
Parallel Mining of Frequent Subtree Patterns

Wenwen Qu2, Da Yan1[0000�0002�4653�0408], Guimu Guo1, Xiaoling Wang2,
Lei Zou3, and Yang Zhou4

1 The University of Alabama at Birmingham
{yanda, guimuguo}@uab.edu

2 East China Normal University
wenwenqu@sei.ecnu.edu.cn, xlwang@cs.ecnu.edu.cn

3 Peking University
zoulei@pku.edu.cn
4 Auburn University
yangzhou@auburn.edu

Abstract. Mining frequent subtree patterns in a tree database (or,
forest) is useful in domains such as bioinformatics and mining semi-
structured data. We consider the problem of mining embedded subtrees
in a database of rooted, labeled, and ordered trees. We compare two
existing serial mining algorithms, PrefixTreeSpan and TreeMiner, and
adapt them for parallel execution using PrefixFPM, our general-purpose
framework for frequent pattern mining that is designed to e↵ectively uti-
lize the CPU cores in a multicore machine. Our experiments show that
TreeMiner is faster than its successor PrefixTreeSpan when a limited
number of CPU cores are used, as the total mining workloads is smaller;
however, PrefixTreeSpan has a much higher speedup ratio and can beat
TreeMiner when given enough CPU cores.

Keywords: Tree · Parallel · Frequent pattern mining · Prefix projection.

1 Introduction

Frequent patterns are substructures that appear in a dataset with frequency no
less than a user-specified threshold. A substructure can refer to di↵erent struc-
tural forms, such as itemsets, sequences, trees and graphs. Frequent pattern min-
ing (FPM) has been at the core of data mining research for over two decades [3],
and numerous serial mining algorithms have been proposed for various types of
substructure patterns. The mined frequent substructures have also been widely
used in many real applications. For example, FG-index [5] constructs a nested
inverted index based on the set of frequent subgraphs, to speed up the finding of
those graphs in a graph database that contains a query subgraph; while [8] uses
frequent subgraphs as features for classifying labeled graphs modeling real-world
data such as chemical compounds.

This paper focuses on tree patterns, or more specifically, to mine frequent
“embedded” subtrees in a database of “rooted”, “labeled”, and “ordered” trees.
Here, “rooted” means that the tree root matters, “ordered” means that the

2 W. Qu et al.

126 Mohammed J. Zaki

“hidden” (or embedded) deep within large trees which might be missed by
the traditional definition.

 B

 CA

 B C

C

 B B

 A

 A

 B

 CA CA

Embedded Subtree

T3T2T1

Fig. 5.1. Embedded subtree

As an example, consider Figure 5.1, which shows three trees. Let’s assume
we want to mine subtrees that are common to all three trees (i.e., 100% fre-
quency). If we mine induced trees only, then there are no frequent trees of
size more than one. On the other hand, if we mine embedded subtrees, then
the tree shown in the box is a frequent pattern appearing in all three trees; it
is obtained by skipping the “middle” node in each tree. This example shows
why embedded trees are of interest. Henceforth, a reference to subtree should
be taken to mean an embedded subtree, unless indicated otherwise. Also note
that, by definition, a subtree must be connected. A disconnected pattern is
a sub-forest of T . Our main focus is on mining subtrees, although a simple
modification of our enumeration scheme also produces sub-forests.

Scope
Let T (nl) refer to the subtree rooted at node nl and let nr be the right-most
leaf node in T (nl). The scope of node nl is given as the interval [l, r], i.e., the
lower bound is the position (l) of node nl, and the upper bound is the position
(r) of node nr. The concept of scope will play an important part in counting
subtree frequency.

Tree Mining Problem
Let D denote a database of trees (i.e., a forest), and let subtree S � T for
some T 2 D. Each occurrence of S can be identified by its match label, which
is given as the set of matching positions (in T) for nodes in S. More formally,
let {t1, t2, . . . , tn} be the nodes in T , with |T | = n, and let {s1, s2, . . . , sm} be
the nodes in S, with |S| = m. Then S has a match label {ti1 , ti2 , . . . tim}, if
and only if: 1) l(sk) = l(tik) for all k = 1, . . . m, and 2) branch b(sj , sk) in S
i↵ tij is an ancestor of tik in T . Condition 1 indicates that all node labels in
S have a match in T , while Condition 2 indicates that the tree topology of
the matching nodes in T is the same as S. A match label is unique for each
occurrence of S in T .

Let �T (S) denote the number of occurrences of the subtree S in a tree T .
Let dT (S) = 1 if �T (S) > 0 and dT (S) = 0 if �T (S) = 0. The support of a
subtree S in the database is defined as �(S) =

�
T�D dT (S), i.e., the number

Fig. 1. Embedded Subtree Pattern Illustration

order of children nodes matters, and “embedded” means that the tree edge in a
subtree pattern only needs to capture the ancestor-descendant relationship (i.e.,
can skip nodes in the middle) rather than a direct parent-child edge (the latter
is called “induced”). We illustrate the concept of an embedded subtree pattern
using Fig. 1, which shows a database of three trees. The subtree shown in the box
is considered frequent as it appears in all 3 the trees T1, T2 and T3, obtained by
skipping the “middle” node in each tree, even though the subtree is the induced
subgraph of only T2 alone.

This problem is useful in many applications. In bioinformatics, researchers
have collected vast amounts of RNA structures, which are essentially trees. To get
information about a newly sequenced RNA, they compare it with known RNA
structures, looking for common topological patterns, which provide important
clues to the function of the RNA [10]. In web usage mining [7], given a database
of web access logs at a popular site, one can mine the tree-structured brows-
ing history of users to find frequently accessed subtrees (where nodes are web-
pages) at the site for prioritized investment. In web applications, tree-structured
XML/JSON documents are popular for data transmission and storage, and dis-
covering the commonly occurring subtrees that appear in these documents can
help locate frequent user queries and data responses to be cached for faster
access.

Tree mining has been well studied in the serial algorithm domain by a num-
ber of algorithms such as TreeMiner [13], FREQT [4], CMTreeMiner [6], Chop-
per [11], Xspanner [11] and PrefixTreeSpan [14]. We select PrefixTreeSpan for
parallelization since it was reported to beat all the other algorithms. However,
[14] treats TreeMiner to be an Apriori-like algorithms that check patterns of size-
i only when all patterns of size-(i � 1) are found, while TreeMiner is actually a
PrefixSpan[9]-like similar to PrefixTreeSpan, therefore we also select TreeMiner
for parallelization to compare with PrefixTreeSpan.

We parallelize PrefixTreeSpan and TreeMiner using the PrefixFPM frame-
work [12], which is found to be able to fully utilize the available CPU cores in
a multi-core machine as long as the implemented algorithm provides su�cient
opportunity for concurrent execution. PrefixFPM is designed for writing a gen-
eral frequent pattern mining algorithm following the prefix-projection paradigm

Parallel Mining of Frequent Subtree Patterns 3

pioneered by PrefixSpan [9], and PrefixTreeSpan and TreeMiner naturally fit in
this paradigm. The main contributions and insights of this paper are as follows:

– We developed the parallel PrefixFPM algorithms for both PrefixTreeSpan
and TreeMiner, and empirically compared them under di↵erent conditions.

– We find that TreeMiner is more e↵ective in reducing the total mining work-
loads and thus faster when using up to only a moderate number of CPU cores.
This is in contrary to the finding in PrefixTreeSpan’s paper [14], which could
be due to [14]’s treating TreeMiner as an Apriori-like algorithm.

– We find that, in contrast, PrefixTreeSpan is more amenable to parallel ex-
ecution with a higher speedup ratio, and can beat TreeMiner when given
enough CPU cores. This is a new finding since prior works have not consid-
ered parallel mining, and can shed light on the architecture-aware algorithm
choice.

The rest of this paper is organized as follows. Section 2 reviews the related
work including the idea of prefix projection illustrated with the pioneering Pre-
fixSpan algorithm, and the PrefixFPM programming paradigm for paralleliz-
ing a PrefixSpan-like algorithm. Section 3 introduces the PrefixTreeSpan algo-
rithm and its parallel implementation in PrefixFPM, and Section 4 describes
the TreeMiner algorithm and its parallel implementation in PrefixFPM. Finally,
Section 5 reports the results of our experimental comparison and Section 6 con-
cludes this paper.

2 Preliminaries

A Tour of PrefixSpan. To understand the idea of prefix projection, let us
first briefly review the pioneering PrefixSpan [9] algorithm for mining frequent
sequential patterns from a sequence database.

We denote ↵� to be the sequence resulted from concatenating sequence ↵
with sequence �. We also use ↵ v s to denote that sequence ↵ occurs as a
subsequence of sequence s in the database. Given a sequential pattern ↵ and a
sequence s, the ↵-projected sequence s|↵ is defined to be the su�x � of s such
that s = �� with � being the minimal prefix of s satisfying ↵ v s. To highlight
the fact that � is a su�x, we write it as �. To illustrate, when ↵ = BC and
s = ABCBC, we have � = ABC and s|↵ = � = BC.

Given a sequential pattern ↵ and a sequence database D, the ↵-projected
database D|↵ is defined to be the set {s|↵ | s 2 D ^ ↵ v s}. Note that if ↵ 6v s,
then the minimal prefix � of s satisfying � v s does not exist, and therefore s is
not considered in D|↵.

Consider the sequence database D shown in Fig. 2(a). The projected databases
D|A, D|AB and D|ABC are shown in Fig. 2(b), (c) and (d), respectively. Let us
define the support of a pattern ↵ as the number of sequences in D that contain
↵ as a subsequence, then the support of ↵ is simply the size of D|↵. PrefixSpan
finds the frequent patterns (with support at least ⌧sup) by recursively check-
ing the frequentness of patterns with growing lengths. In each recursion, if the

4 W. Qu et al.

SID Sequence
s1 ABCBC
s2 BABC
s3 AB
s4 BC (b) D|A

(a) D

SID Sequence
s1 _BCBC
s2 _BC
s3 _B

SID Sequence
s1 _CBC
s2 _C
s3 _

SID Sequence
s1 _BC
s2 _

BA C

(c) D|AB
(d) D|ABC

Fig. 2. Illustration of PrefixSpan

∅

ABC

AA AB

ABA ABB

B
…

AC
…

A

infrequent

C
…

Fig. 3. Depth-First Search Space Tree

current pattern ↵ is checked to be frequent, it will recurse on all the possible pat-
terns ↵0 constructed by appending ↵ with one more element. PrefixSpan checks
whether a pattern ↵ is frequent using the projected database D|↵, which is con-
structed from the projected database of the previous iteration. Fig. 2 presents
one recursion path when ⌧sup = 2, where, for example, s1|ABC in D|ABC is
obtained by removing the element C from s1|AB in D|AB .

We remark that the PrefixSpan algorithm presented here is a simplified ver-
sion where each element in a sequence can be only one item. In general, each
element can be an itemset (e.g., the purchase of multiple goods in one super-
market transaction), and we refer readers to [9] for more details.

Prefix Projection. We can summarize the PrefixSpan algorithm’s pattern
(which is also the prefix) search space by a tree as illustrated in Fig. 3. The
idea actually generalizes to other patterns including the embedded subtrees that
we consider. The key insight is that we can establish a one-to-one correspon-
dence between each subtree pattern and its sequence encoding, so that we can
examine the pattern encodings by a PrefixSpan-style algorithm.

For example, consider the 3 subtrees shown in Fig. 4. We can encode a tree
T by adding vertex labels to the encoding in a depth-first preorder traversal
of T , and by adding a unique label “$” whenever we backtrack from a child
to its parent. For example, the encoding of T1 in Fig. 4 is BAB$D$$BC, the
encoding of T2 is BAB$D$$CB, while the encoding of T3 is BCBAB$D$$.

If we consider “$” as the smallest label, and combined with the other node
labels in the alphabet where label ordering is defined, then we can check through

Parallel Mining of Frequent Subtree Patterns 5

6 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

mine different types of tree patterns, which include FreeTreeMiner [5] which mines induced, unordered,
free trees (i.e., there is no distinct root); and PathJoin [21], uFreqt [17], uNot [4], and HybridTreeM-
iner [6] which mine induced, unordered trees. CMTreeMiner [7] mines maximal and closed induced,
unordered trees. TreeFinder [19] uses an Inductive Logic Programming approach to mine unordered,
embedded subtrees, but it is not a complete method, i.e, it can miss many frequent subtrees, especially as
support is lowered or when the different trees in the database have common node labels. Our focus here
is on an efficient algorithm to mine the complete set of frequent, embedded, unordered trees.

There has also been recent work in mining frequent graph patterns. The AGM algorithm [12] dis-
covers induced (possibly disconnected) subgraphs. The FSG algorithm [15] improves upon AGM, and
mines only the connected subgraphs. Both methods follow an Apriori-style level-wise approach. Re-
cent methods to mine graphs using a depth-first tree based extension have been proposed in [22, 23].
Another method uses a candidate generation approach based on Canonical Adjacency Matrices [11].
The work by Dehaspe et al [10] describes a level-wise Inductive Logic Programming based technique
to mine frequent substructures (subgraphs) describing the carcinogenesis of chemical compounds. Work
on molecular feature mining has appeared in [14]. The SUBDUE system [9] also discovers graph pat-
terns using the Minimum Description Length principle. An approach termed Graph-Based Induction
(GBI) was proposed in [24], which uses beam search for mining subgraphs. However, both SUBDUE
and GBI may miss some significant patterns, since they perform a heuristic search. In contrast to these
approaches, we are interested in developing efficient, complete algorithms for tree patterns.

4. Generating Unordered, Embedded Trees

There are two main steps for enumerating frequent subtrees in . First, we need a systematic way of
generating candidate subtrees whose frequency is to be computed. The candidate set should be non-
redundant to the extent possible; ideally, each subtree should be generated as most once. Second, we
need efficient ways of counting the number of occurrences of each candidate tree in the database , and
to determine which candidates pass the minsup threshold. The latter step is data structure dependent, and
will be treated later. Here we are concerned with the problem of candidate generation.

 B

 C B A

 BD

 B

 C B A

 B D

 B

 A

 B D

 C B

 B

 A

 B D

 B C

0

1 2 3

4 5

0

1 2 3

4 5

0

1

2 3

4 5

0

1

2 3

4 5

T1 T2 T3 T4

Figure 4. Some Automorphisms of the Same Graph

Automorphism Group An automorphism of a tree is a isomorphism with itself. Let denote
the automorphism group, i.e., the set of all label preserving automorphisms, of . Henceforth, by auto-
morphism, we mean label preserving automorphisms. The goal of candidate generation is to enumerate
only one canonical representative from . For an unordered tree , there can be many automor-
phisms. For example, Figure 4 shows some of the automorphisms of the same tree.

Let there be a linear order defined on the elements of the label set . Given any two trees and
, we can define a linear order , called tree order between them, recursively as follows: Let and

Fig. 4. Illustrative Tree Patterns

8 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Prefix Extension Let denote the rightmost path in tree , i.e., the path from root
to the rightmost leaf in . Given a seed frequent tree , we can generate new candidates obtained

by adding a new leaf with label to any vertex on the rightmost path . We call this process as
prefix-based extension, since each such candidate has as its prefix tree.

It has been shown that prefix-based extension can correctly enumerate all ordered embedded or in-
duced trees [3, 25]. For unordered trees, we only have to do a further check to see if the new extension is
the canonical form for its automorphism group, and if so, it is a valid extension. For example, Figure 5
shows the seed tree , with encoding (omitting trailing ’s). To preserve the prefix tree,
only rightmost branch extensions are allowed. Since the rightmost path is , we can extend

by adding a new vertex with label any of these vertices, to obtain a new tree (). Note,
how adding to node gives a different prefix tree encoding , and is thus disallowed, as shown
in the figure.

Equivalence Class

Element List: (label, attached to position)
 x

 x

 x x

Class Prefix

3

 C

 D

2

1

0

 B A

Prefix String: C D A $ B

 (x, 3) // attached to 3: C D A $ B x $ $ $

 (x, 1) // attached to 1: C D A $ B $ x $ $
(x, 0) // attached to 0: C D A $ B $ $ x $

Figure 5. Prefix Extension and Equivalence Class

In [17] it was shown that for any tree in canonical form its prefix is also in canonical form. Thus
starting from vertices with distinct labels, using prefix extensions, and retaining only canonical forms for
each automorphism group, we can enumerate all unordered trees non-redundantly. For each candidate,
we can count the number of embedded occurrences in database to determine which are frequent.
Thus the main challenges in tree extension are to: i) efficiently determine whether an extension yields a
canonical tree, and ii) determine extensions which will potentially be frequent. The former step considers
only valid candidates, whereas the latter step minimizes the number of frequency computations against
the database.

Canonical Extension To check if a tree is in canonical form, we need to make sure that for each vertex
, for all , where is the list of ordered children of .

However, since we extend only canonical trees, for a new candidate, its prefix is in canonical form, and
we can do better.

Lemma 4.3. Let be a tree in canonical form, and let be the rightmost path in . Let be the
tree extension of when adding a vertex with label to some vertex in . For any ,
let and denote the last two children of 2. Then is in canonical form iff for all ,

.
Proof Sketch: Let be the rightmost path in . By Lemma 4.2, is

in canonical form implies that for every node , we have .
2If is a leaf, then both children are empty, and if has only one child, then is empty

Fig. 5. Pattern Extension Along Rightmost Path

the subtree patterns similarly as in Fig. 3, imagining that the sequence encoding
at each node is obtained by the depth-first preorder traversal of its corresponding
subtree pattern. Recall that there is a one-to-one correspondence between a
subtree pattern and its sequence encoding. This is exactly the mining workflow
adopted by PrefixTreeSpan and TreeMiner.

In this case, the root node ; in the search tree of Fig. 3 basically finds node
labels that are frequent in the tree database (e.g., A, B and C). Then, at the
next layer node A basically finds frequent edges where the source node is A (e.g.,
AA, AB and AC). In the next layer, node AB (whose pattern only contains one
edge AB) is basically extending the pattern with one more edge, which can give
child-patterns like ABA or ABA$$ that corresponds to di↵erent subtrees for
frequentness checking (Fig. 3 is for PrefixSpan so only a sequence ABA is shown).
In a nutshell, each pattern as a node ↵ in the search tree is extended by one
more edge to generate a child-pattern �.

It is not di�cult to see that to avoid redundant pattern examination from
di↵erent subtrees, we should only extend a pattern using an adjacent edge on its
rightmost path. For example, in Fig. 5, we can only extend the subtree pattern
in the box using an adjacent edge on its rightmost path CDB, since the extension
from vertex A has an encoding CDAx· · · which does not match the pattern prefix
CDA$B and should have been covered in the other search space subtree rooted
at node CDA (i.e., the child CDAx rather than CDA$B).

6 W. Qu et al.

In frequent subtree mining, the di↵erence from PrefixSpan lies in the mainte-
nance of projected database, where each tree data after prefix projection can give
rise to multiple instances (for example, pattern B-B can map to node pairs 0-2
and 0-4 in T1 of Fig. 4) that lead to di↵erent future extension trajectories; also,
special encodings need to be maintained to facilitate the checking of ancestor-
descendant relationship between a matched node in a data tree T and another
node in T to extend the current pattern.

PrefixFPM Review. PrefixFPM associates each pattern ↵ (which corresponds
to a node in the search tree of Fig. 3) with a task t↵ that checks the frequentness
of ↵ using its projected database D|↵, and which grows the pattern by one more
element to generate the children patterns {�} and their projected databases
{D|�} (computed incrementally from D|↵ rather from the entire D). These chil-
dren patterns give rise to new tasks {t�} which are added to a shared task queue
for concurrent processing. PrefixFPM runs a number of mining threads that fetch
pattern-tasks from a shared task queue Qtask for concurrent processing. Since
each task t↵ needs to maintain D|↵ to compute the projected databases of the
child-patterns grown from ↵, a depth-first task fetching priority in the pattern
search tree tends to minimize the memory footprint of patterns in processing.
This is because we tend to grow those patterns that have been grown deeper,
which are larger (and thus with smaller projected databases) and are closer to
finishing their growth (due to the support becoming less than ⌧sup).

Since fetching tasks from a shared task queue and adding new child-tasks
to Qtask incur locking overheads, this is only worthwhile if each task contains
su�cient computing workloads such that the locking overhead is negligible. We
therefore only add child-pattern tasks to Qtask if the number of projected data
instances in D|↵ is above a size threshold ⌧split, so that the workloads can be
divided by other computing threads; otherwise, t↵ is not expensive and the
current computing thread simply processes its entire search space subtree in
depth-first order directly.

PrefixFPM Programming Interface. PrefixFPM is written as a set of C++
header files defining some base classes and their virtual functions for users to
inherit in their subclasses and to specify the application logic. We call these
virtual functions as user-defined functions (UDFs). The base classes also contain
C++ template arguments for users to specify with the proper data types (data
structures) that fit the target FPM application. We refer readers to [12] for the
complete API. Here, we briefly review the key UDFs that users need to specify
in order to implement a parallel mining algorithm.

The most important base class is Task. A Task object t↵ maintains 2 fields:
a pattern ↵ (along with its relevant data such as D|↵), and a children table
children that keeps {D|�}: specifically, children[e] = D|� if � is grown from
↵ with element e. Task has an internal function run(fout) which executes the
processing logic of the task t↵. The behavior of run(.) is specified by Task UDFs
defined by users which are called in run(.), and Fig. 6 shows the details.

Parallel Mining of Frequent Subtree Patterns 7

void run(ostream& fout){
if(!pre_check(fout)) return;
//generate new patterns
setChildren(children);
//run new child tasks
while(Task* t= get_next_child()){

if(needSplit()){
q_mtx.lock();
queue().push(t);
q_mtx.unlock();

}
else{

t->run(fout);
delete t;

}
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Fig. 6. The run(fout) function of base class Task

Specifically, in Line 2, t↵ first runs UDF pre check(fout) to see if ↵ is frequent
and if so, to output ↵ to an output file stream fout. If ↵ is frequent and thus not
pruned by pre check(.), Line 4 then runs UDF setChildren(children) to scan D|↵
and compute {D|�} into the table field children. In this step, every infrequent
child pattern � should be removed from the table children as a postprocessing
step after {D|�} are constructed.

Line 6 then wraps each child pattern � in table children as a task t� , and
calls the UDF needSplit() to predict if t� is time-consuming (e.g., D|� is big). If
so, we add t� to the task queue Qtask (Lines 8–10) to be fetched by available task
computing threads (Qtask is a global last-in-first-out task stack protected by a
mutex to prioritize depth-first task processing order), which divides the comput-
ing workloads by multithreading. Otherwise, we recursively call t� ’s run(fout) to
process the entire checking and extension of � by the current thread, which avoids
contention on Qtask. Since needSplit() just estimates if t� is time-consuming and
could have false negatives that become stragglers, we also count the time elapsed
since t↵ begins, and if it is larger than a timeout threshold, we also add t� to
Qtask for concurrent processing as in Lines 8–10.

The other important base class is Worker, which is the main thread that
loads the database and creates the computing threads to process tasks. A Worker
object is responsible for generating the initial tasks into Qtask from the database,
the logic of which is specified by UDF setRoot().

Implementing Worker::setRoot(.) is similar to implementing Task::setChildren(.)
(Line 4 of Fig. 6): instead of constructing {D|�} from D|↵, we construct {D|e}
from D: each seed task te = he, D|ei is added to Qtask to initiate the parallel
task computation.

At the beginning of Worker::setRoot(.), we also need to get the element fre-
quency statistics and eliminate infrequent elements (i.e., they are not considered

8 W. Qu et al.

B

A

B D

B C

0

1

2 3

4 5

Data Tree

B

A

0

1

Pattern Tree Projected Forest

B D

1
2 3

B C

0
4 5

Fig. 7. Forests After Pattern Projection

when growing patterns), which is a common and e↵ective pruning. In frequent
subtree mining, one pass over the database is needed to filter out infrequent edges
(determined by labels of its end-nodes), followed by another pass to (1) delete
data edges that match those infrequent pattern-edges (in terms of end-node
labels) and to (2) count the frequency of pattern-edges.

To summarize, to implement a parallel frequent pattern mining algorithm in
PrefixFPM, we need to specify 2 key UDFs: Worker::setRoot(.) and Task::setChild-
ren(children).

3 PrefixTreeSpan in PrefixFPM

Recall from Section 2 that the data tree in Fig. 7 can be encoded as BAB$D$$BC
following preorder traversal that finally returns back to root B. To facilitate pre-
fix projection, PrefixTreeSpan encodes this tree instead as:

B A B -1 D -1 -1 B -1 C -1 -1
Here, backtracking is encoded with -1 which is basically the same as $. How-

ever, PrefixTreeSpan lets each node to be paired with a corresponding partner
“-1” in the encoding so that the first B is now also paired with a -1 at last. The
part between a node and its partner is called the node’s scope.

The definition of scope allows a quick checking of ancestor-descendant rela-
tionships. For example, in Fig. 7, after prefix projection by the pattern tree, the
data tree now gets split into a so-called “postfix-forest” with two trees, the node
of which can be used to further extend the current pattern.

To see how this is achieved, PrefixTreeSpan requires the scanning of the data
tree (i.e., its preorder encoding) to be from right after the position that matches
the last node in the pattern subtree. For the example in Fig. 7, we should start
from after “A” at the second position of the above encoding. Based on A’s
scope we can obtain the first tree in the projected forest as shown in Fig. 7,
encoded as B-1D-1 which is hooked to Node 1 in the pattern tree (1 is encoded
by preorder traversal of the pattern). Continuing the scanning, we will obtain
the second projected postfix-tree encoded as B-1C-1 which is hooked to Node 0
in the pattern tree.

Parallel Mining of Frequent Subtree Patterns 9M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 5

D in Horizontal Format : (tid, string encoding)

D in Vertical Format: (tid, scope) pairs

Tree T1

Database D of 3 Trees

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

2, [3, 7]

Tree T0 Tree T2
 A

 D

 B

 A

 B D

 B C

 A

 C

 B

 E

 A

 B C

 D

A B C D E

[1,1]

[4,7]

[2,2]

[4, 4] [5,5]

[1,3]

[0,5]

[0,3]

[3,3]

[2,3]

[2,2]

[1,2]

[0,7]

[3,7]

[5,5]

[7,7]

[6,7]

[3, 3]

(T1, B A B $ D $ $ B $ C $)
(T2, A C B $ E A B $ C D $ $ $ $)

B C

(T0, A C $ B D $ $)

0, [1, 1]0, [2, 3]

0

1

3

0

1

2 3

4 5

1

2

3

4

5 6

7

2

0

Figure 3. Scope-Lists

Example 2.2. Figure 3 shows a database of 3 trees, along with the horizontal format for each tree, and
the vertical scope-lists format for each label. Consider label ; since it occurs at vertex with scope

in tree , we add to its scope list. also occurs in with scope , and in with
scopes and , thus we add , and to . In a similar manner, the
scope lists for other labels are created.

We use the scope-lists to represent the list of occurrences in the database, for any -subtree . Let
be the label of the rightmost leaf in . The scope list of consists of triples , where is a tid

where occurs, is the scope of vertex with label in tid , and is a match label for the prefix subtree
of . Thus our vertical database is in fact the set of scope-lists for all -subtrees (and since they have no
prefix, there is no match label).

3. Related Work

Tree mining, being an instance of frequent structure mining, has obvious relation to association [1] and
sequence [2] mining. Frequent tree mining is also related to tree isomorphism [18] and tree pattern
matching [8]. The tree inclusion problem was studied in [13], i.e., given labeled trees and , can
be obtained from by deleting nodes? This problem is equivalent to checking if is embedded in .
Both subtree isomorphism and pattern matching deal with induced subtrees, while we mine embedded
subtrees. Further we are interested in enumerating all common subtrees in a collection of trees.

Recently tree mining has attracted a lot of attention. We developed TreeMiner [25] to mine labeled,
embedded, and ordered subtrees. The notions of scope-lists and rightmost extension were introduced
in that work. TreeMiner was also used in building a structural classifier for XML data [26]. Asai et
al. [3] presented FreqT, an apriori-like algorithm for mining labeled ordered trees; they independently
proposed the rightmost candidate generation scheme. Wang and Liu [20] developed an algorithm to mine
frequently occurring subtrees in XML documents. Their algorithm is also reminiscent of the level-wise
Apriori [1] approach, and they mine induced subtrees only. There are several other recent algorithms that

Fig. 8. Scope Lists

We remark that by scanning the data tree encoding from the last matched
position, we e↵ectively extend a pattern along its rightmost path. For example,
referring to Fig. 5 again, we will not consider extending Node 2 since the last
pattern node matched to a data tree is Node 3.

The implementation of this algorithm in PrefixFPM is straightforward, where
in Task::setChildren(.) each task t↵ scans its projected postfix-forest database
once to determine the frequent edges (called growth elements) to extend pattern
↵, and then scans the projected database for another pass to create the projected
postfix-forest database in children[e] for each frequent edge e. Each child pattern
� that extends ↵ with e is then wrapped as a child task t� for further processing.

Worker::setRoot(.) is slightly di↵erent, where after frequent nodes (in terms of
labels) are identified to create singleton-node patterns, it is only matched to the
so-called “independent-occurrences” of the node in each data tree, i.e., the node
does not have an ancestor that is also matched. This is to avoid redundancy [14].

4 TreeMiner in PrefixFPM

TreeMiner Review. TreeMiner [13] captures the ancestor-descendant relation-
ship among nodes by assigning each node v a so-called scope [`, r], where ` is the
rank of v in a preorder traversal of the tree, and r is the rank of the rightmost
node in the subtree rooted at v (i.e., the largest node rank in the subtree). For
example, for tree T0 in Fig. 8, Node 0 has scope [0, 3], Node 1 has [1, 1], and
Node 3 has [3, 3]. Then, the ancestor-descendant relationship can be judged by
the scope containment relationship. For example, Nodes 1 and 3 are both the
descendant of Node 0 since [1, 1], [3, 3] ⇢ [0, 3], but Node 3 is not a child of
Node 1 since [1, 1] \ [3, 3] = ;.

Since a pattern ↵ can have multiple matches in a data tree, TreeMiner rep-
resents each projected transaction in D|↵ as a pair (tid, scope) where tid is the
transaction ID of the data tree Ti whose subtree matches ↵, and scope is the
scope of last matched node in Ti that matches the last extended node in pattern

10 W. Qu et al.

↵. For example, Fig. 8 shows the vertical representation of initial patterns ↵ =
A, B, C, D and E. The rectangle for pattern B, which is called its scope list,
contains 3 matched instances in tree T1, corresponding to Nodes 0, 2 and 4,
respectively.

Recall from Section 2 that a tree T is encoded by listing vertex labels in a
depth-first preorder traversal of T , and by adding a unique symbol “$” whenever
we backtrack from a child to its parent. This sequence encoding of T is also called
its horizontal format as shown in Fig. 8.

TreeMiner adopts prefix projection to enumerate patterns by their horizontal
encodings. One way is to always extend a pattern by a frequent edge from its
rightmost path to avoid redundant pattern checking, which is similar to Prefix-
TreeSpan as we have reviewed in Section 3.

TreeMiner adopts a di↵erent approach called “equivalence class-based exten-
sion”: instead of extending a pattern ↵ with frequent edges, TreeMiner generates
a size-(k + 1) pattern from two size-k patterns that share the same size-(k � 1)
prefix encoding. Obviously, the latter is more selective and thus faster.

This is where the scope-list comes into play. Refer back to Fig. 5 in Section 2
again, we have a size-3 prefix encoding P = CDA$B (as there are 3 solid edges),
from which we can grow size-4 patterns (i.e., using each of the 3 valid dashed
edges long the rightmost path). Let each dashed edge be denoted by (i, x) where
i is the hooked node ID in P , and x is a node label. Let us denote the new
pattern extended with (i, x) by � = P i

x, then all {P i
x} constitute an equivalence

class where patterns share the prefix P , denoted by [P].

To build the equivalence class [P i
x] where patterns share the prefix P i

x, we
can extend P i

x using another edge (j, y) 2 [P]. Sleuth keeps a projected database
D|� for each � = P i

x, which is represented as a scope list described before. To
incrementally compute D|� for the pattern � obtained by extending P i

x with
(j, y), we can join the scope list of P i

x with the scope list of every P j
y 2 [P].

While we refer readers to [13] for the details of the join, the idea is simple:
two scopes (tid1, scope1) and (tid2, scope2) can be joined only if tid1 = tid2 (i.e.,
the match is from the same transaction T), the matched prefix occurrences (i.e.,
their node IDs in T) are the same, and y’s matched node in T is a descendant or
cousin of x’s matched node (need to check scope1 and scope2). Since we always
order scope list items by tid, the joining of two scope lists requires only one pass
over the two lists similar to the merge operation in merge sort.

Implementation on PrefixFPM. To adapt the serial TreeMiner algorithm
to PrefixFPM, a task tP now maintains a prefix encoding P along with a list
of extending edges of the form (i, x) 2 [P], each associated with the scope list
(i.e., projected database) for P i

x. Note that task object here maintains a list
of projected databases, which is di↵erent from the PrefixFPM algorithm for
PrefixTreeSpan where each task object only maintains one project database.

UDF Task::setChildren(.) computes every task object related to Q = P i
x,

including the extending edges (j, y) 2 [Q] and their scope lists, as detailed in
the algorithm shown in Fig. 9. Note that each children table entry children[Q]

Parallel Mining of Frequent Subtree Patterns 11

for each (i, x) ∈ [P]
L1 ← scope list of Pxi
for each (j, y) ∈ [P]

if i < j: continue
L2 ← scope list of Pyj
Qyj← join(L1, L2) // note that Q = Pxi
if Qyj is frequent: children[Q].add(Qyj)

1:
2:
3:
4:
5:
6:
7:

Fig. 9. Algorithm of TreeMinerTask::setChildren(.) in PrefixFPM

to construct maintains the content a task object tQ, including a list of Qj
y each

associated with its scope list.
In the UDF Task::setChildren(.) of task tP , for each extending edge (i, x)

in [P] (Line 1), we build [Q] (Q = P i
x) to be added to children[Q] (Line 7).

Specifically, Lines 3–6 join the scope list of Q with the scope list of every P j
y 2

[P] to generate the scope list of the new pattern Qj
y, which are then added to

children[Q] one by one (if Qj
y is frequent which is judged using its scope list).

This allows UDF Task::get next child(.) (recall Line 6 of Fig. 6) to then wrap
each children[Q] into a task tQ that processes [Q] (containing {Qj

y}) for further
processing.

One tricky issue is to estimate the cost of task tQ as needed by Line 7 of
Fig. 6 to determine whether to add tQ to Qtask for concurrent processing or to
directly process it recursively. Unlike in PrefixTreeSpan where we simply check
the size of a child-task’s projected database, here, we need to sum the lengths
of the scope lists of [Q] = {Qj

y} to reflect the total task workloads, and if the
sum is above threshold ⌧split, the child task tQ is added to Qtask rather than
processed by the current computing thread.

Worker::setRoot(.) first scans D to count label frequencies and remove infre-
quent node labels. Let the set of frequent labels be F1, the UDF then counts
the frequencies of edges e = (X, Y) with a counter array of size |F1| ⇥ |F1|
by scanning D, and only considers frequent (labeled) edges (denoted by F2) for
subsequent edge extension. The UDF then builds the pattern object [X] for each
X 2 F1, constructs its scope list with all edge-patterns (X, Y) 2 F2, and then
wraps them as the set of initial tasks to be added to Qtask.

5 Experiments

Summary of Algorithm Di↵erences. One di↵erence is that TreeMiner joins
the rightmost node (using scope list) of two size-k frequent patterns to generate
a size-(k+1) pattern, which tends to have a smaller candidate set size than if we
extend size-k frequent patterns with one frequent edge, as is done by the encoding
scanning method of PrefixTreeSpan which basically extends the residual forest
along the rightmost matched path. As a result, the total mining workload of
TreeMiner tends to be smaller than that of PrefixTreeSpan.

12 W. Qu et al.

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Number of Task Computing Threads

PrefixTreeSpan TreeMiner

Thread# Time (S) Speedup Time Speedup
1 2706 1 746.1 1
2 1441 1.88 393.6 1.90
4 840.7 3.22 214.1 3.49
8 447.3 6.05 118.7 6.29

16 241.6 11.20 72.25 10.33
32 155.5 17.41 56.07 13.30
64 117.0 23.14 59.62 12.51

128 99.27 27.26 61.01 12.23

TreeMinerPrefixTreeSpan

Fig. 10. Results on the Synthetic Data

However, each task tP in TreeMiner is essentially an equivalent class [P],
or a cluster of prefix projections {P i

x} along with their projected databases.
In contrast, each task tP in PrefixTreeSpan is simply pattern P along with its
projected postfix-forest database, so that task granularity is finer than that of a
task in TreeMiner, making it more amenable to concurrent processing.

Experimental Setup. We evaluate the performance of PrefixTreeSpan and
TreeMiner on top of PrefixFPM, and all our codes are open-sourced at

https://github.com/wenwen-Q/PrefixFPM

To thoroughly test the scale-up capability of both algorithms, we ran our
programs on the BlueBlaze server donated by IBM to UAB CS Department,
which has 160 CPU cores and 1TB RAM. The CPU model is IBM POWER8
with 3491 MHz. The large number of CPU cores allows us to test the scalability
with 1, 2, 4, 8, 16, 32, 64 and 128 cores, and the 1TB RAM is more than enough
and we actually only use a tiny fraction.

Results on a Synthetic Dataset. We follow [13] and generate a tree trans-
action database using a synthetic data generator [1] that creates a database of
artificial website browsing behavior: a website browsing “master tree” is first
created based on parameters supplied by the users; then, one can generate ran-
dom subtrees of the master tree as the tree transactions for mining. The details
of data generation can be found in [13].

We use the default parameters for master tree: depth = 5, fan-out factor = 5,
number of labels = 10, and we set the number of nodes in the master tree as 50
to generate 10, 000, 000 subtree transactions. We call this dataset as TreeGen.
We set ⌧sup = 50 and the timeout threshold as 0.01s.

Fig. 10 shows the scalability results where good speedup ratio is achieved all
the way up to 16 threads, but TreeMiner does not show significant further im-
provement and even becomes slower beyond 32 threads. This is because TreeM-
iner operates on the big unit of equivalent class [P] which can only keep less
than 32 cores busy, and using more threads only incurs more lock contention
and backfires. PrefixTreeSpan has a better scaleup ratio but due to its larger
total workloads, it cannot beat TreeMiner in all settings in this experiment.

Parallel Mining of Frequent Subtree Patterns 13

Thread# Time (S) Speedup Time Speedup
1 148.7 1 95.78 1
2 86.3 1.72 52.49 1.82
4 43.0 3.46 26.45 3.62
8 23.9 6.22 23.41 4.09

16 17.3 8.60 22.77 4.21
32 17.0 8.75 23.31 4.11
64 16.1 9.23 24.67 3.88

128 14.8 10.03 25.47 3.76

TreeMinerPrefixTreeSpan

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Number of Task Computing Threads

PrefixTreeSpan TreeMiner

Fig. 11. Results on Treebank (⌧sup = 30, 000)

Thread# Time (S) Speedup Time Speedup
1 37778.8 1 25918.6 1
2 13502.5 1.99 9909.9 2.62
4 4472.0 6.02 3194.6 8.11
8 2032.5 13.24 2636.3 9.83

16 1089.7 24.70 1302.7 19.90
32 837.7 32.13 1157.5 22.39
64 607.5 44.31 1269.1 20.44

128 510.6 52.72 1285.0 20.12

TreeMinerPrefixTreeSpan

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4 8 16 32 64 128

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Number of Task Computing Threads

PrefixTreeSpan TreeMiner

Fig. 12. Results on Treebank (⌧sup = 10, 000)

Results on a Real Dataset. Treebank [2] is a parsed text corpus that an-
notates syntactic or semantic sentence structure. The XML file contains 52,851
trees. We first set ⌧sup = 30, 000 and the timeout threshold as 0.1s. Since ⌧sup is
large, most patterns will be pruned early leading to limited workload for parallel
mining. Fig. 11 shows the scalability results where we can see that TreeMiner’s
performance saturates with merely 4 CPU cores. PrefixTreeSpan scales better
but the speedup is still quite limited. Interestingly, despite more workload, Pre-
fixTreeSpan breaks a tie with TreeMiner when there are 8 CPU cores, and Pre-
fixTreeSpan beats TreeMiner when the number of CPU cores increases further,
already significantly faster than TreeMiner even when 16 CPU cores are used.
This is thanks to the finer task granularity of PrefixTreeSpan which allows more
CPU cores to be utilized.

We then set ⌧sup = 10, 000 so that most patterns will be valid allowing for
more parallelism. Fig. 12 shows the scalability results where we can see that
TreeMiner’s performance now saturates at up to 32 CPU cores thanks to the
more parallelism provided by a lower ⌧sup. PrefixTreeSpan scales even better
and achieves an impressive 52.72⇥ speedup with 128 cores, and ultimately beats
TreeMiner by more than 2.5⇥.

To summarize, while the total mining workload of TreeMiner can be much
smaller than that of PrefixTreeSpan due to the scope list join technique, it does
limit TreeMiner’s capability for massively parallel execution due to the larger
task granularity. When there are enough CPU cores, PrefixTreeSpan can be a
better choice that is worth trying out, and can ultimately beat TreeMiner by
several times. We remark that these conclusions are made assuming that the
underlying parallel execution engine is able to utilize as much parallelism as is

14 W. Qu et al.

available, which is ideally provided by PrefixPFM as explained in [12] which is
recently proposed to overcome the IO-bound execution bottleneck of a few prior
systems and solutions.

6 Conclusion

This paper implemented the parallel versions of two frequent embedded subtree
mining algorithms, PrefixTreeSpan and TreeMiner, on top of the PrefixFPM
system that follows a prefix-projection programming paradigm and that is able
to fully carry out the parallelism potential of the algorithms on top.

A few new insights are obtained: (i) PrefixTreeSpan does not beat TreeMiner
in the serial setting as what was claimed in PrefixTreeSpan’s paper [14], likely
because [14] implemented TreeMiner as an Apriori-like algorithm rather than
a PrefixSpan-like one. However, TreeMiner’s workload optimization requires a
larger task granularity which limits its potential for parallel execution, and could
be beaten by PrefixTreeSpan when enough CPU cores are available.

Acknowledgments. This work was partially supported by NSF OAC-1755464
and DGE-1723250.

References

1. Tree Generator. https://github.com/zakimjz/TreeGen.
2. Treebank. http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#treebank.
3. C. C. Aggarwal and J. Han, editors. Frequent Pattern Mining. Springer, 2014.
4. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. E�cient

substructure discovery from large semi-structured data. In R. L. Grossman, J. Han,
V. Kumar, H. Mannila, and R. Motwani, editors, SDM, pages 158–174. SIAM, 2002.

5. J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query
processing on graph databases. In SIGMOD, pages 857–872, 2007.

6. Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and maximal frequent
subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng.,
17(2):190–202, 2005.

7. R. Cooley, B. Mobasher, and J. Srivastava. Web mining: Information and pattern
discovery on the world wide web. In ICTAI, pages 558–567. IEEE Computer
Society, 1997.

8. T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph
classification. In NIPS, pages 729–736, 2004.

9. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixs-
pan: Mining sequential patterns by prefix-projected growth. In Proceedings of the
17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg,
Germany, pages 215–224, 2001.

10. B. A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using
tree comparisons. Comput. Appl. Biosci., 6(4):309–318, 1990.

11. C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. E�cient pattern-growth
methods for frequent tree pattern mining. In H. Dai, R. Srikant, and C. Zhang,
editors, PAKDD, volume 3056 of Lecture Notes in Computer Science, pages 441–
451. Springer, 2004.

Parallel Mining of Frequent Subtree Patterns 15

12. D. Yan, W. Qu, G. Guo, and X. Wang. Prefixfpm: A parallel framework for
general-purpose frequent pattern mining. In (ICDE), 2020.

13. M. J. Zaki. E�ciently mining frequent trees in a forest. In SIGKDD, pages 71–80,
2002.

14. L. Zou, Y. Lu, H. Zhang, and R. Hu. Prefixtreeespan: A pattern growth algo-
rithm for mining embedded subtrees. In K. Aberer, Z. Peng, E. A. Rundensteiner,
Y. Zhang, and X. Li, editors, WISE, volume 4255 of Lecture Notes in Computer
Science, pages 499–505. Springer, 2006.

