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Abstract

We study the sub-Laplacian of the 15-dimensional unit sphere which is obtained by lifting
with respect to the Hopf fibration the Laplacian of the octonionic projective space. We
obtain in particular explicit formulas for its heat kernel and deduce an expression for the
Green function of a related sub-Laplacian. As a byproduct we also obtain the spectrum of
the sub-Laplacian, the small-time asymptotics of the heat kernel and explicitly compute the
sub-Riemannian distance.
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1 Introduction
R. Escobales proved in [12] that, up to equivalence, the only Riemannian submersions with
connected totally geodesic fibers from a unit sphere are given by:
1. The complex Hopf fibrations:

Sl s SZ?H—I — CP".
2. The quaternionic Hopf fibrations:

S* — s — HP".
3. The octonionic Hopf fibration:

S’ — s — opP'.
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The thorough study of the horizontal Laplacians and associated heat kernels of the com-
plex and quaternionic Hopf fibrations was respectly done in [4] and [5]. The main goal of
the present paper is to complete the picture and study the geometry, the horizontal Laplacian
and the horizontal heat kernel of the octonionic Hopf fibration which is the only remaining
case (3).

The horizontal Laplacian of the fibration is the lift on S' of the Laplace-Beltrami oper-
ator of QP! which is isometric to Sg(%), see Theorem 3.5 in [12]. However, unlike the
submersion S?**! — CP" and the submersion S**3 — HP" which have been considered
in [4] and [5], the fibre S7 does not admit a Lie group structure, it seems therefore non-
trivial to obtain the explicit description of horizontal Laplacian L following the methods of
[4] and [5]. This horizontal Laplacian also appears as the sub-Laplacian of a canonical H-
type sub-Riemannian structure on S'%, see Table 3 in [3]. For this reason, in the sequel the
horizontal Laplacian will also be referred to as the sub-Laplacian.

Let us briefly describe our main results. Due to the cylindrical symmetries of the fibra-
tion, the heat kernel of the sub-Laplacian only depends on two variables: the variable r
which is a radial coordinate on OP! and the variable 5 which is a radial coordinate on the
fiber S7. We prove that in these coordinates, the radial part of the sub-Laplacian writes

2 3 , (9 6 3
32 + (7cotr — 7tanr)5 + tan“ r (87172 + cotna) .
As a consequence of this expression for the sub-Laplacian, we are able to derive two
expressions for the heat kernel:
(1) A Minakshisundaram-Pleijel spectral expansion: For r € [0, %), n € [0, ), we have:

o0

o) Zi I'(7/2) /”( /s sin od
pe\r,n) = Okom ——— A7 cos1n —Isinncosy) sin” pde,
0 k=0 Va3 Jo

o~ BmAAkAmED L om rP;,m+3 (cos 27),

_ 9% k+m+6Y\(m+5
whereak,m—ﬂg(m+3)(2k+m+7)(k+m+3)( m and
B (_ 1 )k dk (
2Kk = x)3(1 4 xS dok
is a Jacobi polynomial. In particular, the spectrum of —L is given by

P]g,m+3(x) (1 _ x)k+3(1 +x)m+3+k)

{4k(k +m +7) +8m :m, k > 0).

This spectral expansion is useful to study the long-time behavior of the heat kernel but
might be difficult to use in the study of small-time asymptotics. In order to derive small-time
asymptotics of the heat kernel, we give another analytic expression for p; (r, n).

(2) An integral representation:

For r € [0, %), n € [0, ), we have:

48815[ 00 , V2 )
— ool / 8 (;]2 y) e~ g:(cosr cosh y) sinh ydy,
0

[(1 ’ ”)
p 2

&M, y) = csc®(n) (cos (B) 2y(n — 3t cotn)
+ sin () (8¢% cot? n + 412 csc? n — 6ty cotn + 21 + n* — y?)).
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and ¢; is the Riemannian heat kernel on S!'. We obtain this formula by comparing the
subelliptic heat kernel of the sub-Laplacian associated to the quaternionic Hopf fibration.
From this formula we are able to deduce the fundamental solution of the operator — L + 40;
It is given in cylindrical coordinates by

C
G(r,m) =

(—=2cosrcosn +cos?r + 1)57

where C > 0 is an explicit constant.

Furthermore, we also derive three different behaviors of the small-time asymptotics of
the heat kernel: on the diagonal, on the vertical cut-locus, and outside of the cut-locus. As
an interesting by-product of this small-time asymptotics we obtain an explicit formula for
the sub-Riemannian distance on the octonionic unit sphere. In particular, we obtain that the
sub-Riemannian diameter of the octonionic fibration is given by 7.

2 Preliminary: The geometry of the Octonionic Hopf Fibration

In this section, we describe the octonionic Hopf fibration. We refer to [21] for additional
and complementary details.

We consider the non-associative (but alternative) division algebra of octonions which is
described by

7
0= x:ijej,xjeR ,
j=0

where the multiplication rules are given by
ejej =¢€j ifi = 0,
eiej =¢;if j =0,
eiej = —d;jep + €;jrex otherwise,
where §;; is the Kronecker delta and ¢; . is the completely antisymmetric tensor with value

1 when ijk = 123, 145, 176, 246, 257, 347, 365.
The octonionic norm is defined for x € O by

7
2 2
x> =) x7.
j=0

The unit sphere in Q7 is given by
S = {(x, ) € O lxI* + [IylI* = 1.

We have a Riemannian submersion 7 : S — QP!, given by (x, y) — [x : y], where
[x : y] = y~'x. Then the vertical distribution V' and the horizontal distribution H of TS!3
are defined by kerdm and the orthogonal complement of V respectively so that TS!® =
H & V. Note that 7 : S — OP! has totally geodesic fibers, and for each b € OP!, the
fiber 7 =1 ({b}) is isometric to S7 with the standard sphere metric gg7.

This submersion 7 yields the octonionic Hopf fibration:

S7 < s — OP!.

The submersion 7 also yields an H-type foliation structure in the sense of [3] and thus
S'3 carries a sub-Riemannian structure inherited from this foliation.
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In addition to the octonionic Hopf fibration
S’ — s — op!
that is considered in this paper, on S'> one can also consider the complex Hopf fibration
s! < s15 _, cp?
and the quaternionic one
S* s — HP?.

Similarly to the projection of fibration procedure explained in Section 3.1 in [5], this
would potentially yield two commutative diagrams:

Sl
Y
S7 Sto oP!
Y
Ccp? CP’
and
83
S7 _ 815 _ @Pl
Y
HP! HP?

However, unlike the quaternionic case [5], those diagrams actually do not exist. Indeed, in
the first diagram the submersion

CP’ — OP!
does not exist, see [23] and [22] page 258. In the second diagram the submersion
HP? — OP!

does not exist, see [23] and [13].
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3 Cylindric Coordinates and Radial Part of the Sub-Laplacian

The geometry of the octonionic Hopf fibration shares many properties with the geometry of
the complex and quaternionic Hopf fibration. Similarly, the analysis of the octonionic sub-
Laplacian on S parallels the ones of the complex and quaternionic sub-Laplacians which
were undertaken in [4, 5].

The sub-Laplacian L on S!° we are interested in is the horizontal Laplacian of the Rie-
mannian submersion 77 : S — OP!, i.e the horizontal lift of the Laplace-Beltrami operator
of OP!. It can be written as

L =Agi5s — Ay,
where Ay is the vertical Laplacian. Since the fibers of 7 are totally geodesic, we note
that Agis and Ay are commuting operators (see [8]). Since the horizontal distribution of
the octonionic fibration is bracket-generating, L is a hypoelliptic operator. We note that
the sub-Riemannian structure induced by the fibration is even fat; it is actually an H-type
sub-Riemannian structure in the sense of [3], see Remark 2.16 in [3].

To study L, we introduce a set of coordinates that reflect the cylindrical symmetries of
the octonionic unit sphere with respect to the octonionic Hopf fibration. Take local coordi-
nates w € @]P’l\{oo} and (0, ...,67) € S, where w is the inhomogeneous coordinate on
@]P’l\{oo} given by w = y~lx, where x, y € Q. Consider the pole p = (1,0,---,0) € S7,
take Yi, ..., Y7 to be an orthonormal frame of TI,S7 and denote exp » the Riemannian
exponential map at p on S’. Then the cylindrical coordinates we work with are given by

epr(ZZ:] QIYZ)w expp(zzzl 91Y1)> c SIS
V1+ w2 V14 wl?

This parametrizes the set 2 = {(x,y) € SP,y # 0, H%H # q} where ¢ denotes the

antipodal point to p. ’

A key property of those coordinates is that since the octonionic multiplication is
alternating one has for the submersion 7 : S — QP!

. (exp,,@Z:1 0:Yw exp, (3], eim)

(w7 91’ seey 97) H (

VidlwlP T+ wl?
Thus 6y, - - - , 67 are fiber coordinates for the octonionic Hopf fibration.

The fiber S7 and the base space OP' are both rank one symmetric spaces (since isometric
to spheres), thus are two point homogeneous spaces (see chapter 3 in [9]). As a consequence,
the heat kernel will actually only depend on two coordinates: a radial coordinate on S’ and
a radial coordinate on OP'. We can make this precise as follows.

(expp(zl'7=19iYi)w epr(Zz'7=19iYi)> )
. =(r,n),
V14 wl? VI+wl?

where r = arctan ||w|| € [0, 7/2),n = ||| € [0, 7).
The variable r can be interpreted as the Riemannian distance on QP! from the point
w = 0. The variable 5 can be interpreted as the Riemannian distance from p on S7. We note
that, geometrically, the boundary of €2 corresponds to the boundary values r = /2, n = .
We denote by D the space and smooth and compactly supported functions on [0, 7 /2) x
[0, r). Then the radial part of L is defined as the operator L such that for any f € D, we
have

L(foy)=(Lf)oy.
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We now compute L in cylindric coordinates.

Proposition 1 The radial part of the sub-Laplacian on S' is given in the coordinates (r, 1))
by the operator
2

d 32 9
L= 2 +(7cotr—7tanr)—+tan r(W+6cotn£>. (3.1

Proof The idea is to compute first the radial part ASIS of the Laplace-Beltrami operator on
S'5 and then use the fact that L = Agis — Ay. Since the octonionic Hopf fibration defines a
totally geodesic submersions with base space OP! and fiber S’, the Riemannian metric gsis
on S’ is locally given by a warped metric gg7@® fggpt between the Riemannian metric ggp1
of OP'! and the Riemannian metric gg7 on S7, where f is a smooth and positive function on
S7; See 9.11 in [10] for a discussion of warped products in the context of submersions.

As Riemannian manifolds, OP' and S’ are compact rank one symmetric spaces. General
formulas for the radial parts of Laplacians on rank one symmetric spaces are well-known
(for example, see for instance chapter 3 in [9], but also p171 in [17] and [18]). In particular,
the radial part of the Laplace-Beltrami operator on QP! is

2

or 9,2
and the radial part of the Laplace-Beltrami operator on S’ is
2

+ (7 cotr — 7tanr)—

0
6cotn—
g2 Tocog
We note that QP! is isometric to the 8-dimensional sphere with radius 1/2 and, thanks to
the identity cotr — tanr = 2 cot(2r) the Laplace-Beltrami operator on OP! might also, if

needed, be written as
2

2 + 14 cot(2r)—
One deduces that
. 92 82 d
Agis = 32 +(7cotr—7tanr)——|—g(r) +6cotna—
n
for some function g to be computed. One can compute g by observing that on S' the
Riemannian distance § from the point with octonionic coordinates (0, 1) = (0, p) € 0?2 to

the point

(exp,,(z,7=l 0:Yw exp, (3], em))
VI+lwl? VI+w]?

COS 8§ = COS7 COS 1

is given by

because the right and left hand side of the above equality are both the 9th Euclidean

coordinate of
(exp,, Xl 6iYDw exp, (X 0%))
VI+TwZ T+ (wlP
cosn cosn
V1 w2 T VT tand

since

= COSFCOS.
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From the formula for the radial part of Laplacian on S!° starting from the north pole, we
can compute
Agls (coséd) = (% + 14 cotéa%) cosé
= —15cos 4.

Using the other representation of ASIS , one deduces

2

32 3 3
<8 5+ (7cotr — 7tanr)— +g() ( +6cotna—>> cosrcosn = —15cosr cosn.
n

After a straightforward computation, this yields g(r) =
A a2+(7 tr — 7t )8+ ! ” + 6cot 9
5= — cotr —7tanr)— + —— co
S8 = %2 ar | cos2r \ an2 Ton an

Finally, to conclude, one notes that the sub-Laplacian L is given by the difference between
the Laplace-Beltrami operator of S and the vertical Laplacian. Therefore,

L = Asls — (%22 +6COtni)
dz+(7cotr—7tanr)3r+tan r( +600t773,,>
O

Remark 2 As a consequence of the previous result, we can check that the Riemannian mea-
sure of S!3 in the coordinates (r, n), which is the symmetric and invariant measure for L is
given by
5677
INC)
where the normalization constant is chosen in such a way that

//dp, Vol(SlS)_?(TS)

4 Spectral Expansion of the Subelliptic Heat Kernel

diw = sin’ r cos’ r sin® ndrdn, 3.2)

In this section, we derive the spectral decomposition of the subelliptic heat kernel of the heat
semigroup P; = e’ issued from the north pole (i.e. the point with octonionic coordinates
©O,p) =1(0,1) € 0?). Notice that due to the cylindric symmetry, the heat kernel that we
denote p;(r, n) will only depend on the coordinates (r, n). We first prove the following
spectral expansion theorem.

We will need the Jacobi polynomial

(=D a*
2kk1(1 — x)3(1 + x)m+3 dxk

P]g,m+3(x) — ((1 _ x)k+3(1 + x)m+3+k).

Proposition 3 Fort > 0, r € [0, %), n € [0, m), the subelliptic kernel is given by

oo 00

pe(r) =D Y amhm (e CmHEEETED (cos rym PR (cos 2r),
m=0 k=0
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where oty :%(m+3)(2k+m+7)<ii$ig) (m,:l_'s),and

hm(n) = L/Z) /ﬂ (cosn + +/—1sinncos )msin5 d
m(n) = JTT3) Jo n ncosg payp
is the normalized eigenfunction of A 57 = % + 6cotn% which is associated to the

eigenvalue —m(m + 6).

Proof We expand p;(r, n) in spherical harmonics as follows,

o0
pr(rm) =Y hn (g (t, 1),
m=0
where h,,(n) is the eigenfunction of 5;7 = % + 6cotn% which is associated to the
eigenvalue —m(m + 6). More precisely, 4, (n) is given by
a2 [~
JATG) Jo

(for example, see proposition 9.4.4 in [14]).
To determine ¢,,, we use % p: = Lp;, and find

() = (cos ) + ~/—1sinncos p)" sin’ pdg

9 92 9
% - af’z’" + (7cotr — 7tanr) g’r’” — m(m + 6)tan’ re,,.
Let ¢, := e~ %" (cos r)",,. This substitution gives
9 92 9
% = 8;/’2'” + (7cotr — (2m + 7) tanr) gpr’”.

Letting v, (¢, r) := g (¢, cos 2r). Then the previous equation becomes

9gm 2. 9%8m 9gm
E8m 41— xHTEM 4 4(m — (m + 8)x) 2™,
ot (=9 dx? (tn = (m +8)x) ax
We get —35;" =4V, (gm), where

L d
W = (1 =22 + (n = (m + 8)x) .

Note that the equation
Vi (gm) +k(k+m +T)gm =0
is a Jacobi differential equation for all k& > 0. We denote the eigenvector of W,
corresponding to the eigenvalue —k(k + m + 7) by P,? m+3
k k
3,m+3 (=D d k+3 m+3+k
P> = —— (1= 1 :

) = S o oy gk (T AT
(for the details about Jacobi differential equations, for example, see [11], appendix in [6]
and the references therein for further details). At the end we can therefore write the spectral
decomposition of p; as

(x), which is given by

o0 oo
P =D i () EEFmIDEINL cogm - pIME3 (o5 o).
m=0 k=0

where the constants a »,,’s have to be determined by considering the initial condition.
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Note that ((1 + x) P3 m+3 (x))k>0 is a complete orthogonal basis of the Hilbert space
L*([—1, 1], (1 — x)3dx), more precisely

/ 3 ,m+3 (X)P3 m+3(x)(1 x)3(1 + x)m+3dx

2T T+ 4T k+m+4)
T 2k+m+TT(k+m+DLGk+1D
On the other hand, (h,,(n))m>0 are the eigenfunctions of the self adjoint operator AVS7
and thus form a complete orthonormal basis of L%([0, 7], (sin n)éd n).

1/2
Thus, using the fact that (W) = cosr, for a smooth function f(r, n), we can
write

f@rm) = Z Z Bie,mhin () cos™ rP3 3 (cos2r)
m=0 k=0
where the By ,’s are constants. We obtain then

F0.00= "3 BemP" (1)
m=0 k=0
3+k

and we observe that PkS’mH(l) = < X

>. From Eq. 4.2, the measure dit is given in

cylindric coordinates by

(sm r)7 (cos r) (sin n)Gdrdn

T (8)
Moreover, we have

/0 / * pir ) f(—r —n)dE

_56n o o —Ak(k 2 i 2.6
F(g) Z Zak mﬂk me (klktm+T)+ m)t/ hm (T)) sin ﬂdﬂ
0

=0k=0

/ (cosr)?m+7p} 43 (cos(2r)) (sin ) dr

_ 5677 O Pro e~ HEKEAMEDF2m)1 y JAT(T/2) 6m! Tk +4HT(k+m+4)
F(S)m — = 2k+m+7 rd) m4+5Tk+m+DIk+1)"
Above, we used
d , *0(7/2)  6m!
/ M (17)2 sin® ndn = VL a/ )
0 T (@) Q2m +6) (m +5)!

(for example, see the Corollary 9.4.3 in [14]).
From

lim f”/;p,fdu = £(0,0),

t—0 Jo
we obtain the desired term a ,, = %(m +3)2k+m+17) (k ot 6) (m’: > ) and

k4+m+3
the proof is over.

As an immediate corollary for the spectral expansion of the heat kernel, one obtains the
spectrum of the sub-Laplacian.
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Corollary 4 The spectrum of —L is given by {4(k(k +m + 7) 4+ 2m) : m, k > 0} and its
first non zero eigenvalue is 8.

Remark 5 One can compare the spectrum of L of the octonionic 15-dimensional sphere
with the spectrum of the sub-Laplacian of the 9-dimensional CR-sphere
s' - §° — cPt,
and the spectrum of the sub-Laplacian of the 11-dimensional quaternionic-sphere
SU? — s'! — HP?,

which are given in [4] and [1] respectively:

{4k(k +m +4) +2m) : m, k > 0}

{4(k(k +m +5) +2m) : m, k > 0}.

Proposition 6 Let p,Q and p; denote the subelliptic heat kernels on the 11-dimensional
quaternionic sphere S'' and the 15-dimensional octonionic sphere S' respectively. Then

forr €0, %), n €0, ),

pl‘(rr 77): 2C082}" 2 [ - t (4'1)

144e‘6f( 192 e cosn 3 Q)
T

sin®  9n sin 77377

Proof From the Rodrigues formula (for example, see the proposition 9.4.1 in [14]), one can

verify that

1 1 92 cosn 9\ sin(m + 1)n m43
e\ o2 5727 =3 5, - = hin—2(n). 4.2)
8 \sin®n dn*  sin’ 7 sinn m—2

On the other hand, from [1], on the 11-dimensional quaternionic sphere S!1, the spectral
decomposition of the quaternionic subelliptic heat kernel p; (r n) is known:

(e clNee)

1
th (r,n) = Z Zﬁk e 4(k(k+m+5)+2m)’w s rPk3’m+1(cos 2r),
m=0 k=0 siny
where
re k+m+4
ﬂk,m— (2k+m+5)(m+1)<k+m+1>

Note that the octonionic subelhptlc heat kernel p;(r, n) in the previous proposition which
was given by:

Py =33 ki (e HEETMEDEIE cogm . P (o5 o),
m=0 k=0

where @ = 2 (m +3)2k +m +7) (21212) (m’;:5>

From those two expressions of the heat kernels with Eq. 4.2, we can easily deduce that

144e16f( 13, cosn 3 Q)

pi(r,n) = —5——— -
7T~ COs

sin? sz sin’ 3?7
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5 Integral Representation of the Subelliptic Heat Kernel

Since L = Af;s - &:7 and L commutes with &:7 we formally have

etL — e_tAS7gtAS]5.

If we denote by ¢, the heat kernel of the heat semigroup e'“s'5, then the subelliptic heat
kernel p;(r, n) can be obtained by applying the heat semigroup e ~'“s7 on ¢;, i.e.

pi(rom) = (7857 ) (r ).

Thus once one knows an integral expression of the heat semigroup e~'2s7, then one can
deduce the integral representation of p;(r, n). Now we have the Proposition 6, thus we can
deduce the integral representation of subelliptic heat kernel p; (r, n) on S!3 from the integral
representation of the quaternionic subelliptic heat kernel p,Q (r,n) on S''. We now make
those heuristic considerations precise.
Let g; be the Riemannian radial heat kernel on S!. For later use, we record here that:
(1) The spectral decomposition of ¢, is given by

I'G) 410}t -5
q:(cosd) = e Z(m + 5)e C,, (cosé),
m=0

where § is the Riemannian distance from the north pole and

(" Tm+10r %) 1 a
2" TAOI(m + DT (m + 4y (1 — x2)3 dx™

C3(x) = (1 — x2yn+or2

is a Gegenbauer polynomial.
(2) Another well known expression (see (3.7) in [4]) of g;(cos §) which is useful for the
computation of small-time asymptotics is the formula

1 a3y
H=eD——voa—) v, 5.1
qi(cos ) = e < 2nsin888) .1

_ (5=2km)?

where V (¢, 8) = ﬁ Ykepe W

Proposition 7 Forr € [0, 5), n € [0, 1), we have:

36e'> *g(n.y) 22
rn) = e T cosr cosh y) sinh ydy, 5.2
pi(r,m) n%/ﬁcos%fo 2 a1 ( y) sinh ydy (52
where
&M, y) = csc®(n) (cos (B) 2y(n — 3t cotn)

+ sin (3) (8¢% cot? n + 412 csc? n — 6ty cotn + 2t + n* — y?)).

Proof Note that because of the rapid decay of the integrand and thanks to formula Eq. 5.1,
we can differentiate under the integral sign. Now from the Proposition 6, we know

144¢!6! 1 3% o5 cosn d g
w2 cos?r sin2,,an2p’ sin3n877pt '

pt(r9n)=
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From the proposition 2.7 in [5], we have

—t 00 gj in Y 2 2
0 e sinh y sin 5 o
(r,n) = f - e & (cosr cosh(y)dy,
pt n \/H 0 siny qt yay
Plugging in those two ingredients gives the desired result. O

6 The Green Function of the Operator —L + 40

An interesting consequence of the Proposition 6 is the exact computation of the Green
function of the operator —L + 40.

Proposition 8 Forr € [0, 3),n € [0, w), the Green function of the operator —L + 40 is
given by:
1 1728

G(r,n) = .
w8 (—2cosrcosn +cos?r + 1)5

Proof From the Theorem 2.9 in [5], in the case of S one has

o0
1
0 724tdt — .
/0 pr(rme 476(1 — 2 cosr cosn + cos? r)3

Using Eq. 4.1, tedious computations then yield

o0 1 1728
/ Pt (r7 77)@_40tdt = ) 5
0 7% (=2cosrcosn + cos?r + 1)

O

Remark 9 A similar computation for the complex Hopf fibration on the sphere S**+! yields
the Green function of the operator —L + n?, see Proposition 3.4 in [4]. The operator —L +
n? is the conformal sub-Laplacian on §21+1 see [15] and also Theorem 2.1 in [24] for
its relation to the sub-Laplacian of the Heisenberg group. In our case of the octonionic
fibration, it would be interesting to interpret —L + 40 as a “conformal octonionic” sub-
Laplacian. In particular, study its relation to the sub-Laplacian on the octonionic Heisenberg

group and interpret the number 40. We let this for possible further research.

7 Heat Kernel Small-Time Asymptotics

Another advantage of the integral representation Eq. 5.2 is to deduce the small time asymp-
totics of the subelliptic heat kernel p;. The keypoint is to use the representation Eq. 5.2 and
the exact formula Eq. 5.1 for ¢, which provide uniform estimates for the remainder terms at
any order.

The methods to obtain the exact asymptotics are relatively similar to the methods used in
[2, 4, 5], so we will omit some of the technical justifications. Those methods, in particular
the use of steepest descent method, originally go back to [7] who thoroughly studied the
case of the subelliptic heat kernel on the Heisenberg group. Justifications are also written in
great details for the sub-Laplacian of the complex Hopf fibration in section 6 of [16].
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We first note the following uniform small time asymptotics for the Riemannian heat
kernel on S'! that follows from Eq. 5.1 by keeping from V only the term corresponding to
k=0:

1 5\ 2 20(sin 8 — 8 cos §) 5
§=—— ([— ) e 7 (14 (25— 5 ——= )t +2R1(1,0) ).
41(C0s0) = Tz (sin8> ¢ ( +< 52 sins ) R ))

The term R; (¢, $) is uniformly bounded when ¢t — 0 on any interval § € [0, 7 — ¢],
0 < & < . We also deduce from Eq. 5.1 the uniform small time asymptotics

s\ 2 20(sinh § — & cosh §) )
ew [(1+(25+ t+ 2R 1,8) ).

he)= — (——
qr(coshd) = ST <sinh8 52 sinh 8
.1

The term R;(t, §) is uniformly bounded when ¢ — 0 on [0, 4+00).
By applying Eq. 5.2, one can then deduce the small time asymptotics of the subelliptic
heat kernel.

Proposition 10 Whent — 0,

p:(0,0) = s (A + Bt + 0(t%)),

% 212811

where
5
_ [ .5 Yy
A =Jo Y (sinh_v) dy’
. 5
_ o] 5 sinh y—y cosh y 3 y
B =205 (07 (2+ 2Bt ) ) (i) v

Proof From Eq. 5.2, we have

36e!> [ g,(0,y) _»?

0,0) = e~ 4 g;(cosh y) sinh ydy,
p:(0,0) 2T 72 qi(cosh y) sinh ydy

where w is given by

y (641* + 120> — 201 (y* — 3) — 200y% + y*)
120¢°

. (7.2)

Plug in Eq. 7.1, we have that
915t r® g0,y [ ¥y \° 20(sinh y — y cosh y) 0
0,0) = - 1 25 - t)d o).
p(0.0) 297816 /0 12 <smhy> < + < + y2sinhy ) > y+oa)
Thus we obtain the small time asymptotic as follows:

P0.0) = c——p (A + Br + o0t?)),

where A, B are constants as stated in the proposition. O
The small time behavior of the subelliptic heat kernel on the vertical cut-locus, namely

the points (0, n) that can be achieved by flowing along vertical vector fields is quite
different. We can deduce it is by differentiating the small time estimate of p,Q O, n).

Proposition 11 Forn € (0, 7),t — 0,

_ n(=n+2m)

3 5 3 3 2 2 3
PrO.m) = —srre T ese n(n (—n $3mn? =3y 47 )(1—c052n>+0(z)).
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Proof From Eq. 4.1, one has
192! (1 92 cosn 3 g
©,n) = ( P 0,7 — ———p7 O, ))-
Pt n 7_[2 Sinznanzpt n sin3n37]p[ n

Now, from the proofs of proposition 3.7 in [4] and proposition 2.11 in [5] one can see that

Q _ _ 3 Zmi-
pe0,n) = (r—mn’e 4 +1tR(t, 1)),

3721519 sinp
where the remainder term R(z, n) satifies

sup sup(|R(t, n)| + |0, Rz, m)| + |32R(t ) < +oo.
ref0,1]1 nek
where K is any compact subset of (0, 7). Then, the computation gives the result. O

For last two propositions, we will apply the Laplace method and the steepest descent
method.

Proposition 12 For r € (0, %), we have

0 9 1 2 NS 1 "2
~ z - % - .
Pi(r, 0) ~10 29 (wr)13/2 cos2r® (sinr) (1 —rcotr)

Proof By Eq. 5.2, we have

.0y = 35 13 / &0 2 hy) sinh yd

r, 7 q;(cosr coshy) sin ,

Pt TiJmicosr ) 12 61r y yay

where £ (tO Y s given by Eq. 7.2 and ¢, is the Riemannian heat kernel on S'!. By plugging

in Eq. 7.1, we obtain that

135 1
’0 ~ —— —(J1(t) + J2(1)),
P 0) ~im0 g (1) + (1)
where
5
.'2 (arccos(cosrCoshy))2 0, arccos(cos r cosh .
h) =f — btaseosteosrcosh))? & ( 2y) ( y) sinh ydy,
coshy <57 d /1 —cos?rcosh’y
and
5
_ y2—(cosh~! (cosr cosh y))2 8 (0, y) COS}'171 (COS r cosh y) .
e T sinh ydy,

Jo(t) = / e
coshy>—L_ 12 2 2
YZ cosr cos® r cosh y— 1

The idea is to analyze Ji(¢) and J,(¢) by Laplace method. Furthermore, since we are inter-
ested in the asymptotic behavior when t — 0, it suffices to consider the dominant term of
& 0.9 (0.,y> ichis 2
! only, which is 5.
Notlce that in [— cosh™ ( COSr) cosh™ (
a unique minimum at y = 0, where

f7(0) =2(1 —rcotr).

), f(y) = y% + (arccos(cos r cosh y))? has

cosr
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Hence by Laplace method, we can easily obtain that

2T NS 1 o,
T (0) ~10 240ﬁe*ﬂ( : ) (7> 772,

sinr 1 —rcotr

On the other hand, on (—o0, —cosh™ (Cosr)) U (cosh™ (Cosr) 00), the function y2 —

(cosh™!(cos r cosh y))2 has no minimum, which implies that J, () is negligible with respect
to Ji(¢) in small z. This finishes the proof. O

For the case (r, n) with r # 0, the Laplace method no longer works, we need to use the
steepest descent method.

Proposition 13 Letr € (0, ), n € [0, 7). Then whent — 0,

_ (w(r.ﬂ)Jrn)z tan® r

9sing(r,n) (1> +er,m?)  (arccosu(r,n)’ e Wit
22(m1)15/2 sind 5y cos? rsinr | _ ulr arccos u(rn) (1 — u?(r, n))?

A 1=u?(r,m)

pe(r,n) ~1—0

(7.3)
where u(r, n) = cosr cos ¢(r, n) and ¢(r, n) is the unique solution in [0, 7] to the equation
arccos(cos ¢(r, n) cosr)

o(r,n) +n = cosrsinp(r, n) . (7.4)
V1 —cos?rcos? o(r, n)

Proof From the Proposition 7, we can rewrite
Se 15¢

o0
Pt ) = f 1, (1, )41 (cos r cosh y) sinh ydy,
—00

3(mt)>3 cos? r sin’ g
where [;(n, y) is given by

(+in)?

L o2 > 2 .2 2 2
e & y(n—3tcotn)+?(8t cot“n + 4t~ csc”n — 6tncotn + 2t +n° — y°)
i

=iy 1
+e @ (y(n — 3tcotn) — ?(St2 cot? n—+ 4% csc? n — 6tncotn + 2t + nz - yz)) .
i

Since we consider when  — 0, we only need to consider the dominant terms of /; (7, y),
thus we may assume that /, (1, y) can be written as

_o=in? 1 _ O+in? 1
e W <yn + 27.(772 - yz)) +e W (yn - 27.072 - y2)> .

Hence we obtain that

3
Pi(rim) ~i0 S5 g5 (A + B).

where

o sinh y (=in?+rccos(cosreoshy)? [ arccos(cos r cosh y)
A=/ 7(yn+ - (n” —y)) # —| 4,

2 . qind
—o0 COST I SINT 1) /1 = cos?rcosh? y

and 5
®  sinhy 1, 2\ _ Gim?+arccoscosreoshyn® [ arccos(cos r cosh y)
B = |\ =5 =y) e o _—

2 -3
—oo COS“7sin” 1 1 — cos? r cosh? y
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For the small time asymptotic of B: By applying the steepest descent method, we can
constraint the integral on the strip |Re(y)| < cosh™! (5 Olsr) where, due to the result in [4]
(Lemma 3.9),

f(y) = (v +in)? + (arccos(cos r cosh y))?

has a critical point at i¢(r, ), where ¢(r, n) is the unique solution in [0, 7] to the Eq. 7.4
and

g m) =

2sin? r u(r, n) arccos u(r, n)
1 —u(r,n)? NAI(E)
is positive, where u(r, n) = cos r cos ¢(r, n). Note that
flo(r,n) = (—@(r, n) + n)* + arccos?(cos r cos ¢ (r, 1))
Cenc? 2 2
= (p(r.n) +n)? (—1 + w) = (p(r.n) + )2 4ot

cos? r sinZ o(r,n) sin? g(r,n)

Thus for a sufficiently small # > 0, B has the following estimates:

Vart sing(r, n)

cos? r sinr sin’

_ (@t r
(arccosu(r, n))> e it

| _ wnarccosun (1 —u?(r,m)?
A l—uz(r.n)

g(y) = (y — in)? + (arccos(cos r cosh y))?.

B ~i-0

L 5 2
or,mn + 2(n +o(r,n)
To estimate A, we denote

Then easy computations show that g(y) has a critical point at —ig(r, n) where ¢(r, n) is as
described in Eq. 7.4. Thus

_ @r+p?an?r
(arccosu(r, n))> e st

1 — u(r,n) arccos u(r,n) 1 - uz(ra 7]))2 ’
A 1=u?(r,m)

By putting A ~,_,9 and B ~;_,¢ together, we obtain Eq. 7.3. O

VAt sing(r, n) 1
A ——— (Qﬂ(ﬁ mn — 5(772 + o, 77)2>
cos? rsinr sin’

Remark 14 In proposition 13, if we let n = 0, then the Eq. 7.4 has a unique solution at
¢ = 0and

lim 2™ 1
im =

n—0 7 B 1 —rcotr’
Thus Eq. 7.3 gives that

0 9 1 21 NS 1 v
~N) ——————— [ — P E—
pi(r,0) ~i-0 29 (m)IS/Zcoszre (smr) <l—rcotr>

which agrees with the result in proposition 12.

Remark 15 By symmetry, the sub-Riemannian distance from the north pole to any point on
S'5 only depends on r and 7. If we denote it by d(r, 1)), then from the previous propositions,
using the fact that from [19, 20] one has

d*(r,n) = — lim 4t In p,(r, 1),
t—0

one deduces:
(1) For n € [0, 7),
d*(0,n) = 2mn — n’.
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(2)Forn €[0,m),r € [0, 3),

(0, 1) + n)* tan® r
d> = )
¢ = et )

(3) For r € [0, %),
d(r,0) =r.

In particular, the sub-Riemannian diameter of SIS is 7.
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