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TRANSLATION COVERS OF SOME TRIPLY
PERIODIC PLATONIC SURFACES

JAYADEV S. ATHREYA AND DAMI LEE

ABSTRACT. We study translation covers of several triply periodic polyhedral
surfaces that are intrinsically Platonic. We describe their affine symmetry
groups and compute the quadratic asymptotics for counting saddle connec-
tions and cylinders, including the count of cylinders weighted by area. The
mathematical study of triply periodic surfaces was initiated by Novikov, mo-
tivated by the study of electron transport. The surfaces we consider are of
particular interest as they admit several different explicit geometric and alge-
braic descriptions, as described, for example, in the second author’s thesis.

CONTENTS
1. Introduction @
2. Construction of triply periodic polyhedral surfaces 34
3. Translation covers of Platonic surfaces m
4. Asymptotics of counting problems [41]
References @

1. INTRODUCTION

In this paper, we study translation covers of six intrinsically Platonic polyhedral
surfaces. The objects of our interest are quotients of triply periodic polyhedral
surfaces that arise in Lee [G]. We say a polyhedral surface II is triply periodic, if
AIT = II for some rank-three lattice of translations A C R3. We use II to denote the
infinite surfaces, and X :=II/A for the smallest compact quotients. The objects of
our interest are those whose underlying surfaces X are compact with identifiable
Riemann surface structures.

The study of triply periodic surfaces arises in an important physical situation,
known as Novikov’s problem on understanding the geometry of sections of compact
surfaces embedded in the 3-torus T3. Novikov’s problem is motivated by semi-
classical motion of an electron on the (periodic) Fermi surface of a metal under a
magnetic field [10].

In this paper, we are interested in polyhedral surfaces embedded in the 3-torus
T3, or, equivalently, triply (Z?)-periodic polyhedral surfaces in R®. To be clear, we
are not studying Novikov’s problem, but rather, we are interested in the intrinsic
flat geometry of these objects given by their polyhedral structure. The particular
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surfaces we study also have rich automorphism groups and admit explicit descrip-
tions as algebraic curves, see Lee [6] for further details.

We are interested in the counting and geometry of special geodesic trajectories,
using ideas of Veech [9] and Gutkin—Judge [5] and others to compute explicit qua-
dratic asymptotics of the growth rate of the number of such trajectories of bounded
length. That these asymptotic constants (known as Siegel-Veech constants) can be
computed is by now well-known, but we believe it is of interest to compute them
explicitly in these cases, as these surfaces occur naturally in many different contexts.

1.1. Background.

Polyhedral surfaces. We denote a polyhedral surface by {p, ¢} (using Schlafli sym-
bols) if it is tiled by regular Euclidean p-gons and all vertices are g-valent. A
polyhedral surface is Platonic if there are two types of symmetries (an order-p
symmetry about the center of a polygonal face and an order-¢ symmetry about a
vertex) as isometries of the ambient space so that group generated by these two
symmetries acts transitively on the vertices, edges, and faces.

We say that a surface is intrinsically Platonic if the isometries of order-p and ¢
are intrinsic and not necessarily Euclidean. That is, we disregard the embedding
of the surface in Euclidean space and consider only the intrinsic metric on X. Lee’s
classification [6] includes classical examples found by Coxeter and Petrie [3] such
as Mucube {4, 6}, Muoctahedron {6,4}, and Mutetrahedron {6, 6} (Figure[Il), and
introduces examples that we call Octa-4 {3, 8}, Octa-8 {3, 12}, and Truncated Octa-
8 {4,5} (Figure 2)). The construction of these surfaces is described in Section [2
We remark that the genus of the underlying surface is three for Coxeter—Petrie’s
examples and Octa-4; and four for Octa-8 and Truncated Octa-8.

=35

FIGURE 1. A subset of Mucube, Muoctahedron, and Mutetrahe-
dron. Adapted from [6].

Translation surfaces. A translation surface is a collection of Euclidean polygons in
R? with parallel sides identified by translation. Equivalently, it is given by a pair
(X,w) where X is a compact Riemann surface and w is a holomorphic 1-form (i.e.,
a section of the canonical bundle). In local coordinates, we can write w = f(z)dz.
An order-k zero of w corresponds to a point with cone angle 27(k+1). We say that
(X,w) lies in a stratum #H;(kq, ..., k,) where k; denotes the order of a zero of w.
Then &k +---+ k, = 29 — 2 where g is the genus of X. Integrating w away from its
zeros, we get an atlas of charts to C whose transition maps are translations.
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FIGURE 2. A subset of Octa-4, Octa-8, and Truncated Octa-8.
Adapted from [6].

The group GL'(2,R) acts on the moduli space of genus-g translation surfaces.
If the GL™(2,R)-orbit of the surface is closed, we call the GL™ (2, R)-orbit a Te-
ichmiiller curve. The integral % J W A @ represents the area of the translation
surface, area(w), and the group SL(2,R) acts on the moduli space of genus-g unit
area translation surfaces via R-linear post-composition with charts.

Saddle connections and cylinders. A saddle connection on a translation surface is
a geodesic segment that connects two singular points (zeros of w) with no singular
points in its interior. It is a closed saddle connection if it connects a singular
point to itself. We will be interested in counting saddle connections (organized
by length) and understanding the existence of closed saddle connections. Given a
saddle connection 7, its holonomy vector is given by

zvz/w7
gl

and we denote the set of all holonomy vectors by A,. This is a discrete subset of
C, and it varies equivariantly under the SL(2,R)-action, so for h € SL(2,R),

hAy, = Apy.

A closed geodesic n not passing through a singular point is part of a cylinder, and we
denote the set of holonomy vectors of cylinders as A°Y!. Associated to each cylinder
is the area of the cylinder, a(n).

Translation covers. Let X be a Riemann surface and k be a positive integer. A
meromorphic k-differential on X is a section of the k-th power of the canonical
bundle ¢ = f(2)(dz)*. In other words, integrating ¥/q yields transition functions
that are given by rotations by a multiple of 27”

Our polyhedral surfaces (as polygons in R? with edge identifications) are not
translation surfaces. Associated to a pair (Y,o), where o is a k-differential, is
the translation cover (also called spectral curve or unfolding), a translation surface
(X,w) where X is a k-cover of Y branched at the zeros of 0. Geometrically, it
is constructed by taking k copies of (Y, o), each rotated by 27“ from the previous
copy, where an edge j of some copy of Y is identified to an edge j of some other
copy by translation. A key point in our work is precisely identifying these covers in
a variety of situations, and carefully computing the affine symmetry groups of the
resulting translation surfaces, using key ideas from Gutkin—Judge [5].
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Moreover, we show that certain polyhedral surfaces and Platonic solids have
common translation covers.

Theorem 1.1.

(1) The translation covers of the octahedron and the compact quotient of Octa-8
are isometric with their intrinsic metrics.

(2) The translation covers of the cube and compact quotient of Mucube are
isometric with instrinsic metrics.

It is natural to extend this question to more general cases.

Let II be a triply periodic polyhedral surface and II/A a compact Riemann
surface equipped with a k-differential. For k’|k, does there exist a triply periodic
polyhedral surface II' such that II'/A’ is a compact Riemann surface that is a k'-
cover of II/A? If not, what are the constraints? Specifically, can one find a triply
periodic polyhedral surface whose compact quotient is a 2-cover (or 5-, 10-) of the
regular icosahedron?

Veech groups and counting results. The translation surfaces arising from these cov-
ering constructions are known as Veech or lattice surfaces: they have large affine
symmetry groups — the stabilizers SL(X,w) (known as Veech groups) of (X,w) un-
der the SL(2,R)-action of these surfaces are lattices. For these surfaces, Veech [§]
showed that the existence of a saddle connection in a fixed direction (known as a
cusp) implies that the surface can be decomposed into parallel cylinders in that
direction. For each cusp ¢, we define the cusp width relative to a group I' as the

smallest number w > 0 so that (é T) € 7'y where y(c0) = ¢. Veech [9] also

showed that the number of saddle connections of length at most R grows quadrati-
cally. We use these results to explicitly compute the asymptotic growth rate for our
surfaces. We will also compute the asymptotic growth of the number of cylinders
of length at most R, weighted by area, a quantity known as the area Siegel-Veech
constant.

We record our main result on the Veech groups of the spectral curves of our
surfaces II/A. Each surface results in a branched cover of the torus (branched
over 0), known as a square-tiled surface or origami. By [5], these surfaces have
Veech groups which are (conjugate to) finite index subgroups of the modular group

1 N\t
SL(2,7), the Veech group of the torus. For consistency, we apply (O \%) to
2

triangle- or hexagon-tiled surfaces and consider the associated surfaces as square-
tiled surfaces, and their Veech groups as subgroups of SL(2,Z). This helps to make
comparisons between these surfaces easy. We abuse notation by continuing to call
the surfaces by their original names. This does not change the asymptotic constants
for counting, see [9].

Theorem 1.2. The indices of the Veech group, the number of cusps, and the cusp
widths for the translation covers of the underlying surface of Mucube, Muoctahedron,
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Mutetrahedron, Octa-4, and Truncated Octa-8 are given by

Index Cusps Cusp Widths
Mucube 9 {00,1/2,1} {4,2,3}
Muoctahedron 16 | {o0,1/5,1/2,1/7} | {9,1,3,3}
Mutetrahedron 4 {o0,1} {3,1}
Octa-4 4 {o0,1/2} {3,1}
Truncated Octa-8 | 15 {0,3,1,4} {6,2,3,4}
Given a translation surface (X,w), we denote
N(R) = #|A, 0 B(0, R),
NW(R) = #[Aw N B(O,R),
A(R) = > al),
neA'NB(0,R)
A(R) = > al),

neA[Cg]lmB(o,R)

where [w] is the area-1 normalization of w and B(0,R) is the ball of radius R
centered at the origin. For each of our square-tiled surfaces, the area of the surface
is defined as the number of squares that tile the surface. Veech [9] showed that for

the surfaces that arise in our paper, there are rational constants ¢, ¢, a,a® so
that

N(R)
TR2
N® (R)
TR2 ’
A(R)
mR2

lim ¢(2)

R—o0
¢(2)

lim ((2)

R—o0
AM(R
(o)t

Theorem 1.3. The (normalized) asymptotic growth rates for saddle connection,
cylinder, and area weighted cylinder counts for the translation covers of underlying
surface of Mucube, Muoctahedron, Mutetrahedron, Octa-4, and Truncated Octa-8
are given by

lim
R—o0

lim a®.
R— o0

c ey a a@
Mucube 1 24 6-24 | 6-242
Muoctahedron g g -T2 % % -T2
Mutetrahedron % % -24 15 15-24
Octa-4 1 48 6-48 | 6-482
Truncated Octa-8 | 1 | 120 [ 6-120 | 6-120?

With the aid of the Sage package [7] surface_dynamics [4], we prove that there
are no closed saddle connections on any of our examples.

Theorem 1.4. There are no closed saddle connections on the translation covers of

the underlying surface of Mucube, Muoctahedron, Mutetrahedron, Octa-4, Octa-8,
or Truncated Octa-8.
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Lastly, we record the constants ¢, ¢, a, a(!) for the translation covers of Platonic
solids studied in Athreya—Aulicino-Hooper [1].

Theorem 1.5. The (normalized) asymptotic growth rates for saddle connection,
cylinder, and area weighted cylinder counts for the translation covers of the Platonic
solids are given by:

¢l e® a a@

Octahedron | 1] 12 [ 6-12 ] 6-122
Cube 1124 [6-24]6-242

Icosahedron | 1| 60 | 6-60 | 6-60°

The organization of this paper is as follows. In Section[2] we refer to [6] and define
the notion of a decoration of a graph (Definition 2.1)) and show how we achieve this
particular set of six polyhedral surfaces. In Section [B] we discuss the translation
covers of our examples and show that they share common covers with translation
covers of Platonic solids. In Section [ we show our results on the asymptotics of
counting problems. Specifically, we will study the cusps of associated Teichmiiller
curves which describe affine equivalence classes of saddle connections.

2. CONSTRUCTION OF TRIPLY PERIODIC POLYHEDRAL SURFACES

We summarize Chapter 4 from [6] and describe carefully the class of examples
of our interest. In [3], Coxeter and Petrie introduced three triply periodic regular
polyhedral surfaces as an analogue to Platonic solids. For example, {4,3} forms
a square-tiling of the cube, {4,4} forms a square-tiling of the plane. When one
increases the valency, the faces cannot bound a convex body and their construction
forces the faces to form a “hill-valley formation” (Figure [[). These are named
Mucube, Muoctahedron, and Mutetrahedron, as they bound polyhedra that are
built from multiple cubes, octahedra, and tetrahedra, respectively. In [6], Lee
broadens this classification by allowing “plateaus,” while still viewing the surfaces
as the boundary of a polyhedron. In other words, each surface is viewed as the
boundary of a tubular neighborhood of a graph in R3. Given a graph in R?, Lee
builds a tubular neighborhood by replacing the 0- and 1-simplices with solids and
formulates a gluing pattern of the solids.

Definition 2.1. Let I' = {V, E} be a graph embedded in R® where V is a set of
vertices (O-simplices) and E is a set of edges (1-simplices). An edge e € E is a
2-element subset of V' which we denote as an unordered pair e = {v1,v2} for some
vi,v2 € V. A decoration of T' is a polyhedron built by replacing the O-simplices
and 1-simplices of " with convex polyhedral solids so that 1) I is a deformation
retract of the polyhedron and 2) the solids are identified only along faces. In
essence, if a 0-simplex and a 1-simplex in I" are incident, then their corresponding
replacement solids are identified along a common face. A regular decoration is a
decoration whose boundary surface can be denoted by Schlafli symbols {p,q}. An
Archimedean decoration is a decoration where the 0- and 1-simplices are replaced
only by Platonic solids and Archimedean solids.

Remark 2.2. We include prisms, anti-prisms, and the empty solid to replace 1-
simplices but not 0-simplices. By letting empty solids replace 1-simplices, we allow
two adjacent solids to retract to O-simplices. Moreover, we will only allow the solids
to be identified along one type of polygon.
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A graph T is periodic if I is invariant under A, a lattice of translations. Given
a periodic graph I', we define its compact quotient graph by I" = {V/,E'} :=T/A.
A graph is symmetric if given any two edges {v1,v2},{v], v}, there is an auto-
morphism ¢ : V — V such that ¢(v1) = v] and ¢(v2) = v4. For our construction,
we consider only triply periodic graphs whose quotients are symmetric. Given a
quotient graph I, one can define its genus by g(I'') := e — v+ 1 where v = |V’| and
e=|F|

For a given genus, there are finitely many graphs (whose quotients are symmetric)
and due to the finiteness of Archimedean solids, there are only finitely many regular
Archimedean decorations of that genus. We consider only those whose compact
quotients are surfaces of genus-three and four that have Riemann surface structure
as cyclic covers over the sphere, and are intrinsically Platonic. The surfaces are
Mucube, Muoctahedron, Mutetrahedron, Octa-4, Octa-8, and Truncated Octa-8.

The names Octa-4, Octa-8, and Truncated Octa-8 arise from the replacement
solid of the 1-simplices and the valency of the graph. Adapting this notation,
Mucube, Muoctahedron, and Mutetrahedron can be written as Cube-6, Truncated
Octa-6, and Tetra-Truncated Tetra-4, respectively.

3. TRANSLATION COVERS OF PLATONIC SURFACES

We devote this section to translation covers of the underlying surfaces of the six
polyhedral surfaces..

A polyhedral surface denoted by {p,q} is equipped with a cone metric whose
cone angle is @ at every vertex. We take the k-cover so that the cover is a
translation surface.

Table 1 in the present paper is a replication of Table 1 in [I].

TABLE 1. Strata of polyhedral surfaces and their translation covers.

Stratum of the

Stratum of the

Genus of the

Polyhedron Schlafli symbols k-differential | translation cover | translation cover
Mucube {4,6} H2(18) H1(28) 9
Muoctahedron {6,4} H3(112) H1(312) 19
Mutetrahedon {6,6} Ha(1%) H1(18) 5
Octa-4 {3,8} Hz(112) H1(312) 19
Octa-8 {3,12} H1(15) H1(15) 4
Truncated Octa-8 {4,5} Ha(1%%) Hi(4%%) 49

In [6], Lee finds various holomorphic maps from the quotient of Octa-8 to the
sphere to obtain a basis of holomorphic 1-forms. In the following theorem, we show
that the associated 1-form corresponds to the unfolding of the octahedron.

Theorem 3.1. The underlying Riemann surface structure on Octa-8 corresponds
to the translation cover of the octahedron.

Proof. The underlying surface of Octa-8 is a genus-four compact Riemann surface
with identification of edges as described in Figure Bl
The surface is invariant under the order-twelve rotation ¢ about the center of

the tessellation. The quotient X/(y) is a sphere where the covering is branched
over three points. However, X /(%) is also a sphere (shaded region in Figure B) and
the threefold map is branched over six points. In Section 5.2 of [], Lee shows that
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FiGureE 3. Hyperbolic description of the fundamental piece of
Octa-8. Adapted from [6].

the quotient sphere X/(¢*) is conformally equivalent to a regular octahedron. In
other words, the exterior derivative of this particular map is a holomorphic 1-form
corresponding to the translation cover of the octahedron. ([l

Next we show that the cube (quartic differential) and the compact quotient of
Mucube (quadratic differential) share the same translation cover.

Theorem 3.2. The polyhedral metric on the underlying surface of Mucube yields
a quadratic differential that corresponds to the half-translation cover of the cube.

Proof. We prove this theorem by picture. Figure Hl describes Mucube and the
twofold cover of the cube where the edges are identified by translation or a half-
translation. They are identical as half-translation surfaces, hence their twofold
translation covers are identical.

O

4. ASYMPTOTICS OF COUNTING PROBLEMS

In the following subsections we study the Teichmiiller curve associated to the
translation cover of each polyhedral surface in Table [l To ease our computations,
we describe each translation surface as a surface tiled by unit squares. The advan-
tage of this tool is that a surface is completely defined by a horizontal permutation
op, and a vertical permutation o, on the squares. The top of square i is glued to
the bottom of square o, (7), and the right side of square i is glued to the left side of
square oy (7). The polyhedral surfaces tiled by triangles cover the doubled triangle
(a rhombus), which we map to a square as shown in [I], and as discussed earlier.
Our examples include surfaces tiled by hexagons (Muoctahedron and Mutetrahe-
dron), which can also be described as square-tiled surfaces. We subdivide each
hexagon into six triangles and then pair two triangles to form a rhombus. Fig-
ure [Blillustrates the subdivision of Mutetrahedron into rhombi where the numbered
edges are identified by half-translations. Note that the covering is not regular over
rhombi.
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FIGURE 4. Mucube (left) and the twofold cover of the cube (right).
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FI1GURE 5. Subdivision of hexagons on Mutetrahedron.

The input to the Sage package surface_dynamics is the two permutations that
define a square-tiled surface. It yields Theorem where it computes the Veech
group of the Teichmiiller curve and its cusps and cups widths. We will use Theo-
rem to study the Teichmiiller curves associated to the polyhedral surfaces.

Mutetrahedron. The underlying surface of Mutetrahedron is tiled by four hexa-
gons. The cone angle at each vertex is 27w, however the edges are identified by
translation and a 180°-rotation. Hence its spectral curve is a 2-cover. By subdivi-
sion of hexagons into squares, the translation cover of Mutetrahedron is tiled by 24
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squares, described by a horizontal permutation o, and a vertical permutation o,,.
(4.1)
on =1(1,2,3,4,5,6)(7,8,9,10,11,12)(13, 14, 15,16, 17, 18)(19, 20, 21, 22, 23, 24)

(4.2)
oy = (1,7,13,11,3,21)(2,20, 14, 12, 18,22)(4, 10, 16,8, 6, 24) (5, 23,17, 9, 15, 19)

o 11 12 . 19 p 8 9 y 22 ) 5 » 14 . 1 2 . 17 » 4
1314|1516 (17|18 ® | 19]20 (21|22 23|24 *

o 7 » 20 21 p 10 : 23 24 . 13 » 6 . 15 16 . 3 » 18
A2 3|45 |6 |78 |9 10|1]|12)

FIGURE 6. Double cover of the underlying surface of Mutetrahedron.

The translation cover is a genus five surface with eight simple zeros. Its Veech
group I is an index-4 subgroup of SL(2,Z), which is described completely by the
action of the generators of SL(2,Z) on the right cosets T'\SL(2,Z). Given the
generators so = (Y 1), s5=(%1), 1= (1), and r = (}19) of SL(2,Z), I has
the following representation:

S2 = (174)(273)7
S3 — (1,3,2),
1=(1,3,4),
r=(1,2,4),

where the cosets are identified with elements in {1,2,3,4}. In this and future ex-
amples, 1 corresponds to the coset containing the identity.

The cusps are at oo and 1 with width 3 and 1, respectively. Each cusp corre-
sponds to a rational direction in which the surface decomposes into parallel cylin-
ders. We denote the saddle connections by ve, = [{], vi, = [$], and vi = [1].
However, neither of these are closed saddle connections as they do not connect
vertices of the same color (Figure [). To compute the quadratic asymptotics of
saddle connections, we follow Section 16 of Veech [0] and Appendix C of Athreya—
Chaika—Lelievre [2]. Veech [0, Theorem 16.1] showed that for any non-uniform
lattice I’ C SL(2,R) and any vector v stabilized by a maximal parabolic subgroup
A C T, we have
. |¢gTvn B(0,R)|
m 2= 2=yl

li

R—o0 7TR2 - C(F7 V).

Our goal is to find this limit for all saddle connection vectors v € A, that is,

lim N(R) = Z c(T,v).

R—o0 7TR2

veA,

Given v, we compute (T, v) as follows. Let gy € SL(2,R) be such that g5 'Ago =
Ao, with Ay = {((1) ’f) 'n € Z}. Setting vo = 1 and ggvo = tv, we have ¢(T',v) =
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t2vol(H?/T")~!. Here, t? corresponds to the width of the cusp. For v = v, we

have
%0 <¢o§ 1/O¢§)

hence ¢(I', v) = 3- 5 -1 = -2, Since v/, = 2v., we have ¢(I', v, ) = (%)2C(F,VOO).

Following this computation, we have

o Y (3 (1) 1) 6 19 0

R—oo mR2  \4 4 4) w2 16 w2’
We normalize the area of the surface to 1 and denote by N (R) the number of
saddle connection vectors of length at most R on the unit-area surface. Then

ND 1
lim (B) _19 6

S S A . Y
Roo  mRZ 16 w2

Now we consider the cylinder decomposition of the surface arising from each sad-
dle connection vector and compute the asymptotic growth of (weighted) cylinders
whose core curves are at most length R. In the vertical direction, the surface de-
composes into sixteen cylinders: eight have v, as their core curves and eight have
v/ as their core curves, hence the area of the cylinders are 1 and 2 respectively.

Similarly, in the direction of vy, the surface decomposes into eight cylinders of unit
area and eight cylinders of area 2. Hence

. A(R) 3 16
iy (1 <8+Z) +

and on the unit-area surface, we have lim
R—oo T

AMW(R) 6
pr = 15— 24

™

Mucube. The translation cover of the underlying surface of Mucube is defined by
the following horizontal and vertical permutations on 24 squares. It is a genus nine
surface with eight simple zeros.

(4.3)

on = (1,2,3,4)(5,6,7,8)(9,10,11,12)(13, 14, 15,16)(17, 18, 19, 20) (21, 22, 23, 24)
(4.4)

0w = (1,9,14,22)(2,20,13,7)(3,24, 16, 11)(4, 5,15,18)(6, 10, 17, 21)(8, 23, 19, 12)

4 12 13 6 1 19 16

13114 |15 |16 |= ‘17 18 19|20 |7 |21|22]23 |24
15 10 2 23 14 17 o 3 8
12

21

—
4 9

1231‘5678591011

FIGURE 7. Double cover of the underlying surface of Mucube.
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The Veech group is an index-9 subgroup of SL(2,Z) which we describe by the
action of the generators of SL(2,Z) on the right cosets:

The cusps are at 0o, 1/2, and 1, with cusp width 4, 2, and 3, respectively. These are
associated to the vertical direction, direction of slope 1/2, and 1/3. Note that none
of the saddle connections are closed as there is no vertex on both top and bottom
of any cylinder in the cusp directions (Figure [M). Then we have the following
quantities:

fm YR _ (4,2 3Y6 _6 0 o NOR) 62
Rooo 7RZ ~ \9 ' 9 9)x2 g2 P .
Since every cylinder has unit-area,
RO TR? 72 and ngnoo TRz @2

Muoctahedron. The translation cover of the underlying surface of Muoctahedron
is a genus-nineteen surface with twelve order-three zeros. The following vertical and
horizontal permutations define the square-tiled surface (Figure [§]).

o= (1,29,20,36,39,54,37,3,10)(2, 18,46, 38, 53,21, 28,19, 11)(4, 60, 70, 58,
35,23, 33,6, 16)(5, 15,24, 34,22, 71,59, 69, 17)(7, 42, 51,40, 57, 64, 55, 9, 13)
(8,14,50,41,52, 72,56, 65, 12)(25, 31, 27, 66, 62, 68, 47, 44, 49)(26, 32, 43,
48,45, 61,67,63,30)]

on = (1,2,3,4,5,6,7,8,9)(10, 11,12, 13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24,
25,26,27)(28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41, 42, 43, 44, 45)
(46,47, 48,49, 50, 51,52, 53, 54)(55, 56, 57, 58, 59, 60, 61, 62, 63) (64, 65, 66,
67,68, 69,70,71,72)

9 _ 72 64 o35 _ 69 70 045 _ 66 67 o 55 56 .27 . 61 @ 758 59 . 52
- ¢ - G

Tss 56‘57 58‘59 60 61‘62 63T§5 ’64 65‘66 67|68 69| 70| 71|72

o
O

64

3 53 54 57 g 50 51 ¢ 32 47 48 o 38 68 , 43 44 o-14 40 41 _ 2 37
3713 l39 ’ 40| 41| 42| 43| 44| 45| 46 | 47 | 48 | 49 | 50 | 51 | 52 ‘ 53 ‘ 54 |46
oL 36 28 . 71 33 34 o 49 o 30 31, 19 20, 63,25 26 6 22 23 . 39
19 ‘ 20 21T22 23 | 2 ]25 26 ‘ 7 19 28 29’130 ‘ 311 32 ‘ 33 ‘ 34 | 35| 36 |28
022 18 10 o 60 o 15 16 . 42 12 13 o 1 2 . 65 7 8 5 24 o 4 5 46 o
1 2 3’4 5‘6‘7 8l9 1 10 11]12’13 14 15‘16 17l18 10
¢ ——— * € . © : ©

F1GURE 8. Triple cover of the underlying surface of Muoctahedron.
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The Veech group is an index-16 subgroup of SL(2,Z), which we describe by the
action of generators on the right cosets:
s2 = (1,14)(2,9)(3,11)(4,10)(5,6)(7, 1 )(8, 2)(13,16)
S3 = (2a 16a9)(37 1576)(4 14 11)(5,87 0)( ) 31 )
1=(1,14,10,12,16,9,13,15,11)(3,5,4)(6,7,8)
r=1(1,14,3,7,16,2,13,8,4)(5,12,15)(6, 11, 10)

The cusps are at oo, 1/5, 1/2, and 1/7, with width 9, 1, 3, and 3, respectively.
Again, none of the saddle connections are closed. The number of saddle connection
vectors in the disk of radius R grows quadratically and we get

lim NR) (9 1+1 +i 1+1 +3 1+l +i 6 _1m 6
Reoo mR2 ~ \ 16 4 16 4 16 4 16 ) 72 64 72

and

. NW(R) 77 6
B VI

For all directions, there are 24 cylinders of unit-area and 24 cylinders of area
2. For directions oo, 1/5, and 1/2, the area of the cylinder is proportional to the
length of the core curve.

AR) (9 48\ 1 48\ 3 48\ 3 6
I - 24 ~ (2442 24 2 (24448) ) —
R TR? <16< +4)+16< +4) 16< +4>+16 ( +8)>w2

171 6
==
and
ADR) 171 6
Rooo TRZ 4 72

72,

Octa-4. The translation cover of the underlying surface of Octa-4 is a genus-
nineteen surface with twelve order-three zeros. The cover is defined by vertical
and horizontal permutations as described in Figure

oo = (1,6,35)(2,32,41)(3,48,7)(4,9,10)(5, 38, 20)(8, 17, 26)(11, 25, 30)(12, 43,
39)(13,18,47)(14, 44, 29)(15, 36, 19)(16, 21, 22)(23, 37, 42)(24, 31, 27) (28,
33,34), (40, 45, 46)

on = (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16, 17, 18)(19, 20, 21)(22, 23,
24)(25, 26, 27)(28, 29, 30) (31, 32, 33) (34, 35, 36) (37, 38, 39) (40, 41, 42) (43,
44,45)(46,47, 48)

Its Veech group is an index-four subgroup of SL(2,Z) with the following descrip-
tion on the right cosets:
s2 = (1,2)(3,4), s3 = (1,3,4), 1=(1,3,2), r=(1,4,2).

The two cusps are co and 1/2 with width 3 and 1, respectively. There are no closed
saddle connections. We achieve

(€] .
o MO (3,1)5 8 MO0
4 T2 2

Rooo  R2 4 o Rooo  TR2 2
Since all cylinders are unit-area, we get
A(R) 6-48 . AD(R) 6482

= and lim =
R—oo TR2 2 R—oo wR2 w2
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42 _ 20 o 12 o452 23 39 20 _ 46 _ 240 o 13 7
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i@\sAM ;33914?L0 t27-41‘34j 28 119 o
252627 | |28]29 30 | 31T3zl33 5343536
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FIGURE 9. Triple cover of the underlying surface of Octa-4.

Truncated Octa-8. The translation cover of the underlying surface of Truncated
Octa-8 is a genus-49 surface with 24 order-4 zeros. The square-tiled surface is
defined by the following permutations on 120 squares.

o, = (1,34,75,81,120,7)(2,20, 111,80, 62, 25)(3, 40, 67, 79, 107, 15)(4, 10, 117,
84,78,31)(5,28, 65,83, 114, 23)(6, 18, 104, 82, 70, 37)(8, 52, 71, 74, 96, 17)
(9,24,86,73,64,43)(11,14, 93,77, 68,49)(12, 46, 61,76, 89, 21)(13, 22, 99,
69,66,55)(16, 58,63, 72,102, 19)(26, 45, 115, 110, 90, 33)(27, 38, 98, 109,
103, 56)(29, 36, 87, 113, 118, 48)(30, 59, 106, 112, 101, 41)(32, 92, 108, 116,
50,39)(35, 42, 53, 119, 105, 95)(44, 57,91, 85,97, 51)(47, 54, 100, 88, 94, 60)

on= (1,2,3,4,5,6)(7,8,9,10,11,12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)
(25, 26,27,28,29,30)(31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41, 42) (43, 44, 45,
46,47,48)(49, 50, 51, 52, 53, 54)(55, 56, 57, 58, 59, 60) (61, 62, 63, 64, 65, 66)
(67,68, 69,70,71,72)(73,74,75,76,77, 78)(79, 80, 81, 82, 83, 84) (85, 86, 87,
88,89,90)(91,92,93,94,95,96)(97, 98,99, 100, 101, 102)(103, 104, 105, 106,
107,108)(109, 110,111,112, 113, 114)(115, 116, 117, 118, 119, 120)

Its Veech group is an index-15 subgroup of SL(2,Z) with the following descrip-
tion on the right cosets:

so = (2,7)(3,11)(4, 8)(5,13)(6, 12)(9, 15)(10, 14)
sy = (1,13,6)(2,9,11)(3,14,7)(4, 10,12)(5, 15, 8)
1=(1,12,14,11,15,13)(2,3)(4,6,5)(7, 10,8, 9)

r=(1,5,9,3,10,6)(2, 15,4, 14)(7,11)(8, 13, 12)

The cusps are at 0o, 1/3, 1, and 1/4, and none of the saddle connections are closed.
We get

R ARCRET

=— and lim

lim —
w2 72 R—oo wR2 2

N(R) (6 2 3 4\6 6 NM(R) 6-120
R—o0 7TR2 o o '

Since every cylinder is unit-area,

AR) _6-120 - AMD(R) __6~1202.

R—oo TR2 w2 Rooo wR2 — x2
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FI1GURE 10. Quadruple cover of the underlying surface of Trun-
cated Octa-8.

Platonic solids. In this section, we present the quadratic asymptotics of saddle
connection vectors on the translation cover of Platonic solids represented as square-
tiled surfaces. Table 2 in the present paper is Table 2 from [IJ.

TABLE 2. Cusp and cusp widths of Platonic solids

Cusps Cusp Widths

Tetrahedron {0} {1}
Octahedron {0, 1} {3,1}
Cube {o0,1/2,1} {4,2,3}

Icosahedron | {c0,1/3,1/2} {5,2,3}
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Then we have the following quantities for the spectral curve of the octahedron,
cube, and icosahedron:

3-cover of the octahedron.

. N(R) 3 1\ 6 6 . NOR) 6
A TR (1 z) 2 ad o lim e =1
and all cylinders are unit-area:
_AR) 6 AWR) 6,
A R T 12 ed i e = e 1
4-cover of the cube (identical to the 2-cover of Mucube).
. N(R) 4 2 3\6 6 . NO(R) 6-24
I%LH;MRZ—(g 9 §)§—§ and e = T
Similarly, all cylinders are unit-area, hence
A . (1) . 9242
(R) _ 6-24 and lim AW(R) _ 6-24 .
R-oco mR2 w2 Roco TR2 2
6-cover of the icosahedron.
lim NR) _ Sy 2 366 and lim N(R) _ 600
R—oo R2  \10 10 10/ w2 m2 R—oo TwR?2 w2’
Also, all cylinders are unit-area, hence
A(R . (1) . 602
():6 60 and limA (R):660.
R—o0 TRZ2 2 R0 TR2 2
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