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Unidirectional wave propagation in nonreciprocal structures enables exciting opportunities to control
and enhance wave-matter interactions in extreme ways. Within this context, here we investigate the pos-
sibility of using terminated unidirectional plasmonic waveguides to enhance typically weak nonlinear
effects by orders of magnitude. We theoretically demonstrate remarkable levels of electric field enhance-
ment and confinement (field hot spots) when the unidirectional waveguiding structure is terminated with
a suitable boundary that fully stops the one-way mode. Such a large field enhancement, originating from a
nonresonant effect, is fundamentally different from the narrow-band field concentration effects in resonant
plasmonic structures. Instead, it is analogous to the broadband response of plasmonic tapers, but without
the need for any adiabatic impedance matching. We show that this effect can indeed lead to a substan-
tial boosting of nonlinear light-matter interactions, exemplified by an improvement of several orders of
magnitude in the third-harmonic-generation efficiency, which is of large significance for several applica-
tions. More broadly, our findings show the potential of extreme nonreciprocal configurations for enhanced
wave-matter interactions.

DOI: 10.1103/PhysRevApplied.14.054061

I. INTRODUCTION

Nonlinear light-matter interactions are at the basis of a
large variety of classical and quantum optical devices, and
are used by scientists and engineers to generate light fre-
quencies, perform laser diagnostics, and advance quantum
computing, among many other applications [1]. Nonlinear
effects depend on the powers of the local electric field E,
with the nonlinear polarization density, in the time domain,
given by P(t) = ε0[χE(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·]
(written here in scalar form for simplicity), where χ is
the linear susceptibility and χ(n) the nonlinear suscepti-
bilities. Since χ(n) � χ in natural materials, extremely
high incident light intensities, enhanced local fields in
narrow-band cavities, or long propagation distances in
bulky nonlinear crystals are required to produce detectable
optical nonlinear effects. The realization of compact broad-
band nonlinear devices (wavelength scale or smaller) is
indeed a fundamental challenge in modern photonics and
nano-optics.
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Two general strategies are typically used to locally
enhance electromagnetic fields: (i) localized resonances
and (ii) slow-light effects accompanied by adiabatic
impedance matching. Resonances, for example localized
surface plasmon resonances in plasmonic nanostructures
and metasurfaces, or more complex Fano resonances and
bound states in the continuum, can dramatically increase
the local field, producing field hot spots that may be used to
boost linear and nonlinear effects [2–13]. However, the res-
onant nature of these platforms makes them very sensitive
to dissipative processes and, more importantly, reduces the
bandwidth over which the desired effect is obtained. An
alternative approach is to use elongated plasmonic tapers
[14–16], which support surface plasmon-polariton (SPP)
modes with decreasing wavelength and group velocity as
they propagate toward the taper tip. For long adiabatic
tapers, the energy carried by the SPP tends to accumulate
at the tip, producing an intense field hot spot. Despite the
change in geometry seen by the propagating SPP, resulting
in a change in wave impedance, reflections are minimized
over a broad bandwidth (broadband impedance matching)
due to the adiabatic transition. In this way, a broadband
signal can be focused at the tip of a plasmonic taper, pro-
ducing a ultra-large field hot spot without the need for
a local resonance. However, this effect is possible only
if impedance matching is ensured at any distance from
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the tip, which requires very long adiabatically tapered
structures.

Here, we propose an alternative strategy to fundamen-
tally break these conventional trade-offs between field
enhancement, bandwidth, and size—with the final goal of
realizing boosted nonlinear effects—based on exploiting
the extreme response of nonreciprocal plasmonic plat-
forms supporting inherently unidirectional modes. Non-
reciprocal plasmas and plasmonic materials, obtained by
breaking Lorentz reciprocity via an external magnetic field
(gyrotropic materials), have been the subject of extensive
research for decades. A distinctive effect of nonreciprocity
in this context is the existence of frequency ranges where
surface plasmon polaritons are unidirectional in the plane
orthogonal to the bias (Voigt configuration) [17]. In other
words, the SPP dispersion diagram is markedly asymmet-
ric and, in certain frequency windows, SPPs are allowed to
propagate along a certain direction but not in the opposite
direction. Although this effect has been known for several
decades [18–20], only recently has it been shown that uni-
directional SPPs on nonreciprocal plasmonic structures can
be divided into two classes with distinct topological prop-
erties. (i) Topological SPPs, whose unidirectionality is an
intrinsic property arising from the topological nature of the
bulk modes [21–30]. These SPPs are supported by inter-
faces between a biased plasmonic material and a trivial
opaque medium (e.g., a metal) and exist within the upper
bulk-mode bandgap of the plasma. (ii) Unidirectional sur-
face magneto plasmons, which are supported by interfaces
between a biased plasmonic material and a transparent
medium, and exist within the lower bulk-mode bandgap.
The unidirectionality of these SPPs is a manifestation
of strong nonreciprocity, and not a topological property
[31–35]. Indeed, it has recently been recognized that these
SPPs lose their strict unidirectionality if nonlocal effects
are properly included in the material model [31,33], while
they remain strongly asymmetrical.

Unidirectional SPPs of both classes can be used to
achieve significant field enhancements in configurations
where the unidirectional mode is fully stopped at a suit-
able termination. Since the SPP cannot reflect back, its
energy accumulates at the termination, forming an intense
field hot spot, and is eventually dissipated in the form of
heat (or radiation loss). Terminated unidirectional wave-
guiding structures—and their counterintuitive electromag-
netic response—were originally studied by Barzilai and
Ishimaru, among others, in the 1960s [19,36], and are
now the subject of significant research interest [31,37–39].
Despite the huge potential of such nonreciprocity-induced
hot spots for boosting weak nonlinear effects, all studies on
this topic so far have been focused on the linear response
of terminated one-way channels, whereas, no attention has
been devoted to their interactions with material nonlinear-
ities. In the following, we propose and discuss engineered
nonreciprocal plasmonic platforms to maximally enhance

the field intensity at a suitable termination, while fully
taking into account the unavoidable impact of dissipation
and nonlocality. We then show that this effect can indeed
lead to an improvement of several orders of magnitude in
nonlinear light-matter interactions, exemplified by a giant
enhancement in the efficiency of third-harmonic genera-
tion. These findings may open unexplored directions in
nonlinear electromagnetics and photonics.

II. GIANT FIELD ENHANCEMENT IN
TERMINATED ONE-WAY CHANNELS

To gain more physical insight into the response of
terminated one-way channels, we first consider an ideal-
ized configuration that is amenable to theoretical analysis.
As shown in Fig. 1(a), the structure under consideration
consists of a nonreciprocal (magnetized) plasma bounded
by dual hard boundaries, i.e., a perfect electric conduc-
tor (PEC) and a perfect magnetic conductor (PMC). The
plasma region is biased normal to the plane, along the
z axis, as indicated in the figure. As discussed in Refs.
[18,19,27,29,31], if the operational frequency lies within
the upper bulk-mode bandgap, the interface between the
magnetized plasma and PEC (or a good conductor) sup-
ports a unidirectional and topological SPP mode propagat-
ing toward the right or left, depending on the bias direction.
This one-way propagation channel is terminated by a PMC
boundary, such that a corner of angle φ0 is formed between
the PEC and PMC walls, as illustrated in Fig. 1(a). No
surface mode is supported on the PMC-plasma interface,
since the PMC boundary “shorts” the tangential magnetic
field of the transverse-magnetic (TM) SPP mode, as rec-
ognized in Ref. [19] (this is strictly true only in the local
case; if plasma nonlocalities are considered, an extremely
confined surface mode does exist on this interface, but is
very rapidly attenuated by any physical level of dissipa-
tion, as discussed in Ref. [40]). The supported one-way
surface mode, therefore, cannot “escape” the termination
since all other propagation channels—backward propaga-
tion, radiation into the bulk, and surface-wave propagation
on the PMC interface—are forbidden. As a result, the
energy carried by this mode can only accumulate at the
corner, leading to a dramatic field enhancement. Indeed,
the only escape channel is provided by absorption losses,
which ultimately dissipate all the incident energy even in
the limit of vanishing loss [19]. If the loss rate is not too
large, the field intensity is expected to exhibit a sharp peak
(a field hot spot) near the corner.

To better understand this field enhancement mechanism,
we theoretically analyze the behavior of the surface mode
as it approaches the corner. This analysis concerns TM
modes, i.e., with Ez = 0, and time-harmonic dependence
e−iωt. The magnetized plasmonic medium can be mod-
eled by a nonsymmetric permittivity tensor ε = ε0[ε11It +
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FIG. 1. Giant field enhancement in an idealized terminated one-way channel. (a) The geometry under consideration consists of a
magnetized plasmonic wedge of angle φ0 between PEC and PMC walls. (b) Time snapshot of the normal component of the electric
field at the plasma-PEC boundary, as a function of the distance ρ from the corner (corresponding to the dashed box in the inset). Inset:
Enlarged view of the electric field distribution in the plasmonic wedge, launched by a point source (black arrow). The wedge angle is
φ0 = 5◦, the operational frequency is ω/ωp = 1.05, and the magnetized plasma is n-type InSb with parameters given in the text. The
magnetic bias is B0 = 0.4 T, and the collision frequency is �/ωp = 0.01. (c) Corresponding distribution of the electric field magnitude.
(d) Same as panel (c), but for a right-angle wedge with φ0 = 90◦. All the field values are normalized to |E0|, the magnitude of the
electric field of a surface wave propagating along an unbounded, lossless, plasma-PEC interface.

ε33ẑẑ − iε12ẑ × I], where the z axis (bias direction) is sup-
posed to be normal to the plane of propagation, It = I − ẑẑ,
and ε12 is the magnitude of the gyration pseudovector. The
frequency dispersion functions of ε11, ε12, and ε33 are [41]

ε11 = 1 − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
c

, ε33 = 1 − ω2
p

ω(ω + i�)

ε12 = 1
ω

ωcω
2
p

ω2
c − (ω + i�)2 ,

(1)

where ωp is the plasma frequency, � is the collision rate
associated with damping, ωc = −e|B0|/m is the cyclotron
frequency, e is the electron charge, m is the effective
electron mass, and B0 is the static magnetic bias.

As a relevant example of solid-state magnetized plasma,
we consider a magnetized semiconductor in the low ter-
ahertz range, e.g., n-type InSb with plasma frequency
ωp = 2 THz, electron density Ne = 1.1 × 1022/m3, and
dielectric constant due to bound charges ε∞ = 15.6. In this
work, we suppose that |ωc/ωp | = 0.4, which corresponds

to a practically feasible value of bias, B0 = 0.4 T, for the
considered InSb sample. By expanding Maxwell’s equa-
tions, ∇ × E = iωμ0H, ∇ × H = −iωε0ε · E, in cylindri-
cal coordinates, it can be shown that the most general
solution of the magnetic field Hz takes the form

Hz = [cnJn(ksρ) + dnYn(ksρ)][an cos(nφ) + bn sin(nφ)],
(2)

where an, bn, cn, dn are unknown modal coefficients, and
Jn and Yn are solutions of the Bessel equation of order
n. The geometry contains the termination point ρ = 0,
and the PMC and PEC boundaries are located at φ = 0
and φ = φ0, respectively. The dispersion equation of the
supported surface mode can be found by applying these
boundary conditions (see also the Appendix), which gives

nJn(ksρ)

ksρ
+ i

ε12

ε11
J

′
n(ksρ) tan(nφ0) = 0, (3)

where ks = √
εeffω/c and εeff = (ε2

11 − ε2
12)/ε11 with c

being the speed of light in vacuum.
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The allowed modal index n that satisfies the dispersion
equation depends on frequency and on the distance ρ from
the corner. In other words, the surface mode transforms
as it approaches the corner, and its amplitude, wavelength,
and wave impedance depend on the allowed modal index
n at each distance ρ. Although Eq. (3) is a complex, non-
linear equation and should be solved numerically, it can
be simplified in the region very close to the termination,
ρ → 0, by replacing the Bessel function with its small
argument approximation, Jn(x) 	 (1/n!)(x/2)n. This con-
verts Eq. (3) to tan(nφ0) − iε11/ε12 = 0, which matches
the result reported in Ref. [19]. This simplified disper-
sion equation is independent of ρ since it is valid only
in the extreme vicinity of the corner, and it can be solved
as n = i tanh−1(ε11/ε12)/φ0, which reveals that n is purely
imaginary in the lossless case (since ε11 and ε12 are real).
The above assumption also simplifies the expression of the
SPP electric field as

Eφ 	 cn

−iωε0εeff
nρn−1

[
i
ε12

ε11
cos(nφ) − sin(nφ)

]
. (4)

In a lossy structure, the modal index becomes a com-
plex number, n = nr + ini, with nr > 0 in a passive system.
In this case, Eq. (4) shows that, as the surface wave
approaches the corner, it oscillates as ρ ini and its ampli-
tude increases or decreases as 1/ρ1−nr , depending on the
value of nr, which in turn depends on the level of loss.
Specifically, if 0 ≤ nr < 1, the amplitude diverges at ρ =
0, whereas if nr > 1, it decays to zero. Thus, this simplified
analysis allows making qualitative predictions about the
underdamped or overdamped behavior of surface waves in
a terminated one-way channel with dissipation; however,
the approximated dispersion equation and the associated
field expressions do not fully capture the correct physics
of a surface mode in this configuration. Specifically, the
divergent behavior at ρ = 0 for a lossy structure is non-
physical since it would correspond to infinite absorbed
energy. Instead, we expect the presence of a peak in the
field magnitude near the termination, whose maximum
value and location should depend on the level of loss and
the geometry.

The correct surface-mode behavior can be captured
using the exact field expressions in Eqs. (A12)–(A13) with
the modal index n numerically calculated from the exact
dispersion equation, Eq. (3). The exact electric field dis-
tribution (time snapshot) for the one-way surface mode
propagating toward the corner is shown in Fig. 1(b), for
the case of a lossy magnetized plasmonic taper bounded
by hard boundaries with φ0 = 5◦. Far from the corner, the
field amplitude slowly decreases due to material absorp-
tion, but, as the surface mode approaches the tip, the
wavelength shrinks and the amplitude rapidly increases. In
Fig. 1(c) we show the magnitude of the electric field, which

exhibits an evident peak near the termination. The field dis-
tributions in the figure insets clearly show that, although
the mode is stopped by the termination, no backward mode
is excited on either interface.

The field behavior in this nonreciprocal plasmonic
taper—wavelength shrinking and field enhancement—is
not dissimilar from the case of reciprocal adiabatic tapers,
as mentioned in the Introduction. However, there is a major
difference between the two cases. In a reciprocal plas-
monic taper, the surface mode energy accumulates near
the tip, with minimized back reflections, only if impedance
matching at any distance from the tip is ensured (at least
approximately), which is possible for very long adiabatic
tapers. Instead, in the proposed nonreciprocal plasmonic
taper, impedance matching is automatically ensured due to
the inherent absence of a backward mode. This implies that
adiabatic tapering is not necessary at all, and the same (or
higher) level of field confinement and enhancement can be
obtained for arbitrarily abrupt terminations, even for a 90◦
corner. The field distribution for this extreme scenario is
shown in Fig. 1(d). Again, we observe that the field inten-
sity increases dramatically, close to the termination—to
even higher values than in the tapered case—forming a
clear field hot spot as shown in the inset. We also note that,
despite the abrupt, nonadiabatic termination, such a field
enhancement effect occurs over the entire frequency win-
dow in which unidirectional surface wave propagation is
supported, which can be quite wide depending on the bias
intensity [31,33,34].

III. BROADBAND AND ENHANCED NONLINEAR
EFFECTS

The broadband giant hot spots supported by terminated
one-way channels appear ideal to enhance weak light-
matter interactions, especially nonlinear effects since they
depend on the powers of the local field. However, the ide-
alized configuration in Fig. 1, which uses PEC and PMC
boundaries, is not practical, especially at frequencies above
the microwave range. Fortunately, as mentioned in the
Introduction, unidirectional surface waves known as sur-
face magneto plasmons also exist on an interface between
a magnetized plasmonic material and a dielectric material,
for frequencies below the plasma frequency [20,31–34].
An important advantage of these surface waves is that
there is no need to impose impractical PMC boundaries
to create a termination. In fact, surface magneto plas-
mons can be stopped by a PEC wall or by an interface
with a conventional opaque medium, as discussed in Refs.
[31,33,37]. A disadvantage of this configuration is that
a backward mode may be excited if nonlocal effects are
not negligible, and the impact of this additional propa-
gation channel must be assessed carefully, as discussed
below.
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FIG. 2. Dispersion diagram of the surface modes supported by
the configurations in the inset. The dispersion diagram is plotted
as a density plot of the inverse determinant of the boundary-
condition matrix. The bright bands correspond to the SPP poles.
The magnetized plasma is InSb with parameters given in the
text and cyclotron frequency |ωc|/ωp = 0.4. The green dashed
lines represent the light lines for plane waves propagating in free
space. The shaded white area indicates the frequency window
where unidirectional surface modes are supported in the local
case.

We first consider a structure consisting of semi-infinite
layers of biased InSb and silicon (Si), with relative permit-
tivity εd = 11.68 [42]. The SPP dispersion diagram for this
structure is shown in Fig. 2. The unidirectional frequency
window of surface magneto plasmons, indicated by the
shaded white area in the figure, is defined by the following
upper and lower bounds: ω± = (±ωc +

√
2ω2

p + ω2
c)/2

[32,43]. When ωc = 0, the unidirectional frequency win-
dow closes and the interface supports symmetric and
bidirectional SPPs.

We note that, as seen in Fig. 2, the unidirectional SPP
dispersion bands lie below the light cone for plane waves
propagating in free space (green dashed lines), which
implies that the mode requires an evanescent-wave exci-
tation (e.g., a near-field point source), as in the case of
conventional SPPs. A more practical configuration that
allows the one-way surface mode to be excited by an inci-
dent propagating wave, e.g., a laser beam, can be obtained
using well-established methods, for example realizing a
grating coupler by periodically corrugating the surface of
the plasmonic medium. As usually done, the period P
is chosen such that the grating compensates the momen-
tum mismatch between the surface mode and a free-space
propagating wave (one of the space harmonics of the SPP
mode ends up within the light cone): the SPP wavevec-
tor becomes k′ = k + 2πn/P, where 2πn/P is a reciprocal
lattice vector [44]. Then, if the silicon layer is interfaced
with free space, as shown in Fig. 3(a), the unidirectional
surface magneto plasmon becomes, within the grating cou-
pler region, a one-way “leaky” mode that can couple to,

and be excited by, free-space propagating waves [45,46].
Additional details about the geometry are provided in the
caption of Fig. 3. An alternative configuration that does not
require a grating coupler is presented in Ref. [47].

The opaque termination that is introduced to stop the
excited surface magneto plasmons is indicated by the black
region in Fig. 3(a). To boost the field enhancement further,
a resonant termination may be designed, for example in
the form of a nonmagnetized plasmonic material with a
Drude-like permittivity such that Re[εm] = −εd = −11.6
at the central frequency of interest. In Fig. 3(b) we show
the electric field magnitude distribution in this structure,
under external plane-wave illumination. One-way surface
waves are launched by the grating toward the right and
giant field hot spots are clearly visible at the termination.

As mentioned at the beginning of this section, a dis-
advantage of this configuration is its fragility to nonlo-
cal effects (spatial dispersion), which is a fundamental
feature of real plasmonic materials. Indeed, as compre-
hensively discussed in Refs. [31,33], surface magneto
plasmons are not strictly unidirectional if nonlocality is
included in the material model. In the nonlocal scenario,
a backward-propagating surface mode emerges within the
unidirectional frequency window. While this makes the
system no longer strictly unidirectional, the dispersion
diagram remains strongly asymmetrical, as the backward-
propagating mode exists for large wave number values and
is rapidly attenuated for moderate levels of dissipation.
Thus, the relative impact of dissipation and nonlocality
should be carefully assessed in order to make correct
predictions regarding the maximum field intensity at the
termination. Nonlocal effects can be included in the plas-
monic material model by writing Ampere’s law as ∇ ×
H = −iωε0ε∞E + J, where J is the induced free-electron
current governed by a hydrodynamic equation of motion
[31,33,48,49],

β2∇(∇ · J) + ω(ω + i�)J = iω(ω2
pε0ε∞E − J × ωcẑ),

(5)

where β = 1.07 × 106 m/s is the nonlocal parameter and �

is the damping rate due to absorption losses. The first term
of the equation is a pressure term determining the con-
vective currents that are responsible for nonlocal effects.
The silicon layer is instead assumed to be local, as usually
done for dielectric materials [48]. The field distribution
everywhere can then be calculated numerically using the
finite element method [50], solving Maxwell’s equation
and the hydrodynamic equation simultaneously, with suit-
able boundary conditions. In particular, neglecting electron
spillover, the free-electron current normal to the surface
is required to vanish at the plasma-dielectric interface
[31,33,48].

To understand how the presence of dissipation and non-
locality affects the field hot spots, we investigate the field
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FIG. 3. Broadband field enhancement, and impact of dissipation and nonlocality. (a) Illustration of the terminated one-way waveg-
uiding geometry under consideration. A one-dimensional grating is introduced to couple the incident propagating wave to the one-way
surface mode. The grating is composed of six ridges of width 32 μm = 0.15λ0, height 10.7 μm = λ0/20, and period 64 μm = 0.3λ0,
where λ0 is the free-space wavelength at ω/ωp = 0.71. The termination region (black) is composed of an isotropic metal with
Re[εm] = −εd at ω/ωp = 0.71. (b) Distribution of the electric field magnitude for the geometry in panel (a), with the same InSb
parameters as in Fig. 1. The Si layer has thickness d = 0.1λ0. (c) Field enhancement at the termination for different scenarios (recip-
rocal or nonreciprocal and local or nonlocal) as a function of the damping rate � at a fixed frequency ω/ωp = 0.71. For the nonlocal
cases, β = 1.07 × 106 m/s [33]. (d) Field enhancement as a function of frequency, for a fixed level of loss, �/ωp = 0.01. Vertical
dashed lines indicate the unidirectional frequency window, consistent with Fig. 2. The field is normalized at each frequency with
respect to the electric field |E0| of a surface wave propagating along a low loss (�/ωp = 0.01), local, nonterminated biased structure.
For all panels, the structure is illuminated by a Gaussian beam with waist w0 = 100 μm = 2.14λ0 and an incident angle of θ = 45◦
with respect to the interface. While these simulations are performed in two dimensions, a representative three-dimensional (3D) simu-
lation is available in the Supplemental Material [47], demonstrating the excitation of unidirectional SPPs by a 3D Gaussian beam and
the emergence of an extended electric field hot spot.

enhancement at the termination for different scenarios.
Specifically, in Fig. 3(c) we compare the field enhance-
ment for reciprocal or nonreciprocal and local or nonlocal
cases as a function of the damping rate � in the magne-
tized plasmonic material, at a frequency within the unidi-
rectional frequency window, ω/ωp = 0.71. These results
confirm that the field enhancement achievable in the non-
reciprocal structure is an order of magnitude larger than
in the reciprocal case (ωc = 0), even for large values of
dissipation. In the reciprocal configuration, a simple stand-
ing wave forms along the channel, which only produces
a moderate field enhancement. Importantly, we see that
nonlocal effects do reduce the enhancement due to the
emergence of a backward-propagation channel [31,33];
however, as mentioned above, the surface mode dispersion
remains strongly asymmetrical and only SPPs with very
large wavevectors can escape through this nonlocality-
induced channel. As a result, despite the presence of
spatial dispersion, the field enhancement remains an order

of magnitude larger than in the reciprocal case, even in
the presence of substantial optical losses (it should also
be mentioned that a slightly lossy background was used
in our numerical calculations to overcome convergence
issues, and we anticipate that even higher field enhance-
ments would be obtained in more accurate simulations).
In Fig. 3(d), we also show this enhancement over a wide
range of frequencies, for both the reciprocal and nonre-
ciprocal nonlocal cases. These results clearly demonstrate
that, in sharp contrast to the conventional enhancement
methods based on resonances, a very large electric field
intensity is achievable here over the entire unidirectional
frequency window. The oscillations in Fig. 3(d) are mostly
due to the dispersive nature of the involved materials. The
physical reason for this broadband effect is that no res-
onance is required in the proposed process (although a
resonant termination is employed to further increase the
field enhancement). This behavior is ideal to boost light-
matter interactions and nonlinear effects in a broadband
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fashion. In the following, we theoretically demonstrate the
potential of these ideas, for a specific nonlinear process,
by investigating the third-harmonic generation (THG) effi-
ciency in the proposed waveguiding platform, considering
the natural χ(3) nonlinear properties of silicon.

In materials with non-negligible third-order nonlinear
susceptibility, a third-harmonic (TH) wave is generated
by the nonlinear polarization density PTH = ε0χ

(3)E3
FF,

where EFF is the electric field phasor at the fundamental
frequency, equal to the frequency of the Gaussian beam
illuminating the structure. Silicon is an indirect bandgap
semiconductor with a pronounced third-order nonlinear
susceptibility on the order of χ(3) = 2.8 × 10−18 m2/V2,
whereas for the metallic termination, we consider the
third-order nonlinear susceptibility of silver: χ(3) = 3 ×
10−19 m2/V2 [1]. Instead, the nonlinear susceptibility of
InSb is much lower and is neglected. As discussed in the
Supplemental Material [47], under the undepleted pump
approximation, we can use the linear frequency-domain
wave equation to solve for the steady-state fields at the
third-harmonic frequency. This is done by simply includ-
ing an additional source term proportional to the nonlin-
ear polarization density, μ0ω

2PTH, and then solving the
wave equation at the third-harmonic frequency using the
finite element method [50]. This modeling approach is
consistent with recent works on nonlinear metamateri-
als and nanophotonics [51–54], which have shown this
method to produce results in good agreement with experi-
ments. In addition to these nonlinear effects, we still fully
include nonlocalities and absorption losses in the InSb
region, making the system under study nonlinear, nonlocal,
nonreciprocal, dissipative, and dispersive.

The strength of the THG process is evaluated by
computing the conversion efficiency defined as CE =
Pout,TH/Pin,FF, that is, as the ratio between the output
power at the third-harmonic frequency and the input power
at the fundamental frequency. The input power of the
incident Gaussian beam can be calculated as Pin,FF =
0.5π I0w2

0 cos(θ0), where I0 = H 2
0 η/2 is the maximum

beam intensity with H0 being the magnitude of the incident
magnetic field and η = 377 � the free space impedance.
The total output power is computed by integrating the
outgoing Poynting vector on the outer boundaries of the
entire computational domain at the third-harmonic fre-
quency. While the structure supports guided unidirectional
modes at the fundamental frequency, the system operat-
ing at the third harmonic has different properties due to the
dispersive nature of the materials involved. In particular,
since the third-harmonic frequency is much larger than the
plasma frequency of the nonreciprocal plasmonic material,
this medium is mostly transparent to the third-harmonic
field, which is therefore able to exit the structure, while the
fundamental-frequency field is trapped in the waveguiding
structure.

The computed THG conversion efficiency results are
reported in Fig. 4(a) for the terminated one-way waveg-
uiding structure in Fig. 3. Rather remarkably, the THG
conversion efficiency takes very high values, on the order
of a few percent, by using relatively low input intensi-
ties. This is indeed due to the giant field enhancement
and confinement of the fundamental-frequency wave at
the termination. In comparison, the CE is more than
4 orders of magnitude lower in the nonreciprocal case
without termination, and in the reciprocal cases with or
without termination, as shown in Fig. 4(b). We also note
that input intensity values comparable to those consid-
ered here have been experimentally obtained at infrared
frequencies by using different excitation configurations
emitting terahertz pulses, as well as using quantum cas-
cade lasers [55–58]. The relatively low input intensities
considered here also ensure that we operate within the
undepleted pump regime [1], and that detrimental ther-
mal effects will not impact the waveguide performance.
Specifically, we show in Ref. [47] that the materials of the
proposed structure can withstand the absorption-induced
heating for input intensities lower than I0 = 60 MW/cm2,
as in Fig. 4. In addition, even if much lower input inten-
sities are considered, our structure would still exhibit a
huge enhancement in conversion efficiency compared to
the reciprocal case. Finally, we note that much larger TH
fields can be generated, with similar efficiencies, using
arrays of terminated one-way channels forming large-
scale interfaces, as shown in the Supplemental Mate-
rial [47].

The computed field distribution at the third-harmonic
frequency is shown in Fig. 4(c) for the nonreciprocal termi-
nated waveguide. At this frequency, the structure becomes
only weakly nonreciprocal, and the TH wave is therefore
allowed to propagate backward from the termination and
escape the structure in the form of radiation from a well-
defined leaky wave (although the output TH power leaks
mainly downward, if desired it can be directed upward
by simply introducing a suitable mirror right below the
structure). The TH leaky-wave radiation is also moder-
ately directive, and could be made even more directive
with a suitable structure, as in conventional leaky-wave
antennas [45]. The field distributions for all the differ-
ent configurations considered in Fig. 4(b)—reciprocal or
nonreciprocal and with or without termination—are pro-
vided in the Supplemental Material [47]. Most importantly,
in Fig. 4(d) we show the THG conversion efficiency
over a wide frequency range, for the terminated recip-
rocal and nonreciprocal plasmonic waveguides, demon-
strating a broadband orders-of-magnitude improvement
in the nonreciprocal case. A comparison with Fig. 3(d)
shows that such a broadband nonlinear effect indeed
originates from the broadband linear field enhancement
in our structure. These results clearly demonstrate the
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FIG. 4. THG conversion efficiency for (a) the nonreciprocal plasmonic waveguide with metallic termination considered in Fig. 3 (red
solid line); and (b) the same nonreciprocal waveguide, but without termination (blue dashed line), and the same waveguide, but without
bias, with termination (black dotted line) and without termination (purple solid line). (c) Distribution of the electric field magnitude
at the third-harmonic frequency for the terminated nonreciprocal waveguide. Because of the dispersive nature of the materials, the
waveguide becomes only weakly nonreciprocal at the third-harmonic frequency and the TH field can escape the structure in the form
of leaky-wave radiation. In this panel, the incident wave peak intensity is 50 MW/cm2, low enough to avoid any heat damage to the
involved materials. Panels (a)–(c) are calculated for a fundamental frequency of ω/ωp = 0.71. (d) THG conversion efficiency as a
function of fundamental frequency, for a fixed input intensity I0 = 50 MW/cm2. As in Fig. 3(d), vertical dashed lines indicate the
unidirectional frequency window, consistent with Fig. 2.

potential of the proposed terminated one-way plasmonic
waveguides to achieve extreme levels of field enhance-
ment and giant nonlinear effects over a broad range of
frequencies.

IV. CONCLUSION

In summary, in this article we have proposed and
theoretically demonstrated a strategy to realize remark-
ably strong, broadband, nonlinear light-matter interac-
tions. This strategy is not based on resonant mechanisms
(e.g., localized surface-plasmon resonances) or adiabatic
impedance matching in slow-light structures (e.g., plas-
monic tapers), but rather on the extreme electromag-
netic response of terminated one-way channels. Specif-
ically, we have shown that the proposed structure sup-
ports giant, broadband, field hot spots, even if losses
and nonlocalities are fully taken into account, and we
have numerically demonstrated that such hot spots can
be exploited to achieve an enhancement of several orders

of magnitude in nonlinear processes, for example third-
harmonic generation, over a small footprint.

Our results show the potential of combining strongly
nonreciprocal (unidirectional) platforms with optical non-
linear effects. More broadly, the structures considered in
this work, which are, at the same time, nonreciprocal,
nonlocal, nonlinear and non-Hermitian (due to absorption
and radiation losses), offer a glimpse into the rich physics
of exotic electromagnetic and photonic platforms, which
provide many opportunities that are only now beginning to
be explored.
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APPENDIX: SPP MODAL ANALYSIS OF A
TERMINATED ONE-WAY CHANNEL

Consider the geometry in Fig. 1(a), with the nonrecip-
rocal plasmonic material (magnetized n-type InSb) char-
acterized by a gyrotropic permittivity tensor. Starting from
Maxwell’s equation in cylindrical coordinates, we obtain
the following equations for the different components of the
supported TM mode at the InSb-PEC interface:

1
ρ

[
∂(ρEφ)

∂ρ
− ∂Eρ

∂φ

]
= iωμ0Hz, (A1a)

1
ρ

∂Hz

∂φ
= −iωε0[ε11Eρ + iε12Eφ], (A1b)

−∂Hz

∂ρ
= −iωε0[−iε12Eρ + ε11Eφ]. (A1c)

Using these equations, Hz can be obtained in terms of the
other field components,

1
ρ

∂2Hz

∂φ2 + ∂

∂ρ

[
ρ

∂Hz

∂ρ

]
= −iωε0

[
ε11

(
∂Eρ

∂φ
− ∂(ρEφ)

∂ρ

)

+ iε12

(
∂Eφ

∂φ
+ ∂(ρEρ)

∂ρ

)]
.

(A2)

The transversality condition (Gauss’ law), ∇ · D = ∇ ·
(ε · E) = 0, gives

ε11

[
∂(ρEρ)

∂ρ
+ ∂Eφ

∂φ

]
+ iε12

[
∂(ρEφ)

∂ρ
− ∂Eρ

∂φ

]
= 0.

(A3)

Equation (A1a) can be written as
[
∂(ρEφ)

∂ρ
− ∂Eρ

∂φ

]
= iωμ0ρHz, (A4)

which, combined with Eq. (A3), gives

∂(ρEρ)

∂ρ
+ ∂Eφ

∂φ
= −i

ε12

ε11

[
∂(ρEφ)

∂ρ
− ∂Eρ

∂φ

]
= ε12

ε11
ωμ0ρHz.

(A5)

Finally, substituting Eqs. (A4) and (A5) into Eq. (A2) gives
the following differential equation for Hz:

1
ρ

∂2Hz

∂φ2 + ∂

∂ρ

[
ρ

∂Hz

∂ρ

]
= −k2

0εeffρHz. (A6)

By inserting a solution of the form Hz = A(ρ)B(φ) in the
above equation, and defining k2

s = k2
0εeff, we obtain

1
B

∂2B
∂φ2 + 1

A
ρ

∂

∂ρ

[
ρ

∂A
∂ρ

]
+ k2

s ρ
2 = 0, (A7)

which gives the following ordinary differential equations
for the radial and angular terms:

1
B

∂2B
∂φ2 = −n2,

ρ
∂

∂ρ

[
ρ

∂A
∂ρ

]
+ (k2

s ρ
2 − n2)A = 0,

(A8)

with the general solutions

B = an cos(nφ) + bn sin(nφ),

A = cnJn(ksρ) + dnYn(ksρ).
(A9)

Thus, Hz takes the form

Hz = [cnJn(ksρ) + dnYn(ksρ)][an cos(nφ) + bn sin(nφ)].
(A10)

The other field components can be written in terms of Hz
as

Eρ = 1
−iωε0εeff

[
1
ρ

∂Hz

∂φ
+ i

ε12

ε11

∂Hz

∂ρ

]
,

Eφ = 1
−iωε0εeff

[
i
ε12

ε11

1
ρ

∂Hz

∂φ
− ∂Hz

∂ρ

]
.

(A11)

The geometry contains the point ρ = 0 (wedge apex),
which implies that dn = 0; otherwise, the field solution
would diverge in all cases. In addition, the PMC boundary
is at φ = 0, which implies that an = 0 (vanishing tangen-
tial magnetic field on the PMC boundary). Applying these
boundary conditions simplifies the field components as

Hz = cnJn(ksρ) sin(nφ), (A12)

Eρ = cn

−iωε0εeff

[
nJn(ksρ)

ksρ
cos(nφ) + i

ε12

ε11
J

′
n(ksρ) sin(nφ)

]
,

Eφ = cn

−iωε0εeff

[
i
ε12

ε11

nJn(ksρ)

ksρ
cos(nφ) − J

′
n(ksρ) sin(nφ)

]
.

(A13)

Finally, since the PEC boundary is located at φ =
φ0, the tangential electric field vanishes on this bound-
ary, Eρ |φ=φ0= 0, which leads to the following dispersion
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equation for the TM modes supported by the wedgelike
structure in Fig. 1(a):

nJn(ksρ)

ksρ
+ i

ε12

ε11

∂Jn(ksρ)

∂(ksρ)
tan(nφ0) = 0. (A14)

This corresponds to Eq. (3).
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