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Abstract

We define and study quaternionic stochastic areas processes associated with Brownian motions on
the quaternionic rank-one symmetric spaces HH" and HP". The characteristic functions of fixed-time
marginals of these processes are computed and allow for the explicit description of their corresponding
large-time limits. We also obtain exact formulas for the semigroup densities of the stochastic area
processes using a Doob transform in the former case and the semigroup density of the circular Jacobi
process in the latter. For HHH", the geometry of the quaternionic anti-de Sitter fibration plays a central
role, whereas for HP", this role is played by the quaternionic Hopf fibration.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

The goal of the paper is a thorough study of some functionals of the Brownian motion
(w(t));>0 on the quaternionic spaces HHH" and HP". Those functionals write as a stochastic
line integral

a(r) = / ¢
w(0,]
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where ¢ is an su(2)-valued one-form whose exterior derivative yields a.e. the quaternionic
Kihler form of the underlying space. By analogy with our previous work [6], we call those
functionals quaternionic stochastic areas.

Quaternionic stochastic area on H"

To motivate our study and present our approach in a simple situation, we first briefly
comment on the case of the quaternionic flat space H". More details about this case are worked
out in Section 2. Let H be the non-commutative field of quaternions and let (w(?));>o be a
Brownian motion on H", i.e. (w(#)),>0 is simply a 4n-dimensional Euclidean Brownian motion.
Consider the quaternionic stochastic area process defined by

1< [
a(r>=f c= 1 /d ()W) — w; (5)dw(s)
0] 5 ; A w;s)w;(s w;(s)aw;(s

where ¢ = 1Im(dg, q) == Im)_!_, dg;g; is an su(2) =~ R3-valued one-form. Following [6],
one can study the 3-dimensional process a by embedding it into a higher dimensional Markov
process. More precisely, the 4n + 3-dimensional process

(X1)i=0 = (w(1), a(t))s=0,

is a Markov process and its generator is the sub-Laplacian on the quaternionic Heisenberg
group. Accordingly, a can be interpreted as the fiber motion of the horizontal Brownian
on the quaternionic Heisenberg group. This interpretation, together with a skew-product
decomposition of this horizontal Brownian motion, readily yields the identity in distribution

(a(®)) >0 < (,3% IS rz(s)ds),>o >

where (B,);>0 is a standard 3-dimensional Brownian motion independent from the
4n-dimensional Bessel process r(¢) = |w(z)|,¢ > 0. One then deduces from [21] an exact
formula for the characteristic function of a(#) and deduce then, by Fourier inversion, an integral
formula for the density.

Quaternionic stochastic area on HH"

The method described for the quaternionic flat space H" extends to the case of the
quaternionic hyperbolic space HHH". If (w(¢));>o is now the Riemannian Brownian motion on
HH", then the functional of interest writes

1 [ dw;(s)Ww;(s) — w;(s)dw;(s)
a([) — / P / J J J J ,
wl0.] ¢ 2 j; 0 1— |w(s)|?

where ¢ is still an su(2)-valued one-form and (wi,...,w,) are now the inhomogeneous
coordinates on HH". Indeed, Theorem 3.2 describes the stochastic area process a in terms of
the fiber motion of the horizontal Brownian motion of the quaternionic anti de-Sitter fibration

SUQ2) - AdS™3(H) — HH".

The geometry of this fibration therefore plays a prominent role in the study of a, which has
been studied along with its related heat kernels in the paper [3]. In this framework, one also
obtains the following identity in distribution

d
(a(®));>0 = ('Bfé lanhrz(s)ds)tzo ’

where (B;);>0 is a standard 3-dimensional Brownian motion and is independent from the radial
process (r(t) = |w(t)]);>0. The latter one is now a hyperbolic Jacobi process. Using the methods

312



F. Baudoin, N. Demni and J. Wang Stochastic Processes and their Applications 131 (2021) 311-339

developed in [6], one can then compute the characteristic function of a(¢) and deduce that when
t — +o0, the following convergence in distribution takes place
a(?)
—— -
Vit
where N (0, Id3) is 3-dimensional normal distribution with mean O and variance the identity
matrix.

Quaternionic stochastic area on HP”

Another geometry for which our previous reasoning also applies is that of the quaternionic
projective space HP", which is the positively-curved analog of HH". Let (w(?));>0 the
Riemannian Brownian motion on HP”", then the corresponding generalized stochastic area
process is defined by:

I [ dw;(s)wi(s) — w;(s)dw;(s)
(t) — f [ / J J J J
“ wl0,] ‘ 2 ; 0 1+ Jw(s)]?

where we still denote by (and hope there is no confusion) (wy, ..., w,) the inhomogeneous
coordinates on H P”". This time, Theorem 4.2 describes a by means of the fiber motion of the
horizontal Brownian motion of the quaternionic Hopf fibration

SUQ2) — S (H) — HP".

N(0, Id3)

Similarly, we shall prove the identity in distribution

(a(t))zz() i (:3[6 tan rz(s)ds>

where (B;);>0 is again a standard 3-dimensional Brownian motion independent from the radial
process (r(t) :== |w(t)|);>0 which is a circular Jacobi process. As before, we are able to compute
the characteristic function of a(¢) and describe its large-time limit. As a consequence, we prove
that the following convergence in distribution takes place

&\/t; — N(0, 2nld;).

b
t>0

2. Preliminary: Stochastic area process on the quaternionic space

In this preliminary section, we recall some results about the 3-dimensional stochastic
area process associated with a 4n-dimensional Euclidean Brownian motion. Stochastic area
processes associated to Euclidean Brownian motions and their related distributions are well
understood and have been extensively studied in the literature, see for instance [10,17,21].
However, our goal here is to highlight in this simple situation the role of quaternionic geometry
and to present the structural ideas that will be used in later sections.

Let H be the non-commutative field of quaternions

H:{q:t+x1+yJ+zK,(t,x,y,z)ER4},

where I, J, K are abstract symbols that satisfy I = J2 = K* = IJK = —1. In fact they can
be identified with the matrices

(%) =) k- h)

For g =t +xI + yJ + zK € H, we denote by g = r — xI — yJ — zK its conjugate,
lg|> = t* + x? + y* + 22 its squared norm and Im(q) = (x, y, z) € R? its imaginary part. The
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quaternionic Heisenberg group is then defined as the product space H*'*3(H) = H" x Im(H)
with the group law

1
(q,¢)*(q’,¢/)=<q+q ¢+ + Im(q q>>

where for ¢ = (g1, ..., qa), ¢’ = (q},...,q}) € H", we have set Im(q, ¢') = Im Y\, qiq].}
This is an example of H-type groups (see [8]) which play an important role in sub-Riemannian
geometry (see [4]).

If ¢ =¢;1 +¢;J + ¢ K, then the right invariant vector fields

et nh)
' o, 2 00y Loy ¢k

1=i+1<lﬂi+zi_y.i>
Poon o 2\"9gr Tags ' agk

v/ = i_|_l<_zi_|_ i +xi)
' dy; 2 g apy T 0gx
K 0 1

Vit =——+3 (%‘i _xii +tii)
0z 2\ ¢y gy 9k
together with the fiber vector fields
0 0 d
I =—, T)=—, Tx=

og” T ag N gk
generate the Lie algebra of H**3(H). The sub-Laplacian on H**+3(H) is then given by

Agansagn = Y (VI + (VI + (V) + (vF)?
i=1

|q|2 ( 32 32 82 )
=Apnt+—— =5+ +—
T o] T 003 T 9%
ad

= A]R4n + _A]R% + Z Z <‘Zz_S Sa—ql>

d
i=1 S=1,J,K 4i s

where for each ¢; = t;, + x; I + y;J + z; K, we set

d 1 /0 ad ad ad
(2oL 2y Tk,
dg; 2 \ oy 0x; ay; 9z;

What makes the connection between stochastic areas and the quaternionic Heisenberg group
is that the operator %AH4n+3(H) is the generator of the Markov process:

I [
(Xt)tz() = (Bl(l), sy Bn([)v E Z/(; Im(dBl(s)’ Bl(s)>> )
i=1

>0
where (B;(t));>0,1 < i < n, are independent H-valued Brownian motions. Equivalently,

(X¢)>0 is the horizontal Brownian motion of the canonical sub-Riemannian structure on
H4"+3(H).

3 Note that the different convention that Im{g,q') =Im) " Ziq] is also sometimes used in the literature, for
instance in [8].
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Then, the Euclidean norm r := |B] is the radial process of B = (By, ..., B,) while the
R3-valued fiber motion is given by the stochastic area process:

o(t) = %;/0 Im(d Bi(s), Bi(s)), 1=0.

The process (r(1), ¢(t)),>o is a diffusion with generator

1/ 32 dn—1 0 r?

2 r dr 4
Consequently, the following equality in distribution holds:

GOR O CON IR

where (B;);>0 is a standard 3-dimensional Brownian motion independent from r.
The characteristic function of ¢(¢#) may be derived from the computations done by M. Yor
in [21]. More precisely, let A = (A, Aj, Ag) € [O, 00)3, r € [0, 00), and consider

2 t
r(t) = r) =K (e_ls Jo rwas r(t) = r>

where |A]? = )L% + )»3 + )ﬁ(. From [21], it is known that:
r2 (M o (1
V(l) — 7‘) — |)"|t 677(7 colh(T)fl)

2n
: 1Al
2 sinh (Tt>

9
>0

I(a,r)=E (e"”‘?’”)

’

2
E (e_lg fé r2(s)ds

whence it follows that:

) —2n
E (") =E (e_AS érz(s)d‘y> = (cosh %) .

As a matter of fact, the distribution of ¢(¢) is a 3-dimensional analog of the Meixner
distribution [18] which, up to our best knowledge, has never appeared in literature.

Proposition 2.1. The density of ¢(t),t > 0, with respect to the Lebesgue measure is given by

22n—1 1 1 v iu|pl/t v
d dvlv(1 — )" ' | —— In? .
2713 /,1 M/O vivd =)l |:1—vj| n |:1—vj|

Proof. Using Fourier inversion formula, the density of ¢(¢) is given up to a normalizing
constant by:

Al —2n )
h(¢) = / (cosh u) e,
R3 2

which reads in polar coordinates:

o0 —2n
t .
h,(¢)=/ r? (cosh r—) {/ e"9'¢d9}dr, ¢ e R
0 2 S2

By rotation invariance, the inner integral may be written as:

1 1
/ e~ iruel gy — / cos(rul¢|)du,
-1 -1

hi(¢) =
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and as such, Fubini Theorem entails:

1 o) rt —2n
ho(¢) = / / r2 cos(ru|e|) (cosh E) drdu.
—-1J0

But, we know from table 3.985 in [11] that for any z € R:

o0 re\ " 221 .2\ |?
/0‘ COS(I"Z) <COSh E) dr = m ‘F (I’l +1 ;)‘

_ 22n—1 /l[v(l B v)]n_] |: v :|iz/t i
t 0 1—v ’

00 22n—1 d2 Z\ |2
2 —2n _ .
A r COS(I"Z)(COShrt/Z) d?’——md—zz‘[‘(ﬂ—’—l;)’

22n—1 1 v iz/t v
= 1— )"t In? dv.
[t ] e [

Note that the last integral is absolutely convergent (uniformly in z) which may be easily seen
after performing there the variable change y = v/(1 — v):

whence

n—1

! 1 v 2 v * iz/t Y 2
1—v]"' | —— 1 dv = i dy.
/o[”( V) [1_1)} ! [l—v] ’ /o T

Substituting z = u|¢| and taking into account the factor 1/(27) present in Fourier inversion
formula, the density follows. [

3. Stochastic area process on the quaternionic hyperbolic space HH"
3.1. Quaternionic anti-de Sitter fibration
We first give a quick overview of the quaternionic anti-de Sitter fibration but refer to [3]
and the references therein for further details. Recall the quaternionic field is defined by
H={q=t+xI+yJ]+zK, (t,x,y,2) € RY},

where I, J, K are given as previously. Then, the quaternionic anti-de Sitter space AdS*'*>(H)
is defined as the quaternionic pseudo-hyperboloid:

AdS" (M) = {g = (q15 - qur1) € I g3 = — 1),
where
gl = lal® = lgun >
k=1

The group SU(2), viewed as the set of unit quaternions, acts isometrically on AdS*"(H)
and the quotient space

AdS*"3(H)/SU(Q2)
can be identified with the quaternionic hyperbolic space HH" endowed with its canon-
ical quaternionic Kihler metric. The projection map 7 : AdS*'"(H) — HH” is a

pseudo-Riemannian submersion with totally geodesic fibers isometric to SU(2). The fibration
SUQ2) —> AdS""*(H) — HH"
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is referred to as the quaternionic anti de-Sitter fibration.

As in [3], we shall work with cylindrical coordinates on AdS‘"’”(H). Let (wy,...,w,)
denote a point on the base space HH", and (6;, 0;, Ok ) be the coordinates in the Lie algebra
su(2) of traceless skew-Hermitian 2 x 2 matrices. More precisely, we shall consider the map

HH" x su(2) — AdS™3(H)

( 0 0 0 ) 6191+J91+K0Kw1 6191+J9]+K9K Wy, 6101+J9J+K0K
Wiy evoy Wy, 01,05,0k) > s e s

1—p? JV1—p? V11— p?
where p = Z';:, |wj|2 and w; = 61,;:161[, i =1,...,n, are inhomogeneous coordinates in

HHI‘[
3.2. Quaternionic stochastic area process on HH"
We define the quaternionic stochastic area process as follows.

Definition 3.1. Let (w(7));>o be a Brownian motion on HH" started at 0. The quaternionic
stochastic area process of (w(t));>o is the process in su(2) ~ R3 defined by

1 & [ dwi(s)wi(s) — w;(s)dw;(s)
1) = == ,
= .53 ;/0 T

where the above stochastic integrals are understood in the Stratonovich, or equivalently in the
Itd sense due to the skew-symmetric structure of the form.

The following theorem shows that the quaternionic stochastic area process of the Brownian
motion on HHH" can be interpreted as the fiber motion of the horizontal Brownian motion on
AdS* T (H).

Theorem 3.2. Let (w(t))>0 be a Brownian motion on HH" started at 0, and (O(t))>0 be
the SU(2)-valued process solution of the Stratonovitch stochastic differential equation

dO(t) = O(t) o da(t), 3.1

where we identify a as an element of the Lie algebra su(2). Then, the AdS**3(H)-valued
diffusion process

o)

V1= lw®)?

is the horizontal stochastic lift at the north pole of (w(t));>0 by the submersion m
AdS*" 3 (H) — HH".

X(t) = (w(), 1), >0 (3.2)

Remark 3.3. The SDE (3.1) implies that the integral of the Maurer—Cartan form on SU(2)
along O(z) is exactly given by the stochastic area process (a(t));>o.

Proof. We use the fact that the pseudo-Riemannian submersion 7 is compatible with the
quaternionic contact structure of AdS*'**(H) which is described in Appendix A.l. Precisely,

4 We call 0 the point with inhomogeneous coordinates w; =0, ..., wy, = 0.
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the horizontal distribution of this submersion is the kernel of the contact form A given by
(A.16) and the fibers of the submersion are the orbits of the Reeb vector fields. We claim that
the horizontal lift to AdS* " (H) of the vector field

0 1/9 d d d
—:= ———I—-—J-—K
ow; at; 0x; dy; 0z
is given by:
ad w; 0
dw; 2(1 — p?)cos?ndg’
where we set n° = 07 + 67 + 63 and
PR P B U Py Gy L 3
— q= 2 -2
" S R VR Y R
The derivation of V; is as follows. The contact form
A=¢ —cos’ndg
is in fact a 3-dimensional one-form, where ¢ is defined in (A.17) from the Appendix and
dp =do;1 +de;J +dex K. Writing ¢ = ¢'T + ¢/ J + ¢XK with
(1 —p*¢" = tidx; — x;dt; + yidz; — z;dy;
(1= p*)¢" = tidy; — yidt; + zidx; — x;dz;
(1= p*)¢X = tidz; — zidt; + xidy; — yidx;

(3.3)

P =

then we get:
2,1, 9 — 2,0, 9 — 2.k, 9O —
2(1-p")¢ (-) =-—w;l, 2(1-p)¢ (-) =-w;J, 2(1-p°)¢ (5) =—-w;K,
2 2.k, O
271 ,O)C( )—tha 2(1 - )C( )—sz, 2(1 = p)¢ (ﬁ)=Kwi-
Now, the quaternionic contact form A may be written as A = A’ + A/J + AXK, where
AS =¢S5 —cos’ndes, S=1,J, K. It follows that
w;S d¢s(wi£)
+ =0,
2(1=p%)  2(1—=p?
as required. Next, consider a smooth curve g starting at 0 in HHH":

g(1) = (g1(0), ..., gn(1)),

A5(Vy) = —

where

> &fs € CRu H).
S=1,1,J,K

We denote by T,(¢) the real vector that is tangent to g at ¢, then

. 9 9
To) = &l 05+ & ()5 —+4 (r)— +4, (t)—
i=1 ! !

n a n a
=2Re Y gi(t)— = (g,(t) — g (l))
; 8w,~ ; ow;
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Consequently, the horizontal lift of T,(r) at the north pole® is given by:

- 9 7 9
wReS g[8 %),
e&“(awi 2(1—p2>cos2na¢>

Therefore the lifted curve g, in cylindrical coordinates (w(r), (1)) € C(Rso, H* x ImH)
satisfies that

wi(t) = gi(1),  wi(r) = g;(0),
Im Z gig;.

i=1

)
() (1 —|g@®)*) cos n(t)

Let @(t).denote the SU(2)-valued path issued from identity that satisfies O(¢)! o) =
cos? n(t) (1), then

n

O 01 = —————- " (4(18:(1) — &iE(D). (3:4)
21— 1gOP) ; (GOF 0 = &0 0)
As a consequence, from (A.15) we have the AdS*"*3(H)-valued path g is given by
&)
80 = —22 (5000, 1).

J1-1g®P
with

/9(s)—‘od9(s)=/ Z.
0 8l0,1]

Similarly, the horizontal stochastic lift of the Brownian motion (w(%));>0 is
e(1)

V1= lw®)l?

with
t
/ Q(S)’lod@(s)zf e =/ oda(t). U
0 w[0,¢] w[0,7]

Our next theorem will show that the fiber motion ©(¢) on the SU(2)-bundle is in fact a time-
changed Brownian motion process on SU(2). To see that, we recall the notions of stochastic
exponential (resp. stochastic logarithm) of semi-martingales on a Lie algebra (resp. Lie group)
defined as follows (cf. [13]):

(w(n), 1)

Definition 3.4. Let X(¢), + > 0 be a semi-martingale on SU(2) started from the identity and
M(t), t > 0 a semi-martingale on its Lie algebra su(2) started from 0. If these two processes
satisfy the Stratonovich differential equation

dX(t) = X(t) o dM(t)

then we call X (¢) the stochastic exponential of M(t) and M (t) the stochastic logarithm of X (t).
In particular if M(¢) is a standard 3-dimensional Brownian motion, then X(¢) is a Brownian
motion on SU(2).

5 This is the vector with inhomogeneous coordinates (g1 = ¢z = --- = gy = 0, gny1 = 1).
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Theorem 3.5. Let r(t) = arctanh |w(t)|. The process (r(t), O(t)),;= is a diffusion with
generator

1 92
L= (8 5 + ((4n — Dcothr + 3tanhr)— + tanh® rASU(z))

As a consequence the following equality in distribution holds,
d
(@), OO0 = (FO Bt ris),_,

where (B;);>0 is a standard Brownian motion process on SU(2) independent from r.

Proof. We first compute, in cylindrical coordinates (w, ¢), the generator of the diffusion X
introduced in (3.2). We start with the Laplace—Beltrami operator on HH" (see [19] page 48)
that writes

2 s 9 5.
Agpgr = 4(1 — p?)R —RR+2R
mpn =4(1— p"Re | Y o +

i=I

where p = |w| = tanhr and
- 3
R = L
ij 8wj
j=1

is the quaternionic Euler operator. Since X is the horizontal lift of the Riemannian Brow-
nian motion w, its generator is (1/2)Lqg4n+3qy Where L,gqan+3 gy is the horizontal lift to
AdS4”+3(H) of Amgpgn. As we have seen, the horizontal lift to AdS**3(H) of the vector field
is given by V; in (3.3), therefore

3 w;

o - 02 3 \*
Lo veinizen = 4(1 — p?)R. 73 R T 11— oheost s \ 3s
AdS4 +3(H) ( P ) € <§ amawl 4(1 - 102) COS4 n <8¢>

el 3
2cos?n 09 03¢

tanh? r 92 2 — 9 B]
= B4 L e (Ran - ).
cos*n 005 n ap 9o

cosh? r cos?
Acting on functions depending only on (7, ¢1, ¢;, ¢k ), the operator L ,4q4+3 ) reduces to:

” 4 ((n — Dcothr + 3tanh )2 | fanb’s Z ”
—_— n — cotnhr annr)— _— —_— .
ar? ar  costn A3

Note that cos® nd¢s, S = I, J, K is the 3-contact form on SU(2). The vector fields 0052 025
on SU(2) are in fact the Reeb vector fields of those contact forms.

We note that O(t) is a SU(2)-valued process satisfying (3.4), and tank’ r <Z s a¢2> generates

cos*n

the process d)(t) such that

do(r) =

where () is a standard Brownian motion in R? independent of r(¢). Hence
O(t)"'dO(t) = cos® n(t)dp(t) = tanh rdy(t). (3.5)
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If we denote by S(¢) a Brownian motion on SU(2) independent of r, from Definition 3.4, we
know that 8(t)~'dB(t) = dy(t). Hence (r(t), O(t)) is generated by

1/ 0° 9
3 (ﬁ +((4n — Dcothr + 3tanh )= + tanh? rASU(z)) ,

and

CONCIOE CON IR R

t>0 ’
Corollary 3.6. Let r(t) and a(t) be given as previously. Then
d
(1), 00,20 = (rO, V1 05 )

)
t>0

where y(t), t > 0, is a standard Brownian motion process in R3.
Proof. This directly follows from the definition of a(¢) (3.1) and Eq. (3.5). O
3.3. Characteristic function of the stochastic area and limit theorem

In this section we study the characteristic function of the stochastic area a(z). Let
192 1 1 0
L0 = 3972 + <<a + 5) cothr + (,3 + 5) tanhr) P a, B >—1

be the hyperbolic Jacobi generator. We will denote by g;' A (ro, r) the heat kernel with respect
to the Lebesgue measure of the diffusion it generates.
Let & = (A7, Ay, Ag) € [0, 00)°, r € [0, +00), then Corollary 3.6 entails:

. iAyt
E (el)t'a(t)|r([) = r) =K (E VIO tanh? r(s)ds |r(t) = r)
2
) (e_)‘2| fé tanhzr(s)ds|r(t) — V)

where [A|> = A2 + A2 + 22 and r is a diffusion whose generator is given by:
192 1 d
LM = —~— 4 —((4n — 1)cothr + 3tanhr) —,

28r2+2((n ) T r)8r

and started at 0.

Theorem 3.7. For A € R3, r € [0, +00), and t > 0
e )

E (e**Olr(t) =7r) = .
( | ) (coshr)“ qTanl,l(O’ r)

where it =/ |A? +1— 1.

Proof. Note

1
dr(t) = 3 ((4n — 1)cothr(¢) + 3tanhr(r)) dt + dy (1),
where y is a standard Brownian motion. It implies that almost surely we have

r(t) > <2n — %) t+y@),
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and thus r(t) — +oo almost surely when t — oo. Consider now the local martingale given
for any n > 0 by

t 2 t
D, = exp (M / tanh r(s)dy (s) — % f tanhzr(s)ds)
0 0

! 3 2 ot
= exp (/L/O tanh r(s)dr(s) — %(4n — Dt — 'MT_’_M/O tanh? r(s)ds) .

From It6’s formula, we have

! 1 [ ds
Incoshr(t) = / tanh r(s)dr(s) + — /
0 0

2 cosh? r(s)
! 1 [ 1
= / tanh r(s)dr(s) — —/ tanh? r(s)ds + —1.
0 2 Jo 2

As a consequence, we deduce that

2
Dy = e 21 (cosh (1)) e~ Jo ani rids

It is easy to prove that D,, t > 0 is a true martingale using the same argument as in [6]
Theorem 3.5.
Let F denote the natural filtration of r and consider the probability measure P* defined by

u2+2/L t 2
PYe = DBy, = e " (coshr(n)'e™ 2 o rdsp o

We have then for every bounded and Borel function f on [0, +o0],

T T fr@)
Jo tanh= r(s)ds \ __ 2nut
E (f (r(tye” 2 Jo > = "N <—(Coshr(t))u> .

From Girsanov theorem, the process

yr@) =y() — ,u/: tanh 7 (s)ds
is a Brownian motion under the probability P*. We note that

dr(t) = % ((4n — Dcothr(t) + 2 + 3) tanh r(¢)) dt + dy"(¢).
Hence we have

2
E (6 % I tanh? r(s)ds

ru):r): g o)
(coshr)® g2=11(Q, r)

The proof is complete by letting 1t = /|A> +1—1. O

As an immediate corollary of Theorem 3.7, we deduce an expression for the characteristic
function of the stochastic area process.

Corollary 3.8. For » e R and t > 0,

2n—1, 1
E(eix.a(t)) _ f+oo g, r)dr,
0 (coshr)+

where |1 = +/ AP2+1-1
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We are now in position to prove the following central limit type theorem.

Theorem 3.9. When t — 400, the following convergence in distribution takes place
a(?)
Vi

where N (0, 1d3) is a 3-dimensional normal distribution with mean 0 and variance matrix 1ds.

— N(0,1d3)

Proof. This is a consequence of r(#) — +oo almost surely as t — 400,
cothr(t) - 1, tanhr(t) > 1 a.s.

hence

1 t
lim - f tanh®r(s)ds = 1 a.s.
t—+4o0 0

Then from Corollary 3.6, we have

a0
t—lg-noo 7 - t—l>15-nooy1 Jo tanh? r(s)ds = n o as. U

3.4. Formula for the density

In this section, we compute the density of the quaternionic stochastic area process a(t). Let
us note that formulas for the heat kernel of the couple (r(¢), |@(¢)|) have been obtained in the
paper [3]. However, a formula for a(¢) = fot O(s)~! 0 dO(s) cannot be directly deduced from
it. In order to invert the Fourier transform displayed in Corollary 3.8, we first need a suitable
expression for the heat kernel of the hyperbolic Jacobi operator:

2
L0 — % (88 s+ (4n — 1)cothr + 2u +3) tanh(r))—) r>0,
subject to Neumann boundary condition at » = 0. Though the heat kernel of this operator may
be expressed through Jacobi functions [16], we shall derive below another one which not only
leads to the sought density but has also the merit to involve the heat kernel of the 4n + 1-
dimensional real hyperbolic space. The derivation is a bit technical and for ease of reading,
we shall proceed into three steps. More precisely, we shall firstly map the above hyperbolic
Jacobi operator into another one by letting it act on functions of the form r — f(r)/ cosh*(r),
where f is a smooth test function. Secondly, we shall exploit results in [14] to derive the heat
kernel of the newly-obtained operator: in this step, we follow the lines of Theorem 2 in [2].
Finally, we use known Fourier transforms to obtain the density of the quaternionic stochastic
area process. We start with the following straightforward lemma:

Lemma 3.10. Ler f be a smooth function on R,. Then

1
e <Co§h“) "= osh/‘“(r)LnVM(f)(r) GO
where
2
a1 = O 4 (n — ycothr +3 tanh(r))— LHEED ),
ar? cosh?(r)
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Proof. Straightforward computations. [J

The operator 2L™* + pu(4n + u + 2) + (2n + 1)? is an instance of the radial part of the
operator Ayg studied in [14] with @ = 1 + (4/2), 8 = 1 —a = —u/2 and double complex
dimension 2n (see p.229 there). Using the same reasoning of the proof of Theorem 2 in [2],
we prove the following:

Proposition 3.11. Let f be a smooth compactly-supported function in HH". Then, the heat
semi-group e’LW(f)(O) reads:

e—[(2n+])2+u(4n+u+2)]l/2 dw
fw)————
2m)2n/2rt HH" (1 — [w|?)2n+2

o0 1 d\* 2
/ dx sinh(x)K ,(x, w) < ) e ¥/,
d

0,w) Sinh(x) E

where d(0, w) = r is the geodesic distance in HH":

cosh’(d(0, w)) = ———,
@0.w) = 1

and
1
cosh(d(z, w))y/cosh®(x) — cosh?(d(0, w))

1 cosh(d(z, w)) — cosh(x)
2Fi <M +1L =+ D), 2’ 2 cosh(d(z, w)) )

K, (x,w) =

where o Fy is the hypergeometric function.

Proof. Consider the ‘switched’ wave Cauchy problem associated Ayg, @ = 14 (1/2), g =
—u/2, displayed in eq. (1.1) in [14]. From Theorem 2 in that paper, its solution is given by:

( )—#<#a)2m/ FK (s, 2, w)—L2
M= o \ Sinh(s) ety S T

where (x,z) € R x HH" and
(1 -1z, w))l+(u/2)(1 —{z, w))*(l’-/z)

cosh(d(0, w))v/cosh2(x) — cosh®(d(0, w))
P ] | 1 cosh(d(0, w)) — cosh(x)
2 ‘<“+ D S 0, ) )

Following the proof of Theorem 2 in [2], we next deduce the heat kernel of Ay from u(x, z).
To this end, we differentiate x — u(x, z) to get the solution to the ‘standard’ wave Cauchy
problem associated Ayg:

K/L(x» Z, W) =

sinh(x) 1 Jw
v(x,z) = du(x,z) = <

2n
(27.[)2n sinh(x)ax) L(z,wklxl f(w)K(x’ © w)(l — |u)|2)2n+2 '

Then, we use the spectral formula (see e.g. [12]):

1 / 2
—x2/(4r)
e cos(x~/—L)dx,
At Jr
324
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relating the heat semigroup of a self-adjoint non positive operator L to the solution of its wave
Cauchy problem (we wrote the wave propagator as cos(x~/—L) which should be understood in
the spectral sense). According to this formula and from Proposition 2 in [14], we deduce that
Agp.a =14 (u/2), p = —p/2, is a non positive self-adjoint operator and that (we perform
2n integrations by parts then use Fubini Theorem):

1 o 2 1
A _ ey -
o= [ e =

00 2n
f(w)(d—w/ dx sinh(x)K ,(x, z, w) (_ ! i) o7/

1= w242 Jaew) sinh(x) dx

HH"

Specializing this formula to z = 0, we see from the definition of K, (x, z, w) that the heat kernel
of ! Aa( )(0) is radial. keeping in mind the aforementioned relation between the radial part of
Aqp with the special parameters @ = 14+(u/2), B = —u/2, and L p(dn+pu+2)+Q2n+1)>2,
the statement of the proposition follows (we simply wrote K (x, w) for K(x, 0, w)). O

With the help of Proposition 3.11, we are ready to derive the density of a(z).

Theorem 3.12. Let s; 4n+1(cosh(x)) be the heat kernel of the 4n+1-dimensional real hyperbolic
space [12,20]:

e—(2m*t/2 1 d\" x2/(21)
n h = dx _ ’
St.4 +1(COS (.X)) (27.[)2n /27t <sinh(X) dx) ‘

and

Luoijp) =Y VT (M)ZHmfl/z

TG +m+1/2) 2

be the modified Bessel function. Define also the time-dependent symmetric polynomials
Qom,m >0, in (v1, va, v3) of degree 2m by:

2 2
Qom(v1, V2, v3, 1) = €lV17/0 (A;”e*‘”' /(2’)) , veR,

where A, is the Euclidean Laplacian in R? acting on v. Then the density of the quaternionic
stochastic area process a(t) is given by:

o—Un+Dr/2 s o0 0
— N /(2’)/ dr sinh(r)*~! coshz(r)/ dus; an+1(cosh(u) cosh(r))
0 0

iy
(_l)m (u)111+|/2 u 3
Z = Ln—12 (—) Qom(v1, 12, 03,1), veER.
|
o m 2 2

Remark 3.13. The polynomial Q,, may be expressed as a linear combination of products of
(even) Hermite polynomials:

(r) — (— jx2/2d_j —x2/2
Hi(x) = (—1)e dx/e .
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Indeed, it suffices to expand:

Ar= )"

J1t+jat+j3=m

2j152/292j3
1 vl 802 8v3

Jilj2!js!
to get the representation:

1 m! V] vy U3
Oom(vy, v2, v3, 1) = o Z mHul (ﬁ) Hyj, (ﬁ) Hyj, (ﬁ) . 3D

Jit+jatjz=m

Proof. Since the radial part of the measure (this is the volume measure of HH")
dw
(1 — w2
is sinh(r)*~! cosh®(r)dr, |{w| = tanh(r), then the intertwining relation (3.6) together with
Proposition 3.11 yields:

2n—1,p+1 ©, r) 67[(2n+1)2+ﬂ(ﬂ+2)]t/2

2nut 2L = sinh(r)4”_lcosh3(r)
cosh’(r) Q) 2mt
h i LdN" e
dx sinh(x)K,, (x, w) | — — ] e .
d(0,w)=r sinh(x) dx

Performing the variable change cosh(x) = cosh(u) cosh(r) and using the expression of the heat
kernel s; 4,41, We equivalently write:

an—l,/L+l(0’ r) 3

onpur 4 S 2= D2 Ginh (Y= cosh?(r)
o0 1 1 — cosh(u)
duFi ({—(u+1), u+1, 5; — 5t,4n+1(cosh(u) cosh(r)).
0
But, the identity
1 — cosh(u)

1
2 Fy (—(M + 1, (u+1), ok ) = cosh((u + Du),

2
entails further:

2n—1,u+1
2npt qt (07 r) _

—2ni—(u+10>2t/2 an—1 2
e sinh(r cosh“(r
cosh”(r) ") )

/00 du cosh((it 4+ 1)u)s; an1(cosh(u) cosh(r)).
0

Consequently, recalling (u + 1)*> = IA|?> + 1, the characteristic function of a(r) admits the
following expression:

[o¢]
E(eik-a(t)) — e—(4n+1)z/2/ Sinh(r)4n—1 COShz(r)
0

o0
f du e 112 cosh(y/ |A? + 1u)s, 4n41(cosh(u) cosh(r)). (3.8)
0
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In order to derive the density of a(¢), it suffices to write e~**"/2 cosh(v/|x|? + 1u) as a Fourier
transform in the variable A and to apply Fubini Theorem. To this end, we expand:

2j J .
cosh(y/|A]? + 1u) = M— <])|k|2m
2(2])!; m

Jj=0
u? / 1

=7 . PR

\/_]Zz(; 22iT(j +1/2) mZ:(:)m!(j —m)!| |
|)\,|2m 1 u2j
o ﬁy;) m! sz (—m)25T( +1/2)
AP su\m1/2

= Z ! (E) 1;1171/2 (),

m=>0 :
and write
mzmeﬂ,\\zz/z _ (;_i)):;z f (A'ffe”'”) e"”'z/(mdv
us R

- %Aei*-v (Alyef\v\z/@t)) dv
_ =" irv ,—v?/(21)
= W/I;e e Qom(v1, v2, v3, H)dv.
Using the bound ([9], p.208),
|Hoj(x)] < €422 j1,
we can see from (3.7) that

o
[Qom(v1, v2, 03, )] = t_melv\ a3 1=

J1t+itjz=m

mi22m e\v\z/(4r) m+2)m+1)
tm 2 '

Combined with the following bound for the modified Bessel function (see e.g. [9], p.14):

u

u)ln—l/Z e

In_12 (W) < <§ m,

we get:

1 . 2
—|x2/2 2 _ i(Av) ,—[vl=/(20)
e cosh(y/ |A|© + 1u) = e e
(V1A ) (27”)3/2/R

Z(—l)m (u)m+1/21 <u>Q (01, v, v3)
—~ m! 2 m—1/2 2 2m 1, V2, U3),

where the series on the right hand side is absolutely convergent and is bounded by:

P/ u?"(m + D(m +2)
— 2" T + 1/2)

Plugging this Fourier transform on the right hand side of (3.8), we only need to check that
Fubini Theorem applies. But, the estimate ([20], Eq. (2).25):
1) 2
. h(8)) < C———e*/  C,6 >0,
Sany1(cosh(§)) < sinh(é)e >
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together with

1
cosh™![cosh(u) cosh(r)] > cosh™! I:E(Cosh(u + r)):| >(r+u), ru— +oo,

shows that s4,+1(cosh(u)cosh(r)) < Ce~+¥°/@) Hence, Fubini Theorem applies which
finishes the proof. [

4. Stochastic area process on quaternionic projective spaces HP"

4.1. The quaternionic Hopf fibration

We now turn to the study of the quaternionic Hopf fibration, start with some preliminaries,
and refer to [5] for more details. As previously, H is the quaternionic field and 7, J, K € SU(2)
are the Pauli matrices. Define the quaternionic sphere S**+3 by:

{g=(q1 . qur) e " g = 1}.

Then, SU(2) acts on it by isometries and the quotient space S***3/SU(2) can be identified with
the quaternionic projective space HP" endowed with its canonical quaternionic Kéhler metric.
Besides, the projection map S*'*3 — HP" is a Riemannian submersion with totally geodesic
fibers isometric to SU(2), and the fibration

SU2) — S*+3 s Hp"

S4n+3 —

is called the quaternionic Hopf fibration.

By analogy with the AdS setting and as in [5], we shall use cylindrical coordinates which
are adapted to geometry of the fibration. Let (wy, ..., w,) denote a point on the base space
HP", and (0, 6;, Ox) be the coordinates for the Lie algebra su(2) of traceless skew-Hermitian
2 x 2 matrices. The cylindrical coordinates are given by the map

HP" x su(2) — S**3
19[+J9_/+K9Kw1 6191+]91+K9K wy, 610[+19‘,+K0K)

Ji+pr T et T 12

_ n 2 | . . . .
where p = 1/2_7:1 |w;|* and w; = ¢q,,qi, i = 1,...,n, are inhomogeneous coordinates in
HP™.

Wi, W 07,05, 0) (e

4.2. Stochastic area process on HP"

Definition 4.1. Let (w(f)),>0 be a Brownian motion on HP" started at 0.° The quaternionic
stochastic area process of (w(#));>o is a process in R3 defined by

1 2\ dw;(s)w;(s) — wi(s)dw(s)
“0=2 ;/o )P

’

where the above stochastic integrals are understood in the Stratonovich, or equivalently in the
Itd sense due to the skew-symmetric structure of the form.

6 We call 0 the point with inhomogeneous coordinates w; =0, ..., wy, = 0.
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The following theorem shows that the quaternionic stochastic area process of the Brownian

motion on HP" can be interpreted as the fiber motion of the horizontal Brownian motion on
S4n+3.

Theorem 4.2. Let (w(t));>0 be a Brownian motion on HP" started at 0, and (O(t)),;>¢ be
the solution of the SDE

dO(t) = —0O(t)oda(z). 4.9)
The S*'*3-valued diffusion process
o(t)
X, = ——————=w(@), ), t>0 (4.10)

V1t [w@))?

is the horizontal lift at the north pole of (w(t));>0 by the submersion S*+3  HP".

Remark 4.3. The SDE (4.9) means that the integral of Maurer—Cartan on SU(2) along O(t)
is exactly given by one half of the stochastic area process a(¢), t > 0.

Proof. The proof parallels the one in the anti-de Sitter case. The horizontal lift to S*'*3 of
the vector field

ad 1 /0 d d d
A (A A L
Jw; 2 \ ot 0X; ay; 0z;

is given by
o0 w; 9
YT w; 2(1 4 p?)costn g’

where

b= it g toxk. —=qp gy Ok
Ty AT TR R 5 T aer T ag” gk

Now, consider a smooth curve y starting at O in HP":
8(t) = (1), ..., g(1),
where g; = (gil, gi’ , giJ , giK ) € C(Rsp, R*). Using quaternionic coordinates
gi= Y &S e CR H,
S=1,I,J,K

we readily have that the real vector T,(f) tangent to g is given by

n

.. B] ) B] o -
T,(t) = 2Re§gi(t)8_wi = Zl (gi(t)a_u),» + 8_w,-gi(t)) .

i=
We deduce that the horizontal lift g at the north pole, in the cylindrical coordinates (w, ¢), has
the real tangent

. 0 g:() Gl
e,;g o <8wi T F 1gOPreosty 8¢>>
Hence

wi(1) = &),  wit) = g;(10),
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l n
Im ) £:(1)g;(0).
(1+ |g(®)I*) cos? n(1) ; s
Let O(¢) denote the SU(2)-valued path issued from identity and satisfies
o)~ 6(t) = cos® n()(1),

then we have

$() =~

n

O e L N (VB — (VB
CIONCIOE 2(H'g(t)'z);(g,(t)gl(r) gi(0g;(1)).

As a consequence,
e@)

8t = ———
V1+10P

with

/Q(S)_ld@(s)z—/ Z.
0 8l0,1]

Similarly, the lift of the Brownian motion (w(¢)),> is the process
e(1)

V1t w)?

with
t
/ O(s)"'dO(s) = —f .= —/ oda(r). O
0 w(0,7] w|0,7]

Next we show that the fiber motion ©(¢) on the SU(2)-bundle is in fact a time-changed
Brownian motion process on SU(2).

C{ONON

(w(®, 1), =0,

Theorem 4.4. Let r(t) = arctan |w(t)|. The process (r(t), O(t)),~¢ is a diffusion with
generator

1/ 9? 3
L = E <m + ((41’1 — l)COtl’ — 3tanr)5 +tan2rASU(2)> .
As a consequence the following equality in distribution holds

), €W =0 = (rO, B g s

where (B;);>0 is a Brownian motion process on SU(2) independent from r.

)
>0

Proof. Here again, the proof is very similar to the anti-de Sitter case. We first compute the
generator of the Markov process X(¢) as introduced in (4.10). The Laplace-Beltrami operator
on HP" is given by (see [19] page 77)

n 2
Ampn = 4(1 + p*)Re <Z

i=1

+RR —2R
where p = |w| = tanr and R = Z?:I w jﬁ is the quaternionic Euler operator. We denote
J
by %L§4n+3 the generator of X(¢). Since X (¢) is the horizontal lift of w(¢), then Lgan13 is the
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horizontal lift to S*'*3 of Agpn. Hence we have

np2 - p* 2\’ 1
Leinss = 4(1 + pH)R RR = o\ 57
g =40 e<21: ow; dw; * 4(1+p2)cos4n(3¢> +20052’I

— 0 0
I
d¢ 09
_ A +tan2r282+ 2 ﬁa BR
T OTHPTT cost S dg:  cos’rcos?n dp 99 )

We then compute that Lg4:+3 acts on functions depending only on (r, ¢;, ¢, ¢k) as

2

d tan? r 92
3 T (4n = Dootr —3tanr)— + —— Y —
S

ar r o costp A2
2

d
= ﬁ + ((4n — 1)cotr — 3tanr)— +tan rASU(2)

The last equality comes from the fact that the vector fields 2n W on SU(2) are in fact

the 3 Reeb vector fields. Let ©(¢) be a Brownian motion process on SU(2) that is generated
by %ASU(z), then clearly (r(¢), ©(¢)) is generated by

1 (0
3 (8 5+ ((4n — )cotr — 3tanr)— + tan rAsU(2)>

hence in distribution it holds that
(). OW) 20 = (FO. Bt o),

where B(¢) is a standard Brownian motion on SU(2) independent of r. [J

Corollary 4.5. Let r(t) and a(t) be given as previously. In distribution we have that
(r(1), Cl(l))lzo = (V(t)s yf(; tan2 r(s)ds)tz() s

where y(t), t > 0 is a standard Brownian motion process in R3.

Proof. The proof is the same as in Corollary 3.6. To avoid repetition, we omit it here. [

4.3. Characteristic function of the stochastic area and limit theorem

We now study the characteristic function of a(z). Let A € [0, oo)3, r € [0, 00) and
I, r)=E (" Ort)=r).
From Theorem 4.4, we know that

10, 1) =B (T = 1)
=K (e‘lez Jo tan? OB (1) = r)
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and r is a diffusion with generator given by:
192 1 d
Lo = 2972 + 5((4n — 1)cotr — 3tanr)5

started at 0. More generally, the circular Jacobi generator is defined by:

L£*F L + +1 cot ﬂ+] tan 9 B 1
F= - o+ = r— = r|—, o pf>-—1,
2 9r? 2 2 or

and we refer the reader to the Appendix of [6] for further details. We denote by ¢, A (ro, r) its
corresponding transition density with respect to the Lebesgue measure.

Theorem 4.6. For A € R3, r € [0, /2), and t > 0 we have
e g 0,

(cosr) g1, r)

E (ei)ua(t)|r(t) — r) —

where |1 = +/ A2 +1-—1

Proof. Note

.11

dr(t) = % ((4n — 1)cotr(t) —3tanr(t))dt + dy(t),

where y is a standard Brownian motion. Consider the local martingale defined for any i > 0 by

t 2 t
D, = exp (—,u/ tanr(s)dy(s) — % / tan’ r(s)ds)
0 0

t 3 2 t
— exp (—M/ tan r(s)dr(s) + %(4;1 — 1y — “T”/ tanzr(s)ds> .
0 0

From It6’s formula, we have

d 1 (" ds
Incosr(t) = —/ tanr(s)dr(s) — —/
0 2 Jo

cos2 r(s)
! 1 [ 1
= —/ tanr(s)dr(s) — —/ tanzr(s)ds — —t.
0 2 0 2
As a consequence, we deduce that

2
D, = e2nut(cos r(t))uef(’%Jru)fé tan? r(s)ds.

This expression of D implies that almost surely D, < ¢?"*! and thus D is a true martingale. Let
us denote by JF the natural filtration of r and consider the probability measure P* defined by

u? it 2
Phy = ¥ (cos r(t) e T T Jo T r(Odp o

We have then for every bounded and Borel function f on [0, 7 /2],

2 fLan? risds Y _ -2 (ST @)
E(f(r(l‘))e(2_'_/1)f0t ()d>—62”E/ (m)

By Girsanov Theorem, the process defined by

Bt) =y () + M/ tan r(s)ds
0
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is a Brownian motion under the probability P*. Since
1
dr(t) = 3 ((4n — Dycotr(t) — 2u + 3)tanr(t)) dt + dp(z),
the proof is complete by letting it = /|A|* + 1 — 1.
Corollary 4.7. For » e R* and t > 0,
o ) /2
E ei)\-at — e nut /
(o) = e [
where 1 = /|A* +1— 1.

Proof. This is a direct consequence of (4.11).

g "0

(cosr)*

We are now in position to prove a central limit type theorem for a(t).

Theorem 4.8. When t — 400, the following convergence in distribution takes place
a(t)
NG

Proof. From Corollary 4.7 we have for every ¢ > 0,

a 2 2n—1
B (%) = /B [ Ton,,

[b2
0 (cosr)V 7 H1-1

Using the formula for g, ~10, r) which is given in the Appendix of [6], we obtain by
dominated convergence that

JEE
e o
lim !
TJ0 (cos )V i

On the other hand,

1
lim /t|A)> 4+ 12—t = = |A%,
f—00 2

thus one concludes
L <r> o
11m]E< )=e“. O
t—00

4.4. Formula for the density

— N(0, 2nld3).

/2
/ g2 N0, rydr = 1.
0

The derivation of the density of a(z) in this setting is rather direct compared to its AdS
analog. Actually, we shall use the explicit expression of the circular Jacobi heat kernel to give
a more elaborate expression of the characteristic function, namely:
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Corollary 4.9 (of Corollary 4.7). The characteristic function of the generalized stochastic area
process admits the absolutely-convergent expansion:

o . @n), e
E(eka(t)) — e 2nput X(;(_l)j J'j(2]+2n+ﬂ+l)e 2j(j+2n+p+1t
Jj=
pe+2) TG+ /DTG +2n+ p+ 1)
4 TI(GHul2+2n+2I(G+u+2)°

where, as before, L = +/ |)\|2 +1-1.

Proof. Recall the notation pﬁzn*l’“ H)(O, r) for the heat kernel of the circular Jacobi operator
L2~ Lr+1 Then, it is known that (see the Appendix of [6]):

ph D, ) [cos(r) 2“3 [sin(r)]*" !

~ TCn)

2(2] NI PR l)e—zj(j+2n+u+1)t
j=0

r(+2 1
G rontpt )PQ”*"““)(cos(zr)). (4.12)
FG+u+2 7

Expanding the Jacobi polynomials [1]:

- 2n); 1 — cos(2
PR Vcosan) = S (=g 2t 1,20 =)
1) n (D 42 D,
:(7)1 Z( IOm(J+2n+pn+1) i (),
Jj! 2n),,m!

where , F; is the Gauss hypergeometric function, we are led (by the virtue of Corollary 4.7)
to the following Beta integral:

/2
/ cos* 3 () [sin(r) 2 dr
0

Consequently,

_ I'((w/2)+2)'(2n + m)
C2ICn424m+u/2) "

/2 R
/ cos () sin(r)1*"~ PP D cos@rdr = 1 (5 +2) chChE )
0 2 2!
2’: CmlG+2n 4+ p+ D L/ +2) Q)

ICn+2+m+u/2m! ~ I'Cn+2+u/2) 25!

m=0
.. " I'((n/2)+2) I'Cn+j)
(=i j+2 Lont2+20) =
2 1( Jogantptlant 24 ) TCn+2+p/2) 2!
B e, T+ @it (D))
Qn+2+u/2); ) Ten+2+ w2 2j0  @nt2+m/2);

P12 D () T((w/2)+2) I'Can+j) (=1)(u/2);
J TF@n+2+p/2) 251 Q@n+2+p/2);
_ww+2) Ien+j) (=10 +p/2)
T4 2j! I(+2n4+24u/2)’

where we used the symmetry relation Pj(.a‘b)(—u) =(=1)/ P;b’a)(u) and the special value
@+1);

it
Keeping in mind (4.12), the corollary is proved. [

@h) 1y —
PP(1) =
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Remark 4.10. At the end of the proof, we simplified with I'(x/2) and this is allowed when
@ # 0 < A #0. When u = 0, our computations remain valid and should be understood as a
limit when u — 0. In this case, the only non vanishing term corresponds to j = 0 so that
(/D)) + DI (/DT + e+ 1)
I'Cn+24p/2)
Now, in order to invert the characteristic function and recover the density of a(z), it suffices
to express:

IimQ2n+un+1) =1.
u—0

oGy P +2) TG+ /DG +2n+pn+ 1)
4 TG+puR+2n+2DIG+u+2)

as a Fourier transform in A, where we recall the relation u + 1 = v/|A|* + 1. To proceed, we
write for j > 1:

FG+uw/rG+2n+p+1) — GHu+2n)...(j+p+2)

TGHu/24+2n+2IG+pn+2)  (G+Ww/2)+2n)...(j +un/2)’
so that

Qj+2n+p+ e

Q) +2n+p+ Du( +2G +u+2n) ...+ +2) _22,,+2"Z“ a())
4G+ (u/2)+2n+1)...(j + 1/2) w+2j+2k
4.13)
for some real coefficients a; ,(j). For j = 0, the same decomposition holds:
(e +2) [(u/2) Cn+u+DI'Cn+pn+1 _ I'((n/2)+2)I'C2n+ u+2)
4 I'(n/24+2n+2)I'(n+2) I'(n/242n+2)I'(n+2)
2n+1 a (0)
— 22" + 1
; uw—+ 2k
2n+1
a,n(0)
=22 LAy 4.14
+ kg; ok (4.14)

with ap ,(0) = 0. Finally, using the integral
1 o0
— / e—uue—Z(j+k)udu’
w+2j4+2k 0

followed by the Fourier transform of the 3-dimensional relativistic Cauchy distribution (see [7],
Lemma 2.1 withd =3, m = 1):

2
e MU [y 4 (2] 4 2n)r]elnt @it < 1 )
2w

Ko (VIP T+ 2 +200P)
el X
/Rs lx|? + [u + (2 + 2n)t]?
we arrive at the following expression for the density of a(z) (note that the modified Bessel
function K,(v) is equivalent to /7 /(2v)e™" at infinity and that the coefficients (ax(j), k =

0,...,2n + 2) are polynomials in j whose degrees are uniformly bounded by 2n + 2, so that
we can use Fubini Theorem to interchange the order of integration).

’
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Theorem 4.11. The density of the quaternionic stochastic area process a(t) is given by the
following absolutely-convergent series:

1 2n)i i
_ 1y YT =2 42n+ 1t
77 2D I

Jj=0
K> (\/|x|2 +@Q2j+ 2n)2z2>
+

22"(2 i+ Zn)e(2j+2n)t
! X2 + 2] + 2n)2

2n+1 K> (\/|x|2 +lu+Qj+ 2,,0,]2)
> acn() / e 20Ty 4 (27 + 2n)t] el TRIT2mN
k=0

Ix|? + [u + (2] + 2n)t1?
where x € R? and the coefficients (ar.n(j)) are defined by (4.13) and (4.14).

Remark 4.12. 1t is clear that the limiting behavior of the density of a,/+/7 is given by the
first term j = O in the above series. Moreover, the equivalence

[
K,(v) ~ 2—ve_”, v — 400,

shows that for any u > 0,

K( tx]? + u+2nt2)
lim £*/*[u + 2nt]e" ™) 2 (it + : _ L e
100 t1x]? 4 (u + 2nt)? 2 (2n)3/2

Consequently, the density of a,/+/f converges as t — 0o to

1 2n+1
(4nn)3/2 ‘x| /(4}1) {22" + Z ax n(])/ 2kudl/l}

But, substituting 4 = 0 in (4.14), we get

2n+1

2y Z a, n(O) 1,

whence we recover that (using for instance Scheffés Lemma) a,/+/t converges in distribution
to a 3-dimensional normal distribution of covariance matrix 2nlds, as shown in Theorem 4.8.
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Appendix
A.1. The quaternionic contact structure of AdS*™*3(H)

There is a quaternionic contact structure on AdS*+3 (H) that we now describe. Consider the
quaternionic form

1 (¢ _ _ _ -
@=z (Z(dq,- 9i — 4i dqi) = (dqni1 Gnv1 — Gns1 dqm)) =al +a;J +akKk,
i=1
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then the triple («;, oy, @) gives the quaternionic contact structure. If we denote
n
d ad d d
T =- q'———_?>+(q 17— — ——4 1>,
; < Yog; g gunr G
then T =T;1 + T;J + Tk K, a(T) = 3 and we can easily find that for any S, S’ € {I, J, K},

as(Ty) = —6ss-

Thus, T;, Ty, Tx are the three Reeb vector fields of o and are also Killing vector fields
on AdS*'T3(H). In this way, AdSY (M) is a negative 3-K contact structure (see [15] for a
definition of this structure).

Using the cylindric coordinates, we can then rewrite the contact form (A.15) as follows:

1 (¢ . L
a=z (Z((QnJrldwi + dqn1wi) Wi Gnrt — Gu1 Wi (dW; Guy1 + Widqni1))

i=1

_(dCIn+1 dn+1 — 4n+i1 dQn+l))

1 n
=5 (Z Gn+1dW; Wi Gri1 — Gue1W; dWiQnH)

i=1

1 —
T3 (1= 0%) (91 Tui1 = 4ns14nz1) -
Set q := 16, + J6, + K03, then
el _ _ _ B
i1 = ——, eT=¢ 9 g=—q=q 1;72,
1—p?

sinn
el =cosn+—6;1 +0,J +0gK)
n

where n? = 912 + 93 + 912( is the squared Riemannian distance from the identity in SU(2). Also,
for any quaternion p € H, the relation 0 = d(p p~') = pdp~' +dp - p~! yields

dp™'=—pldp-p".

As a result, we easily derive:

t:
e det —de % = 2cos? nd ( aznq) . (A.15)

Hence, we can equivalently consider the following one form

Taet 1 [ (dwiw; — w; dw; t
A= e @e _ 2 Z Wi Wi 7 Wi Wiy 2cos’nd mq (A.16)
1 —p? 2\%< 1 —p? n

whose horizontal part

1 & (dw; w; — w; dw;
== 0t =7 A.17
¢ ZZ( T ) (A.17)

i=1
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is the quaternionic Kéhler form on HH", which in turn induces the following sub-Riemannian
metric

1 ik W W
h.p=— .
"= 2 (l—pz +(1—p2>2)

A.2. The quaternionic contact structure of S*'+3

There is a quaternionic contact structure on S*'+3 which is compatible with the Hopf

fibration structure. It is given in Euclidean coordinates g = (g, . . ., g4+1) by the quaternionic
one-form:
n+1
a= EZ(dqiE—q,- dg) =il + arJ + asK, (A.18)

i=1
or equivalently by the triple («;, a2, @3) which is a 3-dimensional contact form. Moreover, if
we denote

. 3 3
T2 (g~ 57)
then T =TI + T,J + T5K, o(T) = 3 and we can easily check that
oi(T)) = éi;.
Hence T, T, T5 are the three Reeb vector fields of o and also Killing vector fields on
S*+3_ The contact form (A.18) in the cylindrical coordinates is now given by

1 n+1
an+1dwi Wi Gur1 — Gny1W; AW; Gry1-

i=1

a=-
2

As previously we denote by ¢ := 16, + J6, + K63 a point on su(2). Consider an equivalent
one form A := Ad(e™9)a. We then have

A m o9 ef 1 Xn: dwi Wi — w; dwi +2cosnd (2
=e el = _ S —_—
2\ & 1+ 02 n " q
We denote by ¢ the horizontal part of A,
1 - dwiﬁi—wi dﬁ,
= 5;( 1+ p2 >

It indeed is the quaternionic Kéhler form on HP", and induces the following sub-Riemannian
metric

h-—l ik Wi wg
KT \14+p2 (4p22)°
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