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Abstract

We define and study quaternionic stochastic areas processes associated with Brownian motions on

the quaternionic rank-one symmetric spaces HHn and HPn . The characteristic functions of fixed-time

marginals of these processes are computed and allow for the explicit description of their corresponding

large-time limits. We also obtain exact formulas for the semigroup densities of the stochastic area

processes using a Doob transform in the former case and the semigroup density of the circular Jacobi

process in the latter. For HHn , the geometry of the quaternionic anti-de Sitter fibration plays a central

role, whereas for HPn , this role is played by the quaternionic Hopf fibration.

c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of the paper is a thorough study of some functionals of the Brownian motion

(w(t))t≥0 on the quaternionic spaces HH n and HPn . Those functionals write as a stochastic

line integral

a(t) =
∫

w[0,t]

ζ
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where ζ is an su(2)-valued one-form whose exterior derivative yields a.e. the quaternionic

Kähler form of the underlying space. By analogy with our previous work [6], we call those

functionals quaternionic stochastic areas.

Quaternionic stochastic area on H
n

To motivate our study and present our approach in a simple situation, we first briefly

comment on the case of the quaternionic flat space H
n . More details about this case are worked

out in Section 2. Let H be the non-commutative field of quaternions and let (w(t))t≥0 be a

Brownian motion on H
n , i.e. (w(t))t≥0 is simply a 4n-dimensional Euclidean Brownian motion.

Consider the quaternionic stochastic area process defined by

a(t) =
∫

w[0,t]

ζ =
1

2

n
∑

j=1

∫ t

0

dw j (s)w j (s) − w j (s)dw j (s)

where ζ = 1
2
Im⟨dq, q⟩ := Im

∑n
i=1 dqi qi is an su(2) ≃ R

3-valued one-form. Following [6],

one can study the 3-dimensional process a by embedding it into a higher dimensional Markov

process. More precisely, the 4n + 3-dimensional process

(X t )t≥0 = (w(t), a(t))t≥0,

is a Markov process and its generator is the sub-Laplacian on the quaternionic Heisenberg

group. Accordingly, a can be interpreted as the fiber motion of the horizontal Brownian

on the quaternionic Heisenberg group. This interpretation, together with a skew-product

decomposition of this horizontal Brownian motion, readily yields the identity in distribution

(a(t))t≥0
d=
(

β 1
4

∫ t
0 r2(s)ds

)

t≥0
,

where (βt )t≥0 is a standard 3-dimensional Brownian motion independent from the

4n-dimensional Bessel process r (t) = |w(t)|, t ≥ 0. One then deduces from [21] an exact

formula for the characteristic function of a(t) and deduce then, by Fourier inversion, an integral

formula for the density.

Quaternionic stochastic area on HH n

The method described for the quaternionic flat space H
n extends to the case of the

quaternionic hyperbolic space HH n . If (w(t))t≥0 is now the Riemannian Brownian motion on

HH n , then the functional of interest writes

a(t) =
∫

w[0,t]

ζ =
1

2

n
∑

j=1

∫ t

0

dw j (s)w j (s) − w j (s)dw j (s)

1 − |w(s)|2
,

where ζ is still an su(2)-valued one-form and (w1, . . . , wn) are now the inhomogeneous

coordinates on HH n . Indeed, Theorem 3.2 describes the stochastic area process a in terms of

the fiber motion of the horizontal Brownian motion of the quaternionic anti de-Sitter fibration

SU(2) → AdS4n+3(H) → HH n.

The geometry of this fibration therefore plays a prominent role in the study of a, which has

been studied along with its related heat kernels in the paper [3]. In this framework, one also

obtains the following identity in distribution

(a(t))t≥0
d=
(

β∫ t
0 tanh r2(s)ds

)

t≥0
,

where (βt )t≥0 is a standard 3-dimensional Brownian motion and is independent from the radial

process (r (t) = |w(t)|)t≥0. The latter one is now a hyperbolic Jacobi process. Using the methods
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developed in [6], one can then compute the characteristic function of a(t) and deduce that when

t → +∞, the following convergence in distribution takes place

a(t)
√

t
→ N (0, Id3)

where N (0, Id3) is 3-dimensional normal distribution with mean 0 and variance the identity

matrix.

Quaternionic stochastic area on HPn

Another geometry for which our previous reasoning also applies is that of the quaternionic

projective space HPn , which is the positively-curved analog of HH n . Let (w(t))t≥0 the

Riemannian Brownian motion on HPn , then the corresponding generalized stochastic area

process is defined by:

a(t) :=
∫

w[0,t]

ζ =
1

2

n
∑

j=1

∫ t

0

dw j (s)w j (s) − w j (s)dw j (s)

1 + |w(s)|2

where we still denote by (and hope there is no confusion) (w1, . . . , wn) the inhomogeneous

coordinates on HPn . This time, Theorem 4.2 describes a by means of the fiber motion of the

horizontal Brownian motion of the quaternionic Hopf fibration

SU(2) → S
4n+3(H) → HPn.

Similarly, we shall prove the identity in distribution

(a(t))t≥0
d=
(

β∫ t
0 tan r2(s)ds

)

t≥0
,

where (βt )t≥0 is again a standard 3-dimensional Brownian motion independent from the radial

process (r (t) := |w(t)|)t≥0 which is a circular Jacobi process. As before, we are able to compute

the characteristic function of a(t) and describe its large-time limit. As a consequence, we prove

that the following convergence in distribution takes place

a(t)
√

t
→ N (0, 2nId3).

2. Preliminary: Stochastic area process on the quaternionic space

In this preliminary section, we recall some results about the 3-dimensional stochastic

area process associated with a 4n-dimensional Euclidean Brownian motion. Stochastic area

processes associated to Euclidean Brownian motions and their related distributions are well

understood and have been extensively studied in the literature, see for instance [10,17,21].

However, our goal here is to highlight in this simple situation the role of quaternionic geometry

and to present the structural ideas that will be used in later sections.

Let H be the non-commutative field of quaternions

H = {q = t + x I + y J + zK , (t, x, y, z) ∈ R
4},

where I, J, K are abstract symbols that satisfy I 2 = J 2 = K 2 = I J K = −1. In fact they can

be identified with the matrices

I =
(

i 0

0 −i

)

, J =
(

0 1

−1 0

)

, K =
(

0 i

i 0

)

.

For q = t + x I + y J + zK ∈ H, we denote by q = t − x I − y J − zK its conjugate,

|q|2 = t2 + x2 + y2 + z2 its squared norm and Im(q) = (x, y, z) ∈ R
3 its imaginary part. The
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quaternionic Heisenberg group is then defined as the product space H4n+3(H) = H
n × Im(H)

with the group law

(q, φ) ∗ (q ′, φ′) =
(

q + q ′, φ + φ′ +
1

2
Im⟨q, q ′⟩

)

where for q = (q1, . . . , qn), q ′ = (q ′
1, . . . , q ′

n) ∈ H
n , we have set Im⟨q, q ′⟩ = Im

∑n
i=1 qi q

′
i .

3

This is an example of H-type groups (see [8]) which play an important role in sub-Riemannian

geometry (see [4]).

If φ = φI I + φJ J + φK K , then the right invariant vector fields

V 1
i =

∂

∂ti
−

1

2

(

xi

∂

∂φI

+ yi

∂

∂φJ

+ zi

∂

∂φK

)

V I
i =

∂

∂xi

+
1

2

(

ti
∂

∂φI

+ zi

∂

∂φJ

− yi

∂

∂φK

)

V J
i =

∂

∂yi

+
1

2

(

−zi

∂

∂φI

+ ti
∂

∂φJ

+ xi

∂

∂φK

)

V K
i =

∂

∂zi

+
1

2

(

yi

∂

∂φI

− xi

∂

∂φJ

+ ti
∂

∂φK

)

together with the fiber vector fields

TI =
∂

∂φI

, TJ =
∂

∂φJ

, TK =
∂

∂φK

,

generate the Lie algebra of H4n+3(H). The sub-Laplacian on H4n+3(H) is then given by

∆H4n+3(H) =
n
∑

i=1

(V 1
i )2 + (V I

i )2 + (V J
i )2 + (V K

i )2

= ∆R4n +
|q|2

4

(

∂2

∂φ2
I

+
∂2

∂φ2
J

+
∂2

∂φ2
K

)

= ∆R4n +
|q|2

4
∆R3 +

n
∑

i=1

∑

S=I,J,K

(

qi

∂

∂qi

S − S
∂

∂qi

qi

)

∂

∂φS

where for each qi = ti + xi I + yi J + zi K , we set

∂

∂qi

:=
1

2

(

∂

∂ti
−

∂

∂xi

I −
∂

∂yi

J −
∂

∂zi

K

)

.

What makes the connection between stochastic areas and the quaternionic Heisenberg group

is that the operator 1
2
∆H4n+3(H) is the generator of the Markov process:

(X t )t≥0 =
(

B1(t), . . . , Bn(t),
1

2

n
∑

i=1

∫ t

0

Im⟨d Bi (s), Bi (s)⟩
)

t≥0

,

where (Bi (t))t≥0, 1 ≤ i ≤ n, are independent H-valued Brownian motions. Equivalently,

(X t )t≥0 is the horizontal Brownian motion of the canonical sub-Riemannian structure on

H4n+3(H).

3 Note that the different convention that Im⟨q, q ′⟩ = Im
∑n

i=1 qi q
′
i is also sometimes used in the literature, for

instance in [8].
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Then, the Euclidean norm r := |B| is the radial process of B = (B1, . . . , Bn) while the

R
3-valued fiber motion is given by the stochastic area process:

φ(t) :=
1

2

n
∑

i=1

∫ t

0

Im⟨d Bi (s), Bi (s)⟩, t ≥ 0.

The process (r (t), φ(t))t≥0 is a diffusion with generator

L =
1

2

(

∂2

∂r2
+

4n − 1

r

∂

∂r
+

r2

4
∆R3

)

.

Consequently, the following equality in distribution holds:

(r (t), φ(t))t≥0

d=
(

r (t), β 1
4

∫ t
0 r2(s)ds

)

t≥0
,

where (βt )t≥0 is a standard 3-dimensional Brownian motion independent from r .

The characteristic function of φ(t) may be derived from the computations done by M. Yor

in [21]. More precisely, let λ = (λI , λJ , λK ) ∈ [0, ∞)3, r ∈ [0, ∞), and consider

I (λ, r ) := E

(

eiλ·φ(t)

⏐

⏐

⏐

⏐

r (t) = r

)

= E

(

e− |λ|2
8

∫ t
0 r2(s)ds

⏐

⏐

⏐

⏐

r (t) = r

)

where |λ|2 = λ2
I + λ2

J + λ2
K . From [21], it is known that:

E

(

e− |λ|2
8

∫ t
0 r2(s)ds

⏐

⏐

⏐

⏐

r (t) = r

)

=

⎛

⎝

|λ|t

2 sinh
(

|λ|t
2

)

⎞

⎠

2n

e
− r2

2t

(

|λ|t
2

coth
(

|λ|t
2

)

−1
)

,

whence it follows that:

E
(

eiλ·φ(t)
)

= E

(

e− |λ|2
8

∫ t
0 r2(s)ds

)

=
(

cosh
|λ|t
2

)−2n

.

As a matter of fact, the distribution of φ(t) is a 3-dimensional analog of the Meixner

distribution [18] which, up to our best knowledge, has never appeared in literature.

Proposition 2.1. The density of φ(t), t > 0, with respect to the Lebesgue measure is given by

ht (φ) =
22n−1

2π t3

∫ 1

−1

du

∫ 1

0

dv[v(1 − v)]n−1

[

v

1 − v

]iu|φ|/t

ln2

[

v

1 − v

]

.

Proof. Using Fourier inversion formula, the density of φ(t) is given up to a normalizing

constant by:

ht (φ) :=
∫

R3

(

cosh
|λ|t
2

)−2n

e−iλ·φdλ,

which reads in polar coordinates:

ht (φ) =
∫ ∞

0

r2

(

cosh
r t

2

)−2n {∫

S2

e−irθ ·φdθ

}

dr, φ ∈ R
3.

By rotation invariance, the inner integral may be written as:
∫ 1

−1

e−iru|φ|du =
∫ 1

−1

cos(ru|φ|)du,
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and as such, Fubini Theorem entails:

ht (φ) =
∫ 1

−1

∫ ∞

0

r2 cos(ru|φ|)
(

cosh
r t

2

)−2n

drdu.

But, we know from table 3.985 in [11] that for any z ∈ R:
∫ ∞

0

cos(r z)

(

cosh
r t

2

)−2n

dr =
22n−1

t(2n − 1)!

⏐

⏐

⏐
Γ

(

n + i
z

t

)
⏐

⏐

⏐

2

=
22n−1

t

∫ 1

0

[v(1 − v)]n−1

[

v

1 − v

]i z/t

dv,

whence
∫ ∞

0

r2 cos(r z) (cosh r t/2)−2n dr = −
22n−1

t(2n − 1)!
d2

dz2

⏐

⏐

⏐
Γ

(

n + i
z

t

)⏐

⏐

⏐

2

=
22n−1

t3

∫ 1

0

[v(1 − v)]n−1

[

v

1 − v

]i z/t

ln2

[

v

1 − v

]

dv.

Note that the last integral is absolutely convergent (uniformly in z) which may be easily seen

after performing there the variable change y = v/(1 − v):
∫ 1

0

[v(1 − v)]n−1

[

v

1 − v

]i z/t

ln2

[

v

1 − v

]

dv =
∫ ∞

0

yi z/t yn−1

(1 + y)2n
ln2(y)dy.

Substituting z = u|φ| and taking into account the factor 1/(2π ) present in Fourier inversion

formula, the density follows. □

3. Stochastic area process on the quaternionic hyperbolic space HH
n

3.1. Quaternionic anti-de Sitter fibration

We first give a quick overview of the quaternionic anti-de Sitter fibration but refer to [3]

and the references therein for further details. Recall the quaternionic field is defined by

H = {q = t + x I + y J + zK , (t, x, y, z) ∈ R
4},

where I, J, K are given as previously. Then, the quaternionic anti-de Sitter space AdS4n+3(H)

is defined as the quaternionic pseudo-hyperboloid:

AdS4n+3(H) = {q = (q1, . . . , qn+1) ∈ H
n+1, ∥q∥2

H = −1},
where

∥q∥2
H :=

n
∑

k=1

|qk |2 − |qn+1|2.

The group SU(2), viewed as the set of unit quaternions, acts isometrically on AdS4n+3(H)

and the quotient space

AdS4n+3(H)/SU(2)

can be identified with the quaternionic hyperbolic space HH n endowed with its canon-

ical quaternionic Kähler metric. The projection map π : AdS4n+3(H) → HH n is a

pseudo-Riemannian submersion with totally geodesic fibers isometric to SU(2). The fibration

SU(2) → AdS4n+3(H) → HH n
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is referred to as the quaternionic anti de-Sitter fibration.

As in [3], we shall work with cylindrical coordinates on AdS4n+3(H). Let (w1, . . . , wn)

denote a point on the base space HH n , and (θI , θJ , θK ) be the coordinates in the Lie algebra

su(2) of traceless skew-Hermitian 2 × 2 matrices. More precisely, we shall consider the map

HH n × su(2) → AdS4n+3(H)

(w1, . . . , wn, θI , θJ , θK ) ↦→
(

eIθI +JθJ +K θK w1
√

1 − ρ2
, . . . ,

eIθI +JθJ +K θK wn
√

1 − ρ2
,

eIθI +JθJ +K θK

√

1 − ρ2

)

where ρ =
√

∑n
j=1 |w j |2 and wi = q−1

n+1qi , i = 1, . . . , n, are inhomogeneous coordinates in

HH n .

3.2. Quaternionic stochastic area process on HH n

We define the quaternionic stochastic area process as follows.

Definition 3.1. Let (w(t))t≥0 be a Brownian motion on HH n started at 0.4 The quaternionic

stochastic area process of (w(t))t≥0 is the process in su(2) ≃ R
3 defined by

a(t) :=
∫

w[0,t]

ζ =
1

2

n
∑

j=1

∫ t

0

dw j (s)w j (s) − w j (s)dw j (s)

1 − |w(s)|2
,

where the above stochastic integrals are understood in the Stratonovich, or equivalently in the

Itô sense due to the skew-symmetric structure of the form.

The following theorem shows that the quaternionic stochastic area process of the Brownian

motion on HH n can be interpreted as the fiber motion of the horizontal Brownian motion on

AdS4n+3(H).

Theorem 3.2. Let (w(t))t≥0 be a Brownian motion on HH n started at 0, and (Θ(t))t≥0 be

the SU(2)-valued process solution of the Stratonovitch stochastic differential equation

dΘ(t) = Θ(t) ◦ da(t), (3.1)

where we identify a as an element of the Lie algebra su(2). Then, the AdS4n+3(H)-valued

diffusion process

X (t) =
Θ(t)

√

1 − |w(t)|2
(w(t), 1) , t ≥ 0 (3.2)

is the horizontal stochastic lift at the north pole of (w(t))t≥0 by the submersion π :
AdS4n+3(H) → HH n .

Remark 3.3. The SDE (3.1) implies that the integral of the Maurer–Cartan form on SU(2)

along Θ(t) is exactly given by the stochastic area process (a(t))t≥0.

Proof. We use the fact that the pseudo-Riemannian submersion π is compatible with the

quaternionic contact structure of AdS4n+3(H) which is described in Appendix A.1. Precisely,

4 We call 0 the point with inhomogeneous coordinates w1 = 0, . . . , wn = 0.
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the horizontal distribution of this submersion is the kernel of the contact form Λ given by

(A.16) and the fibers of the submersion are the orbits of the Reeb vector fields. We claim that

the horizontal lift to AdS4n+3(H) of the vector field

∂

∂wi

:=
1

2

(

∂

∂ti
−

∂

∂xi

I −
∂

∂yi

J −
∂

∂zi

K

)

is given by:

Vi =
∂

∂wi

−
wi

2(1 − ρ2) cos2 η

∂

∂φ
, (3.3)

where we set η2 = θ2
I + θ2

J + θ2
K and

φ :=
tan η

η
q = φI I + φJ J + φK K ,

∂

∂φ
:=

∂

∂φI

I +
∂

∂φJ

J +
∂

∂φK

K .

The derivation of Vi is as follows. The contact form

Λ = ζ − cos2 η dφ

is in fact a 3-dimensional one-form, where ζ is defined in (A.17) from the Appendix and

dφ = dφI I + dφJ J + dφK K . Writing ζ = ζ I I + ζ J J + ζ K K with

(1 − ρ2)ζ I = ti dxi − xi dti + yi dzi − zi dyi

(1 − ρ2)ζ J = ti dyi − yi dti + zi dxi − xi dzi

(1 − ρ2)ζ K = ti dzi − zi dti + xi dyi − yi dxi

then we get:

2(1−ρ2)ζ I (
∂

∂wi

) = −wi I, 2(1−ρ2)ζ J (
∂

∂wi

) = −wi J, 2(1−ρ2)ζ K (
∂

∂wi

) = −wi K ,

2(1 − ρ2)ζ I (
∂

∂wi

) = Iwi , 2(1 − ρ2)ζ J (
∂

∂wi

) = Jwi , 2(1 − ρ2)ζ K (
∂

∂wi

) = Kwi .

Now, the quaternionic contact form Λ may be written as Λ = ΛI I + ΛJ J + ΛK K , where

ΛS = ζ S − cos2 η dφS , S = I, J, K . It follows that

Λ
S(Vi ) = −

wi S

2(1 − ρ2)
+

dφS(wi
∂
∂φ

)

2(1 − ρ2)
= 0,

as required. Next, consider a smooth curve g starting at 0 in HH n:

g(t) = (g1(t), . . . , gn(t)),

where

gi =
∑

S=1,I,J,K

gS
i S ∈ C(R≥0,H).

We denote by Tg(t) the real vector that is tangent to g at t , then

Tg(t) =
n
∑

i=1

ġ1
i (t)

∂

∂ti
+ ġ I

i (t)
∂

∂xi

+ ġ J
i (t)

∂

∂yi

+ ġK
i (t)

∂

∂zi

= 2Re

n
∑

i=1

ġi (t)
∂

∂wi

=
n
∑

i=1

(

ġi (t)
∂

∂wi

+
∂

∂wi

ġi (t)

)

.
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Consequently, the horizontal lift of Tg(t) at the north pole5 is given by:

2Re

n
∑

i=1

ġi (t)

(

∂

∂wi

−
gi

2(1 − ρ2) cos2 η

∂

∂φ

)

.

Therefore the lifted curve g, in cylindrical coordinates (w(t), φ(t)) ∈ C(R≥0,H
n × ImH)

satisfies that

ẇi (t) = ġi (t), ẇi (t) = ġi (t),

φ̇(t) =
1

(1 − |g(t)|2) cos2 η(t)
Im

n
∑

i=1

ġi (t)gi .

Let Θ(t) denote the SU(2)-valued path issued from identity that satisfies Θ(t)−1Θ̇(t) =
cos2 η(t) φ̇(t), then

Θ(t)−1
Θ̇(t) =

1

2(1 − |g(t)|2)

n
∑

i=1

(

ġi (t)gi (t) − gi (t)ġi (t)
)

. (3.4)

As a consequence, from (A.15) we have the AdS4n+3(H)-valued path g is given by

g(t) =
Θ(t)

√

1 − |g(t)|2
(g(t), 1) ,

with
∫ t

0

Θ(s)−1 ◦ dΘ(s) =
∫

g[0,t]

ζ.

Similarly, the horizontal stochastic lift of the Brownian motion (w(t))t≥0 is

Θ(t)
√

1 − |w(t)|2
(w(t), 1)

with
∫ t

0

Θ(s)−1 ◦ dΘ(s) =
∫

w[0,t]

ζ =
∫

w[0,t]

◦da(t). □

Our next theorem will show that the fiber motion Θ(t) on the SU(2)-bundle is in fact a time-

changed Brownian motion process on SU(2). To see that, we recall the notions of stochastic

exponential (resp. stochastic logarithm) of semi-martingales on a Lie algebra (resp. Lie group)

defined as follows (cf. [13]):

Definition 3.4. Let X (t), t ≥ 0 be a semi-martingale on SU(2) started from the identity and

M(t), t ≥ 0 a semi-martingale on its Lie algebra su(2) started from 0. If these two processes

satisfy the Stratonovich differential equation

d X (t) = X (t) ◦ d M(t)

then we call X (t) the stochastic exponential of M(t) and M(t) the stochastic logarithm of X (t).

In particular if M(t) is a standard 3-dimensional Brownian motion, then X (t) is a Brownian

motion on SU(2).

5 This is the vector with inhomogeneous coordinates (q1 = q2 = · · · = qn = 0, qn+1 = 1).
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Theorem 3.5. Let r (t) = arctanh |w(t)|. The process (r (t),Θ(t))t≥0 is a diffusion with

generator

L =
1

2

(

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r )

∂

∂r
+ tanh2 r∆SU(2)

)

.

As a consequence the following equality in distribution holds,

(r (t),Θ(t))t≥0
d=
(

r (t), β∫ t
0 tanh2 r (s)ds

)

t≥0
,

where (βt )t≥0 is a standard Brownian motion process on SU(2) independent from r.

Proof. We first compute, in cylindrical coordinates (w, φ), the generator of the diffusion X

introduced in (3.2). We start with the Laplace–Beltrami operator on HH n (see [19] page 48)

that writes

∆HHn = 4(1 − ρ2)Re

(

n
∑

i=1

∂2

∂wi∂wi

− RR + 2R

)

where ρ = |w| = tanh r and

R =
n
∑

j=1

w j

∂

∂w j

is the quaternionic Euler operator. Since X is the horizontal lift of the Riemannian Brow-

nian motion w, its generator is (1/2)LAdS4n+3(H) where LAdS4n+3(H) is the horizontal lift to

AdS4n+3(H) of ∆HHn . As we have seen, the horizontal lift to AdS4n+3(H) of the vector field
∂

∂wi
is given by Vi in (3.3), therefore

LAdS4n+3(H) = 4(1 − ρ2)Re

(

n
∑

i=1

∂2

∂wi∂wi

− RR −
ρ2

4(1 − ρ2) cos4 η

(

∂

∂φ

)2

−
1

2 cos2 η

(

R
∂

∂φ
−

∂

∂φ
R

))

= ∆HHn +
tanh2 r

cos4 η

∑

S

∂2

∂φ2
S

−
2

cosh2 r cos2 η

(

R
∂

∂φ
−

∂

∂φ
R

)

.

Acting on functions depending only on (r, φI , φJ , φK ), the operator LAdS4n+3(H) reduces to:

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r )

∂

∂r
+

tanh2 r

cos4 η

(

∑

S

∂2

∂φ2
S

)

.

Note that cos2 ηdφS , S = I, J, K is the 3-contact form on SU(2). The vector fields 1

cos2 η

∂
∂φS

on SU(2) are in fact the Reeb vector fields of those contact forms.

We note that Θ(t) is a SU(2)-valued process satisfying (3.4), and tanh2 r

cos4 η

(

∑

S
∂2

∂φ2
S

)

generates

the process φ(t) such that

dφ(t) =
tanh r

cos2 η
dγ (t),

where γ (t) is a standard Brownian motion in R
3 independent of r (t). Hence

Θ(t)−1dΘ(t) = cos2 η(t)dφ(t) = tanh rdγ (t). (3.5)
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If we denote by β(t) a Brownian motion on SU(2) independent of r , from Definition 3.4, we

know that β(t)−1dβ(t) = dγ (t). Hence (r (t),Θ(t)) is generated by

1

2

(

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r )

∂

∂r
+ tanh2 r∆SU(2)

)

,

and

(r (t),Θ(t))t≥0
d=
(

r (t), β∫ t
0 tanh2 r (s)ds

)

t≥0
. □

Corollary 3.6. Let r (t) and a(t) be given as previously. Then

(r (t), a(t))t≥0
d=
(

r (t), γ∫ t
0 tanh2 r (s)ds

)

t≥0
,

where γ (t), t ≥ 0, is a standard Brownian motion process in R
3.

Proof. This directly follows from the definition of a(t) (3.1) and Eq. (3.5). □

3.3. Characteristic function of the stochastic area and limit theorem

In this section we study the characteristic function of the stochastic area a(t). Let

L
α,β =

1

2

∂2

∂r2
+
((

α +
1

2

)

coth r +
(

β +
1

2

)

tanh r

)

∂

∂r
, α, β > −1

be the hyperbolic Jacobi generator. We will denote by q
α,β
t (r0, r ) the heat kernel with respect

to the Lebesgue measure of the diffusion it generates.

Let λ = (λI , λJ , λK ) ∈ [0, ∞)3, r ∈ [0, +∞), then Corollary 3.6 entails:

E
(

eiλ·a(t)
⏐

⏐r (t) = r
)

= E

(

e
iλ·γ∫ t

0
tanh2 r (s)ds

⏐

⏐r (t) = r
)

= E

(

e− |λ|2
2

∫ t
0 tanh2 r (s)ds

⏐

⏐r (t) = r

)

where |λ|2 = λ2
I + λ2

J + λ2
K and r is a diffusion whose generator is given by:

L
2n−1,1 =

1

2

∂2

∂r2
+

1

2
((4n − 1) coth r + 3 tanh r)

∂

∂r
,

and started at 0.

Theorem 3.7. For λ ∈ R
3, r ∈ [0, +∞), and t > 0

E
(

eiλ·a(t)
⏐

⏐r (t) = r
)

=
e2ntµ

(cosh r )µ
q

2n−1,µ+1
t (0, r )

q
2n−1,1
t (0, r )

.

where µ =
√

|λ|2 + 1 − 1.

Proof. Note

dr (t) =
1

2
((4n − 1) coth r (t) + 3 tanh r (t)) dt + dγ (t),

where γ is a standard Brownian motion. It implies that almost surely we have

r (t) ≥
(

2n −
1

2

)

t + γ (t),
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and thus r (t) → +∞ almost surely when t → ∞. Consider now the local martingale given

for any µ > 0 by

Dt = exp

(

µ

∫ t

0

tanh r (s)dγ (s) −
µ2

2

∫ t

0

tanh2 r (s)ds

)

= exp

(

µ

∫ t

0

tanh r (s)dr (s) −
µ

2
(4n − 1)t −

3µ + µ2

2

∫ t

0

tanh2 r (s)ds

)

.

From Itô’s formula, we have

ln cosh r (t) =
∫ t

0

tanh r (s)dr (s) +
1

2

∫ t

0

ds

cosh2 r (s)

=
∫ t

0

tanh r (s)dr (s) −
1

2

∫ t

0

tanh2 r (s)ds +
1

2
t.

As a consequence, we deduce that

Dt = e−2nµt (cosh r (t))µe− µ2+2µ
2

∫ t
0 tanh2 r (s)ds .

It is easy to prove that Dt , t ≥ 0 is a true martingale using the same argument as in [6]

Theorem 3.5.

Let F denote the natural filtration of r and consider the probability measure P
µ defined by

P
µ

/Ft
= DtP/Ft = e−2nµt (cosh r (t))µe− µ2+2µ

2

∫ t
0 tanh2 r (s)ds

P/Ft .

We have then for every bounded and Borel function f on [0, +∞],

E

(

f (r (t))e− µ2+2µ
2

∫ t
0 tanh2 r (s)ds

)

= e2nµt
E

µ

(

f (r (t))

(cosh r (t))µ

)

.

From Girsanov theorem, the process

γ µ(t) = γ (t) − µ

∫ t

0

tanh r (s)ds

is a Brownian motion under the probability P
µ. We note that

dr (t) =
1

2
((4n − 1) coth r (t) + (2µ + 3) tanh r (t)) dt + dγ µ(t).

Hence we have

E

(

e− µ2+2µ
2

∫ t
0 tanh2 r (s)ds

⏐

⏐

⏐

⏐

r (t) = r

)

=
e2ntµ

(cosh r )µ
q

2n−1,µ+1
t (0, r )

q
2n−1,1
t (0, r )

.

The proof is complete by letting µ =
√

|λ|2 + 1 − 1. □

As an immediate corollary of Theorem 3.7, we deduce an expression for the characteristic

function of the stochastic area process.

Corollary 3.8. For λ ∈ R
3 and t ≥ 0,

E
(

eiλ·a(t)
)

= e2nµt

∫ +∞

0

q
2n−1,µ+1
t (0, r )

(cosh r )µ
dr,

where µ =
√

|λ|2 + 1 − 1.
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We are now in position to prove the following central limit type theorem.

Theorem 3.9. When t → +∞, the following convergence in distribution takes place

a(t)
√

t
→ N (0, Id3)

where N (0, Id3) is a 3-dimensional normal distribution with mean 0 and variance matrix Id3.

Proof. This is a consequence of r (t) → +∞ almost surely as t → +∞,

coth r (t) → 1, tanh r (t) → 1 a.s.

hence

lim
t→+∞

1

t

∫ t

0

tanh2 r (s)ds = 1 a.s.

Then from Corollary 3.6, we have

lim
t→+∞

a(t)
√

t
= lim

t→+∞
γ 1

t

∫ t
0 tanh2 r (s)ds

= γ1 a.s. □

3.4. Formula for the density

In this section, we compute the density of the quaternionic stochastic area process a(t). Let

us note that formulas for the heat kernel of the couple (r (t), |Θ(t)|) have been obtained in the

paper [3]. However, a formula for a(t) =
∫ t

0
Θ(s)−1 ◦ dΘ(s) cannot be directly deduced from

it. In order to invert the Fourier transform displayed in Corollary 3.8, we first need a suitable

expression for the heat kernel of the hyperbolic Jacobi operator:

L
n,µ =

1

2

(

∂2

∂r2
+ ((4n − 1) coth r + (2µ + 3) tanh(r ))

∂

∂r

)

, r ≥ 0,

subject to Neumann boundary condition at r = 0. Though the heat kernel of this operator may

be expressed through Jacobi functions [16], we shall derive below another one which not only

leads to the sought density but has also the merit to involve the heat kernel of the 4n + 1-

dimensional real hyperbolic space. The derivation is a bit technical and for ease of reading,

we shall proceed into three steps. More precisely, we shall firstly map the above hyperbolic

Jacobi operator into another one by letting it act on functions of the form r ↦→ f (r )/ coshµ(r ),

where f is a smooth test function. Secondly, we shall exploit results in [14] to derive the heat

kernel of the newly-obtained operator: in this step, we follow the lines of Theorem 2 in [2].

Finally, we use known Fourier transforms to obtain the density of the quaternionic stochastic

area process. We start with the following straightforward lemma:

Lemma 3.10. Let f be a smooth function on R+. Then

L
n,µ

(

f

coshµ

)

(r ) =
1

coshµ(r )
Ln,µ( f )(r ) (3.6)

where

2Ln,µ :=
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh(r ))

∂

∂r
+

µ(µ + 2)

cosh2(r )
− µ(4n + µ + 2).
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Proof. Straightforward computations. □

The operator 2Ln,µ + µ(4n + µ + 2) + (2n + 1)2 is an instance of the radial part of the

operator ∆αβ studied in [14] with α = 1 + (µ/2), β = 1 − α = −µ/2 and double complex

dimension 2n (see p.229 there). Using the same reasoning of the proof of Theorem 2 in [2],

we prove the following:

Proposition 3.11. Let f be a smooth compactly-supported function in HH n . Then, the heat

semi-group et Ln,µ
( f )(0) reads:

e−[(2n+1)2+µ(4n+µ+2)]t/2

(2π )2n
√

2π t

∫

HHn

f (w)
dw

(1 − |w|2)2n+2

∫ ∞

d(0,w)

dx sinh(x)Kµ(x, w)

(

1

sinh(x)

d

dx

)2n

e−x2/(2t),

where d(0, w) = r is the geodesic distance in HH n:

cosh2(d(0, w)) =
1

1 − |w|2
,

and

Kµ(x, w) :=
1

cosh(d(z, w))
√

cosh2(x) − cosh2(d(0, w))

2 F1

(

µ + 1, −(µ + 1),
1

2
;

cosh(d(z, w)) − cosh(x)

2 cosh(d(z, w))

)

.

where 2 F1 is the hypergeometric function.

Proof. Consider the ‘switched’ wave Cauchy problem associated ∆αβ, α = 1 + (µ/2), β =
−µ/2, displayed in eq. (1.1) in [14]. From Theorem 2 in that paper, its solution is given by:

u(x, z) =
1

(2π )2n

(

1

sinh(s)
∂s

)2n−1 ∫

d(z,w)<|s|
f (w)Kµ(s, z, w)

dw

(1 − |w|2)2n+2
,

where (x, z) ∈ R × HH n and

Kµ(x, z, w) :=
(1 − ⟨z, w⟩)1+(µ/2)(1 − ⟨z, w⟩)−(µ/2)

cosh(d(0, w))
√

cosh2(x) − cosh2(d(0, w))

2 F1

(

µ + 1, −(µ + 1),
1

2
;

cosh(d(0, w)) − cosh(x)

2 cosh(d(0, w))

)

.

Following the proof of Theorem 2 in [2], we next deduce the heat kernel of ∆αβ from u(x, z).

To this end, we differentiate x ↦→ u(x, z) to get the solution to the ‘standard’ wave Cauchy

problem associated ∆αβ :

v(x, z) = ∂x u(x, z) =
sinh(x)

(2π )2n

(

1

sinh(x)
∂x

)2n ∫

d(z,w)<|x |
f (w)K (x, z, w)

dw

(1 − |w|2)2n+2
.

Then, we use the spectral formula (see e.g. [12]):

et L =
1

√
4π t

∫

R

e−x2/(4t) cos(x
√

−L)dx,
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relating the heat semigroup of a self-adjoint non positive operator L to the solution of its wave

Cauchy problem (we wrote the wave propagator as cos(x
√

−L) which should be understood in

the spectral sense). According to this formula and from Proposition 2 in [14], we deduce that

∆αβ, α = 1 + (µ/2), β = −µ/2, is a non positive self-adjoint operator and that (we perform

2n integrations by parts then use Fubini Theorem):

et∆αβ ( f )(z) =
1

√
π t

∫ ∞

0

e−x2/(4t)v(x, z)dx =
1

(2π )2n
√

π t
∫

HHn

f (w)
dw

(1 − |w|2)2n+2

∫ ∞

d(z,w)

dx sinh(x)Kµ(x, z, w)

(

−
1

sinh(x)

d

dx

)2n

e−x2/(4t).

Specializing this formula to z = 0, we see from the definition of Kµ(x, z, w) that the heat kernel

of et∆αβ ( f )(0) is radial. keeping in mind the aforementioned relation between the radial part of

∆αβ with the special parameters α = 1+(µ/2), β = −µ/2, and Ln,µ+µ(4n+µ+2)+(2n+1)2,

the statement of the proposition follows (we simply wrote K (x, w) for K (x, 0, w)). □

With the help of Proposition 3.11, we are ready to derive the density of a(t).

Theorem 3.12. Let st,4n+1(cosh(x)) be the heat kernel of the 4n+1-dimensional real hyperbolic

space [12,20]:

st,4n+1(cosh(x)) =
e−(2n)2t/2

(2π )2n
√

2π t

(

1

sinh(x)

d

dx

)2n

e−x2/(2t),

and

Im−1/2(u) =
∑

j≥0

√
π

j !Γ ( j + m + 1/2)

(u

2

)2 j+m−1/2

be the modified Bessel function. Define also the time-dependent symmetric polynomials

Q2m, m ≥ 0, in (v1, v2, v3) of degree 2m by:

Q2m(v1, v2, v3, t) := e|v|2/(2t)
(

∆
m
v e−|v|2/(2t)

)

, v ∈ R
3,

where ∆v is the Euclidean Laplacian in R
3 acting on v. Then the density of the quaternionic

stochastic area process a(t) is given by:

e−(4n+1)t/2

(2π t)3/2
e−|v|2/(2t)

∫ ∞

0

dr sinh(r )4n−1 cosh2(r )

∫ ∞

0

dust,4n+1(cosh(u) cosh(r ))

∑

m≥0

(−1)m

m!

(u

2

)m+1/2

Im−1/2

(u

2

)

Q2m(v1, v2, v3, t), v ∈ R
3.

Remark 3.13. The polynomial Q2m may be expressed as a linear combination of products of

(even) Hermite polynomials:

H j (x) := (−1) j ex2/2 d j

dx j
e−x2/2.
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Indeed, it suffices to expand:

∆
m
v =

∑

j1+ j2+ j3=m

m!
j1! j2! j3!

∂2 j1
v1

∂2 j2
v2

∂2 j3
v3

to get the representation:

Q2m(v1, v2, v3, t) =
1

tm

∑

j1+ j2+ j3=m

m!
j1! j2! j3!

H2 j1

(

v1√
t

)

H2 j2

(

v2√
t

)

H2 j3

(

v3√
t

)

. (3.7)

Proof. Since the radial part of the measure (this is the volume measure of HH n)

dw

(1 − |w|2)2n+2

is sinh(r )4n−1 cosh3(r )dr, |w| = tanh(r ), then the intertwining relation (3.6) together with

Proposition 3.11 yields:

e2nµt q
2n−1,µ+1
t (0, r )

coshµ(r )
=

e−[(2n+1)2+µ(µ+2)]t/2

(2π )2n
√

2π t
sinh(r )4n−1 cosh3(r )

∫ ∞

d(0,w)=r

dx sinh(x)Kµ(x, w)

(

1

sinh(x)

d

dx

)2n

e−x2/(2t).

Performing the variable change cosh(x) = cosh(u) cosh(r ) and using the expression of the heat

kernel st,4n+1, we equivalently write:

e2nµt q
2n−1,µ+1
t (0, r )

coshµ(r )
= e−2nt−(µ+1)2t/2 sinh(r )4n−1 cosh2(r )

∫ ∞

0

du 2 F1

(

−(µ + 1), µ + 1,
1

2
;

1 − cosh(u)

2

)

st,4n+1(cosh(u) cosh(r )).

But, the identity

2 F1

(

−(µ + 1), (µ + 1),
1

2
;

1 − cosh(u)

2

)

= cosh((µ + 1)u),

entails further:

e2nµt q
2n−1,µ+1
t (0, r )

coshµ(r )
= e−2nt−(µ+1)2t/2 sinh(r )4n−1 cosh2(r )

∫ ∞

0

du cosh((µ + 1)u)st,4n+1(cosh(u) cosh(r )).

Consequently, recalling (µ + 1)2 = |λ|2 + 1, the characteristic function of a(t) admits the

following expression:

E
(

eiλ·a(t)
)

= e−(4n+1)t/2

∫ ∞

0

sinh(r )4n−1 cosh2(r )

∫ ∞

0

du e−|λ|2t/2 cosh(

√

|λ|2 + 1u)st,4n+1(cosh(u) cosh(r )). (3.8)
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In order to derive the density of a(t), it suffices to write e−|λ|2t/2 cosh(
√

|λ|2 + 1u) as a Fourier

transform in the variable λ and to apply Fubini Theorem. To this end, we expand:

cosh(

√

|λ|2 + 1u) =
∑

j≥0

u2 j

(2 j)!

j
∑

m=0

(

j

m

)

|λ|2m

=
√

π
∑

j≥0

u2 j

22 jΓ ( j + 1/2)

j
∑

m=0

1

m!( j − m)!
|λ|2m

=
√

π
∑

m≥0

|λ|2m

m!
∑

j≥m

1

( j − m)!
u2 j

22 jΓ ( j + 1/2)

=
∑

m≥0

|λ|2m

m!

(u

2

)m+1/2

Im−1/2 (u) ,

and write

|λ|2me−|λ|2t/2 =
(−1)m

(2π t)3/2

∫

R

(

∆
m
v eiλ·v) e−|v|2/(2t)dv

=
(−1)m

(2π t)3/2

∫

R

eiλ·v
(

∆
m
v e−|v|2/(2t)

)

dv

=
(−1)m

(2π t)3/2

∫

R

eiλ·ve−|v|2/(2t) Q2m(v1, v2, v3, t)dv.

Using the bound ([9], p.208),

|H2 j (x)| ≤ ex2/422 j j !,

we can see from (3.7) that

|Q2m(v1, v2, v3, t)| ≤
m!22m

tm
e|v|2/(4t)

∑

j1+ j2+ j3=m

1 =
m!22m

tm
e|v|2/(4t) (m + 2)(m + 1)

2
.

Combined with the following bound for the modified Bessel function (see e.g. [9], p.14):

Im−1/2 (u) ≤
(u

2

)m−1/2 eu

Γ (m + 1/2)
,

we get:

e−|λ|2t/2 cosh(

√

|λ|2 + 1u) =
1

(2π t)3/2

∫

R

ei⟨λ,v⟩e−|v|2/(2t)

∑

m≥0

(−1)m

m!

(u

2

)m+1/2

Im−1/2

(u

2

)

Q2m(v1, v2, v3),

where the series on the right hand side is absolutely convergent and is bounded by:

eu+|v|2/(4t)
∑

m≥0

u2m(m + 1)(m + 2)

2tmΓ (m + 1/2)
.

Plugging this Fourier transform on the right hand side of (3.8), we only need to check that

Fubini Theorem applies. But, the estimate ([20], Eq. (2).25):

s4n+1(cosh(δ)) ≤ C
δ

sinh(δ)
e−δ2/(2t), C, δ > 0,
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together with

cosh−1[cosh(u) cosh(r )] ≥ cosh−1

[

1

2
(cosh(u + r ))

]

≥ (r + u), r, u → +∞,

shows that s4n+1(cosh(u) cosh(r )) ≤ Ce−(r+u)2/(2t). Hence, Fubini Theorem applies which

finishes the proof. □

4. Stochastic area process on quaternionic projective spaces HP
n

4.1. The quaternionic Hopf fibration

We now turn to the study of the quaternionic Hopf fibration, start with some preliminaries,

and refer to [5] for more details. As previously, H is the quaternionic field and I, J, K ∈ SU(2)

are the Pauli matrices. Define the quaternionic sphere S
4n+3 by:

S
4n+3 = {q = (q1, . . . , qn+1) ∈ H

n+1, |q|2 = 1}.

Then, SU(2) acts on it by isometries and the quotient space S
4n+3/SU(2) can be identified with

the quaternionic projective space HPn endowed with its canonical quaternionic Kähler metric.

Besides, the projection map S
4n+3 → HPn is a Riemannian submersion with totally geodesic

fibers isometric to SU(2), and the fibration

SU(2) → S
4n+3 → HPn

is called the quaternionic Hopf fibration.

By analogy with the AdS setting and as in [5], we shall use cylindrical coordinates which

are adapted to geometry of the fibration. Let (w1, . . . , wn) denote a point on the base space

HPn , and (θI , θJ , θK ) be the coordinates for the Lie algebra su(2) of traceless skew-Hermitian

2 × 2 matrices. The cylindrical coordinates are given by the map

HPn × su(2) → S
4n+3

(w1, . . . , wn, θI , θJ , θK ) ↦→
(

eIθI +JθJ +K θK w1
√

1 + ρ2
, . . . ,

eIθI +JθJ +K θK wn
√

1 + ρ2
,

eIθI +JθJ +K θK

√

1 + ρ2

)

where ρ =
√

∑n
j=1 |w j |2 and wi = q−1

n+1qi , i = 1, . . . , n, are inhomogeneous coordinates in

HPn .

4.2. Stochastic area process on HPn

Definition 4.1. Let (w(t))t≥0 be a Brownian motion on HPn started at 0.6 The quaternionic

stochastic area process of (w(t))t≥0 is a process in R
3 defined by

a(t) =
1

2

n
∑

j=1

∫ t

0

dw j (s)w j (s) − w j (s)dw j (s)

1 + |w(s)|2
,

where the above stochastic integrals are understood in the Stratonovich, or equivalently in the

Itô sense due to the skew-symmetric structure of the form.

6 We call 0 the point with inhomogeneous coordinates w1 = 0, . . . , wn = 0.
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The following theorem shows that the quaternionic stochastic area process of the Brownian

motion on HPn can be interpreted as the fiber motion of the horizontal Brownian motion on

S
4n+3.

Theorem 4.2. Let (w(t))t≥0 be a Brownian motion on HPn started at 0, and (Θ(t))t≥0 be

the solution of the SDE

dΘ(t) = −Θ(t) ◦ da(t). (4.9)

The S
4n+3-valued diffusion process

X t =
Θ(t)

√

1 + |w(t)|2
(w(t), 1) , t ≥ 0 (4.10)

is the horizontal lift at the north pole of (w(t))t≥0 by the submersion S
4n+3 → HPn .

Remark 4.3. The SDE (4.9) means that the integral of Maurer–Cartan on SU(2) along Θ(t)

is exactly given by one half of the stochastic area process a(t), t ≥ 0.

Proof. The proof parallels the one in the anti-de Sitter case. The horizontal lift to S
4n+3 of

the vector field

∂

∂wi

:=
1

2

(

∂

∂ti
−

∂

∂xi

I −
∂

∂yi

J −
∂

∂zi

K

)

is given by

Vi =
∂

∂wi

+
wi

2(1 + ρ2) cos2 η

∂

∂φ
,

where

φ :=
tan η

η
q = φI I + φJ J + φK K ,

∂

∂φ
=

∂

∂φI

I +
∂

∂φJ

J +
∂

∂φK

K .

Now, consider a smooth curve γ starting at 0 in HPn:

g(t) = (g1(t), . . . , gn(t)),

where gi = (g1
i , g I

i , g J
i , gK

i ) ∈ C(R≥0,R
4). Using quaternionic coordinates

gi =
∑

S=1,I,J,K

gS
i S ∈ C(R≥0,H),

we readily have that the real vector Tg(t) tangent to g is given by

Tg(t) = 2Re

n
∑

i=1

ġi (t)
∂

∂wi

=
n
∑

i=1

(

ġi (t)
∂

∂wi

+
∂

∂wi

ġi (t)

)

.

We deduce that the horizontal lift g at the north pole, in the cylindrical coordinates (w, φ), has

the real tangent

2Re

n
∑

i=1

ġi (t)

(

∂

∂wi

+
gi (t)

2(1 + |g(t)|2) cos2 η

∂

∂φ

)

Hence

ẇi (t) = ġi (t), ẇi (t) = ġi (t),
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φ̇(t) = −
1

(1 + |g(t)|2) cos2 η(t)
Im

n
∑

i=1

ġi (t)gi (t).

Let Θ(t) denote the SU(2)-valued path issued from identity and satisfies

Θ(t)−1
Θ̇(t) = cos2 η(t)φ̇(t),

then we have

Θ(t)−1
Θ̇(t) = −

1

2(1 + |g(t)|2)

n
∑

i=1

(

ġi (t)gi (t) − gi (t)ġi (t)
)

.

As a consequence,

g(t) =
Θ(t)

√

1 + |g(t)|2
(g(t), 1) ,

with
∫ t

0

Θ(s)−1dΘ(s) = −
∫

g[0,t]

ζ.

Similarly, the lift of the Brownian motion (w(t))t≥0 is the process

Θ(t)
√

1 + |w(t)|2
(w(t), 1) , t ≥ 0,

with
∫ t

0

Θ(s)−1dΘ(s) = −
∫

w[0,t]

ζ = −
∫

w[0,t]

◦da(t). □

Next we show that the fiber motion Θ(t) on the SU(2)-bundle is in fact a time-changed

Brownian motion process on SU(2).

Theorem 4.4. Let r (t) = arctan |w(t)|. The process (r (t),Θ(t))t≥0 is a diffusion with

generator

L =
1

2

(

∂2

∂r2
+ ((4n − 1) cot r − 3 tan r )

∂

∂r
+ tan2 r∆SU(2)

)

.

As a consequence the following equality in distribution holds

(r (t),Θ(t))t≥0 =
(

r (t), β∫ t
0 tan2 r (s)ds

)

t≥0
,

where (βt )t≥0 is a Brownian motion process on SU(2) independent from r.

Proof. Here again, the proof is very similar to the anti-de Sitter case. We first compute the

generator of the Markov process X (t) as introduced in (4.10). The Laplace–Beltrami operator

on HPn is given by (see [19] page 77)

∆HPn = 4(1 + ρ2)Re

(

n
∑

i=1

∂2

∂wi∂wi

+ RR − 2R

)

where ρ = |w| = tan r and R =
∑n

j=1 w j
∂

∂w j
is the quaternionic Euler operator. We denote

by 1
2

LS4n+3 the generator of X (t). Since X (t) is the horizontal lift of w(t), then LS4n+3 is the
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horizontal lift to S
4n+3 of ∆HPn . Hence we have

LS4n+3 = 4(1 + ρ2)Re

(

n
∑

i=1

∂2

∂wi∂wi

+ RR −
ρ2

4(1 + ρ2) cos4 η

(

∂

∂φ

)2

+
1

2 cos2 η

(

R
∂

∂φ
−

∂

∂φ
R

)

)

= ∆HPn +
tan2 r

cos4 η

∑

S

∂2

∂φ2
S

+
2

cos2 r cos2 η

(

R
∂

∂φ
−

∂

∂φ
R

)

.

We then compute that LS4n+3 acts on functions depending only on (r, φI , φJ , φK ) as

∂2

∂r2
+ ((4n − 1) cot r − 3 tan r )

∂

∂r
+

tan2 r

cos4 η

(

∑

S

∂2

∂φ2
S

)

=
∂2

∂r2
+ ((4n − 1) cot r − 3 tan r )

∂

∂r
+ tan2 r∆SU(2).

The last equality comes from the fact that the vector fields 1

cos2 η

∂
∂φS

on SU(2) are in fact

the 3 Reeb vector fields. Let Θ(t) be a Brownian motion process on SU(2) that is generated

by 1
2
∆SU(2), then clearly (r (t),Θ(t)) is generated by

1

2

(

∂2

∂r2
+ ((4n − 1) cot r − 3 tan r )

∂

∂r
+ tan2 r∆SU(2)

)

.

hence in distribution it holds that

(r (t),Θ(t))t≥0 =
(

r (t), β∫ t
0 tan2 r (s)ds

)

t≥0
,

where β(t) is a standard Brownian motion on SU(2) independent of r . □

Corollary 4.5. Let r (t) and a(t) be given as previously. In distribution we have that

(r (t), a(t))t≥0 =
(

r (t), γ∫ t
0 tan2 r (s)ds

)

t≥0
,

where γ (t), t ≥ 0 is a standard Brownian motion process in R
3.

Proof. The proof is the same as in Corollary 3.6. To avoid repetition, we omit it here. □

4.3. Characteristic function of the stochastic area and limit theorem

We now study the characteristic function of a(t). Let λ ∈ [0, ∞)3, r ∈ [0, ∞) and

I (λ, r ) = E
(

eiλ·a(t)
⏐

⏐r (t) = r
)

.

From Theorem 4.4, we know that

I (λ, r ) = E

(

e
iλ·γ∫ t

0
tan2 r (s)ds

⏐

⏐r (t) = r
)

= E

(

e− |λ|2
2

∫ t
0 tan2 r (s)ds

⏐

⏐r (t) = r

)
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and r is a diffusion with generator given by:

L
2n−1,1 =

1

2

∂2

∂r2
+

1

2
((4n − 1) cot r − 3 tan r )

∂

∂r

started at 0. More generally, the circular Jacobi generator is defined by:

L
α,β =

1

2

∂2

∂r2
+
((

α +
1

2

)

cot r −
(

β +
1

2

)

tan r

)

∂

∂r
, α, β > −1,

and we refer the reader to the Appendix of [6] for further details. We denote by q
α,β
t (r0, r ) its

corresponding transition density with respect to the Lebesgue measure.

Theorem 4.6. For λ ∈ R
3, r ∈ [0, π/2), and t > 0 we have

E
(

eiλ·a(t)
⏐

⏐r (t) = r
)

=
e−2nµt

(cos r )µ
q

2n−1,µ+1
t (0, r )

q
2n−1,1
t (0, r )

, (4.11)

where µ =
√

|λ|2 + 1 − 1.

Proof. Note

dr (t) =
1

2
((4n − 1) cot r (t) − 3 tan r (t)) dt + dγ (t),

where γ is a standard Brownian motion. Consider the local martingale defined for any µ > 0 by

Dt = exp

(

−µ

∫ t

0

tan r (s)dγ (s) −
µ2

2

∫ t

0

tan2 r (s)ds

)

= exp

(

−µ

∫ t

0

tan r (s)dr (s) +
µ

2
(4n − 1)t −

3µ + µ2

2

∫ t

0

tan2 r (s)ds

)

.

From Itô’s formula, we have

ln cos r (t) = −
∫ t

0

tan r (s)dr (s) −
1

2

∫ t

0

ds

cos2 r (s)

= −
∫ t

0

tan r (s)dr (s) −
1

2

∫ t

0

tan2 r (s)ds −
1

2
t.

As a consequence, we deduce that

Dt = e2nµt (cos r (t))µe−(
µ2

2
+µ)

∫ t
0 tan2 r (s)ds .

This expression of D implies that almost surely Dt ≤ e2nµt and thus D is a true martingale. Let

us denote by F the natural filtration of r and consider the probability measure P
µ defined by

P
µ

/Ft
= e2nµt (cos r (t))µe−(

µ2

2
+µ)

∫ t
0 tan2 r (s)ds

P/Ft .

We have then for every bounded and Borel function f on [0, π/2],

E

(

f (r (t))e−(
µ2

2
+µ)

∫ t
0 tan2 r (s)ds

)

= e−2nµt
E

µ

(

f (r (t))

(cos r (t))µ

)

.

By Girsanov Theorem, the process defined by

β(t) = γ (t) + µ

∫ t

0

tan r (s)ds
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is a Brownian motion under the probability P
µ. Since

dr (t) =
1

2
((4n − 1) cot r (t) − (2µ + 3) tan r (t)) dt + dβ(t),

the proof is complete by letting µ =
√

|λ|2 + 1 − 1. □

Corollary 4.7. For λ ∈ R
3 and t ≥ 0,

E
(

eiλ·a(t)
)

= e−2nµt

∫ π/2

0

q
2n−1,µ+1
t (0, r )

(cos r )µ
dr,

where µ =
√

|λ|2 + 1 − 1.

Proof. This is a direct consequence of (4.11). □

We are now in position to prove a central limit type theorem for a(t).

Theorem 4.8. When t → +∞, the following convergence in distribution takes place

a(t)
√

t
→ N (0, 2nId3).

Proof. From Corollary 4.7 we have for every t > 0,

E

(

e
iλ· a(t)√

t

)

= e−2n(
√

t |λ|2+t2−t)

∫ π/2

0

q
2n−1,

√

|λ|2
t +1

t (0, r )

(cos r )

√

|λ|2
t +1−1

dr.

Using the formula for q
n−1,µ
t (0, r ) which is given in the Appendix of [6], we obtain by

dominated convergence that

lim
t→∞

∫ π/2

0

q
2n−1,

√

|λ|2
t +1

t (0, r )

(cos r )

√

|λ|2
t +1−1

dr =
∫ π/2

0

q2n−1,1
∞ (0, r )dr = 1.

On the other hand,

lim
t→∞

√

t |λ|2 + t2 − t =
1

2
|λ|2,

thus one concludes

lim
t→∞

E

(

e
iλ· a(t)√

t

)

= e−n|λ|2 . □

4.4. Formula for the density

The derivation of the density of a(t) in this setting is rather direct compared to its AdS

analog. Actually, we shall use the explicit expression of the circular Jacobi heat kernel to give

a more elaborate expression of the characteristic function, namely:
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Corollary 4.9 (of Corollary 4.7). The characteristic function of the generalized stochastic area

process admits the absolutely-convergent expansion:

E
(

eiλ·a(t)
)

= e−2nµt
∑

j≥0

(−1) j (2n) j

j !
(2 j + 2n + µ + 1)e−2 j( j+2n+µ+1)t

µ(µ + 2)

4

Γ ( j + µ/2)Γ ( j + 2n + µ + 1)

Γ ( j + µ/2 + 2n + 2)Γ ( j + µ + 2)
,

where, as before, µ =
√

|λ|2 + 1 − 1.

Proof. Recall the notation p
(2n−1,µ+1)
t (0, r ) for the heat kernel of the circular Jacobi operator

L2n−1,µ+1. Then, it is known that (see the Appendix of [6]):

p
(n−1,µ+1)
t (0, r ) =

2

Γ (2n)
[cos(r )]2µ+3[sin(r )]4n−1

∑

j≥0

(2 j + 2n + µ + 1)e−2 j( j+2n+µ+1)t Γ ( j + 2n + µ + 1)

Γ ( j + µ + 2)
P

(2n−1,µ+1)
j (cos(2r )). (4.12)

Expanding the Jacobi polynomials [1]:

P
(2n−1,µ+1)
j (cos(2r )) =

(2n) j

j ! 2 F1

(

− j, j + 2n + µ + 1, 2n;
1 − cos(2r )

2

)

=
(2n) j

j !

j
∑

m=0

(− j)m( j + 2n + µ + 1)m

(2n)mm!
sin2m(r ),

where 2 F1 is the Gauss hypergeometric function, we are led (by the virtue of Corollary 4.7)

to the following Beta integral:
∫ π/2

0

cosµ+3(r )[sin(r )]4n−1+2mdr =
Γ ((µ/2) + 2)Γ (2n + m)

2Γ (2n + 2 + m + µ/2)
.

Consequently,
∫ π/2

0

cosµ+3(r )[sin(r )]4n−1 P
(2n−1,µ+1)
j (cos(2r ))dr = Γ

(µ

2
+ 2

)

Γ (2n + j)

2 j !
,

j
∑

m=0

(− j)m ( j + 2n + µ + 1)m

Γ (2n + 2 + m + µ/2)m!
=

Γ ((µ/2) + 2)

Γ (2n + 2 + µ/2)

Γ (2n + j)

2 j !
,

2 F1

(

− j, j + 2n + µ + 1, 2n + 2 +
µ

2
; 1
)

=
Γ ((µ/2) + 2)

Γ (2n + 2 + µ/2)

Γ (2n + j)

2 j !
,

j !
(2n + 2 + µ/2) j

P
(2n+1+µ/2,µ/2−1)
j (−1) =

Γ ((µ/2) + 2)

Γ (2n + 2 + µ/2)

Γ (2n + j)

2 j !
(−1) j j !

(2n + 2 + µ/2) j

,

P
(µ/2−1,2n+1+µ/2)
j (1) =

Γ ((µ/2) + 2)

Γ (2n + 2 + µ/2)

Γ (2n + j)

2 j !
(−1) j (µ/2) j

(2n + 2 + µ/2) j

=
µ(µ + 2)

4

Γ (2n + j)

2 j !
(−1) j

Γ ( j + µ/2)

Γ ( j + 2n + 2 + µ/2)
,

where we used the symmetry relation P
(a,b)
j (−u) = (−1) j P

(b,a)
j (u) and the special value

P
(a,b)
j (1) =

(a + 1) j

j !
.

Keeping in mind (4.12), the corollary is proved. □
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Remark 4.10. At the end of the proof, we simplified with Γ (µ/2) and this is allowed when

µ ̸= 0 ↔ λ ̸= 0. When µ = 0, our computations remain valid and should be understood as a

limit when µ → 0. In this case, the only non vanishing term corresponds to j = 0 so that

lim
µ→0

(2n + µ + 1)
(µ/2)((µ/2) + 1)Γ (µ/2)Γ (2n + µ + 1)

Γ (2n + 2 + µ/2)
= 1.

Now, in order to invert the characteristic function and recover the density of a(t), it suffices

to express:

(2 j + 2n + µ + 1)e−2µ( j+n)t µ(µ + 2)

4

Γ ( j + µ/2)Γ ( j + 2n + µ + 1)

Γ ( j + µ/2 + 2n + 2)Γ ( j + µ + 2)
,

as a Fourier transform in λ, where we recall the relation µ + 1 =
√

|λ|2 + 1. To proceed, we

write for j ≥ 1:

Γ ( j + µ/2)Γ ( j + 2n + µ + 1)

Γ ( j + µ/2 + 2n + 2)Γ ( j + µ + 2)
=

( j + µ + 2n) . . . ( j + µ + 2)

( j + (µ/2) + 2n) . . . ( j + µ/2)
,

so that

(2 j + 2n + µ + 1)µ(µ + 2)( j + µ + 2n) . . . ( j + µ + 2)

4( j + (µ/2) + 2n + 1) . . . ( j + µ/2)
= 22n +

2n+1
∑

k=0

ak,n( j)

µ + 2 j + 2k

(4.13)

for some real coefficients ak,n( j). For j = 0, the same decomposition holds:

µ(µ + 2)

4
Γ (µ/2)

(2n + µ + 1)Γ (2n + µ + 1)

Γ (µ/2 + 2n + 2)Γ (µ + 2)
=

Γ ((µ/2) + 2)Γ (2n + µ + 2)

Γ (µ/2 + 2n + 2)Γ (µ + 2)

= 22n +
2n+1
∑

k=1

ak,n(0)

µ + 2k

= 22n +
2n+1
∑

k=0

ak,n(0)

µ + 2k
, (4.14)

with a0,n(0) = 0. Finally, using the integral

1

µ + 2 j + 2k
=
∫ ∞

0

e−uµe−2( j+k)udu,

followed by the Fourier transform of the 3-dimensional relativistic Cauchy distribution (see [7],

Lemma 2.1 with d = 3, m = 1):

e−µ[u+(2 j+2n)t] = 2[u + (2 j + 2n)t]e[u+(2 j+2n)t]

(

1

2π

)2

∫

R3

eiλ·x
K2

(

√

|x |2 + [u + (2 j + 2n)t]2

)

|x |2 + [u + (2 j + 2n)t]2
dx,

we arrive at the following expression for the density of a(t) (note that the modified Bessel

function Kν(v) is equivalent to
√

π/(2v)e−v at infinity and that the coefficients (ak( j), k =
0, . . . , 2n + 2) are polynomials in j whose degrees are uniformly bounded by 2n + 2, so that

we can use Fubini Theorem to interchange the order of integration).
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Theorem 4.11. The density of the quaternionic stochastic area process a(t) is given by the
following absolutely-convergent series:

1

2π2

∑

j≥0

(−1) j (2n) j

j !
e−2 j( j+2n+1)t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

22n(2 j + 2n)e(2 j+2n)t

K2

(

√

|x |2 + (2 j + 2n)2t2

)

|x |2 + (2 j + 2n)2t2
+

2n+1
∑

k=0

ak,n( j)

∫ ∞

0

e−2( j+k)u[u + (2 j + 2n)t]e[u+(2 j+2n)t]

K2

(

√

|x |2 + [u + (2 j + 2n)t]2

)

|x |2 + [u + (2 j + 2n)t]2
du

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where x ∈ R
3 and the coefficients (ak,n( j)) are defined by (4.13) and (4.14).

Remark 4.12. It is clear that the limiting behavior of the density of at/
√

t is given by the

first term j = 0 in the above series. Moreover, the equivalence

Kν(v) ∼
√

π

2v
e−v, v → +∞,

shows that for any u ≥ 0,

lim
t→∞

t3/2[u + 2nt]e(u+2nt)
K2

(

√

t |x |2 + (u + 2nt)2

)

t |x |2 + (u + 2nt)2
=
√

π

2

1

(2n)3/2
e−|x |2/(4n).

Consequently, the density of at/
√

t converges as t → ∞ to

1

(4πn)3/2
e−|x |2/(4n)

{

22n +
2n+1
∑

k=0

ak,n( j)

∫ ∞

0

e−2kudu

}

.

But, substituting µ = 0 in (4.14), we get

22n +
2n+1
∑

k=0

ak,n(0)

2k
= 1,

whence we recover that (using for instance Scheffés Lemma) at/
√

t converges in distribution

to a 3-dimensional normal distribution of covariance matrix 2nId3, as shown in Theorem 4.8.
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Appendix

A.1. The quaternionic contact structure of AdS4n+3(H)

There is a quaternionic contact structure on AdS4n+3(H) that we now describe. Consider the

quaternionic form

α =
1

2

(

n
∑

i=1

(dqi qi − qi dqi ) − (dqn+1 qn+1 − qn+1 dqn+1)

)

= αI I + αJ J + αK K ,
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then the triple (αI , αJ , αK ) gives the quaternionic contact structure. If we denote

T = −
n
∑

i=1

(

qi

∂

∂qi

−
∂

∂qi

qi

)

+
(

qn+1

∂

∂qn+1

−
∂

∂qn+1

qn+1

)

,

then T = TI I + TJ J + TK K , α(T ) = 3 and we can easily find that for any S, S′ ∈ {I, J, K },

αS(TS′ ) = −δSS′ .

Thus, TI , TJ , TK are the three Reeb vector fields of α and are also Killing vector fields

on AdS4n+3(H). In this way, AdS4n+3(H) is a negative 3-K contact structure (see [15] for a

definition of this structure).

Using the cylindric coordinates, we can then rewrite the contact form (A.15) as follows:

α =
1

2

(

n
∑

i=1

((qn+1dwi + dqn+1wi ) wi qn+1 − qn+1wi (dwi qn+1 + wi dqn+1))

−(dqn+1 qn+1 − qn+1 dqn+1)

)

=
1

2

(

n
∑

i=1

qn+1dwi wi qn+1 − qn+1wi dwi qn+1

)

−
1

2

(

1 − ρ2
)

(dqn+1qn+1 − qn+1dqn+1) .

Set q := Iθ1 + Jθ2 + K θ3, then

qn+1 =
eq

√

1 − ρ2
, eq = e−q, q = −q = q

−1η2,

eq = cos η +
sin η

η
(θI I + θJ J + θK K )

where η2 = θ2
I + θ2

J + θ2
K is the squared Riemannian distance from the identity in SU(2). Also,

for any quaternion p ∈ H, the relation 0 = d(p p−1) = pdp−1 + dp · p−1 yields

dp−1 = −p−1dp · p−1.

As a result, we easily derive:

e−q · deq − de−q · eq = 2 cos2 η d

(

tan η

η
q

)

. (A.15)

Hence, we can equivalently consider the following one form

Λ :=
e−q α eq

1 − ρ2
=

1

2

(

n
∑

i=1

(

dwi wi − wi dwi

1 − ρ2

)

− 2 cos2 η d

(

tan η

η
q

)

)

(A.16)

whose horizontal part

ζ :=
1

2

n
∑

i=1

(

dwi wi − wi dwi

1 − ρ2

)

(A.17)
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is the quaternionic Kähler form on HH n , which in turn induces the following sub-Riemannian

metric

hi k̄ =
1

2

(

δik

1 − ρ2
+

wiwk

(1 − ρ2)2

)

.

A.2. The quaternionic contact structure of S4n+3

There is a quaternionic contact structure on S
4n+3 which is compatible with the Hopf

fibration structure. It is given in Euclidean coordinates q = (q1, . . . , qn+1) by the quaternionic

one-form:

α =
1

2

n+1
∑

i=1

(dqi qi − qi dqi ) = α1 I + α2 J + α3 K , (A.18)

or equivalently by the triple (α1, α2, α3) which is a 3-dimensional contact form. Moreover, if

we denote

T = −
n
∑

i=1

(

qi

∂

∂qi

−
∂

∂qi

qi

)

then T = T1 I + T2 J + T3 K , α(T ) = 3 and we can easily check that

αi (T j ) = δi j .

Hence T1, T2, T3 are the three Reeb vector fields of α and also Killing vector fields on

S
4n+3. The contact form (A.18) in the cylindrical coordinates is now given by

α =
1

2

n+1
∑

i=1

qn+1dwi wi qn+1 − qn+1wi dwi qn+1.

As previously we denote by q := Iθ1 + Jθ2 + K θ3 a point on su(2). Consider an equivalent

one form Λ := Ad(e−q)α. We then have

Λ := e−q α eq =
1

2

(

n
∑

i=1

(

dwi wi − wi dwi

1 + ρ2

)

+ 2 cos2 η d

(

tan η

η
q

)

)

.

We denote by ζ the horizontal part of Λ,

ζ :=
1

2

n
∑

i=1

(

dwi wi − wi dwi

1 + ρ2

)

.

It indeed is the quaternionic Kähler form on HPn , and induces the following sub-Riemannian

metric

hi k̄ =
1

2

(

δik

1 + ρ2
−

wiwk

(1 + ρ2)2

)

.
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