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Abstract—We consider a generalization of an important class of
high-dimensional inference problems, namely spiked symmetric
matrix models, often used as probabilistic models for principal
component analysis. Such paradigmatic models have recently
attracted a lot of attention from a number of communities due to
their phenomenological richness with statistical-to-computational
gaps, while remaining tractable. We rigorously establish the
information-theoretic limits through the proof of single-letter
formulas for the mutual information and minimum mean-square
error. On a technical side we improve the recently introduced
adaptive interpolation method, so that it can be used to study
low-rank models (i.e., estimation problems of “tall matrices™) in
full generality, an important step towards the rigorous analysis
of more complicated inference and learning models.

I. INTRODUCTION

It is fair to say that in the last decade our rigorous understand-
ing of high-dimensional Bayesian inference has experienced a
tremendous improvement. Extremely rich and complex models
appearing in a variety of disciplines are now under control,
at least at the information-theoretic level, and important steps
towards understanding algorithmic limits have been made too.
Some paradigmatic examples in high-dimensional regression
that have now been put on a rigorous basis are: code division
multiple access [1] and sparse superposition codes [2], [3] in
communication, that are closely related to compressive sensing
in signal processing [1], [4]-[7]; estimation and learning in
generalized regression, including as special cases non-linear
compressive sensing or the perceptron neural network [8]; or
models of shallow and deep neural netwoks [9], [10]. A second
class of models that has attracted great attention is matrix (and
more generally tensor) estimation, originally introduced as
simple probabilistic models for principal component analysis
[11]. These papers have generated intense research studying
the limits of spectral algorithms [12], semidefinite relaxations
and the sum-of-squares hierarchy [13]-[16], the approximate
message-passing algorithm (AMP) [17], [18], or gradient-based
methods [19].

More closely related to the present paper, the information-
theoretic limits of the minimum mean-square error (MMSE)
estimator have been studied through a series of results on
the validity of so-called “replica symmetric formulas” for the
mutual information and MMSE, derived by statistical physics
tools [20], and proved by various methods in [21]-[29]. These
spiked matrix models are also intimately connected to stochastic
block models for community detection [25], [30]-[32].
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This leap in progress is due in particular to a balanced
mixture of new (and older) tools developed mainly in statistical
physics and information theory. We mention the rigorous
control of AMP through state evolution [33], [34] leading
to algorithmic proofs such as [5], [6]; the cavity method [35],
[36], applied in inference, e.g., in [25]; interpolation techniques
developed in [37], [38] and later improved in the context of
inference [27], [39], [40]; information-theoretic proofs [4]'.

The present work is part of this line of research and brings
forward two main contributions:

o The introduction and information-theoretic analysis,
through the proof of single-letter variational formulas
for the mutual information and MMSE, of a generalized
spiked matrix model encompassing a number of models
in the literature.

o A key improvement of the adaptive interpolation method
[27], [39], that has proven in the past years to be one
of the simplest and most versatile techniques to study
high-dimensional inference problems. This novelty allows
to generically treat low-rank models that were until now
out of reach for the method?.

II. MULTIVIEW SYMMETRIC SPIKED MATRIX MODEL

A. Problem formulation

Let X = (X1,...,X,)T € R"*? be an unknown random
signal-matrix whose rows are i.i.d. according to a distribution
px supported on a bounded subset X' of R?. Consider the
observation model:

(1a)
(1b)

Y = XSY2 4w,

Y, =n '?XBXT+W,, (=1,...,L,

where S € S(+, the set of d x d semidefinite non-negative
matrices, and By,..., B € R4xd gre deterministically known,
while W € R"*? and Wi,...,Wr € R"™™ are independent
noise matrices with i.i.d. standard Gaussian entries. Our analysis
considers the regime d, L fixed while taking the limit n —
+00. We keep the bold notation for matrices with at least one
dimension scaling with n.

The observation model (1) encompasses a number of
estimation problems found in the literature. The most studied

I'This reference is also implicitly based on ideas with a flavor of interpolation
and cavity methods.

2We note the exception of low-rank even-order symmetric tensor estimation
[41] that can be treated thanks to non-generic symmetries of the model.
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example is the spiked Wigner model when taking S = 0y,
L =1 and By = v1;. Another important one is a class of
stochastic blocks models studied in [31], [32].

Note that, by stability of the Gaussian law under addition,
this model is equivalent to a model where the first channel in
(1) is replaced by K independent Gaussian channels of the
form Y, = X Aj, + W), where A, € R More precisely,
this equivalence follows by setting .S = Zszl A A], and by
equivalence we mean that the Le Cam distance between the
two models vanishes [42], which in particular implies mutual
information and MMSE-wise equivalence.

One could even further generalize the model by consider-
in§ additionillphiglcller—order tensor observations of the form
5/;7fl)7zp =nz Zk’l kpCJ(-ink)l...kpXilkl T Xipkp +W(p)

----- Jyt1eip
with CJ(-p ) an order-p coupling tensor and W;™" an order-p
Gaussian noise tensor, with p > 3, 1 < j < J, (iy,..., ip) S
{1,...,n}?. The analysis would be more involved notation-
wise but would not present any additional difficulties, and is
left for future work.

W(P)

B. The minimum mean-square error matrix

Our results describe the information-theoretic limits of esti-
mating the signal matrix X from the collection of observations
Y = (Y;) and Y. We focus on the asymptotic mutual
information as well as a multivariate performance measure
called the MMSE matrix [31], which is defined by

MMSE(X | Y,Y)= 13" E[Cov(X;|Y,Y)],

where the d x d conditional covariance matrix Cov(X; | Y,Y)
of the row X; of X (which, when considered alone, is a
column vector) is, more explicitly,

E[(X; —E[X; | Y, Y])(X; —E[X; | Y, Y])T|Y,Y].
Note that the trace of this matrix corresponds to the usual
definition of the MMSE:

TrMMSE(X | Y,Y) = LE[| X - E[X | Y,Y]|3].

One of the advantages of the matrix MMSE is that is provides
information about the individual dimensions in the row space of
X, which can be important in settings where some dimensions
can be recovered while other cannot; see [10], [31].

Our analysis leverages the matrix I-MMSE relation [43],
[44], which relates the MMSE matrix to the gradient of the
mutual information:

MMSE(X | Y,Y) = 2VsI(X;(Y,Y)),
where S is the d x d matrix appearing in (la). Note that
evaluating this gradient at .S = 04 recovers the MMSE matrix
associated with only the observations Y.
C. Statement of main results

We provide formulas that depend only on the mutual
information and MMSE associated with a d-dimensional
estimation problem. Define for S € S, the functions

Is:r €S I(X;(S+r)Y2X + W)
Ms :r €8~ E[Cov(X | (S +7)'/2X + W),

where X ~ px, W ~ N(0,1;). Let p = E[X XT] be the d x d
second moment matrix of py and define f: S} — R as

f(S) = inf sup Z(r,q) 2)

reSt qesT
where the following “replica symmetric potential” function
Z(r,q) depends also implicitly on (.5, (By)):

I(r.q)=Is(r) + 3Tx[r(q¢ — p)+ 7 { B] pBep — BlaBea}].
Our results require some structure for the (By) matrices:

Hypothesis 1 (Positive coupling structure). The (By) are s.t.
Zf:l{(Be ® By) + (Be @ By)T} 3= 0.

Theorem II.1 (Replica symmetric formulas). Under hypothe-
sis 1 the mutual information for model (1) verifies,

limy, o0 21(X;(Y,Y)) = f(5) 3)

for all S € S;r. Furthermore, f is concave and hence
differentiable almost everywhere on S;Jr. At each point
S e Sd++ where f is differentiable, the MMSE matrix verifies

lim MMSE(X |Y,Y) = 1Vf(9). 4)

n—-+oo

Note that this theorem implies in particular the tightness of
the bounds for community detection provided in [31], [32].

Let us comment briefly on the motivation for including
the submodel (la) in our analysis. Many of the problem
formulations in the literature correspond to the setting S = 0y.
In these settings, our results characterize the exact limit of the
mutual information, and using standard perturbation arguments
similar to [8], [25], one can then verify the limiting behavior of
the scalar MMSE associated with each n x n matrix X B, XT.

However, if the goal it to recover the matrix X itself, then
the analysis becomes more difficult due to invariances in the
problem. For example, if X is equal in distribution to —X and
the matrices (By) are symmetric, then the posterior distribution
of X given Y is also symmetric with respect to a sign change.
In this case the conditional expectation is deterministically
zero and so the MMSE is constant. As is argued in [31] the
inclusion of submodel (1a) provides an approach to resolve
these non-identifiability issues that is both interpretive and
intuitive. The basic idea is that an arbitrarily small but positive
definite .S is sufficient to break the symmetry in the model and
thus the double limit

lim lim MMSE(X |Y,Y),
S—0q n—+o00

provides a meaningful measure of performance, even if the
S = 04 limit is degenerate.

The potential function Z verifies the following stationary
conditions, called state evolution equations:

VTI(T, q) = Od = q= ;57 MS(r)a
Vo Z(r,q) =04 =3y, {BegB] + BlqB¢}

=r*(q). (5)
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At a stationary point with respect to ¢ the potential is
Z(r (). ) =15 (" (a)+5 3¢ T [B] (p~0)Be(p—q)]. (©)

A fact we will need later in the proof, and which is the
reason for hypothesis 1, is the following:

Lemma II.1 (Concavity of potential). Under hypothesis 1 the
potential q € S} + I(r,q) is concave.

Proof. Using vectorization, the g-dependent piece of the
potential g : ¢ € S +— Tr[rq] — >, Tr[B}qBq] can be
expressed as

g(q) = vech(q)D}] Dgvech(r)
— vech(q)T 3=, Dj (B¢ ® Be)Dq vech(q)

where vech(q) is the d(d 4+ 1)/2 x 1 vector obtained by
stacking the entries on or below the diagonal of ¢, and Dy
is the duplication matrix, i.e., the unique d? x d(d + 1)/2
matrix such that for any M € S, (the set of symmetric
d x d matrices), vec(M) = Dgvech(M) where vec(M) is
the d? x 1 vector obtained by stacking the columns of M see
[45, Chapter 3.8]. Thus, the Hessian of g can be expressed as
—DI 5" {(B¢ ® By) + (B¢ @ B)T}D,,. Under hypothesis 1,
this matrix is negative semidefinite and therefore the concavity
of the potential follows. O

Formula (2) can also be expressed in terms of a one-letter
potential. This expression is equivalent® to the one given in
[32, Theorem 1] for the case where (By) are symmetric.

Lemma IL.2 (Single-Letter Formula). The function f(S) in
(2) can also be expressed as

7(8) = inf {Is(Si_ {BeaB] + BlaB:})

q€S,
+ AT [ B (5~ ) Be(p — o)} |-

Proof. Let r*(q) be given by (5). For each ¢ it follows
Lemma IL1 that sup, .+ Z(r*(q),q) = Z(r*(q), q). Restrict-
ing the infimum over r to the image of ¢ — 7*(g) leads to an
upper bound

f(S) < inf sup Z(r*(q),q) =

est +
GgeS, qeS,

inf 7(r*().d).
GeS,

Alternatively, because Z(r,q) is convex-concave, standard
duality arguments show that we can interchange the role of r
and q in the inf sup, and this leads to a matching lower bound

£(8)= int_sup T(r.q)> inf Z(*(q).q).

q€S) reSy
Comparing with (6) this gives the stated result. O

III. ADAPTIVE INTERPOLATION, RELOADED

In this section we prove the first part of theorem II.1 using
an evolution of the adaptive interpolation method [27], [39].

3There is factor of two difference in the formulas that arises from the fact
that [32] considers symmetric noise matrices.

A. Interpolating model

We consider a model parameterized by the time t € [0, 1], a
perturbation
e=(\nly) €eS; xS

with a scalar n > 0, and a generic interpolation function
R(t,n) € S verifying R(0,7) = 0. Note that the interpolation
function depends on 7 but not on A\. We require that ¢ =
e, verifies ||e]|lg < b, — 0. Define X, = XB,XT. The
interpolating model is

V'(t,n) = X (S+nla+ R(t,m)"* + W, (7a)
Y(\) = XA\2 4+ W, (7b)
Y,(t)=A-t)/n X+ W, (=1,...,L. (Ic)

where all the W matrices are independent and made of i.i.d.
N(0,1) entries. Let Y (t) = (Yz(t)). The interpolating mutual
information is

To(tye) = 21(X; (Y (t,0), Y (V), Y (1))).

n
By construction it verifies

Zo(0,€) = L1(X;(Y,Y)) + O(by),
Zo(1,€) = Is(R(1,1)) + O(by).

So at ¢ = 0 the mutual information of the original model
(1) appears naturally (recall Y = (Y;)). The O(b,,)’s, that
are uniform in (¢,¢), are extracted using the chain rule for
mutual information and the Lipschitzianity of € — Z,(¢,€),
with Lipschitz constant depending only on |sup X| < oo
(this follows from the I-MMSE relation, see [29] for similar
computations). We compare these values using the fundamental
theorem of calculus

T,(0,€) = Zo(1,¢) — [y T (t, €)dt,

where the prime ’ will always mean t-derivative. Denote the
expectation with respect to the interpolating model posterior
P(|Y(t,n), Y (N),Y(t)) as

<_>t,5 = ]E[_D}(tv 77)7 Y(/\)v Y(t)]

We evaluate Z], which is directly obtained from the matrix
I-MMSE relation. Denote X € X"*? a random sample from
the posterior P(-| Y (t,1),Y (\),Y (t)), the concise notation
X, =XB,XT,and finally E the joint expectation with respect

to the data (Y (¢,7), Y (\), Y (¢)). Define

p=1XTX and Q=1XTX,

(recall p = E[XXT] = Ep) where Q is the d x d overlap
matrix. Then the mutual information time derivative reads
21':1(7“7 6) =ETr [%R/(tv 77) (X_ <X>t,e)T(X_ <X>t,e)]
= BT [ (X — (X)) (Xe—(Xo)eo)]
= Tr[R'(t,)(p—E(Q)¢,c)]
— 3, Te[E[BepB] p| ~E(B:QTB] Q)¢ ],
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using that the average overlap E(Q); . is a symmetric matrix,
as well as the two identities *

E[XT(X)1.d = E[(X)] (X)e.d
and E[X7 (X)) = E[(X0)] (X0)e.c].

Plugging this back in the fundamental theorem of calculus
above, using that p = p + 0,,(1) by the law of large numbers,
and having in mind that we will soon exploit a concentration
property for (), we obtain the sum rule:

717]<X7(Y3Y)) :IS(R(L??)) +0n(1) 3
+ 3 [y dt{Te[R(t,0) (B(Q)r.c — p)] + RM(t,€)
+ 22 Te[B] pBep — B{E(Q)1,e BEE(Q)r.e] }

where o, (1) vanishes uniformly in (¢, €) and the remainder is

Rﬂuc(t, 6) = Z;:l Tr [BAE<QTBJ (E<Q>t,e - Q)>t,e} .

This remainder is small if the overlap fluctuations w.r.t. the
measure E(—), . are small. This is shown as follows. Consider
a perturbation A € D,, = {\ € §J : Mgy € (8, 28,,) if k' #
k, Akr € (2dsp, (2d + 1)s,,)} for a sequence (s,,) of positive
numbers that accumulate to 0. Because the interpolating model
depends on A only through the explicit dependence in channel
(7b), the results of [46] directly apply. There it is shown that
quite generically the overlap concentrates under E(—), ., in
A-average, as long as the “free energy” F,, concentrates:

Fo=—LYIn [dPx(&)P(&|Y (t,n), Y (\),Y(t)).

Notice that EF,,=L1h(Y (t,n), Y (\),Y (t)) is the differential
entropy of the data.

Proposition III.1 (Overlap concentration [46]). Suppose
E[(Fn — ]EFn)z] = O(%)

Let E\[-] = Vol(Dn,)*lfDn dA[—]. Then we have, uniformly
in (t,n) and the choice of R,

EAR([|Q — E(Q)r.cl[2),, = O((sin)~1/°).

Proving E[(F,,—EF,)?] = O(%) whenever Px = p%", ie.,
decouples over the rows, is standard. E.g., one can slightly adapt
the proof of concentration found in [29], [39]. Equipped with
proposition III.1 a simple application of the Cauchy-Schwarz
inequality yields Ey|R%(¢, €)| = 0,(1) — 04 uniformly in
(t,m) as n — 400, when choosing an appropriate sequence
(s,) that vanishes (but not too fast, i.e., s, = w(n~'/%)). Then

by Fubini’s theorem we have, uniformly in 7 and R,
Ey [y dt R™(t,¢) = 0,(1). 9)

4Such identities are sometimes called “Nishimori identities” in the literature.

B. Upper bound on mutual information

We now exploit our freedom of choice of the interpolation
function R and set its derivative to a constant R'(t,n) =r €
Sj, so that R(1,7n) = r too. Under this choice, averaging the
sum rule (8) w.r.t. A € D,, and using (9) yields

LI(X;(Y,Y)) =Ey fy dtZ(r,E(Q)r.c) + 0n(1) V 1 € ST
Therefore we obtain the upper bound:

1 .
limsup —I(X;(Y,Y)) < inf sup Z(r,q).

n—+too M reS) q€S;

(10)

C. Lower bound on mutual information

Let a new perturbation
€ = (0a,n1a).

This time we select R as the unique solution of the following
differential equation with initial condition R(0,7) = 0:

R'(t,n) = ¢, { BeE(Q)1:B] + BJE(Q).:B.}
= r*(E(Q)v,e)- (11

We used definition (5) for 7*. With the notation E(Q): we
emphasize that we consider an expectation of the overlap
along an interpolation path in which we set the perturbation
A to the all zeros matrix 04 while the other perturbation 1nly
is unchanged. The expected overlap E(Q); ¢ is a function
of R(t,n) so the equation above is an ODE. E(Q);: is
(component-wise) Lipschitz in R with Lipschitz constant
depending only on |sup X| and n that are both finite (this
is seen using relations found, e.g., in [44]), so by the Cauchy-
Lipschitz theorem this first order ODE admits a unique global
C! solution R (t,n), which importantly is independent of ).
Using this solution the derivative of the mutual information is

27, (t,€) = — S Tr[B] (5 — E(Q)e.e) Be(p — E(Q)e.2)]
+ Rmis(t, 6) _ Rﬂuc<t, 6),

where a new remainder appeared (here x is the matrix product):

Rmis(t’ 6) = ZZL Tr [Bg (]E<Q>t7e - ]E<Q>t,€)B€
X (E(Q)rc — E(Q)r)]-

The remainder [R™(¢, €)| is small if the mismatch |E(Q)¢,c —
E(Q)+¢| due to the different choices of interpolation paths
(that differ in the perturbation \) is small. The purpose of
the other perturbation 7 I;, which is a novelty w.r.t. the usual
adaptive interpolation method, is to control this remainder:

Proposition III.2 (Interpolation paths mismatch). Let 6 > 0,

ANED, and E,[-] = % 06 dn[—]. Then, uniformly in (X, R),

E, [ dt R™S(t,¢) = O(s,/5).

Proof. Notice E(Q)¢e — E(Q).¢ = 04 or, said differently, the
matrix MMSE is a decreasing function (w.r.t. the Loewner
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partial order) of the signal-to-noise matrix A [47, Prop. 5].
Using Cauchy-Schwarz and TrA > || A||r for A = 0g4,

[R™S(t,€)| < || Bf (E{Q)r,e — E(Q)¢.e)Bellr
X Tr[E(Q)¢,e — E(Q)¢é]-

Now notice that by the -MMSE matrix relation [44] we have
Tr[(la + 45 Ry (6,1) (B(Q)t,e — E(Q)r)] = 245 (Zn(t,€) —
Ta(ty€)). Moreover we have %RZ(t,n) %= 04. This compari-
son inequality is obtained using a comparison inequality similar
to [48, Lemma 5]. We refer to [49] where this step is proven
in full details

As the trace of a product of non-negative definite matrices
is non-negative,

Tr[E(Q)r,e — E(Q)¢e

Therefore averaging (12) over n

12)

] < 24 (Za(t,€) — Za(t, ).
S

(0

,0) gives
E, [R5 (¢ €)| < § [y s (Zo(t,8) = Ta(t,€))
=S{TZ,(t, (04,6 14)) — Zo(t, (N, 61a))
)+

= Zn(t,(04,04)) + Zn(t, (A, 04)) }

for some constant C' > 0 dependent only on |sup X| and
(By). By Lipschitzianity of X\ — Z,(t, (), A)), with Lipschitz
, we get B, |R™S(t,€)| =
O(||A\||lg/9). Finally using ||A]|r = O(sy,) and Fubini’s theorem
to switch ¢ and 7 averages ends the proof. O

The function IS(R) is concave in S+ [43], [44]. Then,
because R(1,7) fo dt R'(t,n),
Is(R(1,m) > [y dt Is(R'(t,n)).

Let 6, = 0,(1) such that s,/d, = o0,(1). With the above
inequality combined with proposition III.2 and (9) (and the
uniformity of the bounds), averaging the sum rule (8) with
respect to (A, 1) € D, x (0,6,) gives (recall definition (5))

LI(X;(YV,Y)) > K, [y dt{Is(r*(E(Q):¢))
+ 1 E T [BI (5 — B(Q)16) Be(p — B(Q)re)] } + 0n(1)
=B, [, dtZ(r*(E(Q)r), E(Q)s) + on(1)

where we used (6) in order to identify the potential. Thanks
to our choice of interpolation path (11) we have the identity

I(T*(E<Q>t,€)7E<Q>t,E) = SUPgest I(T’*(]E<Q>t,g)aQ)-

Indeed, by lemma IL.1 the function ¢ € S — Z(r,q) is
concave under hypothesis 1. The ¢ stationary condition

VqI(T, q = E<Q>t’g) = Od = r=r* (E<Q>t)g)7

thus the claimed identity. Therefore
LI(X; (YY) 2Ep [y dt sup, Z(r* (E(Q)r.2). q) +on(1)
> infresj SUD e st Z(r,q)+on(1).

Finally, taking the liminf,,_, |, yields the converse bound of
(10), and thus ends the proof of the mutual information replica
symmetric variational formula. |

IV. AsYMPTOTIC MMSE MATRIX

In this section we prove the statement about the MMSE
matrix in theorem II.1. Let f be given as in (2) and define
fn: S; — R according to

fa(S) = 1I(X;(Y,Y)).

By the matrix -MMSE relation, f, is differentiable on SC'lH'
with gradient

Vfn(S)=MMSE(X | Y,Y).

Meanwhile, f is concave because it is the minimum of a
family of concave functions and thus it is differentiable almost
everywhere. Similar to [31, Appendix A.3], we will show that
pointwise convergence of f,, to f combined with the concavity
of f, implies convergence of the gradients everywhere f is
differentiable.

To proceed, fix any point S € S;* such that f is
differentiable. By Griffiths’ lemma [36, pg. 25] and the
pointwise convergence of f,, to f, the directional derivates
satisfy

limsup Tr(T'V f,,(S))

n—oo

= Te(TV£(9))

for all T € S;. Moreover both ||V f,,(S)]| and ||V f(S)| are
bounded in terms a constant C' that depends only on the support
of px. Consequently, pointwise convergence of the mapping
T — Te(TVf,(S)) on T — Tr(TVf(S)) implies uniform
convergence on any compact subset of Sy, and we have

VIS

= lim sup sup
n—oo TeSy:||T|<1

lim sup |V £ (S) —

n— oo

Te(T(Vfn(S) = VI(S)) =

We note that for points where f is not differentiable (i.e.,
the optimization in (2) does not have a unique solution), this
argument can be adapted to provide lower and upper bounds
on the MMSE matrix in terms of the subdifferential of f.

V. CONCLUSION AND PERSPECTIVES

We characterized the information-theoretic limits of a class of
multiview spiked matrix models. Our analysis both unifies and
significantly extends the existing body of work. One important
consequence of our results is to establish the tightness of
the bounds obtained previously for community detection with
correlated degree-balanced stochastic block models [31], [32].

The advances in this paper are made possible by a novel
modification of the adaptive interpolation method [27], [39]. At
a high level, this modification provides a decoupling between
two main components of the method, namely the interpolation
path and the perturbation (used for proving concentration of
the overlap), and thus completely bypasses a number of non-
trivial technical issues that previously limited the scope of
the method. As a consequence, the method can be applied
generically to a larger class of inference problems.

2775

Authorized licensed use limited to: Duke University. Downloaded on April 12,2021 at 18:28:22 UTC from IEEE Xplore. Restrictions apply.



[1]

[2

—

[3

—

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S. B. Korada and N. Macris, “Tight bounds on the capacity of binary
input random cdma systems,” IEEE Transactions on Information Theory,
vol. 56, no. 11, pp. 5590-5613, Nov 2010.

J. Barbier, M. Dia, and N. Macris, “Proof of threshold saturation for
spatially coupled sparse superposition codes,” in 2016 IEEE Int. Symp.
Inform. Theory, July 2016, pp. 1173-1177.

C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving sparse
superposition codes via approximate message passing decoding,” IEEE
Transactions on Information Theory, vol. 63, no. 3, pp. 1476-1500, 2017.
G. Reeves and H. D. Pfister, “The replica-symmetric prediction for
compressed sensing with gaussian matrices is exact,” in [EEE Int. Symp.
Inform. Theory, 2016, pp. 665-669.

J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual information
in random linear estimation,” in 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). 1EEE, 2016,
pp. 625-632.

J. Barbier, N. Macris, A. Maillard, and F. Krzakala, “The mutual
information in random linear estimation beyond iid matrices,” in 2018
IEEE Int. Symp. Inform. Theory. 1EEE, 2018, pp. 1390-1394.

G. Reeves and H. D. Pfister, “Understanding phase transitions via mutual
information and mmse,” arXiv preprint arXiv:1907.02095, 2019.

J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborova,
“Optimal errors and phase transitions in high-dimensional generalized
linear models,” Proceedings of the National Academy of Sciences, vol.
116, no. 12, pp. 5451-5460, 2019.

M. Gabrié, A. Manoel, C. Luneau, N. Macris, F. Krzakala, L. Zdeborova
et al., “Entropy and mutual information in models of deep neural
networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 1821-1831.

B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zde-
borovd, “The committee machine: Computational to statistical gaps in
learning a two-layers neural network,” in Advances in Neural Information
Processing Systems, 2018, pp. 3223-3234.

I. M. Johnstone, “On the distribution of the largest eigenvalue in principal
components analysis,” Ann. Statist., vol. 29, no. 2, pp. 295-327, 04 2001.
J. Baik, G. B. Arous, and S. Péché, “Phase transition of the largest
eigenvalue for nonnull complex sample covariance matrices,” Annals of
Probability, p. 1643, 2005.

A. A. Amini and M. J. Wainwright, “High-dimensional analysis of
semidefinite relaxations for sparse principal components,” Ann. Statist.,
vol. 37, no. 5B, pp. 2877-2921, 10 2009.

R. Krauthgamer, B. Nadler, and D. Vilenchik, “Do semidefinite relax-
ations solve sparse pca up to the information limit?” Ann. Statist., vol. 43,
no. 3, pp. 1300-1322, 06 2015.

Y. Deshpande and A. Montanari, “Sparse pca via covariance thresholding,
Journal of Machine Learning Research, vol. 17, no. 141, pp. 1-41, 2016.
T. Ma and A. Wigderson, “Sum-of-squares lower bounds for sparse
pca,” in Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’15.  Cambridge,
MA, USA: MIT Press, 2015, pp. 1612-1620.

Y. Deshpande and A. Montanari, “Information-theoretically optimal
sparse pca,” in 2014 IEEE International Symposium on Information
Theory. IEEE, 2014, pp. 2197-2201.

A. K. Fletcher and S. Rangan, “Iterative reconstruction of rank-one
matrices in noise,” Information and Inference: A Journal of the IMA,
vol. 7, no. 3, pp. 531-562, 2018.

S. S. Mannelli, G. Biroli, C. Cammarota, F. Krzakala, P. Urbani, and
L. Zdeborova, “Marvels and pitfalls of the langevin algorithm in noisy
high-dimensional inference,” arXiv preprint arXiv:1812.09066, 2018.
T. Lesieur, F. Krzakala, and L. Zdeborova, “Constrained low-rank
matrix estimation: Phase transitions, approximate message passing and
applications,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2017, no. 7, p. 073403, 2017.

S. B. Korada and N. Macris, “Exact solution of the gauge symmetric
p-spin glass model on a complete graph,” Journal of Statistical Physics,
vol. 136, no. 2, pp. 205-230, 2009.

F. Krzakala, J. Xu, and L. Zdeborova, “Mutual information in rank-one
matrix estimation,” in 2016 IEEE Information Theory Workshop (ITW),
Sept 2016, pp. 71-75.

J. Barbier, M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zdeborova,
“Mutual information for symmetric rank-one matrix estimation: A proof
of the replica formula,” in Advances in Neural Information Processing
Systems, 2016, pp. 424-432.

>

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]
[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

2776

J. Barbier, M. Dia, N. Macris, F. Krzakala, and L. Zdeborova, “Rank-
one matrix estimation: analysis of algorithmic and information theoretic
limits by the spatial coupling method,” 2018.

M. Lelarge and L. Miolane, “Fundamental limits of symmetric low-rank
matrix estimation,” Probability Theory and Related Fields, vol. 173, no.
3-4, pp. 859-929, 2019.

J. Barbier, N. Macris, and L. Miolane, “The Layered Structure of
Tensor Estimation and its Mutual Information,” in 47th Annual Allerton
Conference on Communication, Control, and Computing, 2017.

J. Barbier and N. Macris, “The adaptive interpolation method: a simple
scheme to prove replica formulas in bayesian inference,” Probability
Theory and Related Fields, Oct 2018.

A. El Alaoui and F. Krzakala, “Estimation in the spiked wigner model:
a short proof of the replica formula,” in 2018 IEEE Int. Symp. Inform.
Theory. 1EEE, 2018, pp. 1874-1878.

J. Barbier and N. Macris, “0-1 phase transitions in sparse spiked matrix
estimation,” arXiv preprint arXiv:1911.05030, 2019.

Y. Deshpande, E. Abbe, and A. Montanari, “Asymptotic mutual infor-
mation for the two-groups stochastic block model,” arXiv:1507.08685,
2015.

G. Reeves, V. Mayya, and A. Volfovsky, “The geometry of community
detection via the mmse matrix,” in 2019 IEEE Int. Symp. Inform. Theory.
IEEE, 2019, pp. 400-404.

V. Mayya and G. Reeves, “Mutual information in community detection
with covariate information and correlated networks,” in 2019 57th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton). 1EEE, 2019, pp. 602-607.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy
of Sciences, vol. 106, no. 45, pp. 18914-18919, Nov 2009.

M. Bayati and A. Montanari, “The dynamics of message passing on dense
graphs, with applications to compressed sensing,” IEEE Transactions on
Information Theory, vol. 57, no. 2, pp. 764-785, Feb 2011.

M. Mezard and A. Montanari, Information, physics, and computation.
Oxford University Press, 2009.

M. Talagrand, Mean field models for spin glasses: Volume I: Basic
examples. Springer Science & Business Media, 2010, vol. 54.

F. Guerra and F. L. Toninelli, “The thermodynamic limit in mean field
spin glass models,” Communications in Mathematical Physics, vol. 230,
no. 1, pp. 71-79, 2002.

F. Guerra, “Replica broken bounds in the mean field spin glass model,”
Comm. Math. Phys., vol. 233, pp. 1-12, 2003.

J. Barbier and N. Macris, “The adaptive interpolation method for proving
replica formulas. applications to the curie—weiss and wigner spike models,”
Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 29, p.
294002, jun 2019.

J.-C. Mourrat, “Hamilton-Jacobi equations for mean-field disordered
systems,” 2018, [Online]. Available https://arxiv.org/abs/1811.01432.

J. Barbier, C. Luneau, and N. Macris, “Mutual information for
low-rank even-order symmetric tensor factorization,” arXiv preprint
arXiv:1904.04565, 2019.

L. Le Cam, Asymptotic methods in statistical decision theory.
Science & Business Media, 2012.

M. Payar6, M. Gregori, and D. Palomar, “Yet another entropy power
inequality with an application,” in 2011 International Conference on
Wireless Communications and Signal Processing (WCSP).

G. Reeves, H. D. Pfister, and A. Dytso, “Mutual information as a function
of matrix snr for linear gaussian channels,” in 2018 IEEE Int. Symp.
Inform. Theory. 1EEE, 2018, pp. 1754-1758.

J. R. Magnus and H. Neudecker, Matrix Differential Calculus with
Applications in Statistics and Economitrics, 3rd ed. Wiley, 2007.

J. Barbier, “Overlap matrix concentration in optimal Bayesian inference,”
Information and Inference: A Journal of the IMA, 05 2020, iaaa008.
[Online]. Available: https://doi.org/10.1093/imaiai/iaaa008

O. Rioul, “Information theoretic proofs of entropy power inequalities,”
IEEE transactions on information theory, vol. 57, no. 1, pp. 33-55, Jan.
2011.

A. Lasota, A. Strauss, and W. Walter, “Infinite systems of differential
inequalities defined recursively,” Journal of Differential Equations, vol. 9,
no. 1, pp. 93-107, 1970.

G. Reeves, “Information-theoretic limits for the matrix tensor product,”
2020, preprint.

Springer

Authorized licensed use limited to: Duke University. Downloaded on April 12,2021 at 18:28:22 UTC from IEEE Xplore. Restrictions apply.



