 J + η3 K :

η1 =
tdx − xdt + zdy − ydz

|q|2

η2 =
tdy − ydt + xdz − zdx

|q|2
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η3 =
tdz − zdt + ydx − xdy

|q|2
.

Note that η may be more concisely written in quaternionic coordinates as:

η =
1

2

(

qdq − dqq

|q|2

)

=
1

|q|2
Im(qdq),

where

q = t − x I − y J − zK , dq = dt + dx I + dy J + dzK

are, respectively, the quaternionic conjugate and differential.

2.2 AsymptoticWinding of the Quaternionic BrownianMotion

From the previous paragraph, we are led to the following definition:

Definition 2.2 The winding number of a quaternionic Brownian motion W = W0 +
W1 I + W2 J + W3 K , not started from 0, is defined by the Stratonovich stochastic line

integral:

ζ(t) :=
∫

W (0,t]
η, t ≥ 0.

The study of ζ is based on the following lemma which is a well-known consequence

of the skew-product decomposition of Euclidean Brownian motions (see [5]).

Lemma 2.3 Let W = W0 + W1 I + W2 J + W3 K be a quaternionic Brownian motion

not started from 0. There exists a Bessel process (R(t))t≥0 of dimension four (or

equivalently index one) and a SU(2)-valued Brownian motion (�(t))t≥0 independent

from the process (R(t))t≥0 such that

W (t) = R(t)�(At ),

where

At :=
∫ t

0

ds

R2(s)
.

As a consequence of the previous lemma, one readily has:

ζ(t) =
∫ t

0

�(As)
−1 ◦ d�(As) =

∫ At

0

�(s)−1 ◦ d�(s).

Since

B(t) :=
∫ t

0

�(s)−1 ◦ d�(s), t ≥ 0,
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is a three-dimensional Euclidean Brownian motion, we deduce that the quaternionic

winding process ζ has the same distribution as:

(B1(At ), B2(At ), B3(At ))t≥0.

As a result, the characteristic function of the winding process at time t is given by:

Eρ[eiλ·ζ(t)] = Eρ[e−|λ|2 At /2], ρ := |W0| > 0,

for any λ ∈ R
3. But according to the Hartman–Watson law (see [10]), one has

Eρ[e−|λ|2 At /2|R(t) = r ] =
I√

1+|λ|2(rρ/t)

I1(rρ/t)
,

where Iν stands for the modified Bessel function. Appealing further to the semigroup

density of the Bessel process ([6]), it follows that:

Eρ[eiλ·ζ(t)] =
e−ρ2/(2t)

tρ

∫ ∞

0

I√
1+|λ|2

(rρ

t

)

e−r2/(2t)r2dr . (2.1)

Using this integral representation, we are now able to determine the limiting behavior

of ζ(t) as t → ∞.

Theorem 2.4 The following convergence in distribution holds:

lim
t→+∞

2
√

log t
ζ(t) = N (0, I3)

where I3 is the 3 × 3 identity matrix.

Proof We shall give two proofs of this limit theorem. The first proof relies on the

explicit representation (2.1) and the second one on Girsanov’s theorem. The second

proof is easier to generalize to the curved geometric settings studied afterward.

Proof 1 Performing the variable change r �→
√

r in the integral (2.1), we get

Eρ[eiλ·ζ(t)] =
e−ρ2/(2t)

ρ

∫ ∞

0

√
t I√

1+|λ|2

(

rρ
√

t

)

e−r2/2r2dr .

Expanding further the Bessel function:

I√
1+|λ|2

(

rρ
√

t

)

=
∑

j≥0

1

�( j + 1 +
√

1 + |λ|2) j !

(

rρ
√

t

)2 j+
√

1+|λ|2

,
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we infer that the large-time behavior of ζ(t) is governed by the lowest-order term.

Finally, rescaling λ by
√

log t/
√

2, then

lim
t→+∞

e
−(log(t)/2)

(√
1+2|λ|2/ log(t)−1

)

= e−|λ|2/2

hence the result follows.

Proof 2 We can also derive the limiting behavior of ζ by using Girsanov’s theorem

as well. To proceed, recall the stochastic differential equation satisfied by the Bessel

process R:

dR(t) =
3

2R(t)
dt + dξt , R(0) = ρ > 0,

where (ξt )t≥0 is a one-dimensional standard Brownian motion. Then, letting μ =
√

|λ|2 + 1 − 1, we can consider the martingale

D
(μ)
t = exp

(

μ

∫ t

0

1

R(s)
dξs −

μ2

2

∫ t

0

1

R(s)2
ds

)

.

By Itô’s formula, we have

D
(μ)
t =

(

R(t)

ρ

)μ

exp

(

−
(

1

2
μ2 + μ

) ∫ t

0

1

R(s)2
ds

)

hence Girsanov’s theorem shows that (R(t))t≥0 is a Bessel process of dimension 4μ+3

under the probability measure P
(μ) with Radon–Nikodym density D

(μ)
t and

Eρ[eiλ·ζ(t)] = Eρ

(

e− |λ|2
2 At

)

= (ρ)μ E
(μ)
ρ

(

1

(R(t))μ

)

.

Setting

λt :=
√

2λ
√

log t
, μt :=

√

|λt |2 + 1 − 1 =

√

2|λ|2
log t

+ 1 − 1,

it follows that

lim
t→∞

Eρ

(

e
− |λ|2

log t
At

)

= lim
t→∞

(ρ)μt E
(μt )
ρ

(

1

(R(t))μt

)

= e−|λ|2/2,

where the last equality follows from the scaling property of (R(t))t≥0.
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3 Winding of the BrownianMotion onHHHP
1

3.1 Winding Form onHHHP
1

As previously, H is the quaternionic field and I , J , K ∈ SU(2) are the Pauli matrices.

Define the quaternionic sphere S
7 by:

S
7 = {q = (q1, q2) ∈ H

2, |q| = 1}.

Then, SU(2) isometrically acts on S
7 by left multiplication:

q · (q1, q2) = (qq1, qq2)

and the quotient space S
7/SU(2) is the quaternionic projective line HP1. The quater-

nionic Kähler metric on HP1 is such that the projection map S
7 → HP1 is a

Riemannian submersion with totally geodesic fibers isometric to SU(2). Note that

the corresponding fibration

SU(2) → S
7 → HP1

is called the quaternionic Hopf fibration. One can parametrize HP1 using the quater-

nionic inhomogeneous coordinate:

w = q−1
2 q1, q = (q1, q2) ∈ S

7

with the convention that 0−1q1 = ∞. This allows to identify HP1 with the one-

point compactification H ∪ {∞}. This identification will be in force in the sequel. In

inhomogeneous coordinates, the Riemannian distance from 0 is given by the formula:

r = arctan |w|.

If γ : [0,+∞) → HP1\{0,∞} is a C1-path, one similarly consider its polar

decomposition:

γ (t) = |γ (t)|�(t)

with �(t) ∈ SU(2) and define the winding path (θ(t))t≥0 in su(2) as

θ(t) =
∫ t

0

�(s)−1d�(s).

The quaternionic winding form on HP1 is then the su(2)-valued one-form η such

that:

θ(t) =
∫

γ [0,t]
η =

1

2

∫ t

0

γ (s)dγ (s) − dγ (s)γ (s)

|γ (s)|2
, t ≥ 0.
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3.2 AsymptoticWinding of the BrownianMotion onHHHP
1

The generator of the Brownian motion (w(t))t≥0 on HP1 is half of the Laplacian

�HP1 which is given by (see [7], page 77):

�HP1 = 4(1 + ρ2)2Re

(

∂2

∂w∂w

)

− 8(1 + ρ2)Re

(

w
∂

∂w

)

,

where ρ := |w| = tan(r). In real coordinates, we have w = t + x I + y J + zK and

∂

∂w
:=

1

2

(

∂

∂t
−

∂

∂x
I −

∂

∂ y
J −

∂

∂z
K

)

.

Thus,

�
HP1 = sec4 r

(

∂2

∂t2
+

∂2

∂x2
+

∂2

∂ y2
+

∂2

∂z2

)

− 4 sec2 r

(

t
∂

∂t
+ x

∂

∂x
+ y

∂

∂ y
+ z

∂

∂z

)

.

Equivalently, the Brownian motion (w(t))t≥0 in HP1 solves the stochastic differential

equation:

dw(t) = sec2 r(t)dW (t) − 2 sec2 r(t)w(t)dt

where tan r(t) = ρ(t) = |w(t)| and W is a standard Brownian motion in H. Thus, we

can write the winding process as

ζ(t) =
1

2

∫ t

0

w(s)dW (s) − dW (s)w(s)

sin2 r(s)
.

As in the flat setting, the study of ζ makes use of the following skew-product decom-

position.

Lemma 3.1 Let w be a Brownian motion on HP1 not started from 0 or ∞. There exists

a Jacobi process (r(t))t≥0 with the generator

1

2

(

∂2

∂r2
+ 6 cot 2r

∂

∂r

)

and a Brownian motion �(t) on SU(2) independent from the process (r(t))t≥0 such

that

w(t) = tan r(t)�(At ),

where

At :=
∫ t

0

4ds

sin2(2r(s))
.
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Proof This follows from [5] and the fact that the operator (1/2)�HP1 may be decom-

posed in polar coordinates as:

1

2

(

∂2

∂r2
+ 6 cot 2r

∂

∂r
+

4

sin2 2r
�SU(2)

)

. (3.1)

As a consequence, we obtain the equality in distribution:

ζ(t)
D= β

(∫ t

0

4ds

sin2(2r(s))

)

, (3.2)

where β is a 3-dimensional standard Brownian motion which is independent from the

process r . The analogue of Theorem 2.4 for the quaternionic projective line is:

Theorem 3.2 When t → ∞, we have

ζ(t)

t
→ N (0, 2I3),

in distribution.

Proof Let λ = (λ1, λ2, λ3) ∈ R
3 and use (3.2) to write:

E

(

eiλ·ζ(t)
)

= E

(

e
− |λ|2

2

∫ t
0

4ds

sin2 2r(s)

)

= e−2|λ|2t
E

(

e−2|λ|2
∫ t

0 cot2 2r(s)ds
)

.

From (3.1), the process r is the (unique) solution of the stochastic differential equation:

r(t) = r(0) + 3

∫ t

0

cot 2r(s)ds + κt , r(0) ∈ (0, π/2),

where κ is a standard Brownian motion. In order to apply Girsanov’s Theorem, we

introduce the following local martingale:

D
(μ)
t = exp

(

2μ

∫ t

0

cot 2r(s)dγ (s) − 2μ2

∫ t

0

cot2 2r(s)ds

)

, μ ≥ 0.

From Itô’s formula, we readily derive:

D
(μ)
t = e2μt

(

sin 2r(t)

sin 2r(0)

)μ

exp

(

−2(μ2 + 2μ)

∫ t

0

cot2 2r(s)ds

)

,

which shows in particular that D
(μ)
t is a martingale. Now, consider the new probability

measure P
(μ):

P
(μ)

/Ft
= D

μ
t P/Ft

= (sin 2r(0))−μe2μt (sin 2r(t))μe−2(μ2+2μ)
∫ t

0 cot2 2r(s)ds
P/Ft

,
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where (Ft )t≥0 is the natural filtration of r . If we choose μ =
√

|λ|2 + 1 − 1, then we

get:

E

(

eiλ·ζ(t)
)

= (sin 2r(0))μe−2(|λ|2+μ)t
E

(μ)

(

1

(sin 2r(t))μ

)

.

Moreover, Girsanov’s theorem implies that the process

ξ(t) := κ(t) − 2μ

∫ t

0

cot 2r(s)ds

is a Brownian motion under P
μ. Consequently,

dr(t) = dξ(t) + (2μ + 3) cot 2r(t)dt,

so that under the probability P
μ, r is a Jacobi diffusion with generator:

L
(μ+1,μ+1) =

1

2

∂2

∂r2
+

((

μ +
3

2

)

cot r −
(

μ +
3

2

)

tan r

)

∂

∂r
.

Writing,

E

(

e
iλ· ζ(t)√

t

)

= (sin 2r(0))

√

|λ|2
t

+1−1e
−2

(

|λ|2
t

+
√

|λ|2
t

+1−1

)

t
E

(
√

|λ|2
t

+1−1

)

(

(sin 2r(t))1−
√

|λ|2
t

+1

)

we end up with the limit

lim
t→∞

E

(

e
iλ· ζ(t)√

t

)

= lim
t→∞

e−2(
√

|λ|2t+t2−t) = e−|λ|2 ,

as required.

Remark 3.3 Using the semigroup density of the Jacobi process with equal parameters

(e.g., the appendix of [1]), we can derive a series representation of the characteristic

function of ζ in the basis of ultraspherical polynomials (see [4] for the details of

computations relative to the complex projective line).

4 Winding of the BrownianMotion onHHHH
1

4.1 Winding Form onHHHH
1

The quaternionic anti-de Sitter space AdS
7(H) is defined as the quaternionic pseudo-

hyperboloid:

AdS
7(H) = {q = (q1, q2) ∈ H

2, ‖q‖2
H = −1},
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where

‖q‖2
H := |q1|2 − |q2|2.

The group SU(2), viewed as the set of unit quaternions, acts isometrically on

AdS
7(H) by left multiplication and the quotient space

AdS
7(H)/SU(2)

is the quaternionic hyperbolic space HH1 endowed with its canonical quaternionic

Kähler metric. One can parametrize HH1 using the quaternionic inhomogeneous coor-

dinate

w = q−1
2 q1, q = (q1, q2) ∈ AdS

7(H).

This allows the identification HH1 with the unit open ball in H and will be in force in

the sequel. In inhomogeneous coordinates, the Riemannian distance r from 0 is given

by the formula

tanh r = |w|.

If γ : [0,+∞) → HH1\{0} is a C1 path, as before, one can consider its polar

decomposition

γ (t) = |γ (t)|�(t)

with �(t) ∈ SU(2) and define the winding path θ(t) ∈ su(2) as

θ(t) =
∫ t

0

�(s)−1d�(s).

The quaternionic winding form on HH1 is then the su(2)-valued one-form η such

that

θ(t) =
∫

γ [0,t]
η =

1

2

∫ t

0

γ (s)dγ (s) − dγ (s)γ (s)

|γ (s)|2
, t ≥ 0.

4.2 AsymptoticWinding of the BrownianMotion onHH
1

In inhomogeneous coordinates the Laplacian on HH1 is given by (see [7] page 48)

�HH1 = 4(1 − ρ2)2Re
∂2

∂w∂w
+ 8(1 − ρ2)Re w

∂

∂w
.
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In real coordinates we have:

�HH1 = sech4 r

(

∂2

∂t2
+

∂2

∂x2
+

∂2

∂ y2
+

∂2

∂z2

)

+ 4 sech2 r

(

t
∂

∂t
+ x

∂

∂x
+ y

∂

∂ y
+ z

∂

∂z

)

.

Let w(s) = (t(s), x(s), y(s), z(s)) be the Brownian motion process generated by
1
2
�HH1 , then it solves the SDE

dw(t) = sech2 r(t)dW (t) + 2 sec2(t)w(t)dt (4.1)

where tanh r(t) = ρ(t) = |w(t)|2 and W is again a standard quaternionic Brownian

motion.

The winding process of a Brownian motion on HH1 is then given by

ζ(t) = Im

∫ t

0

w−1(s)dw(s) =
1

2

∫ t

0

w(s)dw(s) − dw(s)w(s)

|w(s)|2
,

or equivalently,

ζ(t) =
1

2

∫ t

0

w(s)dW (s) − dW (s)w(s)

sinh2 r(s)
.

As before, to study ζ , we shall make use of a skew-product decomposition.

Lemma 4.1 Let w be a Brownian motion on HH1 not started from 0. There exists a

hyperbolic Jacobi process (r(t))t≥0 with generator

1

2

(

∂2

∂r2
+ 6 coth 2r

∂

∂r

)

and a Brownian motion �(t) on SU(2) independent from the process (r(t))t≥0 such

that

w(t) = tanh r(t)�At ,

where

At :=
∫ t

0

4ds

sinh2(2r(s))
.

Proof This follows from [5] and the fact that the operator (1/2)�HH1 may be decom-

posed in polar coordinates as:

1

2

(

∂2

∂r2
+ 6 coth 2r

∂

∂r
+

4

sinh2 2r
�SU(2)

)

. (4.2)
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As a consequence, we obtain the equality in distribution:

ζ(t)
D= β

(∫ t

0

4ds

sinh2(2r(s))

)

, (4.3)

where β is a 3-dimensional standard Brownian motion which is independent from the

process r .

Unlike the HP1 case, the Brownian motion on HH1 is transient and as shown below,

the corresponding winding process will have a limit in distribution when t → +∞.

Moreover, the computations of the limiting distribution are more involved compared

to the flat and the spherical settings.

Theorem 4.2 For any λ ∈ R
3,

lim
t→+∞

E[eiλ·ζ(t)] = tanh(r(0))

√
|λ|2+1−1

(

1 +
1

2 cosh(r(0))2
(
√

|λ|2 + 1 − 1)

)

.

Proof Let λ ∈ R
3. We have

E

(

eiλ·ζ(t)
)

= E

(

e
−2|λ|2

∫ t
0

ds

sinh2 2r(s)

)

.

The process r solves the stochastic differential equation:

r(t) = r(0) + 3

∫ t

0

coth(2r(s))ds + ψ(t),

where ψ is a standard one-dimensional Brownian motion. In order to compute the

characteristic function of ζ , we shall look for an exponential local martingale of the

form

D
(ν,κ)
t := exp

( ∫ t

0

[ν coth(r(s))+κ tanh(r(s))]dγ (s)−
1

2

∫ t

0

[ν coth(r(s))+κ tanh(r(s))]2ds

)

.

To this end, we use Itô’s formula to derive:

(

sinh(r(t))

sinh(r(0))

)ν

= exp

(

ν

∫ t

0

coth(r(s))dγ (s) + ν

∫ t

0

coth2(r(s))ds + 2νt

)

, r(0) > 0,

(

cosh(r(t))

cosh(r(0))

)κ

= exp

(

κ

∫ t

0

tanh(r(s))dγ (s) + κ

∫ t

0

tanh2(r(s))ds + 2κt

)

,

so that

D
(ν,κ)
t := e−2(ν+κ+νκ/2)t

(

sinh(r(t))

sinh(r(0))

)ν (

cosh(r(t))

cosh(r(0))

)κ

exp

(

−
ν2 + 2ν

2

∫ t

0

coth2(r(s))ds −
κ2 + 2κ

2

∫ t

0

tanh(r(s))2ds

)

.
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Writing

1

sinh2 2r(s)
=

[coth(r(s)) − tanh(r(s))]2

4
=

coth2(r(s)) + tanh2(r(s)) − 2

4
,

and choosing

ν =
√

1 + |λ|2 − 1 = −κ − 2,

then

D
(ν,κ)
t := e4t

(

tanh(r(t))

tanh(r(0))

)

√
1+|λ|2−1 (

cosh(r(0))

cosh(r(t))

)2

e
−2|λ|2

∫ t
0

ds

sinh2 2r(s) .

Since ν ≥ 0 then D
(ν,κ)
t is a bounded local martingale. So D

(ν,κ)
t is a martingale and

we can define the probability measure

P
(ν,κ)

/Ft
:= D

(ν,κ)
t P/Ft

under which the process (r(t))t≥0 solves the SDE

r(t) = r(0) +
∫ t

0

[(

3

2
+ ν

)

coth r(s) −
(

1

2
+ ν

)

tanh(r(s))

]

ds + γ̃ (t)

for some P
(ν,κ)-Brownian motion γ̃ . This is a hyperbolic Jacobi process of parameters

(1 + ν,−1 − ν) and

E

(

e
−2|λ|2

∫ t
0

ds

sinh2 2r(s)

)

= e−4t
E

(ν,−ν−2)

⎧

⎨

⎩

(

tanh(r(t))

tanh(r(0))

)1−
√

1+|λ|2 (

cosh(r(t))

cosh(r(0))

)2

⎫

⎬

⎭

= e−4t (tanh(r(0)))

√
1+|λ|2−1

cosh2(r(0))
E

(ν,−ν−2)

{

(

1 −
1

cosh2(r(t))

)−ν/2

cosh2(r(t))

)

.

Using the generalized binomial Theorem, we get further:

E

(

e
−2|λ|2

∫ t
0

ds

sinh2 2r(s)

)

= e−4t (tanh(r(0)))

√
1+|λ|2−1

cosh2(r(0))

∑

k≥0

(ν/2)k

k!
E

(ν,−ν−2)

(

1

cosh2k−2(r(t))

)

.
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Consequently, the long-time behavior of ζ(t) is given by the lowest-order term k = 0

in the series above:

lim
t→+∞

E

(

e
−2|λ|2

∫ +∞
0

ds

sinh2 2r(s)

)

= (tanh(r(0)))

√
1+|λ|2−1

cosh2(r(0))
lim

t→+∞
e−4t

E
(ν,−ν−2)[cosh2(r(t))]. (4.4)

To this end, we need the following lemma:

Lemma 4.3 For any α, β, consider the hyperbolic Jacobi process solution of

drα,β(t) = (α coth rα,β(t) + β tanh rα,β(t))dt + dγ (t), rα,β(0) = r(0) > 0.

Then

E((cosh rα,β(t)2)) =
1 + 2β

2(1 + α + β)
+ e2(1+α+β)t

(

cosh(r(0))2 −
1 + 2β

2(1 + α + β)

)

.

Proof Let

f (r) = (cosh(r))2.

We have

L f = 2(1 + α + β) f − (1 + 2β)

where

L =
1

2

d2

dr2
+ (α coth r + β tanh r)

d

dr
.

Thus, denoting

φ(t) := E

((

cosh rα,β(t)2
))

and using Itô’s formula, we obtain the following differential equation

φ′(t) = 2(1 + α + β)φ(t) − (1 + 2β),

which proves the Lemma.

Specializing the lemma to α = 3/2 + ν, β = −1/2 − ν, then

E
(ν,−ν−2)[cosh2(r(t))] = lim

t→+∞
e−4t

E
(ν,−ν−2)[cosh2(r(t))] = cosh2(r(0)) +

ν

2
.
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Plugging this expression into (4.4), we are done.

We close the paper with an explicit expression of the density of ζ∞. To this end,

we write

tanh(r(0))

√
|λ|2+1−1

(

1 +
1

2 cosh(r(0))2
(
√

|λ|2 + 1 − 1)

)

= tanh(r(0))

√
|λ|2+1−1 +

tanh(r(0))

2
∂r(0) tanh(r(0))

√
|λ|2+1−1,

and recall from [2] the characteristic function of the three-dimensional relativistic

Cauchy random variable:

e−y(
√

|λ|2+1−1) =
yey

2π2

∫

R3
eiλ·x K2(

√

|x |2 + y2)

|x |2 + y2
dx,

where K2 is the modified Bessel function of the second kind. After straightforward

computations, we end up with:

Corollary 4.4 Let r(0) > 0 be the hyperbolic distance from the origin of a Brownian

motion in HH1. Then, the distribution of ζ∞ is absolutely continuous with respect to

Lebesgue measure in R
3 and its density is given by:

− ln(tanh(r(0)))

2π2 tanh(r(0))

K2(
√

|x |2 + ln2(tanh(r(0))))

|x |2 + ln2(tanh(r(0)))

+
tanh(r(0))

2
∂u

{

− ln(tanh(u))

2π2 tanh(u)

K2(
√

|x |2 + ln2(tanh(u)))

|x |2 + ln2(tanh(u))

}

(r(0)).
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