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Abstract

We study the sub-Laplacian of the 15-dimensional unit sphere which is obtained by lifting

with respect to the Hopf fibration the Laplacian of the octonionic projective space. We

obtain in particular explicit formulas for its heat kernel and deduce an expression for the

Green function of a related sub-Laplacian. As a byproduct we also obtain the spectrum of

the sub-Laplacian, the small-time asymptotics of the heat kernel and explicitly compute the

sub-Riemannian distance.
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1 Introduction

R. Escobales proved in [12] that, up to equivalence, the only Riemannian submersions with

connected totally geodesic fibers from a unit sphere are given by:

1. The complex Hopf fibrations:

S
1 ↪→ S

2n+1 → CP
n.

2. The quaternionic Hopf fibrations:

S
3 ↪→ S

4n+3 → HP
n.

3. The octonionic Hopf fibration:

S
7 ↪→ S

15 → OP
1.
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The thorough study of the horizontal Laplacians and associated heat kernels of the com-

plex and quaternionic Hopf fibrations was respectly done in [4] and [5]. The main goal of

the present paper is to complete the picture and study the geometry, the horizontal Laplacian

and the horizontal heat kernel of the octonionic Hopf fibration which is the only remaining

case (3).

The horizontal Laplacian of the fibration is the lift on S
15 of the Laplace-Beltrami oper-

ator of OP
1 which is isometric to S

8( 1
2
), see Theorem 3.5 in [12]. However, unlike the

submersion S
2n+1 → CP

n and the submersion S
4n+3 → HP

n which have been considered

in [4] and [5], the fibre S
7 does not admit a Lie group structure, it seems therefore non-

trivial to obtain the explicit description of horizontal Laplacian L following the methods of

[4] and [5]. This horizontal Laplacian also appears as the sub-Laplacian of a canonical H-

type sub-Riemannian structure on S
15, see Table 3 in [3]. For this reason, in the sequel the

horizontal Laplacian will also be referred to as the sub-Laplacian.

Let us briefly describe our main results. Due to the cylindrical symmetries of the fibra-

tion, the heat kernel of the sub-Laplacian only depends on two variables: the variable r

which is a radial coordinate on OP
1 and the variable η which is a radial coordinate on the

fiber S7. We prove that in these coordinates, the radial part of the sub-Laplacian writes

∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r
+ tan2 r

(
∂2

∂η2
+ 6 cot η

∂

∂η

)
.

As a consequence of this expression for the sub-Laplacian, we are able to derive two

expressions for the heat kernel:

(1) A Minakshisundaram-Pleijel spectral expansion: For r ∈ [0, π
2
), η ∈ [0, π), we have:

pt (r, η) =
∞∑

m=0

∞∑

k=0

αk,m

�(7/2)
√

π�(3)

∫ π

0

(cos η +
√

−1 sin η cos ϕ)
m

sin5 ϕdϕ,

×e−(8m+4k(k+m+7))t cosm rP
3,m+3
k (cos 2r),

where αk,m = 96
π8 (m + 3)(2k + m + 7)

(
k + m + 6

k + m + 3

) (
m + 5

m

)
and

P
3,m+3
k (x) =

(−1)k

2kk!(1 − x)3(1 + x)m+3

dk

dxk
((1 − x)k+3(1 + x)m+3+k)

is a Jacobi polynomial. In particular, the spectrum of −L is given by

{4k(k + m + 7) + 8m : m, k ≥ 0}.

This spectral expansion is useful to study the long-time behavior of the heat kernel but

might be difficult to use in the study of small-time asymptotics. In order to derive small-time

asymptotics of the heat kernel, we give another analytic expression for pt (r, η).

(2) An integral representation:

For r ∈ [0, π
2
), η ∈ [0, π), we have:

pt (r, η) =
48e15t

π2
√

πt cos2 r

∫ ∞

0

gt (η, y)

t2
e− y2+η2

4t qt (cos r cosh y) sinh ydy,

where

gt (η, y) = csc3(η)
(
cos

( ηy
2t

)
2y(η − 3t cot η)

+ sin
( ηy

2t

) (
8t2 cot2 η + 4t2 csc2 η − 6tη cot η + 2t + η2 − y2

))
.
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and qt is the Riemannian heat kernel on S
11. We obtain this formula by comparing the

subelliptic heat kernel of the sub-Laplacian associated to the quaternionic Hopf fibration.

From this formula we are able to deduce the fundamental solution of the operator −L+ 40;

It is given in cylindrical coordinates by

G(r, η) =
C

(
−2 cos r cos η + cos2 r + 1

)5
,

where C > 0 is an explicit constant.

Furthermore, we also derive three different behaviors of the small-time asymptotics of

the heat kernel: on the diagonal, on the vertical cut-locus, and outside of the cut-locus. As

an interesting by-product of this small-time asymptotics we obtain an explicit formula for

the sub-Riemannian distance on the octonionic unit sphere. In particular, we obtain that the

sub-Riemannian diameter of the octonionic fibration is given by π .

2 Preliminary: The geometry of the Octonionic Hopf Fibration

In this section, we describe the octonionic Hopf fibration. We refer to [21] for additional

and complementary details.

We consider the non-associative (but alternative) division algebra of octonions which is

described by

O =

⎧
⎨
⎩x =

7∑

j=0

xj ej , xj ∈ R

⎫
⎬
⎭ ,

where the multiplication rules are given by

eiej = ej if i = 0,

eiej = ei if j = 0,

eiej = −δij e0 + εijkek otherwise,

where δij is the Kronecker delta and εijk is the completely antisymmetric tensor with value

1 when ijk = 123, 145, 176, 246, 257, 347, 365.

The octonionic norm is defined for x ∈ O by

‖x‖2 =
7∑

j=0

x2
j .

The unit sphere in O
2 is given by

S
15 = {(x, y) ∈ O

2, ‖x‖2 + ‖y‖2 = 1}.
We have a Riemannian submersion π : S15 → OP

1, given by (x, y) �→ [x : y], where

[x : y] = y−1x. Then the vertical distribution V and the horizontal distribution H of T S
15

are defined by ker dπ and the orthogonal complement of V respectively so that T S
15 =

H ⊕ V . Note that π : S15 → OP
1 has totally geodesic fibers, and for each b ∈ OP

1, the

fiber π−1({b}) is isometric to S
7 with the standard sphere metric gS7 .

This submersion π yields the octonionic Hopf fibration:

S
7 ↪→ S

15 → OP
1.

The submersion π also yields an H -type foliation structure in the sense of [3] and thus

S
15 carries a sub-Riemannian structure inherited from this foliation.
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In addition to the octonionic Hopf fibration

S
7 ↪→ S

15 → OP
1

that is considered in this paper, on S
15 one can also consider the complex Hopf fibration

S
1 ↪→ S

15 → CP
7

and the quaternionic one

S
3 ↪→ S

15 → HP
3.

Similarly to the projection of fibration procedure explained in Section 3.1 in [5], this

would potentially yield two commutative diagrams:

and

However, unlike the quaternionic case [5], those diagrams actually do not exist. Indeed, in

the first diagram the submersion

CP
7 → OP

1

does not exist, see [23] and [22] page 258. In the second diagram the submersion

HP
3 → OP

1

does not exist, see [23] and [13].
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3 Cylindric Coordinates and Radial Part of the Sub-Laplacian

The geometry of the octonionic Hopf fibration shares many properties with the geometry of

the complex and quaternionic Hopf fibration. Similarly, the analysis of the octonionic sub-

Laplacian on S
15 parallels the ones of the complex and quaternionic sub-Laplacians which

were undertaken in [4, 5].

The sub-Laplacian L on S
15 we are interested in is the horizontal Laplacian of the Rie-

mannian submersion π : S15 → OP
1, i.e the horizontal lift of the Laplace-Beltrami operator

of OP
1. It can be written as

L = 
S15 − 
V ,

where 
V is the vertical Laplacian. Since the fibers of π are totally geodesic, we note

that 
S15 and 
V are commuting operators (see [8]). Since the horizontal distribution of

the octonionic fibration is bracket-generating, L is a hypoelliptic operator. We note that

the sub-Riemannian structure induced by the fibration is even fat; it is actually an H-type

sub-Riemannian structure in the sense of [3], see Remark 2.16 in [3].

To study L, we introduce a set of coordinates that reflect the cylindrical symmetries of

the octonionic unit sphere with respect to the octonionic Hopf fibration. Take local coordi-

nates w ∈ OP
1\{∞} and (θ1, ..., θ7) ∈ S

7, where w is the inhomogeneous coordinate on

OP
1\{∞} given by w = y−1x, where x, y ∈ O. Consider the pole p = (1, 0, · · · , 0) ∈ S

7,

take Y1, ..., Y7 to be an orthonormal frame of TpS
7 and denote expp the Riemannian

exponential map at p on S
7. Then the cylindrical coordinates we work with are given by

(w, θ1, ..., θ7) �→
(

expp(
∑7

i=1 θiYi)w√
1 + ‖w‖2

,
expp(

∑7
i=1 θiYi)√

1 + ‖w‖2

)
∈ S

15.

This parametrizes the set � = {(x, y) ∈ S
15, y �= 0,

y
‖y‖ �= q} where q denotes the

antipodal point to p.

A key property of those coordinates is that since the octonionic multiplication is

alternating one has for the submersion π : S15 → OP
1

π

(
expp(

∑7
i=1 θiYi)w√

1 + ‖w‖2
,

expp(
∑7

i=1 θiYi)√
1 + ‖w‖2

)
= w.

Thus θ1, · · · , θ7 are fiber coordinates for the octonionic Hopf fibration.

The fiber S7 and the base space OP
1 are both rank one symmetric spaces (since isometric

to spheres), thus are two point homogeneous spaces (see chapter 3 in [9]). As a consequence,

the heat kernel will actually only depend on two coordinates: a radial coordinate on S
7 and

a radial coordinate on OP
1. We can make this precise as follows.

ψ

(
expp(

∑7
i=1 θiYi)w√

1 + ‖w‖2
,

expp(
∑7

i=1 θiYi)√
1 + ‖w‖2

)
= (r, η) ,

where r = arctan ‖w‖ ∈ [0, π/2), η = ‖θ‖ ∈ [0, π).

The variable r can be interpreted as the Riemannian distance on OP
1 from the point

w = 0. The variable η can be interpreted as the Riemannian distance from p on S
7. We note

that, geometrically, the boundary of � corresponds to the boundary values r = π/2, η = π .

We denote by D the space and smooth and compactly supported functions on [0, π/2)×
[0, π). Then the radial part of L is defined as the operator L̃ such that for any f ∈ D, we

have

L(f ◦ ψ) = (L̃f ) ◦ ψ .
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We now compute L̃ in cylindric coordinates.

Proposition 1 The radial part of the sub-Laplacian on S
15 is given in the coordinates (r, η)

by the operator

L̃ =
∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r
+ tan2 r

(
∂2

∂η2
+ 6 cot η

∂

∂η

)
. (3.1)

Proof The idea is to compute first the radial part 
̃S15 of the Laplace-Beltrami operator on

S
15 and then use the fact that L = 
S15 −
V . Since the octonionic Hopf fibration defines a

totally geodesic submersions with base space OP
1 and fiber S7, the Riemannian metric gS15

on S
15 is locally given by a warped metric gS7 ⊕fgOP1 between the Riemannian metric gOP1

of OP
1 and the Riemannian metric gS7 on S

7, where f is a smooth and positive function on

S
7; See 9.11 in [10] for a discussion of warped products in the context of submersions.

As Riemannian manifolds, OP
1 and S

7 are compact rank one symmetric spaces. General

formulas for the radial parts of Laplacians on rank one symmetric spaces are well-known

(for example, see for instance chapter 3 in [9], but also p171 in [17] and [18]). In particular,

the radial part of the Laplace-Beltrami operator on OP
1 is

∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r

and the radial part of the Laplace-Beltrami operator on S
7 is

∂2

∂η2
+ 6 cot η

∂

∂η
.

We note that OP
1 is isometric to the 8-dimensional sphere with radius 1/2 and, thanks to

the identity cot r − tan r = 2 cot(2r) the Laplace-Beltrami operator on OP
1 might also, if

needed, be written as

∂2

∂r2
+ 14 cot(2r)

∂

∂r
.

One deduces that


̃S15 =
∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r
+ g(r)

(
∂2

∂η2
+ 6 cot η

∂

∂η

)

for some function g to be computed. One can compute g by observing that on S
15 the

Riemannian distance δ from the point with octonionic coordinates (0, 1) = (0, p) ∈ O
2 to

the point (
expp(

∑7
i=1 θiYi)w√

1 + ‖w‖2
,

expp(
∑7

i=1 θiYi)√
1 + ‖w‖2

)

is given by

cos δ = cos r cos η

because the right and left hand side of the above equality are both the 9th Euclidean

coordinate of (
expp(

∑7
i=1 θiYi)w√

1 + ‖w‖2
,

expp(
∑7

i=1 θiYi)√
1 + ‖w‖2

)
,

since
cos η√

1 + ‖w‖2
=

cos η
√

1 + tan2 r
= cos r cos η.
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From the formula for the radial part of Laplacian on S
15 starting from the north pole, we

can compute


̃S15(cos δ) =
(

∂2

∂δ2 + 14 cot δ ∂
∂δ

)
cos δ

= −15 cos δ.

Using the other representation of 
̃S15 , one deduces
(

∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r
+ g(r)

(
∂2

∂η2
+ 6 cot η

∂

∂η

))
cos r cos η = −15 cos r cos η.

After a straightforward computation, this yields g(r) = 1
cos2 r

and therefore


̃S15 =
∂2

∂r2
+ (7 cot r − 7 tan r)

∂

∂r
+

1

cos2 r

(
∂2

∂η2
+ 6 cot η

∂

∂η

)
.

Finally, to conclude, one notes that the sub-Laplacian L is given by the difference between

the Laplace-Beltrami operator of S15 and the vertical Laplacian. Therefore,

L̃ = 
̃S15 −
(

∂2

∂η2 + 6 cot η ∂
∂η

)

= ∂2

∂r2 + (7 cot r − 7 tan r) ∂
∂r

+ tan2 r
(

∂2

∂η2 + 6 cot η ∂
∂η

)
.

Remark 2 As a consequence of the previous result, we can check that the Riemannian mea-

sure of S15 in the coordinates (r, η), which is the symmetric and invariant measure for L̃ is

given by

dμ =
56π7

�(8)
sin7 r cos7 r sin6 ηdrdη, (3.2)

where the normalization constant is chosen in such a way that

∫ π

0

∫ π
2

0

dμ = Vol(S15) =
2π8

�(8)
.

4 Spectral Expansion of the Subelliptic Heat Kernel

In this section, we derive the spectral decomposition of the subelliptic heat kernel of the heat

semigroup Pt = etL issued from the north pole (i.e. the point with octonionic coordinates

(0, p) = (0, 1) ∈ O
2). Notice that due to the cylindric symmetry, the heat kernel that we

denote pt (r, η) will only depend on the coordinates (r, η). We first prove the following

spectral expansion theorem.

We will need the Jacobi polynomial

P
3,m+3
k (x) =

(−1)k

2kk!(1 − x)3(1 + x)m+3

dk

dxk
((1 − x)k+3(1 + x)m+3+k).

Proposition 3 For t > 0, r ∈ [0, π
2
), η ∈ [0, π), the subelliptic kernel is given by

pt (r, η) =
∞∑

m=0

∞∑

k=0

αk,mhm(η)e−4(2m+k(k+m+7))t (cos r)mP
3,m+3
k (cos 2r),
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where αk,m = 96
π8 (m + 3)(2k + m + 7)

(
k + m + 6

k + m + 3

) (
m + 5

m

)
, and

hm(η) =
�(7/2)
√

π�(3)

∫ π

0

(cos η +
√

−1 sin η cos ϕ)
m

sin5 ϕdϕ

is the normalized eigenfunction of 
̃S7 = ∂2

∂η2 + 6 cot η ∂
∂η

which is associated to the

eigenvalue −m(m + 6).

Proof We expand pt (r, η) in spherical harmonics as follows,

pt (r, η) =
∞∑

m=0

hm(η)φm(t, r),

where hm(η) is the eigenfunction of 
̃S7 = ∂2

∂η2 + 6 cot η ∂
∂η

which is associated to the

eigenvalue −m(m + 6). More precisely, hm(η) is given by

hm(η) =
�(7/2)
√

π�(3)

∫ π

0

(cos η +
√

−1 sin η cos ϕ)
m

sin5 ϕdϕ

(for example, see proposition 9.4.4 in [14]).

To determine φm, we use ∂
∂t

pt = L̃pt , and find

∂φm

∂t
=

∂2φm

∂r2
+ (7 cot r − 7 tan r)

∂φm

∂r
− m(m + 6)tan2 rφm.

Let φm := e−8mt (cos r)mψm. This substitution gives

∂ψm

∂t
=

∂2ψm

∂r2
+ (7 cot r − (2m + 7) tan r)

∂ψm

∂r
.

Letting ψm(t, r) := gm(t, cos 2r). Then the previous equation becomes

∂gm

∂t
= 4(1 − x2)

∂2gm

∂x2
+ 4((m − (m + 8)x)

∂gm

∂x
.

We get
∂gm

∂t
= 4�m(gm), where

�m = (1 − x2)
∂2

∂x2
+ ((m − (m + 8)x)

∂

∂x
.

Note that the equation

�m(gm) + k(k + m + 7)gm = 0

is a Jacobi differential equation for all k ≥ 0. We denote the eigenvector of �m

corresponding to the eigenvalue −k(k + m + 7) by P
3,m+3
k (x), which is given by

P
3,m+3
k (x) =

(−1)k

2kk!(1 − x)3(1 + x)m+3

dk

dxk
((1 − x)k+3(1 + x)m+3+k).

(for the details about Jacobi differential equations, for example, see [11], appendix in [6]

and the references therein for further details). At the end we can therefore write the spectral

decomposition of pt as

pt (r, η) =
∞∑

m=0

∞∑

k=0

αk,mhm(η)e−4(k(k+m+7)+2m)t cosm rP
3,m+3
k (cos 2r).

where the constants αk,m’s have to be determined by considering the initial condition.
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Note that ((1 + x)
m+3

2 P
3,m+3
k (x))k≥0 is a complete orthogonal basis of the Hilbert space

L2([−1, 1], (1 − x)3dx), more precisely
∫ 1

−1

P
3,m+3
k (x)P

3,m+3
l (x)(1 − x)3(1 + x)m+3dx

=
2m+7

2k + m + 7

�(k + 4)�(k + m + 4)

�(k + m + 7)�(k + 1)
δkl .

On the other hand, (hm(η))m≥0 are the eigenfunctions of the self adjoint operator 
̃S7

and thus form a complete orthonormal basis of L2([0, π ], (sin η)6dη).

Thus, using the fact that
(

1+cos 2r
2

)1/2
= cos r , for a smooth function f (r, η), we can

write

f (r, η) =
∞∑

m=0

∞∑

k=0

βk,mhm(η) cosm rP
3,m+3
k (cos 2r)

where the βk,m’s are constants. We obtain then

f (0, 0) =
∞∑

m=0

∞∑

k=0

βk,mP
3,m+3
k (1)

and we observe that P
3,m+3
k (1) =

(
3 + k

k

)
. From Eq. 4.2, the measure dμ is given in

cylindric coordinates by

dμ =
56π7

�(8)
(sin r)7(cos r)7(sin η)6drdη.

Moreover, we have

∫ π

0

∫ π
2

0

pt (r, η)f (−r, −η)dμ

=
56π7

�(8)

∞∑

m=0

∞∑

k=0

αk,mβk,me−4(k(k+m+7)+2m)t

∫ π

0

hm(η)2 sin6 ηdη

×
∫ π

2

0

(cos r)2m+7P
3,m+3
k (cos(2r))

2
(sin r)7dr

=
56π7

�(8)

∞∑

m=0

∞∑

k=0

αk,mβk,me−4(k(k+m+7)+2m)t

2k + m + 7
×

√
π�(7/2)

�(4)

6!m!
(m + 5)!

�(k + 4)�(k + m + 4)

�(k + m + 7)�(k + 1)
.

Above, we used ∫ π

0

hm(η)2 sin6 ηdη =
√

π�(7/2)

�(4)(2m + 6)

6!m!
(m + 5)!

,

(for example, see the Corollary 9.4.3 in [14]).

From

lim
t→0

∫ π

0

∫ π
2

0

ptf dμ = f (0, 0),

we obtain the desired term αk,m = 96
π8 (m + 3)(2k + m + 7)

(
k + m + 6

k + m + 3

)(
m + 5

m

)
and

the proof is over.

As an immediate corollary for the spectral expansion of the heat kernel, one obtains the

spectrum of the sub-Laplacian.
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Corollary 4 The spectrum of −L is given by {4(k(k + m + 7) + 2m) : m, k ≥ 0} and its

first non zero eigenvalue is 8.

Remark 5 One can compare the spectrum of L of the octonionic 15-dimensional sphere

with the spectrum of the sub-Laplacian of the 9-dimensional CR-sphere

S
1 → S

9 → CP
4,

and the spectrum of the sub-Laplacian of the 11-dimensional quaternionic-sphere

SU
2 → S

11 → HP
2,

which are given in [4] and [1] respectively:

{4(k(k + m + 4) + 2m) : m, k ≥ 0}

{4(k(k + m + 5) + 2m) : m, k ≥ 0}.

Proposition 6 Let p
Q
t and pt denote the subelliptic heat kernels on the 11-dimensional

quaternionic sphere S
11 and the 15-dimensional octonionic sphere S

15 respectively. Then

for r ∈ [0, π
2
), η ∈ [0, π),

pt (r, η) =
144e16t

π2 cos2 r

(
1

sin2 η

∂2

∂η2
p

Q
t −

cos η

sin3 η

∂

∂η
p

Q
t

)
. (4.1)

Proof From the Rodrigues formula (for example, see the proposition 9.4.1 in [14]), one can

verify that

1

8

(
1

sin2 η

∂2

∂η2
−

cos η

sin3 η

∂

∂η

)
sin(m + 1)η

sin η
=

(
m + 3

m − 2

)
hm−2(η). (4.2)

On the other hand, from [1], on the 11-dimensional quaternionic sphere S11, the spectral

decomposition of the quaternionic subelliptic heat kernel p
Q
t (r, η) is known:

p
Q
t (r, η) =

∞∑

m=0

∞∑

k=0

βk,me−4(k(k+m+5)+2m)t sin(m + 1)η

sin η
cosm rP

3,m+1
k (cos 2r),

where

βk,m =
�(4)

2π6
(2k + m + 5)(m + 1)

(
k + m + 4

k + m + 1

)
.

Note that the octonionic subelliptic heat kernel pt (r, η) in the previous proposition which

was given by:

pt (r, η) =
∞∑

m=0

∞∑

k=0

αk,mhm(η)e−4(k(k+m+7)+2m)t cosm rP
3,m+3
k (cos 2r),

where αk,m = 96
π8 (m + 3)(2k + m + 7)

(
k + m + 6

k + m + 3

) (
m + 5

m

)
.

From those two expressions of the heat kernels with Eq. 4.2, we can easily deduce that

pt (r, η) =
144e16t

π2 cos2 r

(
1

sin2 η

∂2

∂η2
p

Q
t −

cos η

sin3 η

∂

∂η
p

Q
t

)
.
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5 Integral Representation of the Subelliptic Heat Kernel

Since L̃ = 
̃S15 − 
̃S7 , and L̃ commutes with 
̃S7 we formally have

etL̃ = e−t
̃
S7 et
̃

S15 .

If we denote by qt the heat kernel of the heat semigroup et
̃
S15 , then the subelliptic heat

kernel pt (r, η) can be obtained by applying the heat semigroup e−t
̃
S7 on qt , i.e.

pt (r, η) = (e−t
̃
S7 qt )(r, η).

Thus once one knows an integral expression of the heat semigroup e−t
̃
S7 , then one can

deduce the integral representation of pt (r, η). Now we have the Proposition 6, thus we can

deduce the integral representation of subelliptic heat kernel pt (r, η) on S
15 from the integral

representation of the quaternionic subelliptic heat kernel p
Q
t (r, η) on S

11. We now make

those heuristic considerations precise.

Let qt be the Riemannian radial heat kernel on S
11. For later use, we record here that:

(1) The spectral decomposition of qt is given by

qt (cos δ) =
�(5)

2π6

∞∑

m=0

(m + 5)e−m(m+10)tC5
m(cos δ),

where δ is the Riemannian distance from the north pole and

C5
m(x) =

(−1)m

2m

�(m + 10)�( 15
2

)

�(10)�(m + 1)�(m + 11
2

)

1

(1 − x2)
5
2

dm

dxm
(1 − x2)m+9/2

is a Gegenbauer polynomial.

(2) Another well known expression (see (3.7) in [4]) of qt (cos δ) which is useful for the

computation of small-time asymptotics is the formula

qt (cos δ) = e25t

(
−

1

2π sin δ

∂

∂δ

)5

V, (5.1)

where V (t, δ) = 1√
4πt

∑
k∈Z e− (δ−2kπ)2

4t .

Proposition 7 For r ∈ [0, π
2
), η ∈ [0, π), we have:

pt (r, η) =
36e15t

π2
√

πt cos2 r

∫ ∞

0

gt (η, y)

t2
e− y2−η2

4t qt (cos r cosh y) sinh ydy, (5.2)

where

gt (η, y) = csc3(η)
(
cos

( ηy
2t

)
2y(η − 3t cot η)

+ sin
( ηy

2t

) (
8t2 cot2 η + 4t2 csc2 η − 6tη cot η + 2t + η2 − y2

))
.

Proof Note that because of the rapid decay of the integrand and thanks to formula Eq. 5.1,

we can differentiate under the integral sign. Now from the Proposition 6, we know

pt (r, η) =
144e16t

π2 cos2 r

(
1

sin2 η

∂2

∂η2
p

Q
t −

cos η

sin3 η

∂

∂η
p

Q
t

)
.
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From the proposition 2.7 in [5], we have

p
Q
t (r, η) =

e−t

√
πt

∫ ∞

0

sinh y sin
ηy
2t

sin η
e− y2−η2

4t qt (cos r cosh(y)dy,

Plugging in those two ingredients gives the desired result.

6 The Green Function of the Operator−L + 40

An interesting consequence of the Proposition 6 is the exact computation of the Green

function of the operator −L + 40.

Proposition 8 For r ∈ [0, π
2
), η ∈ [0, π), the Green function of the operator −L + 40 is

given by:

G(r, η) =
1

π8

1728
(
−2 cos r cos η + cos2 r + 1

)5
.

Proof From the Theorem 2.9 in [5], in the case of S11 one has
∫ ∞

0

p
Q
t (r, η)e−24tdt =

1

4π6(1 − 2 cos r cos η + cos2 r)3
.

Using Eq. 4.1, tedious computations then yield
∫ ∞

0

pt (r, η)e−40tdt =
1

π8

1728
(
−2 cos r cos η + cos2 r + 1

)5
.

Remark 9 A similar computation for the complex Hopf fibration on the sphere S2n+1 yields

the Green function of the operator −L + n2, see Proposition 3.4 in [4]. The operator −L +
n2 is the conformal sub-Laplacian on S

2n+1, see [15] and also Theorem 2.1 in [24] for

its relation to the sub-Laplacian of the Heisenberg group. In our case of the octonionic

fibration, it would be interesting to interpret −L + 40 as a “conformal octonionic” sub-

Laplacian. In particular, study its relation to the sub-Laplacian on the octonionic Heisenberg

group and interpret the number 40. We let this for possible further research.

7 Heat Kernel Small-Time Asymptotics

Another advantage of the integral representation Eq. 5.2 is to deduce the small time asymp-

totics of the subelliptic heat kernel pt . The keypoint is to use the representation Eq. 5.2 and

the exact formula Eq. 5.1 for qt which provide uniform estimates for the remainder terms at

any order.

The methods to obtain the exact asymptotics are relatively similar to the methods used in

[2, 4, 5], so we will omit some of the technical justifications. Those methods, in particular

the use of steepest descent method, originally go back to [7] who thoroughly studied the

case of the subelliptic heat kernel on the Heisenberg group. Justifications are also written in

great details for the sub-Laplacian of the complex Hopf fibration in section 6 of [16].
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We first note the following uniform small time asymptotics for the Riemannian heat

kernel on S
11 that follows from Eq. 5.1 by keeping from V only the term corresponding to

k = 0:

qt (cos δ) =
1

(4πt)11/2

(
δ

sin δ

)5

e− δ2

4t

(
1 +

(
25 −

20(sin δ − δ cos δ)

δ2 sin δ

)
t + t2R1(t, δ)

)
.

The term R1(t, δ) is uniformly bounded when t → 0 on any interval δ ∈ [0, π − ε],
0 < ε < π . We also deduce from Eq. 5.1 the uniform small time asymptotics

qt (cosh δ) =
1

(4πt)11/2

(
δ

sinh δ

)5

e
δ2

4t

(
1 +

(
25 +

20(sinh δ − δ cosh δ)

δ2 sinh δ

)
t + t2R2(t, δ)

)
.

(7.1)

The term R2(t, δ) is uniformly bounded when t → 0 on [0,+∞).

By applying Eq. 5.2, one can then deduce the small time asymptotics of the subelliptic

heat kernel.

Proposition 10 When t → 0,

pt (0, 0) =
3

5 × 212π8t11
(A + Bt + O(t2)),

where

A =
∫ ∞

0 y5
(

y
sinh y

)5
dy,

B = 20
∫ ∞

0

(
y5

(
2 + sinh y−y cosh y

y2 sinh y

)
− y3

) (
y

sinh y

)5
dy.

Proof From Eq. 5.2, we have

pt (0, 0) =
36e15t

π2
√

πt

∫ ∞

0

gt (0, y)

t2
e− y2

4t qt (cosh y) sinh ydy,

where
gt (0,y)

t2 is given by

y
(
64t4 + 120t3 − 20t2

(
y2 − 3

)
− 20ty2 + y4

)

120t5
. (7.2)

Plug in Eq. 7.1, we have that

pt (0, 0) =
9e15t

29π8t6

∫ ∞

0

gt (0, y)

t2

(
y

sinh y

)5 (
1 +

(
25 +

20(sinh y − y cosh y)

y2 sinh y

)
t

)
dy + O(t−9).

Thus we obtain the small time asymptotic as follows:

pt (0, 0) =
3

5 × 212π8t11
(A + Bt + O(t2)),

where A,B are constants as stated in the proposition.

The small time behavior of the subelliptic heat kernel on the vertical cut-locus, namely

the points (0, η) that can be achieved by flowing along vertical vector fields is quite

different. We can deduce it is by differentiating the small time estimate of p
Q
t (0, η).

Proposition 11 For η ∈ (0, π), t → 0,

pt (0, η) =
3

π3214t11
e− η(−η+2π)

4t csc5 η
(
η3

(
−η3 + 3πη2 − 3π2η + π3)(1 − cos 2η

)
+ O(t)

)
.
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Proof From Eq. 4.1, one has

pt (0, η) =
192e16t

π2

(
1

sin2 η

∂2

∂η2
p

Q
t (0, η) −

cos η

sin3 η

∂

∂η
p

Q
t (0, η)

)
.

Now, from the proofs of proposition 3.7 in [4] and proposition 2.11 in [5] one can see that

p
Q
t (0, η) =

1

3π215t9 sin η
(π − η)η3e− 2πη−η2

4t (1 + tR(t, η)),

where the remainder term R(t, η) satifies

sup
t∈[0,1]

sup
η∈K

(|R(t, η)| + |∂ηR(t, η)| + |∂2
ηR(t, η)|) < +∞.

where K is any compact subset of (0, π). Then, the computation gives the result.

For last two propositions, we will apply the Laplace method and the steepest descent

method.

Proposition 12 For r ∈ (0, π
2
), we have

pt (r, 0) ∼t→0
9

29

1

(πt)15/2 cos2 r
e− r2

4t

( r

sin r

)5
(

1

1 − r cot r

)7/2

.

Proof By Eq. 5.2, we have

pt (r, 0) =
36e15t

π2
√

πt cos2 r

∫ ∞

−∞

gt (0, y)

t2
e− y2

4t qt (cos r cosh y) sinh ydy,

where
gt (0,y)

t2 is given by Eq. 7.2 and qt is the Riemannian heat kernel on S
11. By plugging

in Eq. 7.1, we obtain that

pt (r, 0) ∼t→0
135

128π8 cos2 r

1

t11
(J1(t) + J2(t)),

where

J1(t) =
∫

cosh y≤ 1
cos r

e− y2+(arccos(cos r cosh y))2

4t
gt (0, y)

t2

⎛
⎜⎝

arccos(cos r cosh y)√
1 − cos2 r cosh2 y

⎞
⎟⎠

5

sinh ydy,

and

J2(t) =
∫

cosh y≥ 1
cos r

e− y2−(cosh−1(cos r cosh y))2

4t
gt (0, y)

t2

⎛
⎜⎝

cosh−1(cos r cosh y)√
cos2 r cosh2 y − 1

⎞
⎟⎠

5

sinh ydy,

The idea is to analyze J1(t) and J2(t) by Laplace method. Furthermore, since we are inter-

ested in the asymptotic behavior when t → 0, it suffices to consider the dominant term of
gt (0,y)

t2 only, which is
y5

120
.

Notice that in [− cosh−1( 1
cos r

), cosh−1( 1
cos r

)], f (y) = y2 + (arccos(cos r cosh y))2 has

a unique minimum at y = 0, where

f ′′(0) = 2(1 − r cot r).
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Hence by Laplace method, we can easily obtain that

J1(t) ∼t→0 240
√

πe− r2

4t

( r

sin r

)5
(

1

1 − r cot r

)7/2

t7/2.

On the other hand, on (−∞,− cosh−1( 1
cos r

)) ∪ (cosh−1( 1
cos r

),∞), the function y2 −
(cosh−1(cos r cosh y))2 has no minimum, which implies that J2(t) is negligible with respect

to J1(t) in small t . This finishes the proof.

For the case (r, η) with r �= 0, the Laplace method no longer works, we need to use the

steepest descent method.

Proposition 13 Let r ∈ (0, π
2
), η ∈ [0, π). Then when t → 0,

pt (r, η) ∼t→0
9 sin ϕ(r, η)

29(πt)15/2

(
η2 + ϕ(r, η)2

)

sin3 η cos2 r sin r

(arccos u(r, η))5

√
1 − u(r,η) arccos u(r,η)√

1−u2(r,η)

e
− (ϕ(r,η)+η)2 tan2 r

4t sin2(ϕ(r,η))

(1 − u2(r, η))2

(7.3)

where u(r, η) = cos r cos ϕ(r, η) and ϕ(r, η) is the unique solution in [0, π ] to the equation

ϕ(r, η) + η = cos r sin ϕ(r, η)
arccos(cos ϕ(r, η) cos r)√

1 − cos2 r cos2 ϕ(r, η)
. (7.4)

Proof From the Proposition 7, we can rewrite

pt (r, η) =
8e15t

3(πt)2.5 cos2 r sin3 η

∫ ∞

−∞
lt (η, y)qt (cos r cosh y) sinh ydy,

where lt (η, y) is given by

e
(η+iy)2

4t

(
y(η − 3t cot η) +

1

2i
(8t2 cot2 η + 4t2 csc2 η − 6tη cot η + 2t + η2 − y2)

)

+e
(η−iy)2

4t

(
y(η − 3t cot η) −

1

2i
(8t2 cot2 η + 4t2 csc2 η − 6tη cot η + 2t + η2 − y2)

)
.

Since we consider when t → 0, we only need to consider the dominant terms of lt (η, y),

thus we may assume that lt (η, y) can be written as

e− (y−iη)2

4t

(
yη +

1

2i
(η2 − y2)

)
+ e− (y+iη)2

4t

(
yη −

1

2i
(η2 − y2)

)
.

Hence we obtain that

pt (r, η) ∼t→0
3

28π8t8
(A + B),

where

A =
∫ ∞

−∞

sinh y

cos2 r sin3 η

(
yη +

1

2i
(η2 − y2)

)
e− (y−iη)2+(arccos(cos r cosh y))2

4t

⎛
⎜⎝

arccos(cos r cosh y)√
1 − cos2 r cosh2 y

⎞
⎟⎠

5

dy,

and

B =
∫ ∞

−∞

sinh y

cos2 r sin3 η

(
yη −

1

2i
(η2 − y2)

)
e− (y+iη)2+(arccos(cos r cosh y))2

4t

⎛
⎜⎝

arccos(cos r cosh y)√
1 − cos2 r cosh2 y

⎞
⎟⎠

5

dy.
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For the small time asymptotic of B: By applying the steepest descent method, we can

constraint the integral on the strip |Re(y)| < cosh−1( 1
cos r

) where, due to the result in [4]

(Lemma 3.9),

f (y) = (y + iη)2 + (arccos(cos r cosh y))2

has a critical point at iϕ(r, η), where ϕ(r, η) is the unique solution in [0, π ] to the Eq. 7.4

and

f ′′(iϕ(r, η)) =
2 sin2 r

1 − u(r, η)2

(
1 −

u(r, η) arccos u(r, η)√
1 − u2(r, η)

)

is positive, where u(r, η) = cos r cos ϕ(r, η). Note that

f (iϕ(r, η)) = (−ϕ(r, η) + η)2 + arccos2(cos r cos ϕ(r, η))

= (ϕ(r, η) + η)2
(
−1 + 1−cos2 r cos2 ϕ(r,η)

cos2 r sin2 ϕ(r,η)

)
= (ϕ(r, η) + η)2 tan2 r

sin2 ϕ(r,η)
.

Thus for a sufficiently small t > 0, B has the following estimates:

B ∼t→0

√
4πt sin ϕ(r, η)

cos2 r sin r sin3 η

(
ϕ(r, η)η +

1

2
(η2 + ϕ(r, η)2

)
(arccos u(r, η))5

√
1 − u(r,η) arccos u(r,η)√

1−u2(r,η)

e
− (ϕ(r,η)+η)2 tan2 r

4t sin2(ϕ(r,η))

(1 − u2(r, η))2
.

To estimate A, we denote

g(y) = (y − iη)2 + (arccos(cos r cosh y))2.

Then easy computations show that g(y) has a critical point at −iϕ(r, η) where ϕ(r, η) is as

described in Eq. 7.4. Thus

A ∼t→0 −
√

4πt sin ϕ(r, η)

cos2 r sin r sin3 η

(
ϕ(r, η)η −

1

2
(η2 + ϕ(r, η)2

)
(arccos u(r, η))5

√
1 − u(r,η) arccos u(r,η)√

1−u2(r,η)

e
− (ϕ(r,η)+η)2 tan2 r

4t sin2(ϕ(r,η))

(1 − u2(r, η))2
.

By putting A ∼t→0 and B ∼t→0 together, we obtain Eq. 7.3.

Remark 14 In proposition 13, if we let η = 0, then the Eq. 7.4 has a unique solution at

ϕ = 0 and

lim
η→0

ϕ(r, η)

η
= −

1

1 − r cot r
.

Thus Eq. 7.3 gives that

pt (r, 0) ∼t→0
9

29

1

(πt)15/2 cos2 r
e− r2

4t

( r

sin r

)5
(

1

1 − r cot r

)7/2

which agrees with the result in proposition 12.

Remark 15 By symmetry, the sub-Riemannian distance from the north pole to any point on

S
15 only depends on r and η. If we denote it by d(r, η), then from the previous propositions,

using the fact that from [19, 20] one has

d2(r, η) = − lim
t→0

4t ln pt (r, η),

one deduces:

(1) For η ∈ [0, π),

d2(0, η) = 2πη − η2.
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(2) For η ∈ [0, π), r ∈ [0, π
2
),

d2(r, η) =
(ϕ(r, η) + η)2 tan2 r

sin2(ϕ(r, η))
.

(3) For r ∈ [0, π
2
),

d(r, 0) = r .

In particular, the sub-Riemannian diameter of S15 is π .
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